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Consider the gradient flow

U ′(t) = −∇F (U(t)) t ≥ 0, (1)

where U = (u1, . . . , ud)
t , F ∈ C 1,1

loc (R
d ,R). For every solution

U(t), we have

F (U(t)) +

∫ t

0
‖U ′(s)‖2ds = F (U(0)), t ≥ 0.

If U is a solution of (1) which is bounded on [0,+∞), then

ω(U(0)) := {U⋆ : ∃tn → +∞, U(tn) → U⋆}

is a non-empty compact connected subset of

S = {V ∈ Rd : ∇F (V ) = 0}.

Moreover, d
(

U(t), ω(U(0))
)

→ 0 as t → +∞.



Does U(t) → U⋆ as t → +∞ ?

If d = 1, it is obvious by monotonicity.
If d ≥ 2, it is obviously true if S is discrete, but it is no longer true
in general: counterexamples in Curry’44, Palis and De Melo’82,
Zoutendijk’88, Bertsekas ’95. The following counter-example
(“Mexican hat”) is given in Absil, Mahony and Andrews’05 :

f (r , θ) = e−1/(1−r2)

[

1− 4r4

4r4 + (1− r2)4
sin(θ − 1

1− r2
)

]

,

if r < 1 and f (r , θ) = 0 otherwise. We have f ∈ C∞, f (r , θ) > 0
for r < 1 so r = 1 is a global minimizer. We can check that the
curve defined by

θ = 1/(1− r2)

is a trajectory.
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Theorem (Lojasiewicz’65)

If F : Rd → R is real analytic in a neighbourhood of U⋆ ∈ Rd ,
there exist ν ∈ (0, 1/2], σ > 0 and γ > 0 s.t. for all V ∈ Rd ,

‖V − U⋆‖ < σ ⇒ |F (V )− F (U⋆)|1−ν ≤ γ‖∇F (V )‖. (2)

NB: see the preprint of Michel Coste on his web page.
Example: for d = 1 and p ≥ 2, x 7→ xp satisfies (2) at x⋆ = 0
with ν = 1/p. For d ≥ 1, in the ”generic case”’ where ∇2F (U⋆)
inversible, ν = 1/2.

Corollary

If F : Rd → R is real analytic, then for any bounded semi-orbit of
U ′(t) = −∇F (U(t)), there exists U⋆ ∈ S s.t. U(t) → U⋆ as
t → +∞.



A proof
F (U(t)) is non increasing and so has a limit F ⋆(= 0). Let
tn → +∞ s.t. U(tn) → U⋆. We have F (U⋆) = F ⋆ and U⋆ ∈ S.
Choose n large enough so that ‖U(tn)− U⋆‖ < σ/2 and
γF (U(tn))

ν < σ/2, and define

t+ = sup{t ≥ tn | ‖U(s)− U⋆‖ < σ ∀s ∈ [tn, t)}.

For t ∈ [tn, t
+), we have

−[F (U(t))ν ]′ = −U ′(t) · ∇F (U(t))F (U(t))ν−1

= ‖U ′(t)‖‖∇F (U(t))‖F (U(t))ν−1

≥ γ−1‖U ′(t)‖,

so

F (U(tn))
ν − F (U(t))ν ≥ γ−1

∫ t

tn

‖U ′(s)‖ds.

Thus ‖U(t)− U(tn)‖ < σ/2, ∀t ∈ [tn, t
+) and so t+ = +∞.

QED.



This proof extends to many situations:

◮ For any other scalar product on Rd :

AU ′(t) = −∇F (U(t)),

where A is positive definite (symmetric or not).

◮ Generalizations in infinite dimension (Simon, Jendoubi,
Haraux, Chill,. . . )

◮ Semilinear heat equation:

ut = ∆u − f (u), t ≥ 0, x ∈ Ω.

◮ Cahn-Hilliard equation: forth order in space (Hoffman, Rybka,
Chill, Jendoubi)

◮ Cahn-Hilliard equation with dynamic boundary conditions (Wu,
Zheng, Chill, Fasangova, Pruss)

◮ Cahn-Hilliard-Gurtin equations (Miranville and Rougirel):
gradient-like flow

NB: 160 citations for the paper of Simon (most cited paper)
50 citations for the paper of Jendoubi’98 (most cited paper)



◮ Generalization to second-order gradient-like flows:

ǫU ′′(t) + U ′(t) = −∇F (U(t)), t ≥ 0,

where ǫ > 0: Haraux and Jendoubi’98

◮ Damped wave equation

ǫutt + ut = ∆u − f (u), t ≥ 0, x ∈ Ω.

Haraux, Jendoubi, Chill,. . .

◮ Cahn-Hilliard equation with inertial term (Grasselli,
Schimperna, Zelig, Miranville, Bonfoh)

◮ (optimal) convergence rates for 1st and 2nd order



Questions:

◮ If we consider some time discretizations of the equations
above, can we obtain similar results of convergence to
equilibrium ?

◮ In particular, what happens for the backward Euler scheme ?

◮ What restriction on the time step do we have ?



The backward Euler scheme reads: let U0 ∈ Rd , and for n ≥ 0,
let Un+1 solve

Un+1 − Un

∆t
= −∇F (Un+1), (3)

where ∆t > 0 is fixed and F ∈ C 1(Rd ,R). Since existence is not
obvious, we rewrite (3) in the form:

Un+1 ∈ argmin

{‖V − Un‖2
2∆t

+ F (V ) : V ∈ Rd

}

. (4)

In optimization, (4) is known as the proximal algorithm.
In particular, Un+1 satisfies

F (Un+1) +
1

2∆t
‖Un+1 − Un‖2 ≤ F (Un).



By induction, any sequence defined by (4) satisfies

F (Un) +
1

2∆t

n−1
∑

k=0

‖Uk+1 − Uk‖2 ≤ F (U0), ∀n ≥ 0 (5)

This is a Liapounov stability result.
By (5), it is easy to prove that if (Un)n∈N is a bounded sequence
defined by the proximal algorithm (4), then

ω(U0) :=
{

U⋆ ∈ Rd : ∃nk → +∞, Unk → U⋆
}

is a non-empty compact connected subset of S. Moreover,
d(Un, ω(U0)) → 0 as n → +∞.

Question : does Un → U⋆ as n → +∞ ?



Some answers

◮ if d = 1 or if S is discrete, yes (use that ω(U0) is connected)

◮ If d ≥ 2, numerical simulations on the ”Mexican hat” function
idicate that convergence to equilibrium is not true in general.



Theorem (B.Merlet and M.P.’10)

Assume that F : Rd → R is real analytic and that

F (V ) → +∞ as ‖V ‖ → +∞. (6)

Let (Un)n be a sequence defined by the proximal algorithm (4).
There exist U∞ ∈ S s.t. Un → U∞ as n → +∞.

Remark: A more general version by Attouch and Bolte’09:

◮ variable stepsize 0 < ∆t⋆ ≤ ∆tn ≤ ∆t⋆ < +∞
◮ F : Rd → R real analytic replaced by F : dom(F ) ⊂ Rd → R

continuous and satisfies a Lojasiewicz property

◮ (6) replaced by inf F > −∞ and (Un)n bounded.



A proof

Energy estimate

‖Un+1 − Un‖2
2∆t

+ F (Un+1) ≤ F (Un), ∀n ≥ 0. (7)

We can find a subsequence (Unk )k s.t. Unk → U∞ ∈ S. Recall the
Lojasiewicz inequality (with F (U∞) = 0):

∀V ∈ Rd , ‖V − U∞‖ < σ ⇒ |F (V )|1−ν ≤ γ‖∇F (V )‖. (8)

Let n s.t. ‖Un+1 − U∞‖ < σ. We have two cases
• Case 1: F (Un+1) > F (Un)/2. Then,

F (Un)ν − F (Un+1)ν =

∫ F (Un)

F (Un+1)
νxν−1dx

≥
∫ F (Un)

F (Un+1)
ν (F (Un))ν−1 dx

≥ 2ν−1ν
(

F (Un+1)
)ν−1

[F (Un)− F (Un+1)].



[F (Un)]ν − [F (Un+1)]ν
(7)

≥ 2ν−2ν
‖Un+1 − Un‖2
∆t[F (Un+1)]1−ν

(3)

≥ 2ν−2ν‖Un+1 −Un‖
‖∇F (Un+1)‖
[F (Un+1)]1−ν

(8)

≥
2ν−2ν

γ
‖Un+1 −Un‖.

• Case 2: F (Un+1) ≤ F (Un)/2. Then

‖Un+1−Un‖
(7)

≤
√
2∆t[F (Un)−F (Un+1)]1/2 ≤

√
2∆t[F (Un)]1/2

cas 2

≤
(

1− 1√
2

)

−1√
2∆t

(

[F (Un)]1/2 − [F (Un+1)]1/2
)

.

In both cases, for all n s.t. ‖Un+1 − U∞‖ < σ, we have

‖Un+1 − Un‖ ≤
22−νγ

ν

(

[F (Un)]ν − [F (Un+1)]ν
)

+ 5
√
∆t

(

[F (Un)]1/2 − [F (Un+1)]1/2
)

. (9)

From this we deduce that
∑+∞

n=0 ‖Un+1 − Un‖ < +∞.



Corollary (B. Merlet et M.P.)

Let U∞ s.t. U(t) → U∞. Assume that U∞ is a local minimizer of
F , i.e.

∃ρ > 0, ∀V ∈ RN , ‖V − U∞‖ < ρ ⇒ F (V ) ≥ F (U∞).

Let (Un
∆t)n be the sequence defined by the backward Euler scheme

(which is unique for ∆t > 0 small enough), and let
U∞

∆t := limn→+∞ Un
∆t . Then U∞

∆t → U∞, as ∆t → 0 and
U0
∆t → U0.

NB: this is a Liapounov stability result



Applications

◮ Applies to any other scalar product on Rd :

AU ′(t) = −∇F (U(t)),

where A is positive definite (symmetric or not).
◮ FD or FE space discrete versions of the Allen-Cahn equation,

Cahn-Hilliard equation (Merlet and P.’10), Cahn-Hilliard
equation with dynamic boundary conditions (Cherfils, Petcu,
P.’10)

◮ FE space discrete version of the Cahn-Hilliard-Gurtin equation
(Injrou and P.)

◮ Generalizations in infinite dimension to the semilinear heat
equation (Merlet and P.’10)

◮ Abstract version of the semilinear heat equation in infinite
dimension (Attouch, Daniildis, Ley, Mazet’09)



Extension to second-order gradient-like systems case

◮ Finite dimension : ok

◮ The damped wave equation as a model problem : ok

◮ Space discrete version of the Cahn-Hilliard equation with
inertial term (ongoin work with M. Grasselli)

ǫutt + ut = −α∆2u +∆f (u).

The mass is no longer preserved, but it converges
exponentially fast to a constant: adapt results of Chill and
Jendoubi with vanishing source term.



Perspectives and questions

◮ Find an abstract version of the damped wave equation ?

◮ Adapt other results from the continuous case ?

◮ Find other Liapounov stable schemes ? (implicit schemes,
most likely)



An example: the θ-scheme

For θ ∈ [1/2, 1], the θ-scheme reads:

Un+1 − Un

∆t
= −θ∇F (Un+1)− (1− θ)∇F (Un). (10)

Assume that F satisfies

(∇F (U)−∇F (V ) , U − V ) ≥ −cF‖U − V ‖2, ∀U,V ∈ Rd ,
(11)

for some cF ≥ 0 (i.e., F is semiconvex).

Theorem (Liapounov stability, Stuart and Humphries’94)

If θ ∈ [1/2, 1], ∆t < 2/cF and F (V ) → +∞ as ‖V ‖ → +∞, then
for all n ≥ 0,

F∆t(U
n+1) +

(

1− cF∆t

2

) ‖Un+1 − Un‖2
∆t

≤ F∆t(U
n),

where

F∆t(V ) = F (V ) +
(1− θ)∆t

2
‖∇F (V )‖2.



By applying a proof similar to the previous one to the Liapounov
function F∆t , we obtain convergence to equilibrium if ∆t is small

enough. For a discretization of the Allen-Cahn equation, the
smallness assumption is

∆t ≤ Ch2. (12)

On the other hand, Liapounov stability holds if ∆t < 2/cF :
Can (12) be improved ?



Some additional references

◮ Huang (Sen-Zhong), ”Gradient Inequalities”, AMS’06

◮ Attouch, Bolte, Redont, Soubeyran’08: Alternating
minimization. . .

◮ Absil, Mahony and Andrews’05: Convergence of iterates of
descent methods for analytic cost functions

◮ Gajewski and Griepentrog’06 : A descent method for the free
energy of multicomponent systems


