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Consider the gradient flow

U'(t)=—-VF(U(t)) t=>0, (1)
where U = (u1,...,uq)t, F € C,})’Cl(Rd, R). For every solution

U(t), we have

t
FUE) + [ 1U)Pds = F(U(©). =0,
0
If U is a solution of (1) which is bounded on [0, +00), then
w(U(0)) :={U* : 3ty = +oo, U(ty) = U*}
is a non-empty compact connected subset of
S={VeR? : VF(V)=0}.

Moreover, d(U(t),w(U(0))) — 0 as t — +oc.



Does U(t) - U* as t — 400 ?
If d =1, it is obvious by monotonicity.
If d > 2, it is obviously true if S is discrete, but it is no longer true
in general: counterexamples in Curry'44, Palis and De Melo'82,
Zoutendijk'88, Bertsekas '95. The following counter-example
(“Mexican hat") is given in Absil, Mahony and Andrews'05 :

4r4 1

4sin(¢9—71_r2) ,

-\
flrf)=e 4r* + (1 —r?)

if r <1 and f(r,0) =0 otherwise. We have f € C*>, f(r,0) >0
for r <1so r=1is a global minimizer. We can check that the
curve defined by

0=1/(1—-r?

is a trajectory.
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Theorem (Lojasiewicz'65)

If F: R? — R is real analytic in a neighbourhood of U* € RY,
there exist v € (0,1/2], o > 0 and v > 0 s.t. for all V € RY,

IV = Ul <o = |F(V) = FUII'™" <AlIVEMW)I. - (2)

NB: see the preprint of Michel Coste on his web page.
Example: for d =1 and p > 2, x — xP satisfies (2) at x* =0
with v = 1/p. For d > 1, in the " generic case’’ where V2F(U*)
inversible, v = 1/2.

Corollary

If F: R — R is real analytic, then for any bounded semi-orbit of
U'(t) = =V F(U(t)), there exists U* € S s.t. U(t) — U* as
t — +o0.



A proof
F(U(t)) is non increasing and so has a limit F*(=0). Let
tn — 400 s.t. U(t,) — U*. We have F(U*) = F* and U* € S.
Choose n large enough so that |U(t,) — U*|| < o/2 and
vF(U(tn))” < 0/2, and define

tT =sup{t>t, | [|[U(s) — U*|| <o Vs€E[tnt)}
For t € [tn, tT), we have

—[FU@)7T = —U'(t)- VF(U()F(U(1)"
= [U@IIVFU@)IFU@D))
> U@,

SO

F(U(tn))” — F(U(t))” >4t /tt |U'(s)||ds.
Thus [[U(t) — U(tn)|| < 0/2, Vt € [ts, tT) and so tT = +o0.
QED.



This proof extends to many situations:

» For any other scalar product on RY:
AU'(t) = —VF(U(t)),

where A is positive definite (symmetric or not).
» Generalizations in infinite dimension (Simon, Jendoubi,

Haraux, Chill,...)
» Semilinear heat equation:

up=Au—f(u), t>0, xeQ.

» Cahn-Hilliard equation: forth order in space (Hoffman, Rybka,
Chill, Jendoubi)

» Cahn-Hilliard equation with dynamic boundary conditions (Wu,
Zheng, Chill, Fasangova, Pruss)

» Cahn-Hilliard-Gurtin equations (Miranville and Rougirel):
gradient-like flow

NB: 160 citations for the paper of Simon (most cited paper)
50 citations for the paper of Jendoubi'98 (most cited paper)
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Generalization to second-order gradient-like flows:
eU"(t) 4+ U'(t) = =VF(U(t)), t>0,

where € > 0: Haraux and Jendoubi’'98

Damped wave equation
eupr +up = Au—f(u), t>0, xeQ.

Haraux, Jendoubi, Chill,. ..

Cahn-Hilliard equation with inertial term (Grasselli,
Schimperna, Zelig, Miranville, Bonfoh)

(optimal) convergence rates for 1st and 2nd order



Questions:

» If we consider some time discretizations of the equations
above, can we obtain similar results of convergence to
equilibrium 7

» In particular, what happens for the backward Euler scheme 7

» What restriction on the time step do we have ?



The backward Euler scheme reads: let U° € RY, and for n > 0,
let UMt solve
Un+1 —yn
At
where At > 0 is fixed and F € C}(RY,R). Since existence is not
obvious, we rewrite (3) in the form:

= —VF(U™), (3)

UnH2

Un+1 . H
€ argmin { AT

F(V) : Ve Rd}. (4)
In optimization, (4) is known as the proximal algorithm.
In particular, U1 satisfies

1

n+1
F(U )+2A

||Un+1 Un||2 < F(Un)



By induction, any sequence defined by (4) satisfies

n—1
n 1
FUM + o DU = UKP < F(U%), ¥n>0  (5)
k=0

This is a Liapounov stability result.
By (5), it is easy to prove that if (U"),en is a bounded sequence
defined by the proximal algorithm (4), then

w(UP) = {U* eRY : 3ng — +oo, U™ — U*}
is a non-empty compact connected subset of S. Moreover,

d(U",w(U%) — 0 as n — +o0.
Question : does U" — U* as n — +o0 ?



Some answers

» if d =1 orif S is discrete, yes (use that w(U°) is connected)

» If d > 2, numerical simulations on the " Mexican hat" function
idicate that convergence to equilibrium is not true in general.



Theorem (B.Merlet and M.P.'10)
Assume that F : R — R is real analytic and that

F(V) — 400 as | V| — +oo. (6)

Let (U™), be a sequence defined by the proximal algorithm (4).
There exist U € S s.t. U" — U* as n — +o0.

Remark: A more general version by Attouch and Bolte’09:
» variable stepsize 0 < At, < At, < At* < 400

» F:R? — R real analytic replaced by F : dom(F) c R — R
continuous and satisfies a Lojasiewicz property

» (6) replaced by inf F > —o0 and (U"), bounded.



A proof
Energy estimate

n+1 ny?2
”Umtu” F(U™Y < F(U™), V¥n>D0. (7)

We can find a subsequence (U ) s.t. U™ — U™ € S. Recall the
Lojasiewicz inequality (with F(U*°) = 0):

YV ERY, |V -UX| <o= |F(V) <AlIVE(V)I. (8)
Let ns.t. [[U™! — U>®|| < 0. We have two cases
e Case 1: F(U"1) > F(U")/2. Then,
F(Um)
F(U™Y — F(U™)Y = / vx""Ldx
F(Un+1)

F(U™) 1
> / v (F(UM)" Y dx
F(Unt)

> 27l (F(U™)THFUT) — (U™,



nyiv n v ) v— ||U”+1_Un||2
[F(UM” = [F(U™h) > 2 2”At[F(U”+1)]1—V

3) IVF(U™ )| &) 2v-2
> v—2 n+l _ yyn
> 2V7u||\U U H[F(UHH)]PV >

e Case 2: F(U™1) < F(U")/2. Then

|| Un+1 o Un”

(7)
[UP—Un| < V2At[F(UM)—F(UMH)Y2 < V2At[F(um))Y?
cas 2 1\7! /2 nt1y11/2
< (1 - ﬁ) V2AE ([F(UM2 = [FUm)2).
In both cases, for all ns.t. |[U"! — U®|| < o, we have

2—v
jumt— < =2

—— ([FUmY = [F(U™))

+5VAE (IF(UM2 = [FUm1H2) . (9)

From this we deduce that >_7°0 ||U™! — U"|| < +o0.



Corollary (B. Merlet et M.P.)

Let U s.t. U(t) — U™. Assume that U is a local minimizer of
F, ie.

3p>0, YWeRN |[V-U®|<p=> F(V)>FU®).

Let (UR,)n be the sequence defined by the backward Euler scheme
(which is unique for At > 0 small enough), and let

UR; == limp oo UR,. Then UZ, — U™, as At — 0 and

Ugt — U().

NB: this is a Liapounov stability result



Applications

» Applies to any other scalar product on RY:
AU'(t) = —VF(U(t)),

where A is positive definite (symmetric or not).

» FD or FE space discrete versions of the Allen-Cahn equation,
Cahn-Hilliard equation (Merlet and P.’10), Cahn-Hilliard
equation with dynamic boundary conditions (Cherfils, Petcu,
P.'10)

» FE space discrete version of the Cahn-Hilliard-Gurtin equation
(Injrou and P.)

» Generalizations in infinite dimension to the semilinear heat
equation (Merlet and P.'10)

» Abstract version of the semilinear heat equation in infinite
dimension (Attouch, Daniildis, Ley, Mazet'09)



Extension to second-order gradient-like systems case

» Finite dimension : ok
» The damped wave equation as a model problem : ok

» Space discrete version of the Cahn-Hilliard equation with
inertial term (ongoin work with M. Grasselli)

€U + up = —alA%u + Af(u).

The mass is no longer preserved, but it converges
exponentially fast to a constant: adapt results of Chill and
Jendoubi with vanishing source term.



Perspectives and questions

» Find an abstract version of the damped wave equation ?
» Adapt other results from the continuous case ?

» Find other Liapounov stable schemes ? (implicit schemes,
most likely)



An example: the 6-scheme
For 6 € [1/2,1], the B-scheme reads:

Un+1 _[n
At
Assume that F satisfies
(VF(U) = VF(V),U—-V)>—c|U~V|? VU,V eR",
(11)

= —OVF(U™) — (1 -0)VF(U™).  (10)

for some cr > 0 (i.e., F is semiconvex).

Theorem (Liapounov stability, Stuart and Humphries'94)

If0 €[1/2,1], At <2/cr and F(V) — +o0 as ||V — 400, then
for all n > 0,

< FAt(Un)a

it B CFAt Hun-‘rl _ Un||2
Fae(U™ ) + <1 5 ) Az

where
(1-0)At

2

Fae(V) = F(V) + IVE(V)IIZ.



By applying a proof similar to the previous one to the Liapounov
function Fa:, we obtain convergence to equilibrium if At is small
enough. For a discretization of the Allen-Cahn equation, the
smallness assumption is

At < Ch. (12)

On the other hand, Liapounov stability holds if At < 2/ck:
Can (12) be improved ?



Some additional references
» Huang (Sen-Zhong), " Gradient Inequalities”, AMS'06

» Attouch, Bolte, Redont, Soubeyran'08: Alternating
minimization. . .

» Absil, Mahony and Andrews'05: Convergence of iterates of
descent methods for analytic cost functions

> Gajewski and Griepentrog'06 : A descent method for the free
energy of multicomponent systems



