Convergence to equilibrium for the θ-scheme applied to gradient systems with analytic nonlinearities

Morgan PIERRE, University of Poitiers, France

Warwick, EFEF 2010, May 20-21, 2010

Consider the gradient flow

$$
\begin{equation*}
U^{\prime}(t)=-\nabla F(U(t)) \quad t \geq 0 \tag{1}
\end{equation*}
$$

where $U=\left(u_{1}, \ldots, u_{d}\right)^{t}, F \in C_{l o c}^{1,1}\left(\mathbf{R}^{d}, \mathbf{R}\right)$. For every solution $U(t)$, we have

$$
F(U(t))+\int_{0}^{t}\left\|U^{\prime}(s)\right\|^{2} d s=F(U(0)), \quad t \geq 0
$$

If U is a solution of (1) which is bounded on $[0,+\infty)$, then

$$
\omega(U(0)):=\left\{U^{\star}: \exists t_{n} \rightarrow+\infty, U\left(t_{n}\right) \rightarrow U^{\star}\right\}
$$

is a non-empty compact connected subset of

$$
\mathcal{S}=\left\{V \in \mathbf{R}^{d}: \nabla F(V)=0\right\}
$$

Moreover, $d(U(t), \omega(U(0))) \rightarrow 0$ as $t \rightarrow+\infty$.

Does $U(t) \rightarrow U^{\star}$ as $t \rightarrow+\infty$?

If $d=1$, it is obvious by monotonicity.
If $d \geq 2$, it is obviously true if \mathcal{S} is discrete, but it is no longer true in general: counterexamples in Curry'44, Palis and De Melo'82, Zoutendijk'88, Bertsekas '95. The following counter-example ("Mexican hat") is given in Absil, Mahony and Andrews'05 :

$$
f(r, \theta)=e^{-1 /\left(1-r^{2}\right)}\left[1-\frac{4 r^{4}}{4 r^{4}+\left(1-r^{2}\right)^{4}} \sin \left(\theta-\frac{1}{1-r^{2}}\right)\right],
$$

if $r<1$ and $f(r, \theta)=0$ otherwise. We have $f \in C^{\infty}, f(r, \theta)>0$ for $r<1$ so $r=1$ is a global minimizer. We can check that the curve defined by

$$
\theta=1 /\left(1-r^{2}\right)
$$

is a trajectory.

"Mexican hat" function

Theorem (Lojasiewicz'65)

If $F: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is real analytic in a neighbourhood of $U^{\star} \in \mathbf{R}^{d}$, there exist $\nu \in(0,1 / 2], \sigma>0$ and $\gamma>0$ s.t. for all $V \in \mathbf{R}^{d}$,

$$
\begin{equation*}
\left\|V-U^{\star}\right\|<\sigma \Rightarrow\left|F(V)-F\left(U^{\star}\right)\right|^{1-\nu} \leq \gamma\|\nabla F(V)\| . \tag{2}
\end{equation*}
$$

NB: see the preprint of Michel Coste on his web page.
Example: for $d=1$ and $p \geq 2, x \mapsto x^{p}$ satisfies (2) at $x^{\star}=0$ with $\nu=1 / p$. For $d \geq 1$, in the "generic case"' where $\nabla^{2} F\left(U^{\star}\right)$ inversible, $\nu=1 / 2$.

Corollary

If $F: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is real analytic, then for any bounded semi-orbit of $U^{\prime}(t)=-\nabla F(U(t))$, there exists $U^{\star} \in \mathcal{S}$ s.t. $U(t) \rightarrow U^{\star}$ as $t \rightarrow+\infty$.

A proof

$F(U(t))$ is non increasing and so has a limit $F^{\star}(=0)$. Let $t_{n} \rightarrow+\infty$ s.t. $U\left(t_{n}\right) \rightarrow U^{\star}$. We have $F\left(U^{\star}\right)=F^{\star}$ and $U^{\star} \in \mathcal{S}$.
Choose n large enough so that $\left\|U\left(t_{n}\right)-U^{\star}\right\|<\sigma / 2$ and $\gamma F\left(U\left(t_{n}\right)\right)^{\nu}<\sigma / 2$, and define

$$
t^{+}=\sup \left\{t \geq t_{n} \mid\left\|U(s)-U^{\star}\right\|<\sigma \quad \forall s \in\left[t_{n}, t\right)\right\}
$$

For $t \in\left[t_{n}, t^{+}\right)$, we have

$$
\begin{aligned}
-\left[F(U(t))^{\nu}\right]^{\prime} & =-U^{\prime}(t) \cdot \nabla F(U(t)) F(U(t))^{\nu-1} \\
& =\left\|U^{\prime}(t)\right\|\|\nabla F(U(t))\| F(U(t))^{\nu-1} \\
& \geq \gamma^{-1}\left\|U^{\prime}(t)\right\|
\end{aligned}
$$

so

$$
F\left(U\left(t_{n}\right)\right)^{\nu}-F(U(t))^{\nu} \geq \gamma^{-1} \int_{t_{n}}^{t}\left\|U^{\prime}(s)\right\| d s
$$

Thus $\left\|U(t)-U\left(t_{n}\right)\right\|<\sigma / 2, \forall t \in\left[t_{n}, t^{+}\right)$and so $t^{+}=+\infty$. QED.

This proof extends to many situations:

- For any other scalar product on \mathbf{R}^{d} :

$$
A U^{\prime}(t)=-\nabla F(U(t))
$$

where A is positive definite (symmetric or not).

- Generalizations in infinite dimension (Simon, Jendoubi, Haraux, Chill,...)
- Semilinear heat equation:

$$
u_{t}=\Delta u-f(u), \quad t \geq 0, x \in \Omega
$$

- Cahn-Hilliard equation: forth order in space (Hoffman, Rybka, Chill, Jendoubi)
- Cahn-Hilliard equation with dynamic boundary conditions (Wu, Zheng, Chill, Fasangova, Pruss)
- Cahn-Hilliard-Gurtin equations (Miranville and Rougirel): gradient-like flow
NB: 160 citations for the paper of Simon (most cited paper) 50 citations for the paper of Jendoubi'98 (most cited paper)
- Generalization to second-order gradient-like flows:

$$
\epsilon U^{\prime \prime}(t)+U^{\prime}(t)=-\nabla F(U(t)), \quad t \geq 0
$$

where $\epsilon>0$: Haraux and Jendoubi'98

- Damped wave equation

$$
\epsilon u_{t t}+u_{t}=\Delta u-f(u), \quad t \geq 0, x \in \Omega .
$$

Haraux, Jendoubi, Chill,...

- Cahn-Hilliard equation with inertial term (Grasselli, Schimperna, Zelig, Miranville, Bonfoh)
- (optimal) convergence rates for 1 st and $2 n d$ order

Questions:

- If we consider some time discretizations of the equations above, can we obtain similar results of convergence to equilibrium ?
- In particular, what happens for the backward Euler scheme?
- What restriction on the time step do we have ?

The backward Euler scheme reads: let $U^{0} \in \mathbf{R}^{d}$, and for $n \geq 0$, let U^{n+1} solve

$$
\begin{equation*}
\frac{U^{n+1}-U^{n}}{\Delta t}=-\nabla F\left(U^{n+1}\right) \tag{3}
\end{equation*}
$$

where $\Delta t>0$ is fixed and $F \in C^{1}\left(\mathbf{R}^{d}, \mathbf{R}\right)$. Since existence is not obvious, we rewrite (3) in the form:

$$
\begin{equation*}
U^{n+1} \in \operatorname{argmin}\left\{\frac{\left\|V-U^{n}\right\|^{2}}{2 \Delta t}+F(V): V \in \mathbf{R}^{d}\right\} . \tag{4}
\end{equation*}
$$

In optimization, (4) is known as the proximal algorithm. In particular, U^{n+1} satisfies

$$
F\left(U^{n+1}\right)+\frac{1}{2 \Delta t}\left\|U^{n+1}-U^{n}\right\|^{2} \leq F\left(U^{n}\right)
$$

By induction, any sequence defined by (4) satisfies

$$
\begin{equation*}
F\left(U^{n}\right)+\frac{1}{2 \Delta t} \sum_{k=0}^{n-1}\left\|U^{k+1}-U^{k}\right\|^{2} \leq F\left(U^{0}\right), \quad \forall n \geq 0 \tag{5}
\end{equation*}
$$

This is a Liapounov stability result.
By (5), it is easy to prove that if $\left(U^{n}\right)_{n \in \mathbf{N}}$ is a bounded sequence defined by the proximal algorithm (4), then

$$
\omega\left(U^{0}\right):=\left\{U^{\star} \in \mathbf{R}^{d}: \exists n_{k} \rightarrow+\infty, U^{n_{k}} \rightarrow U^{\star}\right\}
$$

is a non-empty compact connected subset of \mathcal{S}. Moreover, $d\left(U^{n}, \omega\left(U^{0}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$.

Question : does $U^{n} \rightarrow U^{\star}$ as $n \rightarrow+\infty$?

Some answers

- if $d=1$ or if \mathcal{S} is discrete, yes (use that $\omega\left(U^{0}\right)$ is connected)
- If $d \geq 2$, numerical simulations on the "Mexican hat" function idicate that convergence to equilibrium is not true in general.

Theorem (B.Merlet and M.P.'10)
Assume that $F: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is real analytic and that

$$
\begin{equation*}
F(V) \rightarrow+\infty \text { as }\|V\| \rightarrow+\infty . \tag{6}
\end{equation*}
$$

Let $\left(U^{n}\right)_{n}$ be a sequence defined by the proximal algorithm (4).
There exist $U^{\infty} \in \mathcal{S}$ s.t. $U^{n} \rightarrow U^{\infty}$ as $n \rightarrow+\infty$.
Remark: A more general version by Attouch and Bolte'09:

- variable stepsize $0<\Delta t_{\star} \leq \Delta t_{n} \leq \Delta t^{\star}<+\infty$
- $F: \mathbf{R}^{d} \rightarrow \mathbf{R}$ real analytic replaced by $F: \operatorname{dom}(F) \subset \mathbf{R}^{d} \rightarrow \mathbf{R}$ continuous and satisfies a Lojasiewicz property
- (6) replaced by $\inf F>-\infty$ and $\left(U^{n}\right)_{n}$ bounded.

A proof

Energy estimate

$$
\begin{equation*}
\frac{\left\|U^{n+1}-U^{n}\right\|^{2}}{2 \Delta t}+F\left(U^{n+1}\right) \leq F\left(U^{n}\right), \quad \forall n \geq 0 \tag{7}
\end{equation*}
$$

We can find a subsequence $\left(U^{n_{k}}\right)_{k}$ s.t. $U^{n_{k}} \rightarrow U^{\infty} \in \mathcal{S}$. Recall the Lojasiewicz inequality (with $F\left(U^{\infty}\right)=0$):

$$
\begin{equation*}
\forall V \in \mathbf{R}^{d}, \quad\left\|V-U^{\infty}\right\|<\sigma \Rightarrow|F(V)|^{1-\nu} \leq \gamma\|\nabla F(V)\| \tag{8}
\end{equation*}
$$

Let n s.t. $\left\|U^{n+1}-U^{\infty}\right\|<\sigma$. We have two cases

- Case 1: $F\left(U^{n+1}\right)>F\left(U^{n}\right) / 2$. Then,

$$
\begin{aligned}
F\left(U^{n}\right)^{\nu}-F\left(U^{n+1}\right)^{\nu} & =\int_{F\left(U^{n+1}\right)}^{F\left(U^{n}\right)} \nu x^{\nu-1} d x \\
& \geq \int_{F\left(U^{n+1}\right)}^{F\left(U^{n}\right)} \nu\left(F\left(U^{n}\right)\right)^{\nu-1} d x \\
& \geq 2^{\nu-1} \nu\left(F\left(U^{n+1}\right)\right)^{\nu-1}\left[F\left(U^{n}\right)-F\left(U^{n+1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[F\left(U^{n}\right)\right]^{\nu}-\left[F\left(U^{n+1}\right)\right]^{\nu} \stackrel{(7)}{\geq} 2^{\nu-2} \nu \frac{\left\|U^{n+1}-U^{n}\right\|^{2}}{\Delta t\left[F\left(U^{n+1}\right)\right]^{1-\nu}}} \\
& \stackrel{(3)}{\geq} 2^{\nu-2} \nu\left\|U^{n+1}-U^{n}\right\| \frac{\left\|\nabla F\left(U^{n+1}\right)\right\|}{\left[F\left(U^{n+1}\right)\right]^{1-\nu}} \stackrel{(8)}{\geq} \frac{2^{\nu-2} \nu}{\gamma}\left\|U^{n+1}-U^{n}\right\| .
\end{aligned}
$$

- Case 2: $F\left(U^{n+1}\right) \leq F\left(U^{n}\right) / 2$. Then

$$
\begin{aligned}
& +1-U^{n} \| \stackrel{(7)}{\leq} \sqrt{2 \Delta t}\left[F\left(U^{n}\right)-F\left(U^{n+1}\right)\right]^{1 / 2} \leq \sqrt{2 \Delta t}\left[F\left(U^{n}\right)\right]^{1 / 2} \\
& \stackrel{\text { cas } 2}{\leq}\left(1-\frac{1}{\sqrt{2}}\right)^{-1} \sqrt{2 \Delta t}\left(\left[F\left(U^{n}\right)\right]^{1 / 2}-\left[F\left(U^{n+1}\right)\right]^{1 / 2}\right) .
\end{aligned}
$$

In both cases, for all n s.t. $\left\|U^{n+1}-U^{\infty}\right\|<\sigma$, we have

$$
\begin{align*}
\left\|U^{n+1}-U^{n}\right\| \leq & \frac{2^{2-\nu} \gamma}{\nu}\left(\left[F\left(U^{n}\right)\right]^{\nu}-\left[F\left(U^{n+1}\right)\right]^{\nu}\right) \\
& +5 \sqrt{\Delta t}\left(\left[F\left(U^{n}\right)\right]^{1 / 2}-\left[F\left(U^{n+1}\right)\right]^{1 / 2}\right) \tag{9}
\end{align*}
$$

From this we deduce that $\sum_{n=0}^{+\infty}\left\|U^{n+1}-U^{n}\right\|_{\square}<+\infty$.

Corollary (B. Merlet et M.P.)

Let U^{∞} s.t. $U(t) \rightarrow U^{\infty}$. Assume that U^{∞} is a local minimizer of F, i.e.

$$
\exists \rho>0, \quad \forall V \in \mathbf{R}^{N},\left\|V-U^{\infty}\right\|<\rho \Rightarrow \quad F(V) \geq F\left(U^{\infty}\right)
$$

Let $\left(U_{\Delta t}^{n}\right)_{n}$ be the sequence defined by the backward Euler scheme (which is unique for $\Delta t>0$ small enough), and let $U_{\Delta t}^{\infty}:=\lim _{n \rightarrow+\infty} U_{\Delta t}^{n}$. Then $U_{\Delta t}^{\infty} \rightarrow U^{\infty}$, as $\Delta t \rightarrow 0$ and $U_{\Delta t}^{0} \rightarrow U_{0}$.
NB: this is a Liapounov stability result

Applications

- Applies to any other scalar product on \mathbf{R}^{d} :

$$
A U^{\prime}(t)=-\nabla F(U(t))
$$

where A is positive definite (symmetric or not).

- FD or FE space discrete versions of the Allen-Cahn equation, Cahn-Hilliard equation (Merlet and P.'10), Cahn-Hilliard equation with dynamic boundary conditions (Cherfils, Petcu, P.'10)
- FE space discrete version of the Cahn-Hilliard-Gurtin equation (Injrou and P.)
- Generalizations in infinite dimension to the semilinear heat equation (Merlet and P.'10)
- Abstract version of the semilinear heat equation in infinite dimension (Attouch, Daniildis, Ley, Mazet'09)

Extension to second-order gradient-like systems case

- Finite dimension : ok
- The damped wave equation as a model problem : ok
- Space discrete version of the Cahn-Hilliard equation with inertial term (ongoin work with M. Grasselli)

$$
\epsilon u_{t t}+u_{t}=-\alpha \Delta^{2} u+\Delta f(u)
$$

The mass is no longer preserved, but it converges exponentially fast to a constant: adapt results of Chill and Jendoubi with vanishing source term.

Perspectives and questions

- Find an abstract version of the damped wave equation ?
- Adapt other results from the continuous case ?
- Find other Liapounov stable schemes ? (implicit schemes, most likely)

An example: the θ-scheme
For $\theta \in[1 / 2,1]$, the θ-scheme reads:

$$
\begin{equation*}
\frac{U^{n+1}-U^{n}}{\Delta t}=-\theta \nabla F\left(U^{n+1}\right)-(1-\theta) \nabla F\left(U^{n}\right) \tag{10}
\end{equation*}
$$

Assume that F satisfies

$$
\begin{equation*}
(\nabla F(U)-\nabla F(V), U-V) \geq-c_{F}\|U-V\|^{2}, \quad \forall U, V \in \mathbf{R}^{d} \tag{11}
\end{equation*}
$$

for some $c_{F} \geq 0$ (i.e., F is semiconvex).
Theorem (Liapounov stability, Stuart and Humphries'94)
If $\theta \in[1 / 2,1], \Delta t<2 / c_{F}$ and $F(V) \rightarrow+\infty$ as $\|V\| \rightarrow+\infty$, then for all $n \geq 0$,

$$
F_{\Delta t}\left(U^{n+1}\right)+\left(1-\frac{c_{F} \Delta t}{2}\right) \frac{\left\|U^{n+1}-U^{n}\right\|^{2}}{\Delta t} \leq F_{\Delta t}\left(U^{n}\right)
$$

where

$$
F_{\Delta t}(V)=F(V)+\frac{(1-\theta) \Delta t}{2}\|\nabla F(V)\|^{2}
$$

By applying a proof similar to the previous one to the Liapounov function $F_{\Delta t}$, we obtain convergence to equilibrium if Δt is small enough. For a discretization of the Allen-Cahn equation, the smallness assumption is

$$
\begin{equation*}
\Delta t \leq C h^{2} \tag{12}
\end{equation*}
$$

On the other hand, Liapounov stability holds if $\Delta t<2 / c_{F}$: Can (12) be improved ?

Some additional references

- Huang (Sen-Zhong), "Gradient Inequalities", AMS'06
- Attouch, Bolte, Redont, Soubeyran'08: Alternating minimization. . .
- Absil, Mahony and Andrews'05: Convergence of iterates of descent methods for analytic cost functions
- Gajewski and Griepentrog'06 : A descent method for the free energy of multicomponent systems

