
Discretisation Solution of the system Numerical experiments Further applications

A Finite Element Method for Nonvariational
Elliptic Problems

Tristan Pryer
joint work with Omar Lakkis

May 20, 2010



Discretisation Solution of the system Numerical experiments Further applications

Outline

1 Discretisation

2 Solution of the system

3 Numerical experiments

4 Further applications



Discretisation Solution of the system Numerical experiments Further applications

Model problem in nonvariational form

Model problem

Given f ∈ L2(Ω), find u ∈ H2(Ω) ∩ H1
0(Ω) such that〈

A:D2u |φ
〉

= 〈f , φ〉 ∀ φ ∈ H1
0(Ω),

X:Y := trace (XᵀY) is the Frobenius inner product of two matrices.
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= 〈f , φ〉 ∀ φ ∈ H1
0(Ω),
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Don’t want to rewrite in divergence form!〈
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〉
= 〈div (A∇u) |φ〉 − 〈div (A)∇u, φ〉 .
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What should we do?

Main idea

Define appropriately the Hessian of a function who’s not twice
differentiable, i.e., as a distribution.

Construct a finite element approximation of this distribution. What
is meant by the Hessian of a finite element function?
[Aguilera and Morin, 2008]

Discretise the strong form of the PDE directly.
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Hessians as distributions

generalised Hessian

Given v ∈ H1(Ω) it’s generalised Hessian is given by〈
D2v |φ

〉
= −〈∇v ⊗∇φ〉+ 〈∇u ⊗ n φ〉∂Ω ∀ φ ∈ H1(Ω),

x⊗ y := xyᵀ is the tensor product between two vectors.

finite element space notation

V :=
{
Φ ∈ H1(Ω) : Φ|K ∈ Pp ∀ K ∈ T

}
,

V̊ := V ∩ H1
0(Ω),

finite element Hessian

For each V ∈ V̊ there exists a unique H[V ] ∈ Vd×d such that

〈H[V ],Φ〉 =
〈
D2V |Φ

〉
∀ Φ ∈ V.
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Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem.
We seek U ∈ V̊ such that〈

A:H[U], Φ̊
〉

=
〈
f , Φ̊

〉
∀ Φ̊ ∈ V̊.

Discretisation

〈
f , Φ̊

〉
=

d∑
α=1

d∑
β=1

〈
Aα,βHα,β[U], Φ̊

〉

=
d∑

α=1

d∑
β=1

〈
Φ̊,Aα,βΦᵀ

〉
hα,β .
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ᵀ
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∂Ω

)
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Linear system

U = Φ̊
ᵀ
u, where u ∈ RN̊ is the solution to the following linear system

Du :=
d∑

α=1

d∑
β=1

Bα,βM−1Cα,βu = f.

Components of the linear system

Bα,β :=
〈
Φ̊,Aα,βΦᵀ

〉
∈ RN̊×N ,

M := 〈Φ,Φᵀ〉 ∈ RN×N ,

Cα,β := −
〈
∂βΦ, ∂αΦ̊

ᵀ
〉

+
〈
Φnβ , ∂αΦ̊

ᵀ
〉

∂Ω
∈ RN×N̊ ,

f :=
〈
f , Φ̊

〉
∈ RN̊ .
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The system is hard to solve

Linear system

U = Φ̊
ᵀ
u, where u ∈ RN̊ is the solution to the following linear system

Du :=
d∑

α=1

d∑
β=1

Bα,βM−1Cα,βu = f.

Remarks

The matrix D is not sparse

Mass lumping only works for P1 elements AND in this case only
gives a reasonable solution U for very simple A

Notice D is the sum of Schur complements

We can create a block matrix to exploit this
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Block system

E =



M 0 · · · 0 0 −C1,1

0 M · · · 0 0 −C1,2

...
...

. . .
...

...
...

0 0 · · · M 0 −Cd,d−1

0 0 . . . 0 M −Cd,d

B1,1 B1,2 . . . Bd,d−1 Bd,d 0


,

v = (h1,1,h1,2, . . . ,hd,d−1,hd,d ,u)ᵀ
,

h = (0, 0 . . . , 0, 0, f)ᵀ
.

Equivalence of systems

Then solving the system Du = f is equivalent to solving

Ev = h.

for u.
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structure of the block matrix

the discretisation presented nothing but:

Find U ∈ V̊ such that


〈H[U],Φ〉 = −〈∇U ⊗∇Φ〉+ 〈∇U ⊗ n Φ〉∂Ω

∀ Φ ∈ V

〈
A:H[U], Φ̊

〉
=

〈
f , Φ̊

〉
∀ Φ̊ ∈ V̊.



M 0 · · · 0 0 −C1,1

0 M · · · 0 0 −C1,2

...
...

. . .
...

...
...

0 0 · · · M 0 −Cd,d−1

0 0 . . . 0 M −Cd,d

B1,1 B1,2 . . . Bd,d−1 Bd,d 0





h1,1

h1,2

...
hd,d−1

hd,d

u


=



0
0
...
0
0
f


.
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A Linear PDE in NDform

Operator choice - heavily oscillating

A =

[
1 0
0 a(x)

]

a(x) = sin

(
1

|x1|+ |x2|+ 10−15

)
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Figure: Choosing f appropriately such that u(x) = exp (−10 |x|2).
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Another Linear PDE in NDform

Operator choice

A =

[
1 0
0 a(x)

]

a(x) :=
(
arctan

(
5000(|x|2 − 1)

)
+ 2

)
.
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Figure: Choosing f appropriately such that u(x) = sin (πx1) sin (πx2).
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The same Linear PDE in NDform

Figure: On the left we present the maximum error of the standard FE-solution.
Notice the oscillations apparant on the unit circle. On the right we show the
maximum error of the NDFE-solution
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Fully nonlinear PDEs

Model problem

Given f ∈ L2(Ω), find u ∈ H2(Ω) ∩ H1
0(Ω) such that

N [u] = F (D2u)− f = 0

Newton’s method

Given u0 for each n ∈ N find un+1 such that〈
N ′ [un] | un+1 − un

〉
= −N [un]

〈N ′ [u] | v〉 = lim
ε→0

N [u + εv ]−N [u]

ε

= lim
ε→0

F (D2u + εD2v)−F (D2u)

ε

= lim
ε→0

F ′(D2u) : D2v + O(ε).
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Discretisation

VERY roughly

Given U0 = Λu0 find Un+1 such that

F ′(H[Un]):H[Un+1 − Un] = f −F (H[Un])

H[Un] is given in the solution of the previous iterate!



M 0 · · · 0 0 −C1,1

0 M · · · 0 0 −C1,2

...
...

. . .
...

...
...

0 0 · · · M 0 −Cd,d−1

0 0 . . . 0 M −Cd,d

B1,1
n−1 B1,2

n−1 . . . Bd,d−1
n−1 Bd,d

n−1 0





hn
1,1

hn
1,2
...

hn
d,d−1

hn
d,d

un


=



0
0
...
0
0
f


.
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Saves us postprocessing another one! [Vallet et al., 2007]
[Ovall, 2007]
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