A Finite Element Method for Nonvariational
Elliptic Problems

Tristan Pryer
joint work with Omar Lakkis

May 20, 2010

US

University of Sussex



Outline

© Discretisation

© Solution of the system

© Numerical experiments

0 Further applications



Model problem in nonvariational form

Model problem
Given f € Ly(£2), find u € H*(£2) N H§(£2) such that

(AD2u|g) = (f,.¢) V¢ e H(),

X:Y := trace (XTY) is the Frobenius inner product of two matrices.
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Model problem in nonvariational form

Model problem

Given f € Ly(£2), find u € H*(£2) N H§(£2) such that
(AD?u|¢) = (f,4) V¢ € Hy(),

X:Y := trace (XTY) is the Frobenius inner product of two matrices.

Don’t want to rewrite in divergence form!

(A:D?u|¢) = (div (AVu) |¢) — (div(A) Vu, ¢).
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differentiable, i.e., as a distribution.
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@ Discretise the strong form of the PDE directly.




Discretisation

Hessians as distributions

generalised Hessian

Given v € H'(£2) it's generalised Hessian is given by
(D?v|¢) = —(Vv@ Vo) + (Vudn @)y, V¢eH(R2),

X ®y := xyT is the tensor product between two vectors.
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Hessians as distributions

generalised Hessian

Given v € H'(£2) it's generalised Hessian is given by
(D?v|¢) = —(Vv@ Vo) + (Vudn @)y, V¢eH(R2),

X ®y := xyT is the tensor product between two vectors.

| A

finite element space notation

Vi={decH(2): ol ePPYKE T},
V= VNH(2),

finite element Hessian

| \

For each V € V there exists a unique H[V] € V¥%9 such that

(H[V],®) = (D’V|®) VdeV.

A\




Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem.
We seek U € V such that

<A:H[U],d’>> = <f,<‘i>> voeV.
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Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem.
We seek U €V such that

<A:H[U],d’>> — <f,<‘i>> vdeV.

Discretisation

(1,6) =33 (APH, (U], 8)

a=1 (=1

= zd: zd: <d°>, Aa’ﬁ¢T> ho -

a=16=1
(®,0T) ho 3 = (D, Hq p[U])
- (— <a,@¢, aa<i>T> + <¢nﬁ7 aa<i>T>SQ) u.




Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem.
We seek U €V such that

<A:H[U],d’>> — <f,<‘i>> vdeV.

Discretisation

(1,6) =33 (APH, (U], 8)

a=1p=1
_ zd: zd: <d’>, AO"5¢T> ho 5.
a=1p=1
(®,0T) h, 5 = (®,H, 5[U])
— (— <a,@¢, aac'i>T> n <¢nﬁ7 aa<i>T>SQ) u.
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U= &"u, where u € RV is the solution to the following linear system
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Linear system

U = ®"u, where u € RV is the solution to the following linear system

d d
Du:=)» Y B*”M'C,pu=Hf.

a=13=1

Components of the linear system

BYP .— <&)7Aa,ﬁ¢.T> c |RI§I><N’
M= (&, ®T) € RV,
Copi=— <85¢,8Q$T> + <¢ng,8ad3T>0 e RVN,

(9]
f— <f,&'>> e RV,




Solution of the system

The system is hard to solve

Linear system

U= &"u, where u € RV is the solution to the following linear system

d d

Du:=)» Y B*”M'C,pu=Hf.

a=1p=1

@ The matrix D is not sparse




Solution of the system

The system is hard to solve

Linear system

U= &"u, where u € RV is the solution to the following linear system

d d

Du:=)» Y B*”M'C,pu=Hf.

a=1p=1

@ The matrix D is not sparse

@ Mass lumping only works for P! elements AND in this case only
gives a reasonable solution U for very simple A




Solution of the system

The system is hard to solve

Linear system

U= &"u, where u € RV is the solution to the following linear system

d d

Du:=)» Y B*”M'C,pu=Hf.

a=1p=1

@ The matrix D is not sparse

@ Mass lumping only works for P! elements AND in this case only
gives a reasonable solution U for very simple A

@ Notice D is the sum of Schur complements




Solution of the system

The system is hard to solve

Linear system

U= &"u, where u € RV is the solution to the following linear system

d d
Du:=)» Y B*”M'C,pu=Hf.

a=1p=1

@ The matrix D is not sparse

@ Mass lumping only works for P! elements AND in this case only
gives a reasonable solution U for very simple A

@ Notice D is the sum of Schur complements

@ We can create a block matrix to exploit this




Solution of the system

Block system

M o - 0 0 —Ci1 ]
0 M ... 0 0 —Cip
E— : : ° g : g :
0 0 - M 0 —Cyys
0 0 .. 0 M —Cyq
gll gl2  pgdd-1 gdd 0

v=(hy1,hio,....;hga_1,hgq,u)T,
h=(0,0...,0,0,f).




Solution of the system

Block system

"M 0 - 0 0 —Cp
0 M ... 0 0 —Cip
E— : : ° g : : :
0 0 - M 0 —Cyys
0 0 .. 0 M —Cyq
gll gl2  pgdd-1 gdd 0
v=(hy1,hio,....;hga_1,hgq,u)T,

h=(0,0...,0,0,f)".

Equivalence of systems

Then solving the system Du = f is equivalent to solving

Ev = h.

for u.




Solution of the system

structure of the block matrix

the discretisation presented nothing but:

(H[U],®) = —(VU® V®)+(VU®@n d),,

. Vo eV
Find U € V such that

<A:H[U],d’>> - <f,<'i>> voeV.




Solution of the system
structure of the block matrix

the discretisation presented nothing but:

(H[U],®) = —(VU® V®)+(VU®@n d),,

. Vo eV
Find U € V such that

<A:H[U],d’>> - <f,<'i>> voeV.

M 0 0 0 ~Cii 1] b 7 [0]
0 ™M 0 0 —Ci hy 0
0 0 M 0 —Cyogy || hgas| |0
0 0 0 M  —Cuq hg g 0

i Bl,l BLZ Bd,d—l Bd,d 0 N u | i f |




Numerical experiments

A Linear PDE in NDform

Operator choice - heavily oscillating
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A Linear PDE in NDform

Operator choice - heavily oscillating
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Numerical experiments

Figure: Choosing f appropriately such that u(x) = exp (—10|x|%).
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Numerical experiments

Another Linear PDE in NDform

Operator choice
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Another Linear PDE in NDform

Operator choice

A:H (O)]

a(x) == (arctan <5OOO(|x|2 - 1)) + 2) .




Numerical experiments

Figure: Choosing f appropriately such that u(x) = sin (7x1) sin (7xz2).
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Numerical experiments

The same Linear PDE in NDform

Figure: On the left we present the maximum error of the standard FE-solution.
Notice the oscillations apparant on the unit circle. On the right we show the
maximum error of the NDFE-solution

-1 4 -1
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Given u° for each n € N find u"*! such that
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m</V[u+ev]—</V[u]

(A1l [v) = lim :
— Im Z(D?u + eD?v) — Z(D?u)
e—0 €

= lim .Z'(D%u) : D?v + O(e).

€E—




Further applications

Fully nonlinear PDEs

Model problem

Given f € Ly(£2), find u € H*(£2) N H§(£2) such that

N [u] = F(D?*u) - f =0

| \

Newton’s method

Given u° for each n € N find u"*! such that
(A "] U — U™y = = [u"]

N [u+ev] — A [u]
€
_ Z(D?u + eD?v) — Z(D?u)
T e p
= lim .Z'(D?u) : D?v 4 O(e).

e—0

(A [u] |v) = lim
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Discretisation

VERY roughly
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VERY roughly
Given U° = Au® find U™ such that

F'(H[U"):H[U" — U"] = f — F(H[U"])

H[U"] is given in the solution of the previous iterate!

M0 0 0 —Cuu ][ hy ] [0]
0 M 0 0 —Ci 12 0
0 0 M 0 —Cygs nai | |0
0o 0 0 M —Cuy n 0
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Given U° = Au® find U™ such that
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H[U"] is given in the solution of the previous iterate!

M0 0 0 —Ci. h?, 0
0 M 0 0 —Cip '17,2 0
0 0 M 0 —Cyg P
0 0 0 M  —Cug e 0
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Further applications

Discretisation

VERY roughly

Given U° = Au® find U™ such that

F'(H[U")):H[U™! — U"] = f — Z(H[U"])

H[U"] is given in the solution of the previous iterate!

M 0 0 0 ~Cip 1[ hy 1 [0]
0 M 0 0 —Cip '17,2 0
0 0 - M 0 —Cygs "wal |o
0 0 ... 0 M  —Cuyg iy 0
B, B2 ... BY! BYY 0 || w | [|f]

@ Saves us postprocessing another one! [Vallet et al., 2007]
[Ovall, 2007]
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