A Finite Element Method for Nonvariational Elliptic Problems

Tristan Pryer
joint work with Omar Lakkis

May 20, 2010

US

University of Sussex

Outline

(1) Discretisation
(2) Solution of the system
(3) Numerical experiments

4 Further applications

Model problem in nonvariational form

Model problem

Given $f \in \mathrm{~L}_{2}(\Omega)$, find $u \in \mathrm{H}^{2}(\Omega) \cap \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\left\langle\mathbf{A}: \mathrm{D}^{2} u \mid \phi\right\rangle=\langle f, \phi\rangle \quad \forall \phi \in \mathrm{H}_{0}^{1}(\Omega),
$$

$\mathbf{X}: \mathbf{Y}:=\operatorname{trace}\left(\mathbf{X}^{\top} \mathbf{Y}\right)$ is the Frobenius inner product of two matrices.

Model problem in nonvariational form

Model problem

Given $f \in \mathrm{~L}_{2}(\Omega)$, find $u \in \mathrm{H}^{2}(\Omega) \cap \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\left\langle\mathbf{A}: \mathrm{D}^{2} u \mid \phi\right\rangle=\langle f, \phi\rangle \quad \forall \phi \in \mathrm{H}_{0}^{1}(\Omega)
$$

$\mathbf{X}: \mathbf{Y}:=\operatorname{trace}\left(\mathbf{X}^{\top} \mathbf{Y}\right)$ is the Frobenius inner product of two matrices.

Model problem in nonvariational form

Model problem

Given $f \in \mathrm{~L}_{2}(\Omega)$, find $u \in \mathrm{H}^{2}(\Omega) \cap \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\left\langle\mathbf{A}: \mathrm{D}^{2} u \mid \phi\right\rangle=\langle f, \phi\rangle \quad \forall \phi \in \mathbf{H}_{0}^{1}(\Omega),
$$

$\mathbf{X}: \mathbf{Y}:=\operatorname{trace}\left(\mathbf{X}^{\top} \mathbf{Y}\right)$ is the Frobenius inner product of two matrices.

Don't want to rewrite in divergence form!

$$
\left\langle\mathbf{A}: \mathrm{D}^{2} u \mid \phi\right\rangle=\langle\operatorname{div}(\mathbf{A} \nabla u) \mid \phi\rangle-\langle\operatorname{div}(\mathbf{A}) \nabla u, \phi\rangle .
$$

What should we do?

Main idea

- Define appropriately the Hessian of a function who's not twice differentiable, i.e., as a distribution.

What should we do?

Main idea

- Define appropriately the Hessian of a function who's not twice differentiable, i.e., as a distribution.
- Construct a finite element approximation of this distribution. What is meant by the Hessian of a finite element function?
[Aguilera and Morin, 2008]

What should we do?

Main idea

- Define appropriately the Hessian of a function who's not twice differentiable, i.e., as a distribution.
- Construct a finite element approximation of this distribution. What is meant by the Hessian of a finite element function?
[Aguilera and Morin, 2008]
- Discretise the strong form of the PDE directly.

Hessians as distributions

generalised Hessian

Given $v \in \mathrm{H}^{1}(\Omega)$ it's generalised Hessian is given by

$$
\left\langle\mathrm{D}^{2} v \mid \phi\right\rangle=-\langle\nabla v \otimes \nabla \phi\rangle+\langle\nabla u \otimes \mathbf{n} \phi\rangle_{\partial \Omega} \quad \forall \phi \in \mathrm{H}^{1}(\Omega),
$$

$\mathbf{x} \otimes \mathbf{y}:=\mathbf{x} \mathbf{y}^{\boldsymbol{\top}}$ is the tensor product between two vectors.

Hessians as distributions

generalised Hessian

Given $v \in \mathrm{H}^{1}(\Omega)$ it's generalised Hessian is given by

$$
\left\langle\mathrm{D}^{2} v \mid \phi\right\rangle=-\langle\nabla v \otimes \nabla \phi\rangle+\langle\nabla u \otimes \mathbf{n} \phi\rangle_{\partial \Omega} \quad \forall \phi \in \mathrm{H}^{1}(\Omega),
$$

$\mathbf{x} \otimes \mathbf{y}:=\mathbf{x} \mathbf{y}^{\boldsymbol{\top}}$ is the tensor product between two vectors.
finite element space notation

$$
\begin{gathered}
\mathbb{V}:=\left\{\Phi \in \mathrm{H}^{1}(\Omega):\left.\Phi\right|_{K} \in \mathbb{P}^{p} \forall K \in \mathscr{T}\right\}, \\
\dot{\mathbb{V}}:=\mathbb{V} \cap \mathrm{H}_{0}^{1}(\Omega),
\end{gathered}
$$

Hessians as distributions

generalised Hessian

Given $v \in \mathrm{H}^{1}(\Omega)$ it's generalised Hessian is given by

$$
\left\langle\mathrm{D}^{2} v \mid \phi\right\rangle=-\langle\nabla v \otimes \nabla \phi\rangle+\langle\nabla \boldsymbol{u} \otimes \mathbf{n} \phi\rangle_{\partial \Omega} \quad \forall \phi \in \mathrm{H}^{1}(\Omega)
$$

$\mathbf{x} \otimes \mathbf{y}:=\mathbf{x y}^{\boldsymbol{\top}}$ is the tensor product between two vectors.
finite element space notation

$$
\begin{gathered}
\mathbb{V}:=\left\{\Phi \in \mathrm{H}^{1}(\Omega):\left.\Phi\right|_{K} \in \mathbb{P}^{p} \forall K \in \mathscr{T}\right\}, \\
\stackrel{\circ}{\vee}:=\mathbb{V} \cap \mathrm{H}_{0}^{1}(\Omega)
\end{gathered}
$$

finite element Hessian

For each $V \in \stackrel{\circ}{V}$ there exists a unique $\mathbf{H}[V] \in \mathbb{V}^{d \times d}$ such that

$$
\langle\mathbf{H}[V], \Phi\rangle=\left\langle\mathrm{D}^{2} V \mid \Phi\right\rangle \quad \forall \Phi \in \mathbb{V}
$$

Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem. We seek $U \in \dot{V}$ such that

$$
\langle\mathbf{A}: \mathbf{H}[U], \dot{\Phi}\rangle=\langle f, \dot{\Phi}\rangle \quad \forall \dot{\Phi} \in \dot{\mathrm{V}} .
$$

Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem. We seek $U \in \dot{V}$ such that

$$
\langle\mathbf{A}: \mathbf{H}[U], \AA\rangle=\langle f, \AA\rangle \quad \forall \AA \in \stackrel{\grave{V}}{ } .
$$

Discretisation

$$
\begin{aligned}
\langle f, \stackrel{\circ}{\boldsymbol{\Phi}}\rangle & =\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d}\left\langle\mathbf{A}^{\alpha, \beta} \mathbf{H}_{\alpha, \beta}[U], \stackrel{\circ}{\boldsymbol{\Phi}}\right\rangle \\
& =\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d}\left\langle\stackrel{\Phi}{\boldsymbol{\Phi}}, \mathbf{A}^{\alpha, \beta} \boldsymbol{\Phi}^{\top}\right\rangle \mathbf{h}_{\alpha, \beta} .
\end{aligned}
$$

Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem. We seek $U \in \dot{V}$ such that

$$
\langle\mathbf{A}: \mathbf{H}[U], \AA\rangle=\langle f, \AA\rangle \quad \forall \AA \in \stackrel{\grave{V}}{ } .
$$

Discretisation

$$
\begin{aligned}
\langle f, \stackrel{\circ}{\boldsymbol{\Phi}}\rangle & =\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d}\left\langle\mathbf{A}^{\alpha, \beta} \mathbf{H}_{\alpha, \beta}[U], \stackrel{\circ}{\boldsymbol{\Phi}}\right\rangle \\
& =\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d}\left\langle\dot{\boldsymbol{\Phi}}, \mathbf{A}^{\alpha, \beta} \boldsymbol{\Phi}^{\top}\right\rangle \mathbf{h}_{\alpha, \beta} .
\end{aligned}
$$

Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem. We seek $U \in \mathbb{V}^{\circ}$ such that

$$
\langle\mathbf{A}: \mathbf{H}[U], \stackrel{\circ}{\Phi}\rangle=\langle f, \stackrel{\circ}{\Phi}\rangle \quad \forall \stackrel{\circ}{\Phi} \in \stackrel{\circ}{V}
$$

Discretisation

$$
\begin{aligned}
\langle f, \dot{\boldsymbol{\Phi}}\rangle & =\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d}\left\langle\mathbf{A}^{\alpha, \beta} \mathbf{H}_{\alpha, \beta}[U], \dot{\boldsymbol{\Phi}}\right\rangle \\
& =\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d}\left\langle\dot{\boldsymbol{\Phi}}, \mathbf{A}^{\alpha, \beta} \boldsymbol{\Phi}^{\top}\right\rangle \mathbf{h}_{\alpha, \beta} . \\
\left\langle\boldsymbol{\Phi}, \boldsymbol{\Phi}^{\top}\right\rangle \mathbf{h}_{\alpha, \beta} & =\left\langle\boldsymbol{\Phi}, \mathbf{H}_{\alpha, \beta}[U]\right\rangle \\
& =\left(-\left\langle\partial_{\beta} \boldsymbol{\Phi}, \partial_{\alpha} \dot{\boldsymbol{\Phi}}^{\top}\right\rangle+\left\langle\boldsymbol{\Phi} \mathbf{n}_{\beta}, \partial_{\alpha} \dot{\boldsymbol{\Phi}}^{\top}\right\rangle_{\partial \Omega}\right) \mathbf{u} .
\end{aligned}
$$

Nonvariational finite element method

Substitute the finite element Hessian directly into the model problem. We seek $U \in \mathbb{V}^{\circ}$ such that

$$
\langle\mathbf{A}: \mathbf{H}[U], \stackrel{\circ}{\Phi}\rangle=\langle f, \stackrel{\circ}{\Phi}\rangle \quad \forall \stackrel{\circ}{\Phi} \in \stackrel{\circ}{V}
$$

Discretisation

$$
\begin{aligned}
\langle f, \dot{\boldsymbol{\Phi}}\rangle & =\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d}\left\langle\mathbf{A}^{\alpha, \beta} \mathbf{H}_{\alpha, \beta}[U], \dot{\boldsymbol{\Phi}}\right\rangle \\
& =\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d}\left\langle\dot{\boldsymbol{\Phi}}, \mathbf{A}^{\alpha, \beta} \boldsymbol{\Phi}^{\top}\right\rangle \mathbf{h}_{\alpha, \beta} . \\
\left\langle\boldsymbol{\Phi}, \boldsymbol{\Phi}^{\boldsymbol{\top}}\right\rangle \mathbf{h}_{\alpha, \beta} & =\left\langle\boldsymbol{\Phi}, \mathbf{H}_{\alpha, \beta}[U]\right\rangle \\
& =\left(-\left\langle\partial_{\beta} \boldsymbol{\Phi}, \partial_{\alpha} \dot{\boldsymbol{\Phi}}^{\top}\right\rangle+\left\langle\boldsymbol{\Phi} \mathbf{n}_{\beta}, \partial_{\alpha} \dot{\boldsymbol{\Phi}}^{\top}\right\rangle_{\partial \Omega}\right) \mathbf{u} .
\end{aligned}
$$

Linear system

$U=\check{\boldsymbol{\Phi}}^{\boldsymbol{\top}} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{\tilde{N}}$ is the solution to the following linear system

$$
\mathbf{D u}:=\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \mathbf{B}^{\alpha, \beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha, \beta} \mathbf{u}=\mathbf{f} .
$$

Linear system

$U=\dot{\boldsymbol{\Phi}}^{\boldsymbol{\top}} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{\tilde{N}}$ is the solution to the following linear system

$$
\mathbf{D u}:=\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \mathbf{B}^{\alpha, \beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha, \beta} \mathbf{u}=\mathbf{f} .
$$

Components of the linear system

$$
\begin{aligned}
\mathbf{B}^{\alpha, \beta} & :=\left\langle\dot{\boldsymbol{\Phi}}, \mathbf{A}^{\alpha, \beta} \boldsymbol{\Phi}^{\top}\right\rangle \in \mathbb{R}^{\tilde{N} \times N}, \\
\mathbf{M} & :=\left\langle\boldsymbol{\Phi}, \boldsymbol{\Phi}^{\top}\right\rangle \in \mathbb{R}^{N \times N}, \\
\mathbf{C}_{\alpha, \beta} & :=-\left\langle\partial_{\beta} \boldsymbol{\Phi}, \partial_{\alpha} \dot{\boldsymbol{\Phi}}^{\top}\right\rangle+\left\langle\boldsymbol{\Phi} \mathbf{n}_{\beta}, \partial_{\alpha} \dot{\boldsymbol{\Phi}}^{\top}\right\rangle_{\partial \Omega} \in \mathbb{R}^{N \times \tilde{N}}, \\
\mathbf{f} & :=\langle f, \dot{\boldsymbol{\Phi}}\rangle \in \mathbb{R}^{\tilde{N}} .
\end{aligned}
$$

The system is hard to solve

Linear system

$U=\dot{\Phi}^{\top} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{\dot{N}}$ is the solution to the following linear system

$$
\mathbf{D u}:=\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \mathbf{B}^{\alpha, \beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha, \beta} \mathbf{u}=\mathbf{f}
$$

Remarks

- The matrix \mathbf{D} is not sparse

The system is hard to solve

Linear system

$U=\dot{\boldsymbol{\Phi}}^{\top} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{N}$ is the solution to the following linear system

$$
\mathbf{D u}:=\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \mathbf{B}^{\alpha, \beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha, \beta} \mathbf{u}=\mathbf{f}
$$

Remarks

- The matrix \mathbf{D} is not sparse
- Mass lumping only works for \mathbb{P}^{1} elements AND in this case only gives a reasonable solution U for very simple \mathbf{A}

The system is hard to solve

Linear system

$U=\dot{\boldsymbol{\Phi}}^{\top} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{N}$ is the solution to the following linear system

$$
\mathbf{D u}:=\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \mathbf{B}^{\alpha, \beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha, \beta} \mathbf{u}=\mathbf{f}
$$

Remarks

- The matrix \mathbf{D} is not sparse
- Mass lumping only works for \mathbb{P}^{1} elements AND in this case only gives a reasonable solution U for very simple \mathbf{A}
- Notice \mathbf{D} is the sum of Schur complements

The system is hard to solve

Linear system

$U=\dot{\boldsymbol{\Phi}}^{\top} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{N}$ is the solution to the following linear system

$$
\mathbf{D u}:=\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \mathbf{B}^{\alpha, \beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha, \beta} \mathbf{u}=\mathbf{f}
$$

Remarks

- The matrix \mathbf{D} is not sparse
- Mass lumping only works for \mathbb{P}^{1} elements AND in this case only gives a reasonable solution U for very simple \mathbf{A}
- Notice D is the sum of Schur complements
- We can create a block matrix to exploit this

Block system

$$
\begin{gathered}
\mathbf{E}=\left[\begin{array}{cccccc}
\mathbf{M} & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,1} \\
\mathbf{0} & \mathbf{M} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{M} & \mathbf{0} & -\mathbf{C}_{d, d-1} \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{M} & -\mathbf{C}_{d, d} \\
\mathbf{B}^{1,1} & \mathbf{B}^{1,2} & \ldots & \mathbf{B}^{d, d-1} & \mathbf{B}^{d, d} & \mathbf{0}
\end{array}\right], \\
\mathbf{v}=\left(\mathbf{h}_{1,1}, \mathbf{h}_{1,2}, \ldots, \mathbf{h}_{d, d-1}, \mathbf{h}_{d, d}, \mathbf{u}\right)^{\top}, \\
\mathbf{h}=(\mathbf{0 , 0} \ldots, \mathbf{0 , 0 , f})^{\top} .
\end{gathered}
$$

Block system

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
\mathbf{E}=\left[\begin{array}{cccc}
\mathbf{M} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{M} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & -\mathbf{C}_{1,1} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{M} \\
\mathbf{0} & \mathbf{0} & -\mathbf{C}_{d, 2} \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{B}^{1,1} & \mathbf{B}^{1,2} & \ldots & \mathbf{B}^{d, d-1} \\
\mathbf{B}^{d, d} & -\mathbf{C}_{d, d} \\
\mathbf{v}=\left(\mathbf{h}_{1,1}, \mathbf{h}_{1,2}, \ldots, \mathbf{h}_{d, d-1}, \mathbf{h}_{d, d}, \mathbf{u}\right)^{\top},
\end{array}\right], \\
\mathbf{h}=(\mathbf{0}, \mathbf{0} \ldots, \mathbf{0 , 0 , f})^{\top} .
\end{array} .\right.}
\end{gathered}
$$

Equivalence of systems

Then solving the system $\mathbf{D u}=\mathbf{f}$ is equivalent to solving $E v=h$.
for \mathbf{u}.
the discretisation presented nothing but:

Find $U \in \dot{\mathbb{V}}$ such that $\left\{\begin{array}{c}\langle\mathbf{H}[U], \Phi\rangle=-\langle\nabla U \otimes \nabla \Phi\rangle+\langle\nabla U \otimes \mathbf{n} \Phi\rangle_{\partial \Omega} \\ \forall \Phi \in \mathbb{V}\end{array}\right.$ $\langle\mathbf{A}: \mathbf{H}[U], \dot{\Phi}\rangle=\langle f, \dot{\Phi}\rangle \quad \forall \dot{\Phi} \in \dot{\mathrm{V}}$.
the discretisation presented nothing but:
Find $U \in \dot{\mathbb{V}}$ such that $\left\{\begin{array}{c}\langle\mathbf{H}[U], \Phi\rangle=-\langle\nabla U \otimes \nabla \Phi\rangle+\langle\nabla U \otimes \mathbf{n} \Phi\rangle_{\partial \Omega} \\ \forall \Phi \in \mathbb{V}\end{array}\right.$ $\langle\mathbf{A}: \mathbf{H}[U], \AA\rangle=\langle f, \AA\rangle \quad \forall \AA \in \dot{\mathrm{V}}$.

$$
\left[\begin{array}{cccccc}
\mathbf{M} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,1} \\
\mathbf{0} & \mathbf{M} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{M} & \mathbf{0} & -\mathbf{C}_{d, d-1} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{M} & -\mathbf{C}_{d, d} \\
\mathbf{B}^{1,1} & \mathbf{B}^{1,2} & \cdots & \mathbf{B}^{d, d-1} & \mathbf{B}^{d, d} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{h}_{1,1} \\
\mathbf{h}_{1,2} \\
\vdots \\
\mathbf{h}_{d, d-1} \\
\mathbf{h}_{d, d} \\
\mathbf{u}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{f}
\end{array}\right] .
$$

A Linear PDE in NDform
Operator choice - heavily oscillating

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 0 \\
0 & a(\mathbf{x})
\end{array}\right]
$$

A Linear PDE in NDform

Operator choice - heavily oscillating

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
1 & 0 \\
0 & a(\mathbf{x})
\end{array}\right] \\
a(\mathbf{x})=\sin \left(\frac{1}{\left|x_{1}\right|+\left|x_{2}\right|+10^{-15}}\right)
\end{gathered}
$$

Figure: Choosing f appropriately such that $u(\mathbf{x})=\exp \left(-10|\mathbf{x}|^{2}\right)$.

Another Linear PDE in NDform

Operator choice

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 0 \\
0 & a(\mathbf{x})
\end{array}\right]
$$

Another Linear PDE in NDform

Operator choice

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
1 & 0 \\
0 & a(\mathbf{x})
\end{array}\right] \\
a(\mathbf{x}):=\left(\arctan \left(5000\left(|\mathbf{x}|^{2}-1\right)\right)+2\right) .
\end{gathered}
$$

Figure: Choosing f appropriately such that $u(\mathbf{x})=\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)$.

The same Linear PDE in NDform

Figure: On the left we present the maximum error of the standard FE-solution. Notice the oscillations apparant on the unit circle. On the right we show the maximum error of the NDFE-solution

Fully nonlinear PDEs

Model problem

Given $f \in \mathrm{~L}_{2}(\Omega)$, find $u \in \mathrm{H}^{2}(\Omega) \cap \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\mathscr{N}[u]=\mathscr{F}\left(\mathrm{D}^{2} u\right)-f=0
$$

Fully nonlinear PDEs

Model problem

Given $f \in \mathrm{~L}_{2}(\Omega)$, find $u \in \mathrm{H}^{2}(\Omega) \cap \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\mathscr{N}[u]=\mathscr{F}\left(\mathrm{D}^{2} u\right)-f=0
$$

Newton's method

Given u^{0} for each $n \in \mathbb{N}$ find u^{n+1} such that

$$
\left\langle\mathscr{N}^{\prime}\left[u^{n}\right] \mid u^{n+1}-u^{n}\right\rangle=-\mathscr{N}\left[u^{n}\right]
$$

Fully nonlinear PDEs

Model problem

Given $f \in \mathrm{~L}_{2}(\Omega)$, find $u \in \mathrm{H}^{2}(\Omega) \cap \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\mathscr{N}[u]=\mathscr{F}\left(\mathrm{D}^{2} u\right)-f=0
$$

Newton's method

Given u^{0} for each $n \in \mathbb{N}$ find u^{n+1} such that

$$
\begin{aligned}
\left\langle\mathscr{N}^{\prime}\right. & {\left[u^{n}\right]\left|u^{n+1}-u^{n}\right\rangle=-\mathscr{N}\left[u^{n}\right] } \\
\left\langle\mathscr{N}^{\prime}[u] \mid v\right\rangle & =\lim _{\epsilon \rightarrow 0} \frac{\mathscr{N}[u+\epsilon v]-\mathscr{N}[u]}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \frac{\mathscr{F}\left(\mathrm{D}^{2} u+\epsilon \mathrm{D}^{2} v\right)-\mathscr{F}\left(\mathrm{D}^{2} u\right)}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \mathscr{F}^{\prime}\left(\mathrm{D}^{2} u\right): \mathrm{D}^{2} v+\mathrm{O}(\epsilon) .
\end{aligned}
$$

Fully nonlinear PDEs

Model problem

Given $f \in \mathrm{~L}_{2}(\Omega)$, find $u \in \mathrm{H}^{2}(\Omega) \cap \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\mathscr{N}[u]=\mathscr{F}\left(\mathrm{D}^{2} u\right)-f=0
$$

Newton's method

Given u^{0} for each $n \in \mathbb{N}$ find u^{n+1} such that

$$
\begin{aligned}
\left\langle\mathscr{N}^{\prime}\right. & {\left[u^{n}\right]\left|u^{n+1}-u^{n}\right\rangle=-\mathscr{N}\left[u^{n}\right] } \\
\left\langle\mathscr{N}^{\prime}[u] \mid v\right\rangle & =\lim _{\epsilon \rightarrow 0} \frac{\mathscr{N}[u+\epsilon v]-\mathscr{N}[u]}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \frac{\mathscr{F}\left(\mathrm{D}^{2} u+\epsilon \mathrm{D}^{2} v\right)-\mathscr{F}\left(\mathrm{D}^{2} u\right)}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \mathscr{F}^{\prime}\left(\mathrm{D}^{2} u\right): \mathrm{D}^{2} v+\mathrm{O}(\epsilon) .
\end{aligned}
$$

Discretisation

VERY roughly

Given $U^{0}=\Lambda u^{0}$ find U^{n+1} such that

$$
\mathscr{F}^{\prime}\left(\mathbf{H}\left[U^{n}\right]\right): \mathbf{H}\left[U^{n+1}-U^{n}\right]=f-\mathscr{F}\left(\mathbf{H}\left[U^{n}\right]\right)
$$

Discretisation

VERY roughly

Given $U^{0}=\Lambda u^{0}$ find U^{n+1} such that

$$
\mathscr{F}^{\prime}\left(\mathbf{H}\left[U^{n}\right]\right): \mathbf{H}\left[U^{n+1}-U^{n}\right]=f-\mathscr{F}\left(\mathbf{H}\left[U^{n}\right]\right)
$$

$\mathrm{H}\left[U^{n}\right]$ is given in the solution of the previous iterate!

$$
\left[\begin{array}{cccccc}
\mathbf{M} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,1} \\
\mathbf{0} & \mathbf{M} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{M} & \mathbf{0} & -\mathbf{C}_{d, d-1} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{M} & -\mathbf{C}_{d, d} \\
\mathbf{B}_{n-1}^{1,1} & \mathbf{B}_{n-1}^{1,2} & \cdots & \mathbf{B}_{n-1}^{d, d-1} & \mathbf{B}_{n-1}^{d, d} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{h}_{1,1}^{n} \\
\mathbf{h}_{1,2}^{n} \\
\vdots \\
\mathbf{h}_{d, d-1}^{n} \\
\mathbf{h}_{d, d}^{n} \\
\mathbf{u}^{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{f}
\end{array}\right]
$$

Discretisation

VERY roughly

Given $U^{0}=\Lambda u^{0}$ find U^{n+1} such that

$$
\mathscr{F}^{\prime}\left(\mathbf{H}\left[U^{n}\right]\right): \mathbf{H}\left[U^{n+1}-U^{n}\right]=f-\mathscr{F}\left(\mathbf{H}\left[U^{n}\right]\right)
$$

$\mathrm{H}\left[U^{n}\right]$ is given in the solution of the previous iterate!

$$
\left[\begin{array}{cccccc}
\mathbf{M} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,1} \\
\mathbf{0} & \mathbf{M} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{M} & \mathbf{0} & -\mathbf{C}_{d, d-1} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{M} & -\mathbf{C}_{d, d} \\
\mathbf{B}_{n-1}^{1,1} & \mathbf{B}_{n-1}^{1,2} & \cdots & \mathbf{B}_{n-1}^{d, d-1} & \mathbf{B}_{n-1}^{d, d} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{h}_{1,1}^{n} \\
\mathbf{h}_{1,2}^{n} \\
\vdots \\
\mathbf{h}_{d, d-1}^{n} \\
\mathbf{h}_{d, d}^{n} \\
\mathbf{u}^{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{f}
\end{array}\right]
$$

Discretisation

VERY roughly

Given $U^{0}=\Lambda u^{0}$ find U^{n+1} such that

$$
\mathscr{F}^{\prime}\left(\mathbf{H}\left[U^{n}\right]\right): \mathbf{H}\left[U^{n+1}-U^{n}\right]=f-\mathscr{F}\left(\mathbf{H}\left[U^{n}\right]\right)
$$

$\mathrm{H}\left[U^{n}\right]$ is given in the solution of the previous iterate!

$$
\left[\begin{array}{cccccc}
\mathbf{M} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,1} \\
\mathbf{0} & \mathbf{M} & \cdots & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{1,2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{M} & \mathbf{0} & -\mathbf{C}_{d, d-1} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{M} & -\mathbf{C}_{d, d} \\
\mathbf{B}_{n-1}^{1,1} & \mathbf{B}_{n-1}^{1,2} & \cdots & \mathbf{B}_{n-1}^{d, d-1} & \mathbf{B}_{n-1}^{d, d} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{h}_{1,1}^{n} \\
\mathbf{h}_{1,2}^{n} \\
\vdots \\
\mathbf{h}_{d, d-1}^{n} \\
\mathbf{h}_{d, d}^{n} \\
\mathbf{u}^{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{f}
\end{array}\right]
$$

- Saves us postprocessing another one! [Vallet et al., 2007] [Ovall, 2007]

Bibliography I

Aguilera, N. E. and Morin, P. (2008).
On convex functions and the finite element method. online preprint arXiv:0804.1780v1, arXiv.org.
R
Ovall, J. (2007).
Function, gradient and hessian recovery using quadratic edge-bump functions.
J. Sci. Comput., 45(3):1064-1080.

画 Vallet, M.-G., Manole, C.-M., Dompierre, J., Dufour, S., and Guibault, F. (2007).
Numerical comparison of some Hessian recovery techniques. Internat. J. Numer. Methods Engrg., 72(8):987-1007.

