A Finite Element Method for Nonvariational Elliptic Problems

Tristan Pryer joint work with Omar Lakkis

May 20, 2010

Outline

- Discretisation
- Solution of the system
- **3** Numerical experiments
- **4** Further applications

Model problem in nonvariational form

Model problem

Given $f \in L_2(\Omega)$, find $u \in H^2(\Omega) \cap H_0^1(\Omega)$ such that

$$\langle \mathbf{A}: \mathrm{D}^2 u \mid \phi \rangle = \langle f, \phi \rangle \quad \forall \phi \in \mathrm{H}^1_0(\Omega),$$

 $\mathbf{X}{:}\mathbf{Y}:=\mathsf{trace}\left(\mathbf{X}^{\mathsf{T}}\mathbf{Y}\right) \text{ is the Frobenius inner product of two matrices}.$

iscretisation Solution of the system Numerical experiments Further application

Model problem in nonvariational form

Model problem

Given $f \in L_2(\Omega)$, find $u \in H^2(\Omega) \cap H_0^1(\Omega)$ such that

$$\langle \mathbf{A}: \mathrm{D}^2 u \, | \, \phi \rangle = \langle f, \phi \rangle \quad \forall \, \phi \in \mathrm{H}^1_0(\Omega),$$

 $\mathbf{X}:\mathbf{Y}:=\operatorname{trace}\left(\mathbf{X}^{\mathsf{T}}\mathbf{Y}\right)$ is the Frobenius inner product of two matrices.

Model problem in nonvariational form

Model problem

Given $f \in L_2(\Omega)$, find $u \in H^2(\Omega) \cap H_0^1(\Omega)$ such that

$$\langle \mathbf{A}: \mathrm{D}^2 u \mid \phi \rangle = \langle f, \phi \rangle \quad \forall \phi \in \mathrm{H}^1_0(\Omega),$$

 $X:Y := trace(X^TY)$ is the Frobenius inner product of two matrices.

Don't want to rewrite in divergence form!

$$\langle \mathbf{A}: \mathrm{D}^2 u \mid \phi \rangle = \langle \mathrm{div} \left(\mathbf{A} \nabla u \right) \mid \phi \rangle - \langle \mathrm{div} \left(\mathbf{A} \right) \nabla u, \phi \rangle.$$

What should we do?

Main idea

• Define appropriately the Hessian of a function who's not twice differentiable, i.e., as a distribution.

What should we do?

Main idea

- Define appropriately the Hessian of a function who's not twice differentiable, i.e., as a distribution.
- Construct a finite element approximation of this distribution. What is meant by the Hessian of a finite element function?
 [Aguilera and Morin, 2008]

What should we do?

Main idea

- Define appropriately the Hessian of a function who's not twice differentiable, i.e., as a distribution.
- Construct a finite element approximation of this distribution. What
 is meant by the Hessian of a finite element function?
 [Aguilera and Morin, 2008]
- Discretise the strong form of the PDE directly.

Discretisation Solution of the system Numerical experiments Further applicatio

Hessians as distributions

generalised Hessian

Given $v \in H^1(\Omega)$ it's generalised Hessian is given by

$$\left\langle \mathrm{D}^2 v \,|\, \phi \right\rangle = -\left\langle \nabla v \otimes \nabla \phi \right\rangle + \left\langle \nabla u \otimes \mathbf{n} \,\phi \right\rangle_{\partial \Omega} \quad \forall \, \phi \in \mathsf{H}^1(\Omega),$$

 $\mathbf{x} \otimes \mathbf{y} := \mathbf{x} \mathbf{y}^{\mathsf{T}}$ is the tensor product between two vectors.

Hessians as distributions

generalised Hessian

Given $v \in H^1(\Omega)$ it's generalised Hessian is given by

$$\langle \mathrm{D}^2 v \, | \, \phi \rangle = - \, \langle \nabla v \otimes \nabla \phi \rangle + \langle \nabla u \otimes \mathbf{n} \, \phi \rangle_{\partial \Omega} \quad \forall \, \phi \in \mathsf{H}^1(\Omega),$$

 $\mathbf{x} \otimes \mathbf{y} := \mathbf{x} \mathbf{y}^{\mathsf{T}}$ is the tensor product between two vectors.

finite element space notation

$$\mathbb{V} := \left\{ \Phi \in \mathsf{H}^1(\Omega) : \ \Phi|_K \in \mathbb{P}^p \ \forall \ K \in \mathscr{T} \right\},$$
$$\mathring{\mathbb{V}} := \mathbb{V} \cap \mathsf{H}^1_0(\Omega),$$

Hessians as distributions

generalised Hessian

Given $v \in H^1(\Omega)$ it's generalised Hessian is given by

$$\left\langle \mathrm{D}^2 \boldsymbol{v} \,|\, \phi \right\rangle = - \left\langle \nabla \boldsymbol{v} \otimes \nabla \phi \right\rangle + \left\langle \nabla \boldsymbol{u} \otimes \mathbf{n} \,\, \phi \right\rangle_{\partial \varOmega} \quad \, \forall \, \phi \in \mathrm{H}^1(\varOmega),$$

 $\mathbf{x} \otimes \mathbf{y} := \mathbf{x} \mathbf{y}^{\mathsf{T}}$ is the tensor product between two vectors.

finite element space notation

$$\begin{split} \mathbb{V} := \left\{ \Phi \in \mathsf{H}^1(\Omega) : \; \Phi|_{\mathcal{K}} \in \mathbb{P}^p \; \forall \; \mathcal{K} \in \mathscr{T} \right\}, \\ \mathring{\mathbb{V}} := \mathbb{V} \cap \mathsf{H}^1_0(\Omega), \end{split}$$

finite element Hessian

For each $V \in \mathring{\mathbb{V}}$ there exists a unique $\mathbf{H}[V] \in \mathbb{V}^{d \times d}$ such that

$$\langle \mathbf{H}[V], \Phi \rangle = \langle D^2 V | \Phi \rangle \quad \forall \Phi \in \mathbb{V}.$$

Substitute the finite element Hessian directly into the model problem. We seek $U \in \mathring{\mathbb{V}}$ such that

$$\langle \mathbf{A}: \mathbf{H}[U], \mathring{\Phi} \rangle = \langle f, \mathring{\Phi} \rangle \quad \forall \mathring{\Phi} \in \mathring{\mathbb{V}}.$$

Substitute the finite element Hessian directly into the model problem. We seek $U \in \mathring{\mathbb{V}}$ such that

$$\left\langle \mathbf{A}:\mathbf{H}[U],\mathring{\Phi}\right\rangle = \left\langle f,\mathring{\Phi}\right\rangle \quad \forall \mathring{\Phi} \in \mathring{\mathbb{V}}.$$

$$\left\langle f, \mathring{\mathbf{\Phi}} \right\rangle = \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \left\langle \mathbf{A}^{\alpha,\beta} \mathbf{H}_{\alpha,\beta}[U], \mathring{\mathbf{\Phi}} \right\rangle$$

$$= \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \left\langle \mathring{\mathbf{\Phi}}, \mathbf{A}^{\alpha,\beta} \mathbf{\Phi}^{\mathsf{T}} \right\rangle \mathbf{h}_{\alpha,\beta}.$$

Substitute the finite element Hessian directly into the model problem. We seek $U \in \mathring{\mathbb{V}}$ such that

$$\langle \mathbf{A}: \mathbf{H}[U], \mathring{\Phi} \rangle = \langle f, \mathring{\Phi} \rangle \quad \forall \mathring{\Phi} \in \mathring{\mathbb{V}}.$$

Substitute the finite element Hessian directly into the model problem. We seek $U\in \mathring{\mathbb{V}}$ such that

$$\left\langle \mathbf{A}:\mathbf{H}[U],\mathring{\Phi}\right\rangle = \left\langle f,\mathring{\Phi}\right\rangle \quad \forall \mathring{\Phi} \in \mathring{\mathbb{V}}.$$

$$\left\langle f, \mathring{\mathbf{\Phi}} \right\rangle = \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \left\langle \mathbf{A}^{\alpha,\beta} \mathbf{H}_{\alpha,\beta}[U], \mathring{\mathbf{\Phi}} \right\rangle$$

$$= \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \left\langle \mathring{\mathbf{\Phi}}, \mathbf{A}^{\alpha,\beta} \mathbf{\Phi}^{\mathsf{T}} \right\rangle \mathbf{h}_{\alpha,\beta}.$$

$$\begin{split} \left\langle \mathbf{\Phi}, \mathbf{\Phi}^{\mathsf{T}} \right\rangle \mathbf{h}_{\alpha,\beta} &= \left\langle \mathbf{\Phi}, \mathbf{H}_{\alpha,\beta}[U] \right\rangle \\ &= \left(-\left\langle \partial_{\beta} \mathbf{\Phi}, \partial_{\alpha} \mathbf{\mathring{\Phi}}^{\mathsf{T}} \right\rangle + \left\langle \mathbf{\Phi} \mathbf{n}_{\beta}, \partial_{\alpha} \mathbf{\mathring{\Phi}}^{\mathsf{T}} \right\rangle_{2,\Omega} \right) \mathbf{u}. \end{split}$$

Substitute the finite element Hessian directly into the model problem. We seek $U\in \mathring{\mathbb{V}}$ such that

$$\left\langle \mathbf{A}:\mathbf{H}[U],\mathring{\Phi}\right\rangle = \left\langle f,\mathring{\Phi}\right\rangle \quad \forall \mathring{\Phi} \in \mathring{\mathbb{V}}.$$

$$\left\langle f, \mathring{\mathbf{\Phi}} \right\rangle = \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \left\langle \mathbf{A}^{\alpha,\beta} \mathbf{H}_{\alpha,\beta}[U], \mathring{\mathbf{\Phi}} \right\rangle$$

$$= \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \left\langle \mathring{\mathbf{\Phi}}, \mathbf{A}^{\alpha,\beta} \mathbf{\Phi}^{\mathsf{T}} \right\rangle \mathbf{h}_{\alpha,\beta}.$$

$$\begin{split} \left\langle \mathbf{\Phi}, \mathbf{\Phi}^{\mathsf{T}} \right\rangle \mathbf{h}_{\alpha,\beta} &= \left\langle \mathbf{\Phi}, \mathbf{H}_{\alpha,\beta}[U] \right\rangle \\ &= \left(-\left\langle \partial_{\beta} \mathbf{\Phi}, \partial_{\alpha} \mathbf{\mathring{\Phi}}^{\mathsf{T}} \right\rangle + \left\langle \mathbf{\Phi} \mathbf{n}_{\beta}, \partial_{\alpha} \mathbf{\mathring{\Phi}}^{\mathsf{T}} \right\rangle_{2,\Omega} \right) \mathbf{u}. \end{split}$$

Linear system

 $U = \mathbf{\mathring{\Phi}}^\mathsf{T} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{\mathring{N}}$ is the solution to the following linear system

$$\mathbf{D}\mathbf{u} := \sum_{\alpha=1}^d \sum_{\beta=1}^d \mathbf{B}^{\alpha,\beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha,\beta} \mathbf{u} = \mathbf{f}.$$

Linear system

 $U = \mathbf{\mathring{\Phi}}^\mathsf{T} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{\mathring{N}}$ is the solution to the following linear system

$$\mathbf{D}\mathbf{u} := \sum_{\alpha=1}^d \sum_{\beta=1}^d \mathbf{B}^{\alpha,\beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha,\beta} \mathbf{u} = \mathbf{f}.$$

Components of the linear system

$$\begin{split} \mathbf{B}^{\alpha,\beta} &:= \left\langle \mathring{\mathbf{\Phi}}, \mathbf{A}^{\alpha,\beta} \mathbf{\Phi}^\mathsf{T} \right\rangle \in \mathbb{R}^{\mathring{N} \times N}, \\ \mathbf{M} &:= \left\langle \mathbf{\Phi}, \mathbf{\Phi}^\mathsf{T} \right\rangle \in \mathbb{R}^{N \times N}, \\ \mathbf{C}_{\alpha,\beta} &:= -\left\langle \partial_\beta \mathbf{\Phi}, \partial_\alpha \mathring{\mathbf{\Phi}}^\mathsf{T} \right\rangle + \left\langle \mathbf{\Phi} \mathbf{n}_\beta, \partial_\alpha \mathring{\mathbf{\Phi}}^\mathsf{T} \right\rangle_{\partial \Omega} \in \mathbb{R}^{N \times \mathring{N}}, \\ \mathbf{f} &:= \left\langle f, \mathring{\mathbf{\Phi}} \right\rangle \in \mathbb{R}^{\mathring{N}}. \end{split}$$

The system is hard to solve

Linear system

 $U = \mathring{\Phi}^T u$, where $u \in \mathbb{R}^{\mathring{N}}$ is the solution to the following linear system

$$\mathbf{D}\mathbf{u} := \sum_{lpha=1}^d \sum_{eta=1}^d \mathbf{B}^{lpha,eta} \mathbf{M}^{-1} \mathbf{C}_{lpha,eta} \mathbf{u} = \mathbf{f}.$$

Remarks

 \bullet The matrix \boldsymbol{D} is not sparse

The system is hard to solve

Linear system

 $U = \mathbf{\mathring{\Phi}}^\mathsf{T} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{\mathring{N}}$ is the solution to the following linear system

$$\mathbf{D}\mathbf{u} := \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \mathbf{B}^{\alpha,\beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha,\beta} \mathbf{u} = \mathbf{f}.$$

Remarks

- The matrix **D** is not sparse
- Mass lumping only works for \mathbb{P}^1 elements AND in this case only gives a reasonable solution U for very simple \mathbf{A}

scretisation Solution of the system Numerical experiments Further applicatio

The system is hard to solve

Linear system

 $U = \mathring{\Phi}^T \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{\mathring{N}}$ is the solution to the following linear system

$$\mathbf{D}\mathbf{u} := \sum_{lpha=1}^d \sum_{eta=1}^d \mathbf{B}^{lpha,eta} \mathbf{M}^{-1} \mathbf{C}_{lpha,eta} \mathbf{u} = \mathbf{f}.$$

Remarks

- The matrix **D** is not sparse
- Mass lumping only works for \mathbb{P}^1 elements AND in this case only gives a reasonable solution U for very simple \mathbf{A}
- Notice D is the sum of Schur complements

The system is hard to solve

Linear system

 $U = \mathbf{\mathring{\Phi}}^\mathsf{T} \mathbf{u}$, where $\mathbf{u} \in \mathbb{R}^{\mathring{N}}$ is the solution to the following linear system

$$\mathbf{D}\mathbf{u} := \sum_{\alpha=1}^d \sum_{\beta=1}^d \mathbf{B}^{\alpha,\beta} \mathbf{M}^{-1} \mathbf{C}_{\alpha,\beta} \mathbf{u} = \mathbf{f}.$$

Remarks

- The matrix **D** is not sparse
- Mass lumping only works for \mathbb{P}^1 elements AND in this case only gives a reasonable solution U for very simple \mathbf{A}
- Notice D is the sum of Schur complements
- We can create a block matrix to exploit this

Block system

$$\begin{split} \textbf{E} = \left[\begin{array}{ccccc} \textbf{M} & \textbf{0} & \cdots & \textbf{0} & \textbf{0} & -\textbf{C}_{1,1} \\ \textbf{0} & \textbf{M} & \cdots & \textbf{0} & \textbf{0} & -\textbf{C}_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \textbf{0} & \textbf{0} & \cdots & \textbf{M} & \textbf{0} & -\textbf{C}_{d,d-1} \\ \textbf{0} & \textbf{0} & \cdots & \textbf{0} & \textbf{M} & -\textbf{C}_{d,d} \\ \textbf{B}^{1,1} & \textbf{B}^{1,2} & \cdots & \textbf{B}^{d,d-1} & \textbf{B}^{d,d} & \textbf{0} \end{array} \right], \\ \textbf{v} = (\textbf{h}_{1,1}, \textbf{h}_{1,2}, \dots, \textbf{h}_{d,d-1}, \textbf{h}_{d,d}, \textbf{u})^\mathsf{T}, \\ \textbf{h} = (\textbf{0}, \textbf{0} \dots, \textbf{0}, \textbf{0}, \textbf{f})^\mathsf{T}. \end{split}$$

Block system

$$\begin{split} \textbf{E} = \left[\begin{array}{ccccc} \textbf{M} & \textbf{0} & \cdots & \textbf{0} & \textbf{0} & -\textbf{C}_{1,1} \\ \textbf{0} & \textbf{M} & \cdots & \textbf{0} & \textbf{0} & -\textbf{C}_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \textbf{0} & \textbf{0} & \cdots & \textbf{M} & \textbf{0} & -\textbf{C}_{d,d-1} \\ \textbf{0} & \textbf{0} & \cdots & \textbf{0} & \textbf{M} & -\textbf{C}_{d,d} \\ \textbf{B}^{1,1} & \textbf{B}^{1,2} & \cdots & \textbf{B}^{d,d-1} & \textbf{B}^{d,d} & \textbf{0} \end{array} \right], \\ \textbf{v} = (\textbf{h}_{1,1}, \textbf{h}_{1,2}, \dots, \textbf{h}_{d,d-1}, \textbf{h}_{d,d}, \textbf{u})^\mathsf{T}, \\ \textbf{h} = (\textbf{0}, \textbf{0} \dots, \textbf{0}, \textbf{0}, \textbf{f})^\mathsf{T}. \end{split}$$

Equivalence of systems

Then solving the system Du = f is equivalent to solving

$$Ev = h$$
.

for u.

structure of the block matrix

the discretisation presented nothing but:

$$\mbox{Find } U \in \mathring{\mathbb{V}} \mbox{ such that } \begin{cases} \langle \mathbf{H}[U], \Phi \rangle = - \langle \nabla U \otimes \nabla \Phi \rangle + \langle \nabla U \otimes \mathbf{n} \ \Phi \rangle_{\partial \Omega} \\ \forall \ \Phi \in \mathbb{V} \\ \\ \left\langle \mathbf{A} : \mathbf{H}[U], \mathring{\Phi} \right\rangle = \left\langle f, \mathring{\Phi} \right\rangle \quad \forall \ \mathring{\Phi} \in \mathring{\mathbb{V}}. \end{cases}$$

$$\mathbf{A}:\mathbf{H}[U],\mathring{\Phi}\rangle = \langle f,\mathring{\Phi}\rangle \quad \forall \mathring{\Phi} \in \mathring{\mathbb{V}}.$$

structure of the block matrix

the discretisation presented nothing but:

Find
$$U \in \mathring{\mathbb{V}}$$
 such that $\left\{\right.$

$$\mbox{Find } U \in \mathring{\mathbb{V}} \mbox{ such that } \begin{cases} \langle \mathbf{H}[U], \Phi \rangle = - \left\langle \nabla U \otimes \nabla \Phi \right\rangle + \left\langle \nabla U \otimes \mathbf{n} \right. \Phi \right\rangle_{\partial \Omega} \\ \forall \, \Phi \in \mathbb{V} \end{cases} \\ \left\langle \mathbf{A} : \mathbf{H}[U], \mathring{\Phi} \right\rangle = \left\langle f, \mathring{\Phi} \right\rangle \quad \forall \, \mathring{\Phi} \in \mathring{\mathbb{V}}. \end{cases}$$

$$\begin{bmatrix} & M & 0 & \cdots & 0 & 0 & -C_{1,1} \\ 0 & M & \cdots & 0 & 0 & -C_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & M & 0 & -C_{d,d-1} \\ 0 & 0 & \cdots & 0 & M & -C_{d,d} \\ 0 & 0 & \cdots & B^{d,d-1} & B^{d,d} & 0 \end{bmatrix} \begin{bmatrix} & \textbf{h}_{1,1} \\ \textbf{h}_{1,2} \\ \vdots \\ \textbf{h}_{d,d-1} \\ \textbf{h}_{d,d} \\ \textbf{u} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ f \end{bmatrix}.$$

$$= \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

A Linear PDE in NDform

Operator choice - heavily oscillating

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 0 \\ 0 & a(\mathbf{x}) \end{array} \right]$$

A Linear PDE in NDform

Operator choice - heavily oscillating

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 0 \\ 0 & a(\mathbf{x}) \end{array} \right]$$

$$a(\mathbf{x}) = \sin\left(\frac{1}{|x_1| + |x_2| + 10^{-15}}\right)$$

Figure: Choosing f appropriately such that $u(\mathbf{x}) = \exp(-10 |\mathbf{x}|^2)$.

Another Linear PDE in NDform

Operator choice

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 0 \\ 0 & a(\mathbf{x}) \end{array} \right]$$

Another Linear PDE in NDform

Operator choice

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 0 \\ 0 & a(\mathbf{x}) \end{array} \right]$$

$$\mathit{a}(\mathbf{x}) := \left(\mathsf{arctan} \left(5000(\left| \mathbf{x} \right|^2 - 1) \right) + 2 \right).$$

Figure: Choosing f appropriately such that $u(\mathbf{x}) = \sin(\pi x_1)\sin(\pi x_2)$.

The same Linear PDE in NDform

Figure: On the left we present the maximum error of the standard FE-solution. Notice the oscillations apparant on the unit circle. On the right we show the maximum error of the NDFE-solution

Model problem

Given $f \in L_2(\Omega)$, find $u \in H^2(\Omega) \cap H_0^1(\Omega)$ such that

$$\mathscr{N}[u] = \mathscr{F}(\mathrm{D}^2 u) - f = 0$$

Model problem

Given $f \in L_2(\Omega)$, find $u \in H^2(\Omega) \cap H_0^1(\Omega)$ such that

$$\mathscr{N}[u] = \mathscr{F}(\mathrm{D}^2 u) - f = 0$$

Newton's method

Given u^0 for each $n \in \mathbb{N}$ find u^{n+1} such that

$$\langle \mathcal{N}'[u^n] | u^{n+1} - u^n \rangle = -\mathcal{N}[u^n]$$

Model problem

Given $f \in L_2(\Omega)$, find $u \in H^2(\Omega) \cap H_0^1(\Omega)$ such that

$$\mathscr{N}[u] = \mathscr{F}(\mathrm{D}^2 u) - f = 0$$

Newton's method

Given u^0 for each $n \in \mathbb{N}$ find u^{n+1} such that

$$\langle \mathcal{N}'[u^n] | u^{n+1} - u^n \rangle = -\mathcal{N}[u^n]$$

$$\langle \mathcal{N}'[u] \mid v \rangle = \lim_{\epsilon \to 0} \frac{\mathcal{N}[u + \epsilon v] - \mathcal{N}[u]}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{\mathcal{F}(D^2 u + \epsilon D^2 v) - \mathcal{F}(D^2 u)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \mathcal{F}'(D^2 u) : D^2 v + O(\epsilon).$$

Model problem

Given $f \in L_2(\Omega)$, find $u \in H^2(\Omega) \cap H_0^1(\Omega)$ such that

$$\mathscr{N}[u] = \mathscr{F}(\mathrm{D}^2 u) - f = 0$$

Newton's method

Given u^0 for each $n \in \mathbb{N}$ find u^{n+1} such that

$$\langle \mathcal{N}'[u^n] \mid u^{n+1} - u^n \rangle = -\mathcal{N}[u^n]$$

$$\langle \mathcal{N}'[u] \mid v \rangle = \lim_{\epsilon \to 0} \frac{\mathcal{N}[u + \epsilon v] - \mathcal{N}[u]}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{\mathcal{F}(D^2 u + \epsilon D^2 v) - \mathcal{F}(D^2 u)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \mathcal{F}'(D^2 u) : D^2 v + O(\epsilon).$$

iscretisation Solution of the system Numerical experiments **Further applications**

Discretisation

VERY roughly

Given $U^0 = \Lambda u^0$ find U^{n+1} such that

$$\mathscr{F}'(\mathsf{H}[U^n]):\mathsf{H}[U^{n+1}-U^n]=f-\mathscr{F}(\mathsf{H}[U^n])$$

Discretisation

VERY roughly

Given $U^0 = \Lambda u^0$ find U^{n+1} such that

$$\mathscr{F}'(\mathsf{H}[U^n]):\mathsf{H}[U^{n+1}-U^n]=f-\mathscr{F}(\mathsf{H}[U^n])$$

$H[U^n]$ is given in the solution of the previous iterate!

$$\begin{bmatrix} & M & 0 & \cdots & 0 & 0 & -C_{1,1} \\ 0 & M & \cdots & 0 & 0 & -C_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & M & 0 & -C_{d,d-1} \\ 0 & 0 & \cdots & 0 & M & -C_{d,d} \\ 0 & b_{n-1}^{1,1} & b_{n-1}^{1,2} & \cdots & b_{n-1}^{d,d-1} & b_{n-1}^{d,d} & 0 \end{bmatrix} \begin{bmatrix} & \textbf{h}_{1,1}^n \\ \textbf{h}_{1,2}^n \\ \vdots \\ & \textbf{h}_{d,d-1}^n \\ & \textbf{h}_{d,d}^n \\ & \textbf{u}^n \end{bmatrix} = \begin{bmatrix} & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & \textbf{f} \end{bmatrix}$$

Discretisation

VERY roughly

Given $U^0 = \Lambda u^0$ find U^{n+1} such that

$$\mathscr{F}'(\mathsf{H}[U^n]):\mathsf{H}[U^{n+1}-U^n]=f-\mathscr{F}(\mathsf{H}[U^n])$$

$H[U^n]$ is given in the solution of the previous iterate!

$$\begin{bmatrix} \mathsf{M} & \mathsf{0} & \cdots & \mathsf{0} & \mathsf{0} & -\mathsf{C}_{1,1} \\ \mathsf{0} & \mathsf{M} & \cdots & \mathsf{0} & \mathsf{0} & -\mathsf{C}_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathsf{0} & \mathsf{0} & \cdots & \mathsf{M} & \mathsf{0} & -\mathsf{C}_{d,d-1} \\ \mathsf{0} & \mathsf{0} & \cdots & \mathsf{M} & \mathsf{0} & -\mathsf{C}_{d,d-1} \\ \mathsf{0} & \mathsf{0} & \cdots & \mathsf{0} & \mathsf{M} & -\mathsf{C}_{d,d} \\ \mathsf{B}_{n-1}^{1,1} & \mathsf{B}_{n-1}^{1,2} & \cdots & \mathsf{B}_{n-1}^{d,d-1} & \mathsf{B}_{n-1}^{d,d} & \mathsf{0} \end{bmatrix} \begin{bmatrix} \mathbf{h}_{1,1}^n \\ \mathbf{h}_{1,2}^n \\ \vdots \\ \mathbf{h}_{d,d-1}^n \\ \mathbf{h}_{d,d}^n \\ \mathbf{u}^n \end{bmatrix} = \begin{bmatrix} \mathsf{0} \\ \mathsf{0} \\ \vdots \\ \mathsf{0} \\ \mathsf{0} \\ \mathsf{f} \end{bmatrix}$$

iscretisation Solution of the system Numerical experiments **Further applications**

Discretisation

VERY roughly

Given $U^0 = \Lambda u^0$ find U^{n+1} such that

$$\mathscr{F}'(\mathsf{H}[U^n]):\mathsf{H}[U^{n+1}-U^n]=f-\mathscr{F}(\mathsf{H}[U^n])$$

$H[U^n]$ is given in the solution of the previous iterate!

$$\begin{bmatrix} \mathsf{M} & \mathsf{0} & \cdots & \mathsf{0} & \mathsf{0} & -\mathsf{C}_{1,1} \\ \mathsf{0} & \mathsf{M} & \cdots & \mathsf{0} & \mathsf{0} & -\mathsf{C}_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathsf{0} & \mathsf{0} & \cdots & \mathsf{M} & \mathsf{0} & -\mathsf{C}_{d,d-1} \\ \mathsf{0} & \mathsf{0} & \cdots & \mathsf{M} & \mathsf{0} & -\mathsf{C}_{d,d-1} \\ \mathsf{0} & \mathsf{0} & \cdots & \mathsf{0} & \mathsf{M} & -\mathsf{C}_{d,d} \\ \mathsf{B}_{n-1}^{1,1} & \mathsf{B}_{n-1}^{1,2} & \cdots & \mathsf{B}_{n-1}^{d,d-1} & \mathsf{B}_{n-1}^{d,d} & \mathsf{0} \end{bmatrix} \begin{bmatrix} \mathbf{h}_{1,1}^n \\ \mathbf{h}_{1,2}^n \\ \vdots \\ \mathbf{h}_{d,d-1}^n \\ \mathbf{h}_{d,d}^n \\ \mathbf{u}^n \end{bmatrix} = \begin{bmatrix} \mathsf{0} \\ \mathsf{0} \\ \vdots \\ \mathsf{0} \\ \mathsf{0} \\ \mathsf{f} \end{bmatrix}$$

Saves us postprocessing another one! [Vallet et al., 2007]
 [Ovall, 2007]

Further applications

Bibliography I

Aguilera, N. E. and Morin, P. (2008).

On convex functions and the finite element method. online preprint arXiv:0804.1780v1, arXiv.org.

Ovall, J. (2007).

Function, gradient and hessian recovery using quadratic edge-bump functions.

J. Sci. Comput., 45(3):1064–1080.

Vallet, M.-G., Manole, C.-M., Dompierre, J., Dufour, S., and Guibault, F. (2007).

Numerical comparison of some Hessian recovery techniques. Internat. J. Numer. Methods Engrg., 72(8):987–1007.