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Crouzeix-Raviart Nonconforming FE

T = {(t1, t2) : t1, t2 ≥ 0, t1 + t2 ≤ 1} - the reference element;

The shape functions of introduced linear element on T are:

ϕ1(t1, t2) = −1 + 2t1 + 2t2; ϕ2(t1, t2) = 1 − 2t1; ϕ3(t1, t2) = 1 − 2t2.

We define nonconforming piecewise linear finite element space Vh of Crouzeix-
Raviart elements with integral type degrees of freedom (Fig. 1) for which
h = maxK∈τh is mesh parameter: Vh =

{
v : v|K ∈ P1 is integrally continuous

on the edges of K, for all K ∈ τh,
∫

∂Ω v dl = 0}.
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Figure 1:
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For any v ∈ L2(Ω) with v|K ∈ Hm(K), ∀K ∈ τh we define the mesh-
dependent norm and seminorm:

‖v‖m,h =





∑

K∈τh
‖v‖2

m,K





1/2

, |v|m,h =





∑

K∈τh
|v|2m,K





1/2

, m = 0, 1.

We define the following bilinear form on Vh + H1
0(Ω):

ah(u, v) =
∑

K∈τh

∫

K (∇u · ∇v + a0uv) dx. (1)
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ih - the intepolant, associated with the integral type C-R linear FE for any
partition τh

Then:

∀v ∈ L2(Ω), ∀K ∈ τh,
∫

lj
ihv dl =

∫

lj
v dl, j = 1, 2, 3.

It is evident that
ihv ∈ Vh, ∀v ∈ L2(Ω);

ihv ≡ v, ∀v ∈ Vh.

4



Rh : V → Vh denotes the elliptic projection operator defined by:

ah(u −Rhu, vh) = 0 ∀u ∈ V, ∀vh ∈ Vh.

Using the interpolation properties of the conforming and nonconforming
linear FE triangles we prove the following result:

Theorem 1 If v belongs to H2(Ω) ∩ V , then

‖v −Rhv‖s,h ≤ Ch2−s‖u‖2,Ω, s = 0, 1. (2)
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A superclose property of the interpolant ih with respect to the ah−form:

Theorem 2 Let u ∈ H2(Ω). Then for any vh ∈ Vh the following inequality
holds:

ah(ihu − u, vh) ≤ Ch2‖u‖2,Ω‖vh‖1,h. (3)

In particular, if a0(x) = 0, then ih related to the linear C-R nonconforming
triangular element coincides with the Ritz projection operator Rh of the
corresponding second-order elliptic problem, i.e.

ah(ihu − u, vh) = 0 ∀u ∈ V, ∀vh ∈ Vh.
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Eigenvalue Problem

Consider the variational elliptic EVP: find (λ, u) ∈ R × H1
0(Ω), u 6= 0

such that
a(u, v) = λ(u, v), ∀ v ∈ V. (4)

The approximation of EVP (4) by nonconforming FEM is: find λh ∈ R

and uh ∈ Vh, uh 6= 0 such that

ah(uh, vh) = λh(uh, vh), ∀ vh ∈ Vh, (5)
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Patch-recovery Technique

Let us construct macro-elements, unifying four adjacent congruent right-
angled isosceles triangles belonging to τh. The degrees of freedom of any
macro-element K = ∪4

i=1Ki from τ̃2h we choose to be the degrees of
freedom of Ki ∈ τh, i = 1, 2, 3, 4, i.e. these are the integral values of
any function v ∈ V on the edges li,j, j = 1, 2, 3 of Ki, i = 1, 2, 3, 4.

Let ˜V2h be finite element spaces associated with τ̃2h. One possible choice
for ˜V2h is to consist of polynomials from PK, where on any K ∈ τ̃2h

PK = P2 + span
{
λ2

iλj − λiλ
2
j , i, j = 1, 2, 3; i < j

}
.

(λs, s = 1, 2, 3 are baricentric coordinates of K)

Obviously P2 ⊂ PK ⊂ P3.
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Figure 2:
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The interpolation operator I2h : Vh → ˜V2h corresponding to τ̃2h is
characterized by edge conditions determined by the degrees of freedom of
any K ∈ τ̃2h It is constructed in such a way that:

I2h ◦ ih = I2h, (6)

‖I2hvh‖r,h ≤ C‖vh‖r,h, ∀vh ∈ Vh, r = 0, 1, (7)

because the mapping I2h : Vh → ˜V2h is bounded.
At that, having in mind that the interpolation polynomial I2hv|K belongs

to the set PK, for any v ∈ H3(Ω) ∩ V it follows that

‖I2hv − v‖1,Ω ≤ Ch2‖v‖3,Ω. (8)
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The next theorem contains the main superconvergent estimation:

Theorem 3 Let u ∈ H3(Ω) ∩ V . Then the following estimate holds:

‖I2h ◦ Rhu − u‖1,h ≤ Ch2‖u‖3,Ω (9)

The main result concerning patch-recovery technique applied to the second-
order EVP is given in the following theorem:

Theorem 4 Let (λ, u) be any exact eigenpair and (λh, uh) be its FE approximation
using triangular nonconforming C-R linear elements. Assume also that u
satisfies the conditions of Theorem 3 are fulfilled. Then:

‖I2huh − u‖1,h ≤ Ch2‖u‖3,Ω, (10)
∣∣∣∣∣∣∣∣

ah(I2huh, I2huh)

(I2huh, I2huh)
− λ

∣∣∣∣∣∣∣∣
≤ Ch4‖u‖2

3,Ω. (11)
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Patch-recovery Technique - Numerical Results

Let Ω be a square domain:

Ω : 0 < xi < π, i = 1, 2.

Consider the following model problem:

−∆u = λu in Ω,

u = 0 on ∂Ω.

The exact eigenvalues are equal to k2
1 + k2

2, kj = 1, 2, . . ., j = 1, 2
(2, 5, 5, 8, 10, 10, . . .)
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Table 1: Eigenvalues computed by means of C-R integral type nonconforming FEs (NC) and after applying of patch-
recovery technique (PR)

h λ1 λ2 λ3 λ4

π/4 NC 1.965475477 4.546032933 4.546036508 7.430949878
π/4 PR 2.048733065 5.377641910 5.379034337 8.858183829

π/8 NC 1.991417651 4.888133308 4.888134617 7.868940522
π/8 PR 2.001716041 5.030155947 5.030153808 8.039386123

π/16 NC 1.997857237 4.972126030 4.972127107 7.971004421
π/16 PR 2.000447081 5.008219681 5.008225792 8.007441874
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Eigenvalue Problem (Nonconvex Domain)

Theorem 5 Let (λk, uk) and (λh,k, uh,k) be the solutions of (4) and (5),
respectively and ah is determined by (1) with a0 = 0.

Assume that Ω is not convex and the eigenfunctions being normalized
‖uk‖0,Ω = ‖uh,k‖0,Ω = 1. Then

λh,k ≤ λk. (12)

usual C-R element: Armentano & Duran 2004
integral-type C-R element: Andreev & Racheva ?
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Eigenvalue Problem (Convex Domain)

The next lemma proves supercloseness between any approximate eigenfunction
and the integral type interpolant of the corresponding exact eigenfunction.

Lemma 1 Let (λ, u) and (λh, uh) be any corresponding eigenpairs obtained
by (4) and (5), respectively. If ihu is the C-R linear interpolant of the
exact eigenfunction and supposing that the partition is quasiuniform and
u ∈ H2(Ω) ∩ V , then the following estimate holds:

‖uh − ihu‖1,h ≤ Ch2‖u‖2,Ω. (13)

conforming case: Andreev 1990
nonconforming case: Andreev & Racheva ?
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Eigenvalue Problem (Convex Domain)

The approximation by integral type nonconforming linear element gives
asymptotic lower bounds of the exact eigenvalues:

Theorem 6 Let (λk, uk) and (λh,k, uh,k) be the solutions of (4) and (5),
respectively and let also the conditions of Lemma 1 be fulfilled.

Assume that Ω is convex and eigenfunctions being normalized ‖uk‖0,Ω =
‖uh,k‖0,Ω = 1. If the mesh parameter h is small enough, then:

λh,k ≤ λk. (14)
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Eigenvalue Problem (Nonconvex Domain)

λk − λh,k = ah(uk, uk) − ah(uh,k, uh,k)

= ah(uk − uh,k, uk − uh,k) + 2ah(uk, uh,k) − 2ah(uh,k, uh,k)

= ‖uk − uh,k‖
2
h︸ ︷︷ ︸
−λh,k‖ihuk − uh,k‖

2
0,Ω︸ ︷︷ ︸

+ λh,k

(
‖ihuk‖

2
0,Ω − ‖uh,k‖

2
0,Ω

)

︸ ︷︷ ︸
.

O(h2r) O(h4r) O(h2)?!

r = π/ω < 1, ω > π is the maximal inner angle
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THANK YOU!


