On the Integral Type
 Crouzeix-Raviart Nonconforming FE:
 Lower Bounds for Eigenvalues

Milena Racheva
(joint work with Andrey Andreev)
Technical University of Gabrovo Bulgaria

Crouzeix-Raviart Nonconforming FE

$T=\left\{\left(t_{1}, t_{2}\right): t_{1}, t_{2} \geq 0, t_{1}+t_{2} \leq 1\right\}$ - the reference element;
The shape functions of introduced linear element on T are:
$\varphi_{1}\left(t_{1}, t_{2}\right)=-1+2 t_{1}+2 t_{2} ; \varphi_{2}\left(t_{1}, t_{2}\right)=1-2 t_{1} ; \varphi_{3}\left(t_{1}, t_{2}\right)=1-2 t_{2}$.

We define nonconforming piecewise linear finite element space V_{h} of CrouzeixRaviart elements with integral type degrees of freedom (Fig. 1) for which $h=\max _{K \in \tau_{h}}$ is mesh parameter: $V_{h}=\left\{v: v_{\left.\right|_{K}} \in \mathcal{P}_{1}\right.$ is integrally continuous on the edges of K, for all $\left.K \in \tau_{h}, \int_{\partial \Omega} v d l=0\right\}$.

Figure 1:

For any $v \in L_{2}(\Omega)$ with $v_{\left.\right|_{K}} \in H^{m}(K), \forall K \in \tau_{h}$ we define the meshdependent norm and seminorm:

$$
\|v\|_{m, h}=\left\{\sum_{K \in \tau_{h}}\|v\|_{m, K}^{2}\right\}^{1 / 2}, \quad|v|_{m, h}=\left\{\sum_{K \in \tau_{h}}|v|_{m, K}^{2}\right\}^{1 / 2}, m=0,1 .
$$

We define the following bilinear form on $V_{h}+H_{0}^{1}(\Omega)$:

$$
\begin{equation*}
a_{h}(u, v)=\sum_{K \in \tau_{h}} \int_{K}\left(\nabla u \cdot \nabla v+a_{0} u v\right) d x \tag{1}
\end{equation*}
$$

i_{h} - the intepolant, associated with the integral type C-R linear FE for any partition τ_{h}

Then:

$$
\forall v \in L_{2}(\Omega), \forall K \in \tau_{h}, \quad \int_{l_{j}} i_{h} v d l=\int_{l_{j}} v d l, j=1,2,3 .
$$

It is evident that

$$
\begin{gathered}
i_{h} v \in V_{h}, \forall v \in L_{2}(\Omega) \\
i_{h} v \equiv v, \forall v \in V_{h}
\end{gathered}
$$

$\mathcal{R}_{h}: V \rightarrow V_{h}$ denotes the elliptic projection operator defined by:

$$
a_{h}\left(u-\mathcal{R}_{h} u, v_{h}\right)=0 \quad \forall u \in V, \forall v_{h} \in V_{h} .
$$

Using the interpolation properties of the conforming and nonconforming linear FE triangles we prove the following result:

Theorem 1 If v belongs to $H^{2}(\Omega) \cap V$, then

$$
\begin{equation*}
\left\|v-\mathcal{R}_{h} v\right\|_{s, h} \leq C h^{2-s}\|u\|_{2, \Omega}, s=0,1 . \tag{2}
\end{equation*}
$$

A superclose property of the interpolant i_{h} with respect to the a_{h}-form:
Theorem 2 Let $u \in H^{2}(\Omega)$. Then for any $v_{h} \in V_{h}$ the following inequality holds:

$$
\begin{equation*}
a_{h}\left(i_{h} u-u, v_{h}\right) \leq C h^{2}\|u\|_{2, \Omega}\left\|v_{h}\right\|_{1, h} . \tag{3}
\end{equation*}
$$

In particular, if $a_{0}(x)=0$, then i_{h} related to the linear $C-R$ nonconforming triangular element coincides with the Ritz projection operator \mathcal{R}_{h} of the corresponding second-order elliptic problem, i.e.

$$
a_{h}\left(i_{h} u-u, v_{h}\right)=0 \quad \forall u \in V, \forall v_{h} \in V_{h} .
$$

Eigenvalue Problem

Consider the variational elliptic EVP: find $(\lambda, u) \in \mathbf{R} \times H_{0}^{1}(\Omega), u \neq 0$ such that

$$
\begin{equation*}
a(u, v)=\lambda(u, v), \quad \forall v \in V \tag{4}
\end{equation*}
$$

The approximation of EVP (4) by nonconforming FEM is: find $\lambda_{h} \in \mathbf{R}$ and $u_{h} \in V_{h}, u_{h} \neq 0$ such that

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}\right)=\lambda_{h}\left(u_{h}, v_{h}\right), \quad \forall v_{h} \in V_{h}, \tag{5}
\end{equation*}
$$

Patch-recovery Technique

Let us construct macro-elements, unifying four adjacent congruent rightangled isosceles triangles belonging to τ_{h}. The degrees of freedom of any macro-element $K=\cup_{i=1}^{4} K_{i}$ from $\widetilde{\tau}_{2 h}$ we choose to be the degrees of freedom of $K_{i} \in \tau_{h}, i=1,2,3,4$, i.e. these are the integral values of any function $v \in V$ on the edges $l_{i, j}, j=1,2,3$ of $K_{i}, i=1,2,3,4$.

Let $\widetilde{V}_{2 h}$ be finite element spaces associated with $\widetilde{\tau}_{2 h}$. One possible choice for $\widetilde{V}_{2 h}$ is to consist of polynomials from \mathcal{P}_{K}, where on any $K \in \widetilde{\tau}_{2 h}$

$$
\begin{gathered}
\mathcal{P}_{K}=\mathcal{P}_{2}+\operatorname{span}\left\{\lambda_{i}^{2} \lambda_{j}-\lambda_{i} \lambda_{j}^{2}, i, j=1,2,3 ; i<j\right\} . \\
\quad\left(\lambda_{s}, s=1,2,3 \text { are baricentric coordinates of } K\right)
\end{gathered}
$$

Obviously $\mathcal{P}_{2} \subset \mathcal{P}_{K} \subset \mathcal{P}_{3}$.

Figure 2:

The interpolation operator $I_{2 h}: V_{h} \rightarrow \widetilde{V}_{2 h}$ corresponding to $\widetilde{\tau}_{2 h}$ is characterized by edge conditions determined by the degrees of freedom of any $K \in \widetilde{\tau}_{2 h} \mathrm{It}$ is constructed in such a way that:

$$
\begin{gather*}
I_{2 h} \circ i_{h}=I_{2 h} \tag{6}\\
\left\|I_{2 h} v_{h}\right\|_{r, h} \leq C\left\|v_{h}\right\|_{r, h}, \quad \forall v_{h} \in V_{h}, r=0,1 \tag{7}
\end{gather*}
$$

because the mapping $I_{2 h}: V_{h} \rightarrow \widetilde{V}_{2 h}$ is bounded.
At that, having in mind that the interpolation polynomial $I_{2 h} v_{\left.\right|_{K}}$ belongs to the set \mathcal{P}_{K}, for any $v \in H^{3}(\Omega) \cap V$ it follows that

$$
\begin{equation*}
\left\|I_{2 h} v-v\right\|_{1, \Omega} \leq C h^{2}\|v\|_{3, \Omega} \tag{8}
\end{equation*}
$$

The next theorem contains the main superconvergent estimation:
Theorem 3 Let $u \in H^{3}(\Omega) \cap V$. Then the following estimate holds:

$$
\begin{equation*}
\left\|I_{2 h} \circ \mathcal{R}_{h} u-u\right\|_{1, h} \leq C h^{2}\|u\|_{3, \Omega} \tag{9}
\end{equation*}
$$

The main result concerning patch-recovery technique applied to the secondorder EVP is given in the following theorem:
Theorem 4 Let (λ, u) be any exact eigenpair and $\left(\lambda_{h}, u_{h}\right)$ be its FE approximation using triangular nonconforming $C-R$ linear elements. Assume also that u satisfies the conditions of Theorem 3 are fulfilled. Then:

$$
\begin{gather*}
\left\|I_{2 h} u_{h}-u\right\|_{1, h} \leq C h^{2}\|u\|_{3, \Omega} \tag{10}\\
\left|\frac{a_{h}\left(I_{2 h} u_{h}, I_{2 h} u_{h}\right)}{\left(I_{2 h} u_{h}, I_{2 h} u_{h}\right)}-\lambda\right| \leq C h^{4}\|u\|_{3, \Omega}^{2} . \tag{11}
\end{gather*}
$$

Patch-recovery Technique - Numerical Results

Let Ω be a square domain:

$$
\Omega: 0<x_{i}<\pi, \quad i=1,2 .
$$

Consider the following model problem:

$$
\begin{gathered}
-\Delta u=\lambda u \quad \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

The exact eigenvalues are equal to $k_{1}^{2}+k_{2}^{2}, k_{j}=1,2, \ldots, j=1,2$ $(2,5,5,8,10,10, \ldots)$

Table 1: Eigenvalues computed by means of C-R integral type nonconforming FEs (NC) and after applying of patchrecovery technique (PR)

h		λ_{1}	λ_{2}	λ_{3}	λ_{4}
$\pi / 4$	NC	1.965475477	4.546032933	4.546036508	7.430949878
$\pi / 4$	PR	2.048733065	5.377641910	5.379034337	8.858183829
$\pi / 8$	NC	1.991417651	4.888133308	4.888134617	7.868940522
$\pi / 8$	PR	2.001716041	5.030155947	5.030153808	8.039386123
$\pi / 16$	NC	1.997857237	4.972126030	4.972127107	7.971004421
$\pi / 16$	PR	2.000447081	5.008219681	5.008225792	8.007441874

Eigenvalue Problem (Nonconvex Domain)

Theorem 5 Let $\left(\lambda_{k}, u_{k}\right)$ and $\left(\lambda_{h, k}, u_{h, k}\right)$ be the solutions of (4) and (5), respectively and a_{h} is determined by (1) with $a_{0}=0$.

Assume that Ω is not convex and the eigenfunctions being normalized $\left\|u_{k}\right\|_{0, \Omega}=\left\|u_{h, k}\right\|_{0, \Omega}=1$. Then

$$
\begin{equation*}
\lambda_{h, k} \leq \lambda_{k} \tag{12}
\end{equation*}
$$

usual C-R element: Armentano \& Duran 2004 integral-type C-R element: Andreev \& Racheva ?

Eigenvalue Problem (Convex Domain)

The next lemma proves supercloseness between any approximate eigenfunction and the integral type interpolant of the corresponding exact eigenfunction.

Lemma 1 Let (λ, u) and $\left(\lambda_{h}, u_{h}\right)$ be any corresponding eigenpairs obtained by (4) and (5), respectively. If $i_{h} u$ is the C-R linear interpolant of the exact eigenfunction and supposing that the partition is quasiuniform and $u \in H^{2}(\Omega) \cap V$, then the following estimate holds:

$$
\begin{equation*}
\left\|u_{h}-i_{h} u\right\|_{1, h} \leq C h^{2}\|u\|_{2, \Omega} . \tag{13}
\end{equation*}
$$

conforming case: Andreev 1990 nonconforming case: Andreev \& Racheva ?

Eigenvalue Problem (Convex Domain)

The approximation by integral type nonconforming linear element gives asymptotic lower bounds of the exact eigenvalues:

Theorem 6 Let $\left(\lambda_{k}, u_{k}\right)$ and $\left(\lambda_{h, k}, u_{h, k}\right)$ be the solutions of (4) and (5), respectively and let also the conditions of Lemma 1 be fulfilled.

Assume that Ω is convex and eigenfunctions being normalized $\left\|u_{k}\right\|_{0, \Omega}=$ $\left\|u_{h, k}\right\|_{0, \Omega}=1$. If the mesh parameter h is small enough, then:

$$
\begin{equation*}
\lambda_{h, k} \leq \lambda_{k} \tag{14}
\end{equation*}
$$

Eigenvalue Problem (Nonconvex Domain)

$$
\begin{gathered}
\lambda_{k}-\lambda_{h, k}=a_{h}\left(u_{k}, u_{k}\right)-a_{h}\left(u_{h, k}, u_{h, k}\right) \\
=a_{h}\left(u_{k}-u_{h, k}, u_{k}-u_{h, k}\right)+2 a_{h}\left(u_{k}, u_{h, k}\right)-2 a_{h}\left(u_{h, k}, u_{h, k}\right) \\
=\underbrace{\left\|u_{k}-u_{h, k}\right\|_{h}^{2}}_{\mathcal{O}\left(h^{2 r}\right)}-\underbrace{\lambda_{h, k}\left\|i_{h} u_{k}-u_{h, k}\right\|_{0, \Omega}^{2}}_{\mathcal{O}\left(h^{4 r}\right)}+\underbrace{\lambda_{h, k}\left(\left\|i_{h} u_{k}\right\|_{0, \Omega}^{2}-\left\|u_{h, k}\right\|_{0, \Omega}^{2}\right)}_{\mathcal{O}\left(h^{2}\right) ?!} . \\
r=\pi / \omega<1, \omega>\pi \text { is the maximal inner angle }
\end{gathered}
$$

THANK YOU!

