On the Integral Type Crouzeix-Raviart Nonconforming FE: Lower Bounds for Eigenvalues

Milena Racheva

(joint work with Andrey Andreev)

Technical University of Gabrovo Bulgaria

Crouzeix-Raviart Nonconforming FE

 $T = \{(t_1, t_2): t_1, t_2 \ge 0, t_1 + t_2 \le 1\}$ - the reference element;

The shape functions of introduced linear element on T are:

$$\varphi_1(t_1, t_2) = -1 + 2t_1 + 2t_2; \ \varphi_2(t_1, t_2) = 1 - 2t_1; \ \varphi_3(t_1, t_2) = 1 - 2t_2.$$

We define nonconforming piecewise linear finite element space V_h of Crouzeix-Raviart elements with integral type degrees of freedom (Fig. 1) for which $h = \max_{K \in \tau_h}$ is mesh parameter: $V_h = \{v : v_{|_K} \in \mathcal{P}_1 \text{ is integrally continuous on the edges of } K$, for all $K \in \tau_h$, $\int_{\partial\Omega} v \, dl = 0\}$.

Figure 1:

For any $v \in L_2(\Omega)$ with $v_{|_K} \in H^m(K), \ \forall K \in \tau_h$ we define the mesh-dependent norm and seminorm:

$$||v||_{m,h} = \left\{ \sum_{K \in \tau_h} ||v||_{m,K}^2 \right\}^{1/2}, \quad |v|_{m,h} = \left\{ \sum_{K \in \tau_h} |v|_{m,K}^2 \right\}^{1/2}, \quad m = 0, 1.$$

We define the following bilinear form on $V_h + H_0^1(\Omega)$:

$$a_h(u,v) = \sum_{K \in \tau_h} \int_K (\nabla u \cdot \nabla v + a_0 u v) \ dx. \tag{1}$$

 i_h - the intepolant, associated with the integral type C-R linear FE for any partition τ_h

Then:

$$\forall v \in L_2(\Omega), \ \forall K \in \tau_h, \ \int_{l_j} i_h v \, dl = \int_{l_j} v \, dl, \ j = 1, 2, 3.$$

It is evident that

$$i_h v \in V_h, \ \forall v \in L_2(\Omega);$$

 $i_h v \equiv v, \ \forall v \in V_h.$

 $\mathcal{R}_h: V \to V_h$ denotes the elliptic projection operator defined by:

$$a_h(u - \mathcal{R}_h u, v_h) = 0 \quad \forall u \in V, \ \forall v_h \in V_h.$$

Using the interpolation properties of the conforming and nonconforming linear FE triangles we prove the following result:

Theorem 1 If v belongs to $H^2(\Omega) \cap V$, then

$$||v - \mathcal{R}_h v||_{s,h} \le Ch^{2-s} ||u||_{2,\Omega}, \ s = 0, 1.$$
 (2)

A superclose property of the interpolant i_h with respect to the a_h —form:

Theorem 2 Let $u \in H^2(\Omega)$. Then for any $v_h \in V_h$ the following inequality holds:

$$a_h(i_h u - u, v_h) \le Ch^2 ||u||_{2,\Omega} ||v_h||_{1,h}.$$
 (3)

In particular, if $a_0(x) = 0$, then i_h related to the linear C-R nonconforming triangular element coincides with the Ritz projection operator \mathcal{R}_h of the corresponding second-order elliptic problem, i.e.

$$a_h(i_h u - u, v_h) = 0 \quad \forall u \in V, \ \forall v_h \in V_h.$$

Eigenvalue Problem

Consider the variational elliptic EVP: find $(\lambda,u)\in\mathbf{R}\times H^1_0(\Omega),\ u\neq 0$ such that

$$a(u,v) = \lambda(u,v), \quad \forall \ v \in V. \tag{4}$$

The approximation of EVP (4) by nonconforming FEM is: find $\lambda_h \in \mathbf{R}$ and $u_h \in V_h, \ u_h \neq 0$ such that

$$a_h(u_h, v_h) = \lambda_h(u_h, v_h), \quad \forall \ v_h \in V_h, \tag{5}$$

Patch-recovery Technique

Let us construct macro-elements, unifying four adjacent congruent right-angled isosceles triangles belonging to τ_h . The degrees of freedom of any macro-element $K = \bigcup_{i=1}^4 K_i$ from $\widetilde{\tau}_{2h}$ we choose to be the degrees of freedom of $K_i \in \tau_h$, i=1,2,3,4, i.e. these are the integral values of any function $v \in V$ on the edges $l_{i,j}$, j=1,2,3 of K_i , i=1,2,3,4.

Let \widetilde{V}_{2h} be finite element spaces associated with $\widetilde{\tau}_{2h}$. One possible choice for \widetilde{V}_{2h} is to consist of polynomials from \mathcal{P}_K , where on any $K \in \widetilde{\tau}_{2h}$

$$\mathcal{P}_K = \mathcal{P}_2 + \operatorname{span} \left\{ \lambda_i^2 \lambda_j - \lambda_i \lambda_j^2, \ i, j = 1, 2, 3; \ i < j \right\}.$$
($\lambda_s, \ s = 1, 2, 3$ are baricentric coordinates of K)

Obviously $\mathcal{P}_2 \subset \mathcal{P}_K \subset \mathcal{P}_3$.

Figure 2:

The interpolation operator $I_{2h}:V_h\to \widetilde{V}_{2h}$ corresponding to $\widetilde{\tau}_{2h}$ is characterized by edge conditions determined by the degrees of freedom of any $K\in \widetilde{\tau}_{2h}$ It is constructed in such a way that:

$$I_{2h} \circ i_h = I_{2h}, \tag{6}$$

$$||I_{2h}v_h||_{r,h} \le C||v_h||_{r,h}, \quad \forall v_h \in V_h, \ r = 0, 1,$$
 (7)

because the mapping $I_{2h}: V_h \to \widetilde{V}_{2h}$ is bounded.

At that, having in mind that the interpolation polynomial $I_{2h}v_{|_K}$ belongs to the set \mathcal{P}_K , for any $v \in H^3(\Omega) \cap V$ it follows that

$$||I_{2h}v - v||_{1,\Omega} \le Ch^2 ||v||_{3,\Omega}.$$
(8)

The next theorem contains the main superconvergent estimation:

Theorem 3 Let $u \in H^3(\Omega) \cap V$. Then the following estimate holds:

$$||I_{2h} \circ \mathcal{R}_h u - u||_{1,h} \le Ch^2 ||u||_{3,\Omega}$$
 (9)

The main result concerning patch-recovery technique applied to the second-order EVP is given in the following theorem:

Theorem 4 Let (λ, u) be any exact eigenpair and (λ_h, u_h) be its FE approximation using triangular nonconforming C-R linear elements. Assume also that u satisfies the conditions of Theorem 3 are fulfilled. Then:

$$||I_{2h}u_h - u||_{1,h} \le Ch^2 ||u||_{3,\Omega}, \tag{10}$$

$$\left| \frac{a_h(I_{2h}u_h, I_{2h}u_h)}{(I_{2h}u_h, I_{2h}u_h)} - \lambda \right| \le Ch^4 ||u||_{3,\Omega}^2. \tag{11}$$

Patch-recovery Technique - Numerical Results

Let Ω be a square domain:

$$\Omega: 0 < x_i < \pi, \quad i = 1, 2.$$

Consider the following model problem:

$$-\Delta u = \lambda u \quad \text{in} \quad \Omega,$$

$$u = 0 \quad \text{on} \quad \partial \Omega.$$

The exact eigenvalues are equal to $k_1^2 + k_2^2, \ k_j = 1, 2, \ldots, \ j = 1, 2$ $(2, 5, 5, 8, 10, 10, \ldots)$

Table 1: Eigenvalues computed by means of C-R integral type nonconforming FEs (NC) and after applying of patch-recovery technique (PR)

h	λ_1	λ_2	λ_3	λ_4
$\pi/4$ NC $\pi/4$ PR	1.965475477	4.546032933	4.546036508	7.430949878
	2.048733065	5.377641910	5.379034337	8.858183829
$\pi/8$ NC $\pi/8$ PR	1.991417651	4.888133308	4.888134617	7.868940522
	2.001716041	5.030155947	5.030153808	8.039386123
$\pi/16$ NC $\pi/16$ PR	1.997857237	4.972126030	4.972127107	7.971004421
	2.000447081	5.008219681	5.008225792	8.007441874

Eigenvalue Problem (Nonconvex Domain)

Theorem 5 Let (λ_k, u_k) and $(\lambda_{h,k}, u_{h,k})$ be the solutions of (4) and (5), respectively and a_h is determined by (1) with $a_0 = 0$.

Assume that Ω is <u>not convex</u> and the eigenfunctions being normalized $||u_k||_{0,\Omega} = ||u_{h,k}||_{0,\Omega} = 1$. Then

$$\lambda_{h,k} \le \lambda_k. \tag{12}$$

usual C-R element: Armentano & Duran 2004 integral-type C-R element: Andreev & Racheva ?

Eigenvalue Problem (Convex Domain)

The next lemma proves supercloseness between any approximate eigenfunction and the integral type interpolant of the corresponding exact eigenfunction.

Lemma 1 Let (λ, u) and (λ_h, u_h) be any corresponding eigenpairs obtained by (4) and (5), respectively. If $i_h u$ is the C-R linear interpolant of the exact eigenfunction and supposing that the partition is quasiuniform and $u \in H^2(\Omega) \cap V$, then the following estimate holds:

$$||u_h - i_h u||_{1,h} \le Ch^2 ||u||_{2,\Omega}. \tag{13}$$

conforming case: Andreev 1990

nonconforming case: Andreev & Racheva ?

Eigenvalue Problem (Convex Domain)

The approximation by integral type nonconforming linear element gives asymptotic lower bounds of the exact eigenvalues:

Theorem 6 Let (λ_k, u_k) and $(\lambda_{h,k}, u_{h,k})$ be the solutions of (4) and (5), respectively and let also the conditions of Lemma 1 be fulfilled.

Assume that Ω is <u>convex</u> and eigenfunctions being normalized $||u_k||_{0,\Omega} = ||u_{h,k}||_{0,\Omega} = 1$. If the mesh parameter h is small enough, then:

$$\lambda_{h,k} \le \lambda_k. \tag{14}$$

Eigenvalue Problem (Nonconvex Domain)

$$\lambda_{k} - \lambda_{h,k} = a_{h}(u_{k}, u_{k}) - a_{h}(u_{h,k}, u_{h,k})$$

$$= a_{h}(u_{k} - u_{h,k}, u_{k} - u_{h,k}) + 2a_{h}(u_{k}, u_{h,k}) - 2a_{h}(u_{h,k}, u_{h,k})$$

$$= \underbrace{\|u_{k} - u_{h,k}\|_{h}^{2}}_{\mathcal{O}(h^{2r})} - \underbrace{\lambda_{h,k} \|i_{h}u_{k} - u_{h,k}\|_{0,\Omega}^{2}}_{\mathcal{O}(h^{4r})} + \underbrace{\lambda_{h,k} \left(\|i_{h}u_{k}\|_{0,\Omega}^{2} - \|u_{h,k}\|_{0,\Omega}^{2}\right)}_{\mathcal{O}(h^{2})?!}.$$

 $r=\pi/\omega<1$, $\omega>\pi$ is the maximal inner angle

