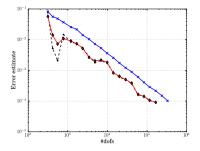
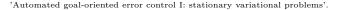
Automated goal-oriented error control for stationary variational problems

Marie E. Rognes and Anders Logg

Simula Research Laboratory





Marie E. Rognes and Anders Logg. In preparation. 2010.

The FEniCS project (www.fenics.org)

Free Software for Automated Scientific Computing

Agenda

- **1.** Automation of discretization \checkmark
- Automation of error control
 ...

Key components

- ▶ High-level form language (UFL)
- ▶ Form compiler (FFC)
- ▶ Main interface (DOLFIN)

What is automated goal-oriented error control?

Input

- ▶ PDE: find $u \in V$ such that $a(v, u) = L(v) \quad \forall v \in V$
- Quantity of interest/Goal: $\mathcal{M}: V \to \mathbb{R}$
- Tolerance: $\epsilon > 0$

Challenge

Find $V_h \subset V$ such that $|\mathcal{M}(u) - \mathcal{M}(u_h)| < \epsilon$ where $u_h \in V_h$ is determined by

$$a(v, u_h) = L(v) \quad \forall \ v \in V_h$$

FEniCS/DOLFIN

pde = AdaptiveVariationalProblem(a - L, M)
u_h = pde.solve(1.0e-3)

The error measured in the goal is the residual of the dual solution

1. Define residual

$$r(v) := L(v) - a(v, u_h)$$

2. Introduce dual problem

Find
$$z \in V$$
: $a^*(v, z) = \mathcal{M}(v) \quad \forall v \in V$

3. Dual solution + residual \implies error

$$\mathcal{M}(u) - \mathcal{M}(u_h) = L(z) - a(z, u_h) = r(z) = r(z - z_h)$$

4. A good dual approximation \tilde{z}_h gives computable error estimate

$$\eta_h = r(\tilde{z}_h)$$

5. Error indicators ... ?

Let us take Poisson's equation as an example for manual derivation of error indicators

$$a(v, u) = \int_{\Omega} \nabla v \cdot \nabla u \, \mathrm{d}x \quad L(v) = \int_{\Omega} v f \, \mathrm{d}x$$

Recall error representation:

$$\mathcal{M}(u) - \mathcal{M}(u_h) = r(z) = \int_{\Omega} zf - \nabla z \cdot \nabla u_h \, \mathrm{d}x$$

Residual decomposition

$$r(v) = \sum_{T \in \mathcal{T}_h} \int_T v \underbrace{(f + \operatorname{div} \nabla u_h)}_{R_T} + \int_{\partial T} v \underbrace{(-\nabla u_h \cdot n)}_{R_{\partial T}} \, \mathrm{d}s$$

Error indicators:

$$\eta_T = |\langle \tilde{z}_h - z_h, R_T \rangle_T + \langle \tilde{z}_h - z_h, \llbracket R_{\partial T} \rrbracket \rangle_{\partial T}$$

The residual decomposition can be automatically computed for a class of residuals

Have:
$$a - L$$
 and $u_h \implies r$
Want: $\eta_T = |\langle \tilde{z}_h - z_h, R_T \rangle_T + \langle \tilde{z}_h - z_h, [\![R_{\partial T}]\!] \rangle_{\partial T}|$
Need: Residual decomposition R_T , $R_{\partial T}$ for each cell T

Assumptions

1.
$$r(v) = \sum_{T} r_{T}(v)$$

2. $r_{T}(v) = \int_{T} v \cdot R_{T} + \int_{\partial T} v \cdot R_{\partial T}$
3. $R_{T} \in P_{k}(T), R_{\partial T}|_{e} \in P_{q}(e)$ for some integer k, q

We can compute R_T and $R_{\partial T}$ by solving small local variational problems

Recall assumption:

$$r_T(v) = \int_T v \cdot R_T \, \mathrm{d}x + \int_{\partial T} v \cdot R_{\partial T} \quad \text{with} \quad R_T \in P_k(T)$$

Let

▶
$$b_T: T \to \mathbb{R}$$
 such that $b_T|_{\partial T} = 0$ (Bubble)

•
$$\{\phi_i\}_{i=1}^n$$
 be a basis for $P_k(T)$

Lemma

 R_T is uniquely determined by the equations

$$\int_T b_T \phi_i \cdot R_T \, \mathrm{d}x = r_T (b_T \phi_i)$$

 $i=1,\ldots,n$

An improved dual approximation can be computed by higher-order extrapolation

Dual problem

$$a^*(v, z_h) = \mathcal{M}(v) \quad \forall v \in V_h$$

can be generated and solved automatically.

Problem

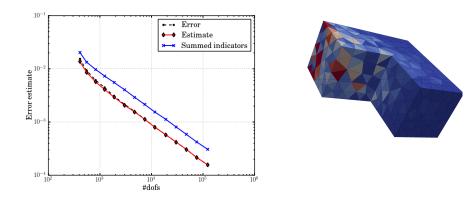
With same discretization as primal: $\eta_h = r(z_h) = 0$.

Suggested solution

Let $W_h \supset V_h$. Improve approximation by a patch-based least-squares curve fitting procedure:

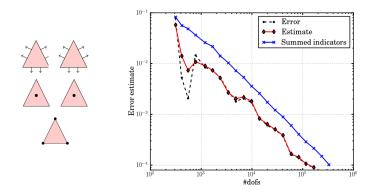
$$z_h \mapsto \tilde{z}_h = E_h z_h, \quad E_h : V_h \to W_h$$

The error estimates are virtually perfect for Poisson on a 3D L-shape



$$a(v, u) = \langle \nabla v, \nabla u \rangle,$$
$$\mathcal{M}(u) = \int_{\Gamma} u \, \mathrm{d}s, \quad \Gamma \subset \partial\Omega.$$

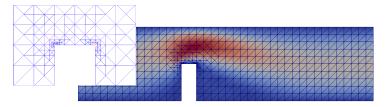
The error estimates are highly satisfactory for a three-field mixed elasticity formulation also



 $\begin{aligned} a((\tau, v, \eta), (\sigma, u, \gamma)) &= \langle \tau, A\sigma \rangle + \langle \operatorname{div} \tau, u \rangle + \langle v, \operatorname{div} \sigma \rangle + \langle \tau, \gamma \rangle + \langle \eta, \sigma \rangle \\ \mathcal{M}((\sigma, u, \eta)) &= \int_{\Gamma} g \, \sigma \cdot n \cdot t \, \mathrm{d}s \end{aligned}$

10/11

Goal-oriented adaptivity is worth it



```
\text{Outflux} \approx 0.4087 \pm 10^{-4}
```

Uniform

1.000.000 dofs, > 3 hours

Adaptive

5.200 dofs, 127 seconds

```
from dolfin import *
class Noslip(SubDomain): ...
mesh = Mesh("channel-with-flap.xml.gz"
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)
# Define test functions and unknown(s)
(v, q) = TestFunctions(V * Q)
w = Function(V * 0)
(u, p) = (as_vector((w[0], w[1])), w[2])
# Define (non-linear) form
n = FacetNormal(mesh)
p0 = Expression("(4.0 - x[0])/4.0")
F = (0.02*inner(grad(v), grad(u)) + inner(v, grad(u)*u))*dx
    - div(v)*p + q*div(u) + p0*dot(v, n)*ds
# Define goal and pde
M = u[0] * ds(0)
pde = AdaptiveVariationalProblem(F, bcs=[...], M, u=w, ...)
# Compute solution
(u, p) = pde.solve(1.e-4).split()
```