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Motivating industrial problem

• Interface movement problems arise in many physical phenomena and
industrial processes.

• Often modelled using a phase-field approach to cope with changes in
topology.
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Motivating industrial problem

• Interface movement problems arise in many physical phenomena and
industrial processes.

• Often modelled using a phase-field approach to cope with changes in
topology.

• One active area of research is modelling interface movement in
mixtures of dielectric media, e.g. in organic solar cells.

• Bi-layer organic solar cells make use of such an arrangement of
dielectric polymer layers, with an electrostatic field across their
interface.

• Organic cells are cheap to produce in large quantities, but have low
efficiency (∼ 1%).

Edward Tucker F.E.A. of the Cahn-Hilliard equation



Introduction
The Cahn-Hilliard equation with electric field

Finite element approximations
Numerical results

Future work: coupling with kinetics
Conclusions

Efficient organic solar panel morpholgy

• Efficiency can be significantly
improved by a particular
”finger-like” film morphology.

• It is difficult to produce and control
this morphology in practice.

1 Incident light creates exciton

2 Hole diffusing towards electrode

3 Hole trapped in an isolated island of

organic molecule

4 Electron moving towards electrode
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Domain diagram in 2D
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Phase field model

Find functions u : ΩT → [−1, 1], and w , φ : ΩT → R such that

γ ∂u
∂t −∇ · (b(x , u)∇w) = 0 in ΩT ,

w = −γ∆u + γ−1Ψ′(u)− 1
2αc ′(x , u)|∇ φ|2 on {|u| < 1},

u(x , 0) = u0(x) ∈ [−1, 1] ∀x ∈ Ω,

∇ · (c(x , u)∇ φ) = 0 in ΩT ,

b(x , u)∇w · ν∂Ω = ∇ u · ν∂Ω = 0 on ∂ΩT ,

c(x , u)∇ φ · ν∂Ω = 0 on ∂NΩT , φ = g± on ∂±
D

ΩT .
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Parameters
• γ ∈ R>0 is the interfacial parameter.
• α ∈ R≥0 is the strength of the electric field.
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Parameters
• γ ∈ R>0 is the interfacial parameter.
• α ∈ R≥0 is the strength of the electric field.
• Diffusion coefficient c(x , u) is non-degenerate and linear,

c(x , χ) :=

{

c0 + 1
2c1(1 + χ) −L1 + a ≤ x1 ≤ L1,

c2 −L1 ≤ x1 ≤ −L1 + a.
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Parameters
• γ ∈ R>0 is the interfacial parameter.
• α ∈ R≥0 is the strength of the electric field.
• Diffusion coefficient c(x , u) is non-degenerate and linear,

c(x , χ) :=

{

c0 + 1
2c1(1 + χ) −L1 + a ≤ x1 ≤ L1,

c2 −L1 ≤ x1 ≤ −L1 + a.

• Mobility function is degenerate only on substrate region,

b(x , u) :=

{

b0 ≥ 0 −L1 + a ≤ x1 ≤ L1,

0 −L1 ≤ x1 ≤ −L1 + a.
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Parameters
• γ ∈ R>0 is the interfacial parameter.
• α ∈ R≥0 is the strength of the electric field.
• Diffusion coefficient c(x , u) is non-degenerate and linear,

c(x , χ) :=

{

c0 + 1
2c1(1 + χ) −L1 + a ≤ x1 ≤ L1,

c2 −L1 ≤ x1 ≤ −L1 + a.

• Mobility function is degenerate only on substrate region,

b(x , u) :=

{

b0 ≥ 0 −L1 + a ≤ x1 ≤ L1,

0 −L1 ≤ x1 ≤ −L1 + a.

• Obstacle potential given by

Ψ(s) :=

{

1
2 (1− s2) if s ∈ [−1, 1],

∞ if s /∈ [−1, 1].
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Parameters and Free energy

• g± := x1 on ∂±
D

Ω.
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Parameters and Free energy

• g± := x1 on ∂±
D

Ω.

• The free energy is given by

J(v , η) =

ˆ

Ω

{ 1
2γ|∇ v |2 + γ−1Ψ(v) − 1

2 αc(x , v)|∇ η|2}dx .
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Parameters and Free energy

• g± := x1 on ∂±
D

Ω.

• The free energy is given by

J(v , η) =

ˆ

Ω

{ 1
2γ|∇ v |2 + γ−1Ψ(v) − 1

2 αc(x , v)|∇ η|2}dx .

• The continuous solution satisfies the following energy bound:

∂
∂t [J(u, φ)] + 1

γ (b(x , u)∇w ,∇w) ≤ 0.
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Finite element spaces and discrete energy

Let {T h}h>0 be a family of partitionings of Ω into disjoint open regular
non-obtuse simplices σ. We introduce the finite element spaces:

Sh := {χ ∈ C (Ω) : χ|σ is linear ∀σ ∈ T h} ⊂ H1(Ω);

Sh
0 = {χ ∈ Sh : χ = 0 on ∂DΩ};

Sh
g = {χ ∈ Sh : χ = g± on ∂±

D
Ω};

Kh := {χ ∈ Sh : |χ| ≤ 1 in Ω} ⊂ K := {η ∈ H1(Ω) : |η| ≤ 1 a.e. in Ω}.
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Finite element spaces and discrete energy

Let {T h}h>0 be a family of partitionings of Ω into disjoint open regular
non-obtuse simplices σ. We introduce the finite element spaces:

Sh := {χ ∈ C (Ω) : χ|σ is linear ∀σ ∈ T h} ⊂ H1(Ω);

Sh
0 = {χ ∈ Sh : χ = 0 on ∂DΩ};

Sh
g = {χ ∈ Sh : χ = g± on ∂±

D
Ω};

Kh := {χ ∈ Sh : |χ| ≤ 1 in Ω} ⊂ K := {η ∈ H1(Ω) : |η| ≤ 1 a.e. in Ω}.

Discrete energy for all F.E.A.s given by

I(Un, Φn) = 1
2{γ|Un|21 − γ−1|Un|2h} −

1
2 α

ˆ

Ω

c(x ,Un)|∇Φn|2dx .
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Decoupled F.E.A. with energy bounded

below

Scheme A

Given U0 ∈ Kh, for n ≥ 1 find {Un,W n, Φn} ∈ Kh × Sh × Sh
g such

that

(

c(x ,Un−1)∇Φn,∇ χ
)

= 0 ∀χ ∈ Sh
0 ,

γ
(

Un−Un−1

τn
, χ

)h
+

(

b(x ,Un−1)∇W n,∇ χ
)

= 0 ∀χ ∈ Sh,

γ (∇Un,∇ (χ −Un)) ≥
(

W n + γ−1Un−1, χ − Un
)h

+ 1
2α

(

c ′(x ,Un−1)|∇Φn|2, χ − Un
)

∀χ ∈ Kh,
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Energy properties for scheme A
The following energy properties hold for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1)+ 1
2 α

ˆ

Ω

c(x ,Un−1)|∇ (Φn − Φn−1)|2dx .

I(Un, Φn) + γ
2 |U

n −Un−1|21 + 1
2 γ−1|Un −Un−1|2h

+ τn

γ (b(x ,Un−1)∇W n,∇W n) ≤ I(Un−1, Φn).

so we have a bound on the energy increase at each time-level,
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Energy properties for scheme A
The following energy properties hold for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1)+ 1
2 α

ˆ

Ω

c(x ,Un−1)|∇ (Φn − Φn−1)|2dx .

I(Un, Φn) + γ
2 |U

n −Un−1|21 + 1
2 γ−1|Un −Un−1|2h

+ τn

γ (b(x ,Un−1)∇W n,∇W n) ≤ I(Un−1, Φn).

so we have a bound on the energy increase at each time-level,

I(Un, Φn) + 1
2

[

γ|∇ (Un − Un−1)|20,Ω + γ−1|Un −Un−1|2h
]

+ τn
γ

(

b(x ,Un−1)∇W n,∇W n
)

≤ I(Un−1, Φn−1)+ 1
2α

ˆ

Ω

c(x ,Un−1)|∇ (Φn − Φn−1)|2dx .
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Properties and limitations of scheme A
• The following discrete maximum principle holds.

g− ≤ Φn ≤ g+ in Ω, ∀n ∈ N.
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Properties and limitations of scheme A
• The following discrete maximum principle holds.

g− ≤ Φn ≤ g+ in Ω, ∀n ∈ N.

• The following inequality holds,
ˆ

Ω

c(x ,Un−1)|∇Φn|2dx ≤

ˆ

Ω

c(x ,Un−1)dx ∀n ∈ N.

• More importantly, we can bound |Φn|21,Ω, by choosing χ = Φn − x1

in discrete electric field equation.
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Properties and limitations of scheme A
• The following discrete maximum principle holds.

g− ≤ Φn ≤ g+ in Ω, ∀n ∈ N.

• The following inequality holds,
ˆ

Ω

c(x ,Un−1)|∇Φn|2dx ≤

ˆ

Ω

c(x ,Un−1)dx ∀n ∈ N.

• More importantly, we can bound |Φn|21,Ω, by choosing χ = Φn − x1

in discrete electric field equation.
This gives us a bound on the energy decrease,

=⇒

ˆ

Ω

c(x ,Un)|∇Φn|2dx ≤ cmax|Φ
n|21,Ω ≤ C ∀n ∈ N.
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Properties and limitations of scheme A
• The following discrete maximum principle holds.

g− ≤ Φn ≤ g+ in Ω, ∀n ∈ N.

• The following inequality holds,
ˆ

Ω

c(x ,Un−1)|∇Φn|2dx ≤

ˆ

Ω

c(x ,Un−1)dx ∀n ∈ N.

• More importantly, we can bound |Φn|21,Ω, by choosing χ = Φn − x1

in discrete electric field equation.
This gives us a bound on the energy decrease,

=⇒

ˆ

Ω

c(x ,Un)|∇Φn|2dx ≤ cmax|Φ
n|21,Ω ≤ C ∀n ∈ N.

• However, no stability result can be shown.
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Decoupled F.E.A. with energy decrease

Scheme B

Given {U0, Φ0} ∈ Kh × Sh
g , for n ≥ 1 find {Un,W n, Φn} ∈ Kh × Sh ×

Sh
g such that

(c(x ,Un−1)∇ ( 1
2 (Φn + Φn−1)),∇ χ) = 0 ∀χ ∈ Sh

0 ,

γ
(

Un−Un−1

τn
, χ

)h
+

(

b(x ,Un−1)∇ (W n),∇ χ
)

= 0 ∀χ ∈ Sh,

γ (∇Un,∇ (χ −Un)) ≥
(

W n + γ−1Un−1, χ − Un
)h

+ 1
2α

(

c ′(x ,Un−1)|∇Φn|2, χ − Un
)

∀χ ∈ Kh.
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Decoupled F.E.A. with energy decrease

Scheme B

Given {U0, Φ0} ∈ Kh × Sh
g , for n ≥ 1 find {Un,W n, Φn} ∈ Kh × Sh ×

Sh
g such that

(c(x ,Un−1)∇ ( 1
2 (Φn + Φn−1)),∇ χ) = 0 ∀χ ∈ Sh

0 ,

γ
(

Un−Un−1

τn
, χ

)h
+

(

b(x ,Un−1)∇ (W n),∇ χ
)

= 0 ∀χ ∈ Sh,

γ (∇Un,∇ (χ −Un)) ≥
(

W n + γ−1Un−1, χ − Un
)h

+ 1
2α

(

c ′(x ,Un−1)|∇Φn|2, χ − Un
)

∀χ ∈ Kh.

Φ0 ∈ Sh
g is required, (c(x ,U0)∇Φ0,∇ χ) = 0 ∀χ ∈ Sh

0 .
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Energy decrease for scheme B

Due to the form of the discrete electric field we have the following energy
properties, for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1),
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Energy decrease for scheme B

Due to the form of the discrete electric field we have the following energy
properties, for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1),

and

I(Un, Φn) + γ
2 |U

n − Un−1|21 + 1
2 γ−1|Un − Un−1|2h

+ τn
γ (b(x ,Un−1)∇W n,∇W n) ≤ I(Un−1, Φn).
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Energy decrease for scheme B

Due to the form of the discrete electric field we have the following energy
properties, for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1),

and

I(Un, Φn) + γ
2 |U

n − Un−1|21 + 1
2 γ−1|Un − Un−1|2h

+ τn
γ (b(x ,Un−1)∇W n,∇W n) ≤ I(Un−1, Φn).

Combining the above we have discrete energy decrease at each timestep,

I(Un, Φn) ≤ I(Un−1, Φn) = I(Un−1, Φn−1).
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Electric field properties

• Discrete maximum principle for electric field

g− ≤ 1
2 (Φn + Φn−1) ≤ g+ in Ω ∀n ≥ 1.

Edward Tucker F.E.A. of the Cahn-Hilliard equation



Introduction
The Cahn-Hilliard equation with electric field

Finite element approximations
Numerical results

Future work: coupling with kinetics
Conclusions

Decoupled F.E.A. with energy bounded below
Decoupled F.E.A. with energy decrease
Coupled F.E.A. with energy decrease, stability, and existence results
Decoupled F.E.A. with stability terms

Electric field properties

• Discrete maximum principle for electric field

g− ≤ 1
2 (Φn + Φn−1) ≤ g+ in Ω ∀n ≥ 1.

• The discrete electric field also satisfies
ˆ

Ω

c(x ,Un−1)|∇ ( 1
2 (Φn + Φn−1))|2 ≤

ˆ

Ω

c(x ,Un−1) ∀n ≥ 1.

Edward Tucker F.E.A. of the Cahn-Hilliard equation



Introduction
The Cahn-Hilliard equation with electric field

Finite element approximations
Numerical results

Future work: coupling with kinetics
Conclusions

Decoupled F.E.A. with energy bounded below
Decoupled F.E.A. with energy decrease
Coupled F.E.A. with energy decrease, stability, and existence results
Decoupled F.E.A. with stability terms

Electric field properties

• Discrete maximum principle for electric field

g− ≤ 1
2 (Φn + Φn−1) ≤ g+ in Ω ∀n ≥ 1.

• The discrete electric field also satisfies
ˆ

Ω

c(x ,Un−1)|∇ ( 1
2 (Φn + Φn−1))|2 ≤

ˆ

Ω

c(x ,Un−1) ∀n ≥ 1.

• Crucially, there is no way to bound the term
− 1

2α
´

Ω
c(x ,Un)|∇Φn|2dx from below in the discrete energy.

Therefore we have unbounded energy decrease so there is no
possibility of proving a steady state exists.
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Coupled F.E.A. with energy decrease,

stability, and existence results

Scheme C

Given U0 ∈ Kh, for n ≥ 1 find {Un,W n, Φn} ∈ Kh × Sh × Sh
g such

that

(c(x ,Un)∇Φn,∇ χ) = 0 ∀χ ∈ Sh
0 ,

γ
(

Un−Un−1

τn
, χ

)h
+

(

b(x ,Un−1)∇W n,∇ χ
)

= 0 ∀χ ∈ Sh,

γ (∇Un,∇ (χ −Un)) ≥
(

W n + γ−1Un−1, χ − Un
)h

+ 1
2α

(

c ′(x ,Un−1)|∇Φn|2, χ −Un
)

∀χ ∈ Kh,
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Energy decrease for scheme C

Due to the form of the discrete electric field we have the following energy
properties, for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1) − α
2

(

c(x ,Un−1), |∇ (Φn − Φn−1)|2
)

,

I(Un, Φn) + γ
2 |U

n −Un−1|21 + 1
2 γ−1|Un −Un−1|2h

+ τn

γ (b(x ,Un−1)∇W n,∇W n) ≤ I(Un−1, Φn).
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Energy decrease for scheme C

Due to the form of the discrete electric field we have the following energy
properties, for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1) − α
2

(

c(x ,Un−1), |∇ (Φn − Φn−1)|2
)

,

I(Un, Φn) + γ
2 |U

n −Un−1|21 + 1
2 γ−1|Un −Un−1|2h

+ τn

γ (b(x ,Un−1)∇W n,∇W n) ≤ I(Un−1, Φn).

Combining the above we have discrete energy decrease at each timestep,

I(Un, Φn) ≤ I(Un−1, Φn) ≤ I(Un−1, Φn−1).
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More properties of scheme C

• Stability for the scheme C follows from the energy decrease.
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More properties of scheme C

• Stability for the scheme C follows from the energy decrease.

• Convergence for this system is still to be done, but should be
attainable!
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More properties of scheme C

• Stability for the scheme C follows from the energy decrease.

• Convergence for this system is still to be done, but should be
attainable!

• Discrete maximum principle for electric field holds.

• The following holds
ˆ

Ω

c(x ,Un)|∇Φn|2 ≤

ˆ

Ω

c(x ,Un) ≤ cmax|Ω| =: C ,

and so the discrete energy is bounded below.
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Practical considerations limitations of

scheme C

• The highly non-linear scheme at each time level is solved using a
fixed-point approach.

• Existence of solutions {Un, Φn} is proved using a Brouwer-fixed
point argument.
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Practical considerations limitations of

scheme C

• The highly non-linear scheme at each time level is solved using a
fixed-point approach.

• Existence of solutions {Un, Φn} is proved using a Brouwer-fixed
point argument.

Limitations:

• Solving scheme C requires much larger CPU times, especially in 3D.
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Decoupled F.E.A. with stability terms

Scheme D

Given U0 ∈ Kh, for n ≥ 1 find {Un,W n, Φn} ∈ Kh × Sh × Sh
g such

that

(

c(x ,Un−1)∇Φn,∇ χ
)

= 0 ∀χ ∈ Sh
0 ,

γ
(

Un−Un−1

τn
, χ

)h
+

(

b(x ,Un−1)∇W n,∇ χ
)

= 0 ∀χ ∈ Sh,

(ρ + γ) (∇Un,∇ (χ − Un)) ≥
(

W n + γ−1Un−1, χ − Un
)h

+ 1
2α

(

c ′(x ,Un−1)|∇Φn|2, χ −Un
)

+ ρ
(

∇Un−1,∇ (χ −Un)
)

∀χ ∈ Kh,
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Energy properties for scheme D
We have the following energy properties, for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1) + 1
2 α

(

c(x ,Un−1), |∇ (Φn − Φn−1)|2
)

,

I(Un, Φn) + (ρ + γ
2 )|∇ (Un −Un−1)|20,Ω + 1

2 γ−1|Un −Un−1|2h

+ τn

γ (b(x ,Un−1)∇W n,∇W n) ≤ I(Un−1, Φn),
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Energy properties for scheme D
We have the following energy properties, for all n ≥ 1:

I(Un−1, Φn) = I(Un−1, Φn−1) + 1
2 α

(

c(x ,Un−1), |∇ (Φn − Φn−1)|2
)

,

I(Un, Φn) + (ρ + γ
2 )|∇ (Un −Un−1)|20,Ω + 1

2 γ−1|Un −Un−1|2h

+ τn

γ (b(x ,Un−1)∇W n,∇W n) ≤ I(Un−1, Φn),

=⇒ I(Un, Φn) + 1
2

[

(2ρ + γ)|∇ (Un − Un−1)|20,Ω + γ−1|Un − Un−1|2h
]

+ τn
γ

(

b(x ,Un−1)∇W n,∇W n
)

≤ I(Un−1, Φn−1) + 1
2 α

ˆ

Ω

c(x ,Un−1)|∇ (Φn − Φn−1)|2dx .

Edward Tucker F.E.A. of the Cahn-Hilliard equation



Introduction
The Cahn-Hilliard equation with electric field

Finite element approximations
Numerical results

Future work: coupling with kinetics
Conclusions

Decoupled F.E.A. with energy bounded below
Decoupled F.E.A. with energy decrease
Coupled F.E.A. with energy decrease, stability, and existence results
Decoupled F.E.A. with stability terms

Stability conditions of Scheme D

Attempt to obtain stability for the system leads to

I(Un, Φn) + 1
2

n

∑
k=1

[

(2ρ + γ)|∇ (Uk −Uk−1)|20,Ω + γ−1|Uk −Uk−1|2h

]

≤ I(U0, Φ1) + α(c ′
max)

2

2cmin
max

k=1→n−1
‖∇ Φk‖2

0,p,Ω

n−1

∑
k=1

‖Uk −Uk−1‖2
0,q .

for p > 2, and q = 2p
p−2 . Applying the Sobolev embedding theorem for

d = 2, we can get the following bound

‖Uk −Uk−1‖2
0,q ≤ C‖Uk −Uk−1‖2

1 for q < ∞

≤ C ∗|Uk −Uk−1|21.

Crucially, we can bound ‖∇Φk‖2
0,p,Ω ≤ C , for p ∈ [2, 2 + δ].
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Further properties and limitations of

Scheme D

• As with scheme A, we have a bound on the energy increase.

• Discrete maximum principle for electric field Φn holds.

• Discrete energy bounded below.
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Further properties and limitations of

Scheme D

• As with scheme A, we have a bound on the energy increase.

• Discrete maximum principle for electric field Φn holds.

• Discrete energy bounded below.

• We only have stability for d = 2, provided

ρ ≥ µ := α(c ′max)
2

2cmin
C ∗ max

k=1→n
‖∇Φk‖2

0,2+δ,Ω.

Edward Tucker F.E.A. of the Cahn-Hilliard equation



Introduction
The Cahn-Hilliard equation with electric field

Finite element approximations
Numerical results

Future work: coupling with kinetics
Conclusions

Decoupled F.E.A. with energy bounded below
Decoupled F.E.A. with energy decrease
Coupled F.E.A. with energy decrease, stability, and existence results
Decoupled F.E.A. with stability terms

Further properties and limitations of

Scheme D

• As with scheme A, we have a bound on the energy increase.

• Discrete maximum principle for electric field Φn holds.

• Discrete energy bounded below.

• We only have stability for d = 2, provided

ρ ≥ µ := α(c ′max)
2

2cmin
C ∗ max

k=1→n
‖∇Φk‖2

0,2+δ,Ω.

• In practice, the stability bound µ is unknown, so analysis of the
discrete energy behaviour is required.
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Further properties and limitations of

Scheme D

• As with scheme A, we have a bound on the energy increase.

• Discrete maximum principle for electric field Φn holds.

• Discrete energy bounded below.

• We only have stability for d = 2, provided

ρ ≥ µ := α(c ′max)
2

2cmin
C ∗ max

k=1→n
‖∇Φk‖2

0,2+δ,Ω.

• In practice, the stability bound µ is unknown, so analysis of the
discrete energy behaviour is required.

• The artificial stabilisation parameter may have an unwanted effect
upon the morphology of solutions!
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Practical implementation of schemes A-D

We present results for scheme D (decoupled, with stability terms).

• Linear system for Φn is easily solved using conjugate gradient or
multigrid solvers.
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Practical implementation of schemes A-D

We present results for scheme D (decoupled, with stability terms).

• Linear system for Φn is easily solved using conjugate gradient or
multigrid solvers.

• {Un,W n} solved using Gauss-Seidel iterative solver.
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Practical implementation of schemes A-D

We present results for scheme D (decoupled, with stability terms).

• Linear system for Φn is easily solved using conjugate gradient or
multigrid solvers.

• {Un,W n} solved using Gauss-Seidel iterative solver.

• h-adaptivity used to track the interface.

• Elements (σ) are marked according to maxx∈σ|Un(x)| − 1.

• Computations done with adaptive finite element code Alberta-3.0-rc6.
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Morphology evolution in 2D
Scheme D with ρ = 0.1, α = 80, γ = 1/8π, and τ = 5 ∗ 10−7.
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Morphology evolution in 3D
Scheme D with ρ = 1.0, α = 100, γ = 1/8π, and τ = 10−5. movie
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Coupling with kinetics

Find functions u : ΩT → K, w , φ : ΩT → R, and v : ΩT → R
d ,

p : ΩT → R such that

γ ∂u
∂t +βv · ∇ u −∇ · (b(x , u)∇w) = 0 in ΩT ,

w = −γ∆u + γ−1Ψ′(u)− 1
2 αc ′(x , u)|∇ φ|2 on {|u| < 1},

u(x , 0) = u0(x) ∈ K ∀x ∈ Ω,

∇ · (c(x , u)∇ φ) = 0 in ΩT ,
{

−∆v + ∇ p = βw∇ u

∇ · v = 0
in ΩT ,

b(x , u)∇w · ν∂Ω = ∇ u · ν∂Ω = 0 on ∂ΩT ,

c(x , u)∇ φ · ν∂Ω = 0 on ∂NΩT , φ = g± on ∂±
D

ΩT ,

(∇ v) ν∂Ω − p ν∂Ω = 0 on ∂NΩT , v = 0 on Ωs ∪ ∂DΩT .

Edward Tucker F.E.A. of the Cahn-Hilliard equation



Introduction
The Cahn-Hilliard equation with electric field

Finite element approximations
Numerical results

Future work: coupling with kinetics
Conclusions

Issues with stability and implementation

• Proofs of stability and convergence for a coupled F.E.A. are still
works in progress.
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Issues with stability and implementation

• Proofs of stability and convergence for a coupled F.E.A. are still
works in progress.

• The energy results for schemes A-D can all be adapted to include
the velocity terms.
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Issues with stability and implementation

• Proofs of stability and convergence for a coupled F.E.A. are still
works in progress.

• The energy results for schemes A-D can all be adapted to include
the velocity terms.

• Use standard lowest-order Taylor-Hood velocity-pressure spaces.
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Issues with stability and implementation

• Proofs of stability and convergence for a coupled F.E.A. are still
works in progress.

• The energy results for schemes A-D can all be adapted to include
the velocity terms.

• Use standard lowest-order Taylor-Hood velocity-pressure spaces.

• Main issue with implementation is large CPU times due to quadratic
velocity space creating large system matrix for velocity.
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Issues with stability and implementation

• Proofs of stability and convergence for a coupled F.E.A. are still
works in progress.

• The energy results for schemes A-D can all be adapted to include
the velocity terms.

• Use standard lowest-order Taylor-Hood velocity-pressure spaces.

• Main issue with implementation is large CPU times due to quadratic
velocity space creating large system matrix for velocity.

• Investigations have shown that applying Minimum Residual
(MINRES) solver to the full nonnested block matrix, with SSOR
sweep preconditioner for the velocity matrix, is fast...
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Issues with stability and implementation

• Proofs of stability and convergence for a coupled F.E.A. are still
works in progress.

• The energy results for schemes A-D can all be adapted to include
the velocity terms.

• Use standard lowest-order Taylor-Hood velocity-pressure spaces.

• Main issue with implementation is large CPU times due to quadratic
velocity space creating large system matrix for velocity.

• Investigations have shown that applying Minimum Residual
(MINRES) solver to the full nonnested block matrix, with SSOR
sweep preconditioner for the velocity matrix, is fast...
... but Algebraic Multigrid preconditioner might be quicker.
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Morphology evolution in 3D
Parameters β = 2 ∗ 10−3, ρ = 0.1, α = 100, γ = 1/8π, and τ = 2 ∗ 10−6.
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Morphology evolution in 3D

t = 2.7 ∗ 10−4 movie
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Conclusions

Have introduced four finite element approximations for model of interface
in an electro-static field, displaying varying properties:

• Scheme A is the intuitive approximation, but it does not have stability or

energy decrease.
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Conclusions

Have introduced four finite element approximations for model of interface
in an electro-static field, displaying varying properties:

• Scheme A is the intuitive approximation, but it does not have stability or

energy decrease.

• Scheme B has energy decrease but there is no possibility of attaining a

steady state.
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Conclusions

Have introduced four finite element approximations for model of interface
in an electro-static field, displaying varying properties:

• Scheme A is the intuitive approximation, but it does not have stability or

energy decrease.

• Scheme B has energy decrease but there is no possibility of attaining a

steady state.

• Scheme C has full coupling, and behaves similarly to the continuous

system, but sacrifices computational efficiency.
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Conclusions

Have introduced four finite element approximations for model of interface
in an electro-static field, displaying varying properties:

• Scheme A is the intuitive approximation, but it does not have stability or

energy decrease.

• Scheme B has energy decrease but there is no possibility of attaining a

steady state.

• Scheme C has full coupling, and behaves similarly to the continuous

system, but sacrifices computational efficiency.

• Scheme D has stability in 2D only, via artificial stability terms.
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Conclusions

Have introduced four finite element approximations for model of interface
in an electro-static field, displaying varying properties:

• Scheme A is the intuitive approximation, but it does not have stability or

energy decrease.

• Scheme B has energy decrease but there is no possibility of attaining a

steady state.

• Scheme C has full coupling, and behaves similarly to the continuous

system, but sacrifices computational efficiency.

• Scheme D has stability in 2D only, via artificial stability terms.

Future work includes coupling with kinetics, and completing convergence
proofs.
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