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Discretization, linearization, and algebraic solvers
Discretization

let p be the weak solution of Ap = F , A nonlinear
let ph be its approximate numerical solution, Ahph = Fh

Iterative linearization
A(i−1)

L,h p(i)
h = F (i−1)

L,h : discrete Newton or fixed-point
linearization
when do we stop?

Iterative algebraic system solution
A(i−1)

L,h p(i)
h = F (i−1)

L,h is a linear algebraic system
we only solve it inexactly by, e.g., some iterative method
when do we stop?

Approximate solution
the approximate solution pa

h that we have as an outcome
does not solve Ahpa

h = Fh
how big is the overall error ‖p − pa

h‖Ω?

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C

Discretization, linearization, and algebraic solvers
Discretization

let p be the weak solution of Ap = F , A nonlinear
let ph be its approximate numerical solution, Ahph = Fh

Iterative linearization
A(i−1)

L,h p(i)
h = F (i−1)

L,h : discrete Newton or fixed-point
linearization
when do we stop?

Iterative algebraic system solution
A(i−1)

L,h p(i)
h = F (i−1)

L,h is a linear algebraic system
we only solve it inexactly by, e.g., some iterative method
when do we stop?

Approximate solution
the approximate solution pa

h that we have as an outcome
does not solve Ahpa

h = Fh
how big is the overall error ‖p − pa

h‖Ω?

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C

Discretization, linearization, and algebraic solvers
Discretization

let p be the weak solution of Ap = F , A nonlinear
let ph be its approximate numerical solution, Ahph = Fh

Iterative linearization
A(i−1)

L,h p(i)
h = F (i−1)

L,h : discrete Newton or fixed-point
linearization
when do we stop?

Iterative algebraic system solution
A(i−1)

L,h p(i)
h = F (i−1)

L,h is a linear algebraic system
we only solve it inexactly by, e.g., some iterative method
when do we stop?

Approximate solution
the approximate solution pa

h that we have as an outcome
does not solve Ahpa

h = Fh
how big is the overall error ‖p − pa

h‖Ω?

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C

Discretization, linearization, and algebraic solvers
Discretization

let p be the weak solution of Ap = F , A nonlinear
let ph be its approximate numerical solution, Ahph = Fh

Iterative linearization
A(i−1)

L,h p(i)
h = F (i−1)

L,h : discrete Newton or fixed-point
linearization
when do we stop?

Iterative algebraic system solution
A(i−1)

L,h p(i)
h = F (i−1)

L,h is a linear algebraic system
we only solve it inexactly by, e.g., some iterative method
when do we stop?

Approximate solution
the approximate solution pa

h that we have as an outcome
does not solve Ahpa

h = Fh
how big is the overall error ‖p − pa

h‖Ω?

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C

Discretization, linearization, and algebraic solvers
Discretization

let p be the weak solution of Ap = F , A nonlinear
let ph be its approximate numerical solution, Ahph = Fh

Iterative linearization
A(i−1)

L,h p(i)
h = F (i−1)

L,h : discrete Newton or fixed-point
linearization
when do we stop?

Iterative algebraic system solution
A(i−1)

L,h p(i)
h = F (i−1)

L,h is a linear algebraic system
we only solve it inexactly by, e.g., some iterative method
when do we stop?

Approximate solution
the approximate solution pa

h that we have as an outcome
does not solve Ahpa

h = Fh
how big is the overall error ‖p − pa

h‖Ω?

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C

Discretization, linearization, and algebraic solvers
Discretization

let p be the weak solution of Ap = F , A nonlinear
let ph be its approximate numerical solution, Ahph = Fh

Iterative linearization
A(i−1)

L,h p(i)
h = F (i−1)

L,h : discrete Newton or fixed-point
linearization
when do we stop?

Iterative algebraic system solution
A(i−1)

L,h p(i)
h = F (i−1)

L,h is a linear algebraic system
we only solve it inexactly by, e.g., some iterative method
when do we stop?

Approximate solution
the approximate solution pa

h that we have as an outcome
does not solve Ahpa

h = Fh
how big is the overall error ‖p − pa

h‖Ω?

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C

Discretization, linearization, and algebraic solvers
Discretization

let p be the weak solution of Ap = F , A nonlinear
let ph be its approximate numerical solution, Ahph = Fh

Iterative linearization
A(i−1)

L,h p(i)
h = F (i−1)

L,h : discrete Newton or fixed-point
linearization
when do we stop?

Iterative algebraic system solution
A(i−1)

L,h p(i)
h = F (i−1)

L,h is a linear algebraic system
we only solve it inexactly by, e.g., some iterative method
when do we stop?

Approximate solution
the approximate solution pa

h that we have as an outcome
does not solve Ahpa

h = Fh
how big is the overall error ‖p − pa

h‖Ω?

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C

Discretization, linearization, and algebraic solvers
Discretization

let p be the weak solution of Ap = F , A nonlinear
let ph be its approximate numerical solution, Ahph = Fh

Iterative linearization
A(i−1)

L,h p(i)
h = F (i−1)

L,h : discrete Newton or fixed-point
linearization
when do we stop?

Iterative algebraic system solution
A(i−1)

L,h p(i)
h = F (i−1)

L,h is a linear algebraic system
we only solve it inexactly by, e.g., some iterative method
when do we stop?

Approximate solution
the approximate solution pa

h that we have as an outcome
does not solve Ahpa

h = Fh
how big is the overall error ‖p − pa

h‖Ω?

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C

Aims and benefits of this work
A posteriori error estimate

aims at estimating ‖p − pa
h‖Ω

but most of the existing approaches rely on Ahpa
h = Fh!

Aims of this work
give a guaranteed and robust upper bound on the
overall error ‖p − pa

h‖Ω

predict the overall error distribution (local efficiency)
distinguish the algebraic/linearization errors, due to inexact
solution of linear/nonlinear problems, and the discretization
error, due to mesh size and numerical scheme
stop the iterative solvers whenever algebraic/linearization
errors do not affect the overall error significantly

Benefits
optimal computable overall error bound
adaptive mesh refinement
important computational savings
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A posteriori estimates accounting for algebraic error
Repin (1997)

Stopping criteria for iterative solvers
Becker, Johnson, and Rannacher (1995)
Maday and Patera (2000)
Arioli (2004)
Meidner, Rannacher, Vihnarev (2009)

Algebraic energy error estimation in the conjugate
gradient method
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Strakoš and Tichý (2002)
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Quasi-linear elliptic problem

Quasi-linear elliptic problem

−∇·σ(∇u) = f in Ω,

u = 0 on ∂Ω,
where

∀ξ ∈ Rd , σ(ξ) = a(|ξ|)ξ,
a(x) ∼ xp−2 as x → +∞, p ∈ (1,+∞),
f ∈ Lq(Ω), q := p

p−1 .

Example
p-Laplacian: a(x) = xp−2

Nonlinear operator A : V := W 1,p
0 (Ω)→ V ′

〈Au, v〉V ′,V := (σ(∇u),∇v)

Weak formulation
Find u ∈ V such that

Au = f in V ′.
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Linearizations at u0 ∈ V

Linearized operator AL : V → V ′

let u0 ∈ V
linearized flux σL : Rd → Rd depending on ∇u0

〈ALu, v〉V ′,V := (σL(∇u),∇v)

Linearized problem
Find uL ∈ V such that

ALuL = f in V ′.

Fixed-point linearization

σL(ξ) := a(|∇u0|)ξ
Newton linearization

σL(ξ) := a(|∇u0|)ξ + a′(|∇u0|)
1
|∇u0|

(∇u0 ⊗∇u0)(ξ −∇u0)

(here AL is actually affine)
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Error measure

Error measure

Ju(uL,h) := ‖Au − AuL,h‖V ′ = sup
v∈V\{0}

(σ(∇u)− σ(∇uL,h),∇v)

‖∇v‖p

based on the difference of the fluxes
dual norm of the residual
avoids any appearance of the ratio continuity constant /
monotonicity constant
there holds Ju(uL,h)→ 0 if and only if ‖u − uL,h‖V → 0
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Abstract estimate

Theorem (Abstract estimate distinguishing the discretization
and linearization errors)
Let u ∈ V be the weak solution, let uL,h ∈ V be arbitrary. Then

Ju(uL,h) ≤ ‖ALuL − ALuL,h‖V ′ + ‖ALuL,h − AuL,h‖V ′ .

Remarks

result due to Chaillou and Suri (2007)
first term: discretization error of a linear problem
second term: linearization error
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A posteriori error estimate

Theorem (A posteriori error estimate)
Let

u ∈ V be the weak solution,
uL,h ∈ V be arbitrary,
th ∈ Hq(div,Ω) be arbitrary but such that
(∇ · th,1)D = (f ,1)D for all D ∈ Dint

h .

Then there holds

Ju(uL,h) ≤η :=

{∑
D∈Dh

(ηR,D + ηDF,D)q

}1/q

+

{∑
D∈Dh

ηq
L,D

}1/q

.

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C Estimate Stop. crit. Adapt. strat. Num. exp.

A posteriori error estimate

Theorem (A posteriori error estimate)
Let

u ∈ V be the weak solution,
uL,h ∈ V be arbitrary,
th ∈ Hq(div,Ω) be arbitrary but such that
(∇ · th,1)D = (f ,1)D for all D ∈ Dint

h .

Then there holds

Ju(uL,h) ≤η :=

{∑
D∈Dh

(ηR,D + ηDF,D)q

}1/q

+

{∑
D∈Dh

ηq
L,D

}1/q

.

M. Vohralík Stopping criteria for iterative linearizations and linear solvers



I Nonlin. pbs Est. linearization err. Est. algebraic err. C Estimate Stop. crit. Adapt. strat. Num. exp.

Estimators

Estimators

residual estimator

ηR,D := CP/F,p,DhD‖f −∇ · th‖q,D

diffusive flux estimator

ηDF,D := ‖σL(∇uL,h) + th‖q,D

linearization estimator

ηL,D :=‖σ(∇uL,h)− σL(∇uL,h)‖q,D
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Balancing the discretization and linearization errors

Global linearization stopping criterion
stop the Newton (or fixed-point) linearization whenever

ηL ≤ γ ηD,

where

ηL :=

{∑
D∈Dh

ηq
L,D

}1/q

linearization error,

ηD :=

{∑
D∈Dh

(ηR,D + ηDF,D)q

}1/q

discretization error

Local linearization stopping criterion
stop the Newton (or fixed-point) linearization whenever

ηL,D ≤ γD (ηR,D + ηDF,D) ∀D ∈ Dh
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Local efficiency

Theorem (Local efficiency)
Let the mesh Th be shape-regular and let the local stopping
criterion, with γD small enough, hold. Then

ηL,D + ηR,D + ηDF,D ≤ C‖σ(∇u)− σ(∇uL,h)‖q,D,

where the constant C is independent of a and p.

local efficiency, but in a different norm
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Global efficiency

Theorem (Global efficiency)
Let the mesh Th be shape-regular and let the global stopping
criterion, with γ small enough, hold. Recall that Ju(uL,h) ≤ η.
Then

η ≤ CJu(uL,h),

where the constant C is independent of a and p.

robustness with respect to the nonlinearity thanks to the
choice of the dual norm
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Adaptive strategy

Adaptive strategy

choose an initial mesh T 0
h and an initial guess

u0
L,h ∈ Vh(T 0

h )

on the mesh T j
h , j ≥ 0, for i ≥ 1, do the iterative loop:

1) linearize the flux function at ui−1
L,h

2) solve the discrete linearized problem for ui
L,h

3) if the linearization stopping criterion is reached, then stop
the linearization, else set i ← (i + 1) and go to step 1)

evaluate the overall a posteriori error estimate η
if the desired overall precision is reached, then stop, else
refine the mesh adaptively, interpolate to it the current
solution, j ← (j + 1), and go to the second step
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Computable upper and lower bounds on the dual norm

Computable upper and lower bounds on the dual norm

recall that

‖Au − AuL,h‖V ′ = sup
v∈V\{0}

(σ(∇u)− σ(∇uL,h),∇v)

‖∇v‖p

following Chaillou and Suri (2006), there exist computable
upper and lower bounds for ‖Au − AuL,h‖V ′ :

Ju(uL,h) ≤ J up
u (uL,h) := ‖σ(∇u)− σ(∇uL,h)‖q,

Ju(uL,h) ≥ J low
u (uL,h) :=

(σ(∇u)− σ(∇uL,h),∇(u − uL,h))

‖∇(u − uL,h)‖p

put

Iup :=
η

J up
u (uL,h)

and I low :=
η

J low
u (uL,h)
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Numerical experiment I

Model problem

p-Laplacian

∇ · (|∇u|p−2∇u) = f in Ω,

u = u0 on ∂Ω

weak solution (used to impose a Dirichlet BC)

u0(x , y) = −p−1
p

(
(x − 1

2)2 + (y − 1
2)2
) p

2(p−1)
+ p−1

p

(
1
2

) p
p−1

tested values p = 1.4,3,10,50
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Analytical and approximate solutions
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Error distribution on a uniformly refined mesh, p = 3
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Numerical experiment II

Model problem

p-Laplacian

∇ · (|∇u|p−2∇u) = f in Ω,

u = u0 on ∂Ω

weak solution (used to impose a Dirichlet BC)

u0(r , θ) = r
7
8 sin(θ 7

8)

p = 4, L-shape domain, singularity in the origin
(Carstensen and Klose (2003))
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A model elliptic problem

A model elliptic problem

−∇ · (S∇p) = f in Ω,

p = g on Γ := ∂Ω

Algebraic problem

at some point, we shall solve AX = B
we only solve it inexactly, AX ∗ ≈ B
we know the algebraic residual, R := B − AX ∗
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A posteriori estimate including the algebraic error
Theorem (Estimate including the algebraic error, FVs/MFEs)
There holds

|||p − p̃a
h||| ≤

{∑
K∈Th

η2
NC,K

} 1
2

+

{∑
K∈Th

η2
R,K

} 1
2

+

{∑
K∈Th

η2
AE,K

} 1
2

.

nonconformity estimator
ηNC,K := |||p̃a

h − IΓ
Os(p̃

a
h)|||K

reflects the departure of p̃a
h from H1

Γ (Ω)

residual estimator
ηR,K :=

C1/2
P

c1/2
S,K

hK‖f − fK‖K

reflects data oscillation

algebraic error estimator
ηAE,K :=

∥∥S−
1
2 qh
∥∥

K

qh = arg inf rh∈RTN(Th)
∇·rh|K =RK/|K |

∥∥S−
1
2 rh
∥∥

measures the algebraic error
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Stopping criteria for iterative solvers

Global stopping criterion

stop the iterative solver whenever

ηAE ≤ γ ηNC,

where

ηAE =

{∑
K∈Th

η2
AE,K

} 1
2

, ηNC =

{∑
K∈Th

η2
NC,K

} 1
2

Local stopping criterion

stop the iterative solver whenever

ηAE,K ≤ γK ηNC,K ∀K ∈ Th
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Discontinuous diffusion tensor

model problem

−∇ · (S∇p) = 0 in Ω = (−1,1)× (−1,1)

discontinuous and inhomogeneous S, two cases:

−1 0 1
−1

0

1

s
1
=5s

2
=1

s
3
=5 s

4
=1

−1 0 1
−1

0

1

s
1
=100s

2
=1

s
3
=100 s

4
=1

analytical solution: singularity at the origin

p(r , θ)|Ωi = rα(ai sin(αθ) + bi cos(αθ))

(r , θ) polar coordinates in Ω
ai , bi constants depending on Ωi
α regularity of the solution
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Analytical solutions

Case 1 Case 2
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Adaptively refined unstructured meshes
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Overall error and overall error estimators
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Effectivity indices of the overall error estimators
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Concluding remarks and future work

Concluding remarks
linear/nonlinear systems are never solved exactly in
practical large scale computations
present estimates: certified overall error bound
linear/nonlinear sts should be solved inexactly on purpose

balancing discretization and algebraic/linearization errors
by stopping criteria
useless to make an extensive number of iterations after the
algebraic/linearization error drops below the discretization
one
important computational savings

local efficiency: suitable for adaptive mesh refinement
guaranteed, robust, locally computable estimates

Future work
nonlinear case for nonconforming methods
systems of nonlinear PDEs
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practical large scale computations
present estimates: certified overall error bound
linear/nonlinear sts should be solved inexactly on purpose

balancing discretization and algebraic/linearization errors
by stopping criteria
useless to make an extensive number of iterations after the
algebraic/linearization error drops below the discretization
one
important computational savings

local efficiency: suitable for adaptive mesh refinement
guaranteed, robust, locally computable estimates

Future work
nonlinear case for nonconforming methods
systems of nonlinear PDEs
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