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The Nunez model3

Model for generation of EEG signals.

Important observations:

Long range synaptic interactions excitatory while inhibitory interactions
more short ranged.
Delays (local and global) important in generating robust human EEG
frequencies.
Cortical white matter system topologically close to sphere - standing
waves can occur via interference

Model often studied in topologies quite different to the brain (e.g. line1 or
plane2).

Two forms - damped wave equation and integro-differential equation (which
we will use here with delays).

1V K Jirsa and H Haken. “Field theory of electromagnetic brain activity”. In:
Physical Review Letters 77 (1996), pp. 960–963.

2S Coombes et al. “Modeling electrocortical activity through improved local
approximations of integral neural field equations”. In: Physical Review E 76, 051901
(2007), p. 051901. doi: 10.1103/PhysRevE.76.051901.

3P L Nunez. “The brain wave equation: a model for the EEG”. . In: Mathematical
Biosciences 21 (1974), pp. 279–297.

R. Nicks (UoB) Spherical brain model June 2014 2 / 31

http://dx.doi.org/10.1103/PhysRevE.76.051901


Spherical models

R. Nicks (UoB) Spherical brain model June 2014 3 / 31



Spherical models

R. Nicks (UoB) Spherical brain model June 2014 3 / 31



Overview

1 The Nunez model for the generation of EEG signals
Neural field model on a sphere.
Integro-differential equation with space-dependent delays.

2 Instabilities of a homogeneous steady state.
Linear stability analysis to look for onset of spatiotemporal patterns
(standing and travelling waves) at dynamic instability.

3 Possible patterned states arising at Hopf bifurcation from spherical
symmetry.

Equivariant bifurcation theory tells us symmetries of periodic solutions
which can exist after dynamic instability...
... but which patterns are stable near the bifurcation depends on values
of coefficients in amplitude equations which are model dependent.

4 Determining form of amplitude equations (symmetry) and values of
coefficients (weakly nonlinear analysis).

5 Mode interactions and secondary bifurcations to quasiperiodic states.
6 Further work.
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A little bit of geometry

Polar angle:
0 ≤ θ ≤ π
Azimuthal angle:
0 ≤ φ ≤ 2π

Point on a sphere of radius R:

r = r(θ, φ) = R(cosφ sin θ, sinφ sin θ, cos θ)

Distance between two points r and r′:

α(r|r′) = R cos−1
(
r · r′/(|r||r′|)

)
= R cos−1

(
cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)

)
.
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The model
∂u

∂t
= −u +

∫
Ω
w(r|r′)f (u(r′, t − τ(r|r′)))dr′
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The model
∂u

∂t
= −u +

∫
Ω
w(r|r′)f (u(r′, t − τ(r|r′)))dr′

O(3) invariant connectivity (synaptic kernel):

w(r|r′) = w(α) = A1e
− α

σ1 + A2e
− α

σ2 , σ1 > σ2, A1A2 < 0.
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The model

∂u

∂t
= −u +

∫
Ω
w(r|r′)f (u(r′, t − τ(r|r′)))dr′

Firing rate : f (u) =
1

1 + e−β(u−h)
, β > 0,

h a threshold parameter, β controls the slope of the firing rate at
threshold.
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The model

∂u

∂t
= −u +

∫
Ω
w(r|r′)f (u(r′, t − τ(r|r′)))dr′

Delays : τ(r|r′) =
α(r|r′)

v
+ τ0,

where

v finite speed of action
potentials.

τ0 constant delay representing
delays caused by synaptic
processes.
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Spherical symmetry

Since we choose w(α(r|r′)) to be O(3) invariant we can write

w(α(r|r′)) =
∞∑
n=0

wn

n∑
m=−n

Ym
n (θ, φ)Ym

n (θ′, φ′)

where Ym
n (θ, φ) are Spherical Harmonics. There are 2n + 1 spherical

harmonics of degree n.
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Ym
n (θ, φ)Ym

n (θ′, φ′)

where Ym
n (θ, φ) are Spherical Harmonics. There are 2n + 1 spherical

harmonics of degree n.
Here

wn = 2π

∫ π

0
sin θdθw(Rθ)Pn(cos θ).

Synaptic kernel w(α) is balanced if

W := w0 =

∫
Ω
w(r0|r′)dr′ = 0

where r0 ∈ Ω.
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Linear stability of homogeneous steady state

∂u

∂t
= −u +

∫
Ω
w(r|r′)f (u(r′, t − τ(r|r′)))dr′

Homogeneous steady states u satisfy

u = Wf (u)

(so only one steady state u = 0 when W = 0).

Linearising about u:

∂u

∂t
= −u + γ

∫
Ω
w(r|r′)u(r′, t − τ(r|r′))dr′

where γ = f ′(u).
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Linear stability analysis

Consider separable solutions: u(r, t) = ψ(r)ezt where ψ(r) satisfies

0 = Lzψ(r) := (1 + z)ψ(r)− γ
∫

Ω
G (α(r|r′); z)ψ(r′)dr′ (1)

where

G (α; z) = w(α) exp(−zτ0 − zα/v)

=
∞∑
n=0

Gn(z)
n∑

m=−n
Ym
n (θ, φ)Ym

n (θ′, φ′)

and

Gn(z) = 2π

∫ π

0
sin θdθw(Rθ)Pn(cos θ) exp(−z(τ0 − Rθ/v)).

Then (1) has solutions of the form ψ(r) = Ym
n (θ, φ) if there exists

eigenvalue λ such that

En(λ) := 1 + λ− γGn(λ) = 0.
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Linear stability analysis

Homogeneous steady state is stable if Reλ < 0 for all n.

Dynamic instability occurs if (under parameter variation) eigenvalues
cross imaginary axis away from origin

Expect emergence of travelling or standing waves

Static instability occurs if eigenvalues cross along real axis

Expect emergence of time-independent patterns

Remark Without delays (τ0 = 0 and v →∞) the eigenvalues are real and
given explicitly by

λn = −1 + γwn.

i.e. Dynamic instabilities are not possible.
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Dynamic instabilities

We look for dynamic instabilities:

Use inverted wizard hat connectivity - standing and travelling waves
preferred to stationary patterns

Agreement with Nunez’s observation of long range excitation and short
range inhibition.

Set λ = iω and look for solutions of spectral equation:

1 + iω = γGn(iω),

for different values of n. (Remember Gn(z) depends on parameters
A1, A2, σ1, σ2, v , τ0.)

For fixed values of σ1, σ2, v , τ we can plot curves in A1, A2 plane
where Hopf bifurcations of each mode can occur

Can similarly find solutions of 1 = γGn(0) to locate static instabilities.
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What kind of spatiotemporal patterns can exist?

From linear stability analysis we expect to excite a dynamic pattern of the
form

unc (θ, φ, t) =
nc∑

m=−nc

zme
iωc tYm

nc (θ, φ) + cc,

where nc and ωc determined using spectral equation. Here the zm are
slowly varying amplitudes and z = (z−nc , . . . , znc ) ∈ C2nc+1.

Near the bifurcation point we expect to see classes of solutions with
symmetry that breaks the O(3)× S1 symmetry of the homogeneous
steady state u.

Equivariant bifurcation theory can tell us about these solutions using
symmetry arguments alone.
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Symmetry arguments

Vnc = space of spherical harmonics of degree nc and unc ∈ Vnc ⊕Vnc .

The action of O(3)× S1 on unc is determined by its action on
z ∈ C2nc+1

The amplitudes z evolve according to ż = g(z) where

γ · g(z) = g(γ · z) for all γ ∈ O(3). (2)

Taylor expansion of g to any given order also commutes with action of
S1.
We can use symmetry to compute form of g to cubic order. These
amplitude equations contain a number of coefficients which are model
dependent
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Spatiotemporal symmetries of periodic solutions

Equivariant Hopf theorem guarantees the existence of periodic
solutions of ż = g(z) with certain spatiotemporal symmetries (certain
classes of subgroups of O(3)× S1)

(γ, ψ) ∈ O(3)× S1 is a spatiotemporal symmetry of a periodic solution
z(τ) if

(γ, ψ) · z(τ) ≡ γ · z(τ + ψ) = z(τ) for all τ . (3)

The subgroups Σ ⊂ O(3)× S1 which satisfy the Equivariant Hopf
theorem fix a two-dimensional subspace of Vnc ⊕ Vnc , i.e.
{z ∈ C2nc+1 : σ · z = z for all σ ∈ Σ} is two dimensional.
Which subgroups of spatiotemporal symmetries satisfy the Equivariant
Hopf theorem depends on the value of nc and have been determined
for all values of nc using group theoretic methods4,5.

4M Golubitsky, I Stewart, and D G Schaeffer. Singularities and Groups in Bifurcation
Theory, Volume II. . Springer Verlag, 1988.

5R Sigrist. “Hopf bifurcation on a sphere”. In: Nonlinearity 23 (2010),
pp. 3199–3225.
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Example nc = 4

Table: The C-axial subgroups of O(3)× S1 for the natural representations on
V4 ⊕ V4. Here H = J × Zc

2.

Σ J K α(H) Fix(Σ)

Õ(2) O(2) O(2)× Zc
2 1 {(0, 0, 0, 0, z , 0, 0, 0, 0)}

Õ O O× Zc
2 1 {(

√
5z , 0, 0, 0,

√
14z , 0, 0, 0,

√
5z)}

T̃ T D2 × Zc
2 Z3 {(

√
7z , 0,

√
12iz , 0,−

√
10z , 0,

√
12iz , 0,

√
7z)}

D̃8 D8 D4 × Zc
2 Z2 {(z , 0, 0, 0, 0, 0, 0, 0, z)}

D̃6 D6 D3 × Zc
2 Z2 {(0, z , 0, 0, 0, 0, 0, z , 0)}

D̃4 D4 D2 × Zc
2 Z2 {(0, 0, z , 0, 0, 0, z , 0, 0)}

S̃O(2)4 SO(2) Z4 × Zc
2 S1 {(z , 0, 0, 0, 0, 0, 0, 0, 0)}

S̃O(2)3 SO(2) Z3 × Zc
2 S1 {(0, z , 0, 0, 0, 0, 0, 0, 0)}

S̃O(2)2 SO(2) Z2 × Zc
2 S1 {(0, 0, z , 0, 0, 0, 0, 0, 0)}

S̃O(2)1 SO(2) Zc
2 S1 {(0, 0, 0, z , 0, 0, 0, 0, 0)}
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nc = 4 standing and travelling wave solutions
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An nc = 4 periodic solution

Other solutions to amplitude equations may exist (in addition to
those guaranteed by Equivariant Hopf theorem)

Using a bespoke numerical scheme we can simulate the (discretised)
integro-differential equation near the nc = 4 dynamic instability

New approach required to solve integro-differential equations with
delays on large meshes
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An nc = 4 periodic solution
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Stability

Symmetry can tell you form of the amplitude equations to any given
order and maximal solutions

For example if nc = 1 modes become unstable at Hopf bifurcation then
using equivariance, to cubic order amplitudes z = (z−1, z0, z1) satisfy

żm = µzm + Azm|z|2 + B ẑm(z2
0 − 2z−1z1)

|z|2 =
1∑

p=−1

|zp|2, ẑ = (−z1, z0,−z−1).

But which solutions are stable depends on values of coefficients -
model dependent.

Weakly nonlinear analysis can be used to determine values of
coefficients for particular model.
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Weakly nonlinear analysis

u1(θ, φ, t) =
nc∑

m=−nc

zm(τ)eiωc tYm
nc (θ, φ) + cc,

where τ = ε2t.

Consider perturbation expansion

u = u + εu1 + ε2u2 + ε3u3 + . . .

f (u) = f (u) + β1(u − u) + β2(u − u)2 + β3(u − u)3 + . . .

where β1 = βc + ε2δ and dynamic instability occurs at βc (δ is a
measure of distance from bifurcation).

Get hierarchy of equations by balancing terms at each order in epsilon.

Solvability condition (here at order ε3) gives values of coefficients.
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For the example where nc = 1

µ =
δ(1 + iωc)

βc

A =
(1 + iωc)

10πβc

[
2β2

2 (5C0,0 + C2,0 + 3C2,2) + 9β3

]
B =

(1 + iωc)

20πβc

[
2β2

2 (5C0,2 + 6C2,0 − 2C2,2) + 9β3

]
where

Cm,n =
Gm(inωc)

1 + inωc − βcGm(inωc)
.
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More interesting solutions?

Direct numerical simulations suggest quasi-periodic behaviour is supported
through interaction of modes 0 and 1. (See spectral diagram when τ0 = 0)

Complex conjugate eigenvalues cross through imaginary axis simultaneously.

Two distinct (not rationally related) emergent frequencies.

Excited pattern:

u1(θ, φ, t) = (w0Y
0
0 (θ, φ)eiω0t + cc) +

∑
m=0±1

(zmY
m
1 (θ, φ)eiω1t + cc),

for slowly evolving w0 and zm with m = 0,±1, and frequencies ω0 and ω1.

Amplitude equations to cubic order (from symmetry):

dw0

dτ
= µ1w0 + a1w0|w0|2 + a2w0|z|2,

dzm
dτ

= µ2zm + b1zm|z|2 + b2ẑm(z2
0 − 2z−1z1) + b3zm|w0|2, m = 0,±1,

where ẑ = (−z1, z0,−z−1).

Values of the coefficients µ1, a1, a2, µ2, b1, b2, b3 can be computed using weakly
nonlinear analysis.
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Secondary bifurcations

Secondary bifurcations to quasi-periodic solutions are possible:

Similarly to Ermentrout and Cowan6 (two populations, no delays).

Letting z1 = Reiφ, w0 = re iθ, z0 = z−1 = 0, equations for (r ,R) and
(θ, φ) decouple:

dr

dt
= r

[
µR

1 + aR1 r
2 + aR2 R

2
]
,

dR

dt
= R

[
µR

2 + bR1 R
2 + bR3 r

2
]

where µR
i = Reµi , a

R
i = Re ai , b

R
i = Re bi

Nullclines are r -axis, the R-axis, and a pair of ellipses (which only exist for
certain values of coefficients).

Suppose coefficients depend on a bifurcation parameter P then we could
have ...

6G B Ermentrout and J D Cowan. “Secondary bifurcation in neuronal networks”.
In: SIAM Journal on Applied Mathematics 39 (1980), pp. 323–340.
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Quasi-periodic solutions
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Quasi-periodic solutions

Transition from a stable n = 0 mode to a stable n = 1 mode via an
intermediate stable 0:1 mode.

As noted by Ermentrout and Cowan, this would allow smooth
transition from one frequency (∼ ω0) to another (∼ ω1),

May provide a mechanistic explanation for the gradual transition from
tonic to clonic phases during an epileptic seizure.
Stage (i) - Small amplitude bulk oscillation (tonic phase).
Stage (ii) - Stable 0:1 quasi-periodic solution (tonic-clonic transition).
Stage (iv) - Stable n = 1 mode (full clonic phase).
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A chaotic solution?
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Summary and further work

Summary

Wide range of spatiotemporal states can be supported in neural
models of Nunez type on a sphere with only simple representations for
anatomical connectivity, axonal delays and population firing rates.

Highlighted importance of delays in generating spatiotemporal
patterned states.

Looked at degenerate bifurcations allowing for quasi-periodic
behaviour reminiscent of evolution of some epileptic seizures.

More complex (chaotic?) solutions also found using bespoke
numerical scheme.

Further Work

Numerical scheme not limited to spherical geometry - can also handle
folded cortical structures.

Localised states (working memory) for steep sigmoidal firing rate and
Mexican-hat connectivity.
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Thank you

Coming soon to arXiv

S Coombes, R Nicks, and S Visser. “Standing and travelling waves in a
spherical brain model: the Nunez model revisited”. In: ()
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