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Similarity analysis is used to identify the control parameter RA for the subset of avalanching systems
that can exhibit self-organized criticality !SOC". This parameter expresses the ratio of driving to
dissipation. The transition to SOC, when the number of excited degrees of freedom is maximal, is
found to occur when RA→0. This is in the opposite sense to !Kolmogorov" turbulence, thus
identifying a deep distinction between turbulence and SOC and suggesting an observable property
that could distinguish them. A corollary of this similarity analysis is that SOC phenomenology, that
is, power law scaling of avalanches, can persist for finite RA with the same RA→0 exponent if the
system supports a sufficiently large range of lengthscales, necessary for SOC to be a candidate for
physical !RA finite" systems. © 2009 American Institute of Physics. #DOI: 10.1063/1.3057392$

I. INTRODUCTION

It is increasingly recognized that a large group of physi-
cal systems can be characterized as driven, dissipative, out-
of-equilibrium, and having a conservation law or laws !see
the comprehensive treatments of Refs. 1 and 2". They usually
have many degrees of freedom !DOFs", or excited modes,
and long range correlations leading to scaling or multiscal-
ing. Two examples are fully developed turbulence !see, e.g.,
Refs. 3 and 4" and self-organized criticality !SOC5–7".

The SOC paradigm has found particular resonance with
workers attempting to model, and understand, “bursty” scale
free transport and energy release in magnetized plasmas !for
a recent review, see, for example, Ref. 8". Simplified ava-
lanche models have been proposed, and points of contact
with the data are investigated, in the astrophysical context;
most notably to describe magnetospheric activity !Refs.
9–12; see also Ref. 13 and references therein", the dynamics
of the solar corona !e.g., Refs. 14–18; see also Ref. 19", and
accretion disks !e.g., Refs. 20–22". In the context of magneti-
cally confined laboratory plasmas there have been extensive
efforts to construct avalanche models that make points of
contact with the system under study and to establish signa-
tures characteristic of SOC dynamics in experiments !e.g.,
Refs. 23–37". There have also been attempts to establish
whether the signatures of SOC can emerge from magnetohy-
drodynamic !MHD" or reduced MHD models !e.g., in the
solar coronal context38,39".

Since the original suggestion of Bak et al. in Ref. 40 that
SOC “...could be considered a toy model of generalized tur-
bulence,” there has been continuing debate on the possible
relationship of turbulence to SOC.41–45 Similarities in the
statistical signatures of turbulence, and systems in SOC,
have been noted !see, e.g., Refs. 46 and 47". In particular, it
has recently been argued in the context of astrophysical plas-
mas that SOC and turbulence are aspects of a single under-
lying physical process !see Refs. 48 and 49 and references

therein". However, the extent to which SOC, as opposed to
turbulence, uniquely captures the observed dynamics in mag-
netically confined laboratory plasmas !see Refs. 50–52" or is
indeed consistent with it !see Refs. 53 and 54" has been
brought into question. Key observables such as power law
distributions of patches are not unique to SOC systems !for
an example, see Ref. 55; see also the comprehensive discus-
sion in Ref. 1".

Our focus here is then to establish the macroscopic simi-
larities and differences between turbulence and SOC in the
most general sense. A central idea in physics is that complex
and otherwise intractable behavior may be quantified by a
few measurable macroscopic control parameters. In fluid tur-
bulence, the Reynolds number RE expresses the ratio of driv-
ing to dissipation and parametrizes the transition from lami-
nar to turbulent flow. Control parameters such as the
Reynolds number can be obtained from dimensional analysis
!see, e.g., Refs. 3 and 56", without reference to the detailed
dynamics. From this perspective the level of complexity re-
sulting from the detailed dynamics is simply characterized
by the number N of excited, coupled DOF !or energy carry-
ing modes" in the system. The transition from laminar to
turbulent flow then corresponds to an !explosive" increase in
N. The nature of this transition, the value of the RE at which
it occurs, and the rate at which N grows with RE all depend
on specific system phenomenology. Dimensional arguments,
along with the assumptions of steady state and energy con-
servation, are, however, sufficient to give the result that N
always grows with RE !as in Ref. 57; see also Ref. 3".

We anticipate that an analogous control parameter for
complexity, RA, will exist for the wider group of systems
discussed above. Interestingly, it is now known that such a
control parameter that expresses the ratio of driving to dissi-
pation does indeed exist for SOC. In this paper we will give
a prescription to obtain RA generally from dimensional
analysis, that is, without reference to the range of detailed
and rich phenomenology that any given system will also ex-
hibit. The rate at which N varies with RA is again dependent
on this detailed phenomenology. We will see that similarity
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arguments, along with the assumptions of steady state and
energy conservation, are, however, sufficient to determine
whether or not N grows with RA.

The question of control parameters in SOC was initially
controversial, as the name leads one to expect. It was origi-
nally argued !Refs. 5 and 40; see also Ref. 58" that avalanch-
ing systems self organized to the SOC state without a tuning
parameter. Subsequent analysis has established a consensus
!see Refs. 1, 2, and 59–62" that some tuning exists, at least in
the sense that SOC is a limiting behavior in the driving rate
h and the dissipation rate !, such that h /!→0 with h ,!→0
!and h"!, that is, a steady state". This understanding is ex-
emplified in Jensen’s constructive definition as given in Ref.
7 of SOC as the behavior of “slowly driven interaction domi-
nated thresholded” !SDIDT" systems. Clearly then, h /! plays
the role of a control parameter. This SDIDT limit h /!→0
has been investigated extensively !e.g., Refs. 60 and 61",
most recently with respect to finite size scaling in the limit of
increasingly large system size !e.g., Refs. 62 and 63".

Here we are concerned with the relevance of SOC to
physically realizable systems, and, in particular, natural ones,
where the system size is finite and the driving may be un-
known and/or highly variable. Our focus is on parametrizing
the level of complexity of the system as we take it away
from the SDIDT limit by increasing the driver, in a system of
large but fixed size. For avalanche models exhibiting SOC,
we will argue that distinct realizable avalanche sizes play the
role of excited DOF of the system. The SOC state is then
characterized by maximal excited DOF, that is, avalanches
occurring on all lengthscales supported by the system. Far
from the SOC state, the system becomes ordered with few
excited DOF and exhibits laminar flow. The SDIDT limit is
reached by taking RA to zero, and we will show that this
indeed maximizes the number of excited DOF N. The
SDIDT limit is thus in the opposite sense to fluid turbulence
which maximizes N at RE→#.

This suggests a possible means to distinguish observa-
tionally between turbulence and SOC in observations and
experiments of driven, magnetically confined plasmas. For
example, a power law region in the power spectral density of
some quantity that probes the flow is often identified in both
laboratory and astrophysical confined magnetized plasmas
!e.g., Refs. 27–30" and is discussed in the context of both
SOC and turbulence. This power law region will always be
of finite spatiotemporal range !an “inertial range” of the cas-
cade". Our results imply that this inertial range will decrease
as we increase the drive for SOC, whereas it will increase for
turbulence—providing an experimental or observational test
to distinguish these phenomena.

Our relationship between RA and N implies the possibil-
ity of large but finite N for small but nonzero RA; hence an
important corollary is that SOC phenomenology can quite
generally persist under conditions of finite drive in a suffi-
ciently large bandwidth system. This has been seen in spe-
cific avalanche models !see Refs. 64–66". Here, since our
result flows from dimensional analysis, we will see that this
is a generic property of avalanching systems.

II. SIMILARITY ANALYSIS AND CONTROL
PARAMETER

We shall focus on how well-established techniques:
similarity analysis !as described in Ref. 56" and the $ theo-
rem obtained by Buckingham in Ref. 67 nearly a century ago
can be used to reveal new information about avalanche mod-
els exhibiting SOC !i.e., Refs. 1, 5–7, 58, and 59".

The systems that we have in mind all have strongly
coupled excited DOF that transport some quantity from the
driving to the dissipation scale. They have the following
properties:

!I" The many excited DOFs of the system are coupled;
there is some dynamical quantity that freely flows
over all the excited DOFs of the system. We can char-
acterize a flux %l of this quantity associated with pro-
cesses that occur on lengthscale l, that is, %l is the
transfer rate of the dynamical quantity through l to
neighboring lengthscales.

!II" The system is not necessarily in equilibrium but is in
a steady state on the average.

!III" The dynamical quantity is conserved so that given !II"
the injection rate %inj balances the dissipation rate
%diss, that is, %inj%%l%%diss in an ensemble averaged
sense.

!IV" The solution is of a scaling type, that is,

N % &L0

&l
''

, !1"

where '(0 and L0 and &l are the largest and smallest
lengthscales, respectively, that are supported by the
system.

!V" The number of excited DOF can be parametrized by a
single macroscopic control parameter.

We will identify the control parameter for these systems
in terms of known macroscopic variables by formal dimen-
sional analysis !similarity analysis or Buckingham $ theo-
rem; see, e.g., Refs. 56 and 67". The essential idea is that the
system’s behavior is captured by a general function F which
only depends on the relevant variables Q1. . .V that describe
the system. Since F is dimensionless it must be a function of
the possible dimensionless groupings, the $1. . .M!Q1. . .V",
which can be formed from the Q1. . .V. The !unknown" func-
tion F!$1 ,$2 , . . . ,$M" is universal, describing all systems
that depend on the Q1. . .V through the $1. . .M!Q1. . .V" and the
relationships between them. If one then has additional infor-
mation about the system, such as a conservation property, the
$1. . .M!Q1. . .V" can be related to each other to make F explicit.
Thus, this method can lead to information about the solution
of a class of systems where the governing equations are un-
available or intractable, often the case for complex systems
where there are a large number !N here" of strongly coupled
DOFs. If the V macroscopic variables are expressed in W
physical dimensions !i.e., mass, length, and time" then there
are M =V−W dimensionless groupings.

The properties !I"–!V" above restrict the choice of rel-
evant Q1. . .V. First, we have only specified that there is a
transfer rate on lengthscale l, %l #property !I"$ of some dy-
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namical quantity, its precise nature is irrelevant. Conse-
quently, the only physical dimensions of the transfer rate %l
relevant to the problem are length and time, so that W=2.
Second, property !V" is that there is a single control param-
eter $1 which may be expressed as a function of the number
of excited DOFs N. To incorporate the scaling property !IV"
we will seek solutions such that $2=g!L0 /&l"= f!N". This
means that the system’s behavior is captured by some
F!$1 ,$2"=C which fixes M =2 !C is a constant". The $1
and $2 are related to each other via properties II and III
!conservation and steady state". We then have that V=4;
there are always four relevant macroscopic variables to
consider.

To see this in action, we begin with a relatively well
understood example, namely, Kolmogorov !K41" turbulence.
Our aim here is to straightforwardly illustrate the above ap-
proach by obtaining the control parameter, the Reynolds
number RE, as a function of N via dimensional analysis; for
a detailed discussion of the universal scaling properties of
K41 turbulence and their origin in the Navier–Stokes equa-
tions see, for example, Ref. 3. As above, for K41 we have
four relevant macroscopic variables !given in Table I" and
two dimensionless groups,

$1 =
UL0

)
= RE, $2 =

L0

*
= f!N" . !2"

$1 is just the Reynolds number RE of the flow, and the ratio
of lengthscales $2 is related to the number of DOF N that
can be excited. We now see how RE is related to f!N" by
relating $1 to $2. For incompressible fluid turbulence, our
dynamical quantity %l is the time rate of energy transfer per
unit mass through lengthscale l. The procedure is then as
follows:

!1" Conservation and steady state imply !ensemble aver-
aged" that %inj%%l%%diss; that is, the average energy in-
jection rate %inj balances the average energy dissipation
rate %diss.

!2" The rate at which energy is transferred to the fluid is
from dimensional analysis: %inj%U3 /L0.

!3" Dimensional analysis of Navier–Stokes gives %diss
%)3 /*4.

!4" %inj%%diss then relates $1 to $2,

RE =
UL0

)
% &L0

*
'+

!3"

and fixes exponent +=4 /3.
!5" The solution is of scaling type, so that

N % &L0

*
''

, !4"

with '(0 by definition.
!6" Thus

RE % &L0

*
'+

% N+N !5"

and +N=+ /'(0.

The value of the exponents ' and + will depend on the
detailed phenomenology of the turbulent flow. An estimate
based on K41, for example, with +=4 /3 from the above, and
'=D=3 where D is Euclidean dimension,3 implies a high
degree of disorganization and will be modified, for example,
if the turbulence is intermittent. Importantly, the only prop-
erty of turbulence with which we are concerned here is that
both +(0 and '(0 so that +N=+ /'(0. This identifies the
Reynolds number as the control parameter for a process !tur-
bulence" which simply excites more active modes or DOF as
we increase RE.

We now see how the above arguments apply to other
systems as defined above, in particular, to avalanche models.
Without recourse to details of the system, similarity analysis
will be sufficient to obtain the relationship between the con-
trol parameter R and the number of DOFs N of the form

R % N+N. !6"

The value of the exponent +N will depend on the details of
these systems but crucially we will see that the sign of +N is
fixed by the similarity analysis. This is sufficient to establish
whether or not, as in the case of turbulence, increasing R
increases the number of excited DOFs in the system.

III. CONTROL PARAMETER FOR AVALANCHING
SYSTEMS

We now envisage a generic avalanche model in a system
of size L0 where the height of sand is specified on a grid,
with nodes at spacing &l. Sand is added to individual nodes,
that is, on lengthscale &l at an average time rate %inj=h per
node. There is some process, here avalanches, which then
transports this dynamical quantity !the sand" through struc-
tures on intermediate lengthscales &l, l,L0. Sand is then
lost to the system !dissipated" at a time rate ! over the system
size L0. On intermediate lengthscales &l, l,L0, sand is con-
servatively transported via avalanches !see also Refs.
68–70". In our discussion here we follow Ref. 5 and assume
that the transport timescale is fast, so that avalanches occur
instantaneously and do not overlap. There must be some de-
tail of the internal evolution of the pile that maximizes the
number of lengthscales l on which avalanches can occur. For
avalanche models this is the property that transport can only
occur locally if some local critical gradient is exceeded; as a
consequence the pile evolves through many metastable
states. If these lengthscales represent excited DOF then the
number N of DOF available will be bounded by L0 and &l so
that N%!L0 /&l"', with D-'-0 for D(1 !' may be frac-
tional".

TABLE I. $ theorem applied to homogeneous turbulence.

Variable Dimension Description

L0 L Driving lengthscale

* L Dissipation lengthscale

U LT−1 Bulk !driving" flow speed

) L2T−1 Viscosity
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The four relevant variables for the avalanching system
are given in Table II. The two dimensionless groups are

$1 =
h

!
= RA, $2 =

L0

&l
= f!N" . !7"

We will now relate the control parameter $1=h /! to the
number of excited DOFs by following the same procedure as
above. %l now refers to the time rate of transfer of “sand”
through lengthscale l.

!1" Conservation and steady state imply !ensemble aver-
aged" %inj%%l%%diss.

!2" In Euclidean dimension D there are !L0 /&l"D nodes; D
(0 by definition. The rate at which sand is transferred
to the pile is then from dimensional analysis: %inj
%h!L0 /&l"D.

!3" The system average dissipation rate is defined as
!=%diss.

!4" %inj%%diss then gives h!L0 /&l"D%! or

RA =
h

!
% & &l

L0
'D

, !8"

thus in the above notation fixes +=−D,0.
!5" The number N of DOF available will be bounded by L0

and &l so that

N % &L0

&l
''

, !9"

with D-'-0 for D(1 !the value of ' depends on the
details and may be fractional".

!6" Thus

RA =
h

!
% & &l

L0
'D

% N−'D % N+N !10"

and +N=+ /'=−D /',0.

We then have that the number of excited DOF decreases as
we increase the control parameter RA=h /!. Thus we recover
the SDIDT limit for SOC, namely RA→0, but now explicitly
identify this limit with maximizing the number of excited
DOF. Our result from dimensional analysis is to obtain RA
%N+N and to show quite generally that for the avalanching
system +N,0.

Our dimensional analysis for the avalanche model maps
onto that for K41 turbulence, so in that sense RA(RE, that is,
RA is the avalanching system’s “effective Reynolds number,”
which expresses the ratio of driving to dissipation. Both RE
and RA increase with driving of the system, but the system’s
response is quite different. In the case of K41 turbulence, the

system can excite more modes or DOFs and the flow be-
comes more disorganized, whereas in the avalanche models,
less DOFs are available so the system is pushed toward or-
der. The essential difference between the two systems in this
context is as follows. As we increase the driving in K41
turbulence, the smallest lengthscale * can decrease !via
Navier–Stokes" to provide the necessary dissipation to main-
tain a steady state, and since we have assumed scaling the
system simply excites more modes or DOF. On the other
hand, in the avalanche models both the smallest and largest
lengthscales are fixed; increasing the driving will ultimately
introduce sand at a rate that exceeds the rate at which sand
can be transported by the smallest avalanches, as we discuss
next.

IV. SOC-LIKE BEHAVIOR UNDER INTERMEDIATE
DRIVE

For avalanching to be the dominant mode of transport of
sand, there are conditions on the microscopic details of the
system; specifically, there must be a separation of timescales
such that the relaxation time for the avalanches must be short
compared to the time taken for the driving to accumulate
sufficient sand locally to trigger an avalanche. Avalanches
are triggered when a critical value for the local gradient is
exceeded, the critical gradient can be a random variable but
provided it has a defined average value g, we have that on
average, we would need to add g&l sand to a single cell of an
initially flat pile to trigger redistribution of sand. The number
of timesteps that this would take to occur would on average
be !g&l" / !h&t" where again &l is the cell size and &t is the
timestep. This gives the condition for avalanching to domi-
nate transport on all lengthscales in the grid #&l ,L0$, so that
avalanches only occur after many grains of sand have been
added to any given cell in the pile and is the strict
SDIDT60,61 limit,

h&t . g&l . !11"

We will now consider an intermediate behavior !see also Ref.
64",

g&l , h&t . g&l&L0

&l
'D

, !12"

where the driver is large enough to swamp of order h&t / !g&l"
cells of the pile at each timestep !each addition of sand", but
this is still much smaller than the largest avalanches that the
system is able to support since the largest possible avalanche
in a system of Euclidean dimension D is !L0 /&l"D cells.

For a given physical realization of the sandpile, that is,
fixed box size L0 and grid size &l, successively increasing
h&t above g&l then successively increases the smallest ava-
lanche size !to some &l!(&l". Ultimately as h and hence RA
is increased to the point where h&t%g&l!L0 /&l"D there will
be a crossover to laminar flow, as each addition of sand
drives avalanches that are on the size of the system.

We now assume that the avalanching process is self-
similar, so that the system is large enough that the probability
density of avalanche sizes S is P!S"%S−/ over a large range
of S; that is, finite size effects do not dominate. Consequently

TABLE II. $ theorem applied to an avalanching system. The sand carries a
property with dimension S.

Variable Dimension Description

L0 L System size

&l L Grid size

! ST−1 System average dissipation/loss rate

h ST−1 Average driving rate per node
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this intermediate, finite RA behavior will be “SOC-like,” with
avalanches occurring within the range of lengthscales
#&l! ,L0$ with power law statistics sharing the same exponent
/ as at the SDIDT limit.

We will illustrate these remarks with simulations of the
Bak et al.5 sandpile in two dimensions !2D", where the driv-
ing occurs randomly in time and is spatially restricted to the
“top” of the pile. In all cases shown, the critical gradient
!threshold for avalanching" is g=4&l−1, and normalized dis-
tributions of the number of topplings in an avalanche S are
shown !we take topplings as a measure of avalanche size
following Ref. 5". In Fig. 1 we plot the results from two
simulations in a box of size L0 /&l=100, under driving rates
h=4&t−1 and h!=16&t−1. We can see that as we increase the
driving rate from h=4&t−1 to h!=16&t−1, the occurrence
probability of the smallest avalanches is reduced, and on
these normalized histograms, the probability of larger events
is increased. These larger events for the run with h!
=16&t−1, that is, for S%#102−103.5$, still follow the same
power law scaling as the h=4&t−1 run !the precise location
on the plot of the crossover in behavior will depend on de-
tails of the dynamics of the pile". This is to be anticipated
provided that transport on these intermediate scales is still
dominated by avalanching, that is, intermediate scale ava-
lanches still have the property that they relax on a timescale
that is much faster than that required by the driving to initiate
an avalanche. If this is the case, then the phenomenology of
these intermediate scale avalanches is unchanged by the in-
crease in the driving rate, and as a consequence, except close
to the crossover in statistics, their scaling exponent is, as we
see, unchanged. As the system has self-similar spatial scaling
we can also anticipate obtaining the same solution for these
avalanches subject to a rescaling; S, which is a measure of
avalanche size, will simply scale with h&t, the sand which

must be redistributed at each timestep since h&t(g&l. This is
shown in the right hand plot of Fig. 1 where we have res-
caled the h!=16&t−1 intermediate range driving results by
S→S /16. We can see that power law regions of the plots that
both correspond to avalanching now coincide.

We can go further and anticipate that two realizations of
the system, one with h and L0 and the other with h!=Ah and
L0!=AL0, give the same solution for P!S" under rescaling
S→S! /AD. This is shown in Fig. 2 where we compare two
runs of the sandpile !i" with h=4&t−1 and L0=100&l and !ii"
with h!=16 and L0!=400&l, in the same format as Fig. 1. We
can indeed see a close correspondence of the avalanche sta-
tistics in the power law region of the plot once we have
rescaled the h!=16&t−1 and L0!=400&l run by S→S /16 !at
the largest S, the histograms do not precisely collapse under
this self-affine scaling; see Ref. 40 for a discussion of the
finite size scaling properties of the model".

This establishes a general property of avalanching sys-
tems that has been seen in several representative SOC mod-
els, such as in Refs. 64–66. Depending on the details, spe-
cifically, provided that a separation of timescales for
avalanching can be maintained, some SOC systems will
show scaling in systems where the drive is, in fact, highly
variable. One could argue that such robustness against fluc-
tuations in the driving is necessary for SOC to provide a
“working model” in real physical systems where the ideal-
ized SDIDT limit may not be realized.

V. CONCLUSIONS

We have used similarity and dimensional analysis to dis-
cuss high dimensional, driven, dissipating, out-of-
equilibrium systems, in particular, avalanching systems that
exhibit bursty transport that can be in a SOC state. These act
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FIG. 1. !Color online" Avalanche size normalized distributions for two runs of the 2D Bak–Tang–Wiesenfeld !Refs. 5 and 40" sandpile driven at the top corner
formed by two adjacent closed boundaries: The other boundaries are open. L0 /&l=100 and h&t=4 !!" and h&t=16 !0"; !a" probability densities; !b" as !a"
with probability density for the h&t=16 avalanche sizes rescaled S→S /16.
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to transport a dynamical quantity !e.g., for the avalanche
models, sand" from the driving to the dissipation scale, in a
manner that is conservative, that is steady state on the aver-
age, and that shows scaling. The generic nature of this
method of analysis implies that our results are not restricted
to sandpile models per se, and have wider application to
physical systems that show bursty transport and scaling. We
have postulated that a “class” of these systems has a single
control parameter R which expresses the ratio of the driving
to the dissipation and which can be related to the number of
excited DOFs N. Dimensional analysis then leads to a rela-
tionship of the form R%N+N and, without reference to any
detailed phenomenology of the system, determines the sign
of +N.

We have focused on avalanche models that can exhibit
SOC, for which the above identifies the control parameter
RA=h /!. The limit RA→0 is just the well known SDIDT
limit of SOC. Specific avalanching systems will have differ-
ent values of +N but will all share the essential property that
we obtain here, that +N,0 so that N is maximal under the
limit of vanishing driving. Our formalism for SOC has close
correspondence with that for Kolmogorov homogeneous iso-
tropic turbulence. A minimalist interpretation of our results is
that Kolmogorov turbulence maximizes the number of ex-
cited DOF N under maximal !infinite" driving in contrast to
SOC. A maximalist interpretation is that RA is analogous to
the Reynolds number RE. This establishes an essential dis-
tinction between turbulence and SOC. Practically speaking,
it can, for example, arise because if we fix the outer, driving
scale in Kolmogorov turbulence, the dissipation scale can
simply adjust as we increase the driving. Since the system
shows scaling, this acts to increase the available DOFs. Ava-
lanching on the other hand is realized in a finite sized domain
!box" and driven on a fixed, smallest scale, so increasing the
driving beyond a certain point simply swamps the smallest

spatial scales, thus reducing the available DOFs. Increasing
the driving then pushes Kolmogorov turbulence toward in-
creasingly disorganized flow and avalanching systems to-
ward more ordered !laminar" flow.

A corollary is that SOC phenomenology, that is, power
law scaling of avalanches, can persist for finite RA with the
same exponent that is seen at the RA→0 limit, provided the
system supports a sufficiently large range of lengthscales.
This has been seen previously for specific realizations of
avalanche models64 but is shown here to be quite generic and
is a necessary property for SOC to be a candidate for physi-
cal !RA finite" systems. As the driving is increased, the ex-
cited number of DOFs !modes" decreases for SOC and in-
creases for turbulence, so that in principle one could
distinguish SOC from turbulence observationally by testing
how the bandwidth !range of spatiotemporal scales", over
which scaling is observed, varies with the driving rate.
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