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Power-law distributions occur in many situations of scientific interest and have significant conse-
quences for our understanding of natural and man-made phenomena. Unfortunately, the empirical
detection and characterization of power laws is made difficult by the large fluctuations that occur
in the tail of the distribution. In particular, standard methods such as least-squares fitting are
known to produce systematically biased estimates of parameters for power-law distributions and
should not be used in most circumstances. Here we describe statistical techniques for making
accurate parameter estimates for power-law data, based on maximum likelihood methods and the
Kolmogorov-Smirnov statistic. We also show how to tell whether the data follow a power-law dis-
tribution at all, defining quantitative measures that indicate when the power law is a reasonable
fit to the data and when it is not. We demonstrate these methods by applying them to twenty-
four real-world data sets from a range of different disciplines. Each of the data sets has been
conjectured previously to follow a power-law distribution. In some cases we find these conjectures
to be consistent with the data while in others the power law is ruled out.

PACS numbers: 02.50.Tt,02.50.Ng,89.75.Da
Keywords: Power-law distributions; Pareto; Zipf; maximum likelihood; heavy-tailed distributions; likelihood ratio
test; model selection

I. INTRODUCTION

Scientists have learned many things from observation
of the statistical distributions of experimental quantities
such as the lifetimes of excited atomic or particle states,
populations of animals, plants, or bacteria, prices on the
stock market, or the arrival times of messages sent across
the Internet. Many, perhaps most, such quantities have
distributions that are tightly clustered around their av-
erage values. That is, these distributions place a triv-
ial amount of probability far from the mean and hence
the mean is representative of most observations. For in-
stance, it is a useful statement to say that most adult
male Americans are about 180cm tall, because no one de-
viates very far from this average figure. Even the largest
deviations, which are exceptionally rare, are still only
about a factor of two from the mean in either direction
and are well characterized by quoting a simple standard
deviation.

Not all distributions fit this pattern, however, and
while those that do not are often considered problem-
atic or defective because they are not well characterized
by their mean and standard deviation, they are at the
same time some of the most interesting of all scientific
observations. The fact that they cannot be character-
ized as simply as other measurements is often a sign of
complex underlying processes that merit further study.

Among such distributions, the power law has attracted
particular interest over the years for its mathematical
properties, which sometimes lead to surprising physical
consequences, and for its appearance in a diverse range
of natural and man-made phenomena. The sizes of solar
flares, the populations of cities, and the intensities of

earthquakes, for example, are all quantities whose dis-
tributions are thought to follow power laws. Quantities
such as these are not well characterized by their averages.
For instance, according to the 2000 US Census, the av-
erage population of a city, town, or village in the United
States is 8226. But this statement is not a useful one
for most purposes because a significant fraction of the
total population lives in cities (New York, Los Angeles,
etc.) whose population differs from the mean by several
orders of magnitude. Extensive discussions of this and
other properties of power laws can be found in the re-
views by Mitzenmacher (2004) and Newman (2005), and
references therein.

Power laws are the focus of this article. Specifically,
we address a thorny and recurring issue in the scientific
literature, the question of how to recognize a power law
when we see one. A quantity x obeys a power law if it is
drawn from a probability distribution

p(x) ∝ x−α, (1)

where α is a constant parameter of the distribution
known as the exponent or scaling parameter. In real-
world situations the scaling parameter typically lies in
the range 2 < α < 3, although there are occasional ex-
ceptions.

In practice, we rarely, if ever, know for certain that
an observed quantity is drawn from a power-law distri-
bution. Instead, the best we can typically do is to say
that our observations are consistent with a model of the
world in which x is drawn from a distribution of the form
Eq. (1). In this paper we explain how one reaches conclu-
sions of this kind in a reliable fashion. Practicing what we
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preach, we also apply our methods to a large number of
data sets describing observations of real-world phenom-
ena that have at one time or another been claimed to
follow power laws. In the process, we demonstrate that
several of them cannot by any stretch of the imagination
be considered to follow power laws, while for others the
power-law hypothesis appears to be a good one, or at
least is not firmly ruled out.

II. FUNDAMENTAL PROPERTIES OF POWER LAWS

Before turning to our main topic of discussion, we
first consider some fundamental mathematical issues that
will be important for what follows. Further details
on the mathematics of power laws can be found in
Mitzenmacher (2004) and Newman (2005).

A. Continuous and discrete power-law behavior

Power-law distributions come in two basic flavors: con-
tinuous distributions governing continuous real numbers
and discrete distributions where the quantity of interest
can take only a discrete set of values, normally positive
integers.

Let x represent the quantity whose distribution we are
interested in. A continuous power-law distribution is one
described by a probability density p(x) such that

p(x) dx = Pr(x ≤ X < x + dx) = Cx−α dx, (2)

where X is the observed value and C is a normaliza-
tion constant. Clearly this density diverges as x → 0 so
Eq. (2) cannot hold for all x ≥ 0; there must be some
lower bound to the power-law behavior. We will denote
this bound by xmin. Then, provided α > 1, it is straight-
forward to calculate the normalizing constant and we find
that

p(x) =
α− 1

xmin

(

x

xmin

)−α

. (3)

In the discrete case, x can take only a discrete set of
values. In this paper we consider only the case of integer
values with a probability distribution of the form

p(x) = Pr(X = x) = Cx−α. (4)

Again this distribution diverges at zero, so there must be
a lower bound xmin on the power-law behavior. Calcu-
lating the normalizing constant, we then find that

p(x) =
x−α

ζ(α, xmin)
, (5)

where

ζ(α, xmin) =
∞
∑

n=0

(n + xmin)
−α (6)

is the generalized or Hurwitz zeta function.
In many cases it is useful to consider also the com-

plementary cumulative distribution function or CDF of
a power-law distributed variable, which we denote P (x)
and which for both continuous and discrete cases is de-
fined to be P (x) = Pr(X ≥ x). For instance, in the
continuous case

P (x) =

∫ ∞

x
p(x′) dx′ =

(

x

xmin

)−α+1

. (7)

In the discrete case

P (x) =
ζ(α, x)

ζ(α, xmin)
. (8)

As these results show, formulas for continuous power
laws tend to be simpler than those for discrete power
laws, with the latter often involving special functions.
As a result it is common in many applications to approx-
imate discrete power-law behavior with its continuous
counterpart for the sake of mathematical convenience,
but a word of caution is in order. There are a number of
different ways to approximate a discrete power law by a
continuous one and though some of them give reasonable
results, others do not and should be avoided. One rela-
tively reliable method is to treat an integer power law as
if the values of x were generated from a continuous power
law then rounded to the nearest integer. This approach
gives quite accurate results in many applications. Other
approximations, however, such as truncating (rounding
down), or simply assuming that the probabilities of gen-
eration of integer values in the discrete and continuous
cases are proportional, give poor results and should be
avoided.

Where appropriate we will discuss the use of contin-
uous approximations for the discrete power law in the
sections that follow, particularly in Section II.B on the
generation of power-law distributed random numbers and
Section III on the extraction of best-fit values for the scal-
ing parameter from observational data.

B. Generating power-law distributed random numbers

It is often the case in statistical studies of probabil-
ity distributions that we wish to generate random num-
bers with a given distribution. For instance, in later
sections of this paper we will use uncorrelated random
numbers drawn from power-law distributions to test how
well our fitting procedures can estimate parameters such
as α and xmin. How should we generate such numbers?
There are a variety of possible methods, but perhaps the
simplest and most elegant is the transformation method
(Press et al., 1992). The method can be applied to both
continuous and discrete distributions; we describe both
variants in turn in this section.

Suppose p(x) is a continuous probability density from
which we wish to draw random reals x ≥ xmin. Typically
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we will have a source of random reals r uniformly dis-
tributed in the interval 0 ≤ r < 1, generated by any of a
large variety of standard pseudo-random number genera-
tors. The probability densities p(x) and p(r) are related
by

p(x) = p(r)
dr

dx
=

dr

dx
, (9)

where the second equality follows because p(r) = 1 over
the interval from 0 to 1. Integrating both sides with
respect to x, we then get

P (x) =

∫ ∞

x
p(x′) dx′ =

∫ 1

r
dr′ = 1 − r, (10)

or equivalently

x = P−1(1 − r), (11)

where P−1 indicates the functional inverse of the cumula-
tive probability distribution P . For the case of the power
law, P (x) is given by Eq. (7) and we find that

x = xmin(1 − r)−1/(α−1), (12)

which can be implemented in straightforward fashion in
most computer languages.

For a discrete power law the equivalent of Eq. (10) is

P (x) =
∞
∑

x′=x

p(x′) = 1 − r. (13)

Unfortunately, P (x) is given by Eq. (8), which cannot
be inverted in closed form, so we cannot write a direct
expression equivalent to Eq. (12) for the discrete case. In-
stead, we typically solve Eq. (13) numerically by a combi-
nation of “doubling up” and binary search (Press et al.,
1992). That is, for a given random number r, we first
bracket a solution x to the equation by the following
steps:

x2 ← xmin

repeat
x1 ← x2

x2 ← 2x1

until P (x2) < 1 − r

Then we pinpoint the solution within the range x1 to x2

by binary search. We need only continue the binary
search until the value of x is narrowed down to k ≤ x <
k+1 for some integer k: then we discard the integer part
and the result is a power-law distributed random inte-
ger. The generalized zeta functions needed to evaluate
P (x) from Eq. (8) are typically calculated using special
functions from standard scientific libraries. These func-
tions can be slow, however, so for cases where speed is
important, such as cases where we wish to generate very
many random numbers, it may be worthwhile to store the
first few thousand values of the zeta function in an ar-
ray ahead of time to avoid recalculating them frequently.

Only the values for smaller x are worth precalculating in
this fashion, however, since those in the tail are needed
only rarely.

If great accuracy is not needed it is also possible, as
discussed in the previous section, to approximate the dis-
crete power law by a continuous one. The approximation
has to be done in the right way, however, if we are to get
good results. Specifically, to generate integers x ≥ xmin

with an approximate power-law distribution, we first gen-
erate continuous power-law distributed reals y ≥ xmin− 1

2

and then round off to the nearest integer x =
⌊

y + 1
2

⌋

.
Employing Eq. (12), this then gives

x =
⌊

(

xmin − 1
2

)(

1 − r
)−1/(1−α)

+ 1
2

⌋

. (14)

The approximation involved in this approach is largest
for the smallest value of x, which is by definition xmin.
For this value the difference between the true power-law
distribution, Eq. (5), and the approximation is given by

∆p = 1 −

(

xmin + 1
2

xmin − 1
2

)−α+1

−
xmin

ζ(α, xmin)
. (15)

For instance, when α = 2.5, this difference corresponds
to an error of more than 8% on the probability p(x) for
xmin = 1, but the error diminishes quickly to less than
1% for xmin = 5, and less than 0.2% for xmin = 10. Thus
the approximation is in practice a reasonably good one
for quite modest values of xmin. (Almost all of the data
sets considered in Section V, for example, have xmin > 5.)
For very small values of xmin the true discrete generator
should still be used unless large errors can be tolerated.
Other approximate approaches for generating integers,
such as rounding down (truncating) the value of y, give
substantially poorer results and should not be used.

As an example of these techniques, consider continuous
and discrete power laws having α = 2.5 and xmin = 5.
Table I gives the cumulative density functions for these
two distributions, evaluated at integer values of x, along
with the corresponding cumulative density functions for
three sets of 100 000 random numbers generated using the
methods described here. As the table shows, the agree-
ment between the exact and generated CDFs is good in
each case, although there are small differences because of
statistical fluctuations. For numbers generated using the
continuous approximation to the discrete distribution the
errors are somewhat larger than for the exact generators,
but still small enough for many practical applications.

III. FITTING POWER LAWS TO EMPIRICAL DATA

We turn now to the first of the main goals of this
paper, the correct fitting of power-law forms to empir-
ical data. Studies of empirical data that follow power
laws usually give some estimate of the scaling parame-
ter α and occasionally also of the lower-bound on the
scaling region xmin. The tool most often used for this
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continuous discrete
x theory generated theory generated approx.
5 1.000 1.000 1.000 1.000 1.000
6 0.761 0.761 0.742 0.740 0.738
7 0.604 0.603 0.578 0.578 0.573
8 0.494 0.493 0.467 0.466 0.463
9 0.414 0.413 0.387 0.385 0.384
10 0.354 0.352 0.328 0.325 0.325
15 0.192 0.192 0.174 0.172 0.173
20 0.125 0.124 0.112 0.110 0.110
50 0.032 0.032 0.028 0.027 0.027
100 0.011 0.011 0.010 0.010 0.009

TABLE I CDFs of discrete and continuous power-law dis-
tributions with xmin = 1 and α = 2.5. The second and
fourth columns show the theoretical values of the CDFs for
the two distributions, while the third and fifth columns show
the CDFs for sets of 100 000 random numbers generated from
the same distributions using the transformation technique de-
scribed in the text. The final column shows the CDF for
100 000 numbers generated using the continuous approxima-
tion to the discrete distribution.

task is the simple histogram. Taking logs of both sides
of Eq. (1), we see that the power-law distribution obeys
ln p(x) = α lnx + constant, implying that it follows a
straight line on a doubly logarithmic plot. One way to
probe for power-law behavior, therefore, is to measure the
quantity of interest x, construct a histogram represent-
ing its frequency distribution, and plot that histogram
on doubly logarithmic axes. If in so doing one discovers
a distribution that approximately falls on a straight line,
then one can, if one is feeling particularly bold, assert
that the distribution follows a power law, with a scaling
parameter α given by the absolute slope of the straight
line. Typically this slope is extracted by performing a
least-squares linear regression on the logarithm of the
histogram.

Unfortunately, this method and other variations on the
same theme show significant biases under relatively com-
mon conditions, as discussed in Appendix A. As a conse-
quence, the results they return are often incorrect, some-
times substantially so, and should not be trusted. In this
section we describe some alternative methods for estimat-
ing the parameters of a power-law distribution that are
generally accurate. In Section IV we study the equally
important question of how to determine whether a given
data set really does follow a power law at all.

A. Estimating the scaling parameter

First, let us consider the estimation of the scaling pa-
rameter α. Estimating α correctly requires a value for
the lower bound xmin of power-law behavior in the data.
Let us assume for the moment that this value is known.
In cases where it is unknown, we can estimate it from the
data as well, and we will consider methods for doing this
shortly.

The method of choice for fitting parameterized mod-
els such as power-law distributions to observed data is
the method of maximum likelihood, which provably gives
accurate (asymptotically normal) parameter estimates in
the limit of large sample size (Barndorff-Nielsen and Cox,
1995; Wasserman, 2003). Assuming that our data are
drawn from a distribution that follows a power law ex-
actly for x ≥ xmin, we can derive maximum likelihood
estimators (MLEs) of the scaling parameter for both the
discrete and continuous cases. Details of the derivations
are given in Appendix B; here our focus is on their use.

The MLE for the continuous case is

α̂ = 1 + n

[

n
∑

i=1

ln
xi

xmin

]−1

(16)

where xi, i = 1 . . . n are the observed values of x such that
xi ≥ xmin. Here and elsewhere we use “hatted” symbols
such as α̂ to denote estimates derived from data; hatless
symbols denote the true values, which are often unknown
in practice.

Equation (16) is equivalent to the well-known Hill es-
timator (Hill, 1975), which is known to be asymptoti-
cally normal (Hall, 1982) and consistent (Mason, 1982)
(i.e., α̂ → α in the limits of large n, xmin, and n/xmin).
The standard error on α̂, which is derived from the width
of the likelihood maximum, is

σ =
α̂− 1√

n
+ O(1/n), (17)

where the higher-order correction is positive; see Ap-
pendix B of this paper, Wheatland (2004), or Newman
(2005).

(We assume in these calculations that α > 1, since
distributions with α ≤ 1 are not normalizable and hence
cannot occur in nature. It is possible for a probability
distribution to go as x−α with α ≤ 1 if the range of x is
bounded above by some cutoff, but different estimators
are needed to fit such a distribution.)

The MLE for the case where x is a discrete integer
variable is less straightforward. Seal (1952) and more
recently Goldstein et al. (2004) treated the situation of
xmin = 1, showing that the appropriate estimator for α
is given by the solution to the transcendental equation

ζ′(α̂)

ζ(α̂)
= −

1

n

n
∑

i=1

lnxi. (18)

When xmin > 1, a similar equation holds, but with the
zeta functions replaced by generalized zetas:

ζ′(α̂, xmin)

ζ(α̂, xmin)
= −

1

n

n
∑

i=1

lnxi, (19)

where the prime denotes differentiation with respect to
the first argument. In practice, evaluation of α̂ requires
us to solve this equation numerically, for instance using
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name
distribution p(x) = Cf(x)

f(x) C

co
n
ti
n
u
ou

s

power law x−α (α − 1)xα−1
min

power law
with cutoff

x−αe−λx λα−1

Γ(1−α,λxmin)

exponential e−λx λeλxmin

stretched
exponential xβ−1e−λxβ

βλeλxβ
min

log-normal 1
x exp

h

− (ln x−µ)2

2σ2

i q

2
πσ2

h

erfc
“

lnxmin−µ
√

2σ

”i−1

d
is
cr

et
e

power law x−α 1/ζ(α, xmin)

Yule
distribution

Γ(x)
Γ(x+α) (α − 1)Γ(xmin+α−1)

Γ(xmin)

exponential e−λx (1 − e−λ) eλxmin

Poisson µx/x!
h

eµ −
Pxmin−1

k=0
µk

k!

i−1

TABLE II Definition of the power-law distribution and several other common statistical distributions. For each distribution
we give the basic functional form f(x) and the appropriate normalization constant C such that

R

∞

xmin
Cf(x) dx = 1 for the

continuous case or
P

∞

x=xmin
Cf(x) = 1 for the discrete case.

name random numbers

power law x = xmin(1 − r)−1/(α−1)

exponential x = xmin − 1
λ ln(1 − r)

stretched
exponential x =

h

xβ
min − 1

λ ln(1 − r)
i1/β

log-normal
x1=exp(ρ sin θ), x2=exp(ρ cos θ)

ρ=
√

−2σ2 ln(1−r1), θ=2πr2

power law
with cutoff

see caption

TABLE III Formulas for generating random numbers x
drawn from continuous distributions, given a source of uni-
form random numbers r in the range 0 ≤ r < 1. Note that
for the case of the log-normal, we know of no closed-form
expression for generating a single random number, but the
expressions given will generate two independent log-normally
distributed random numbers x1, x2, given two uniform num-
bers r1, r2 as input. For the case of the power law with cutoff,
there is also no closed-form expression, but one can generate
an exponentially distributed random number using the for-
mula above and then accept or reject it with probability p
or 1 − p respectively, where p = (x/xmin)

−α. Repeating the
process until a number is accepted then gives the appropriate
distribution for x.

binary search again. Alternatively, one can estimate α by
direct numerical maximization of the likelihood function
itself, or equivalently of its logarithm (which is usually

simpler):

L(α) = −n ln ζ(α, xmin) − α
n

∑

i=1

lnxi. (20)

To find an estimate for the standard error on α̂ in the
discrete case, we make a quadratic approximation to the
log-likelihood at its maximum and take the standard de-
viation of the resulting Gaussian approximation to the
likelihood as our error estimate. The result is

σ =
1

√

n

[

ζ′′(α̂, xmin)

ζ(α̂, xmin)
−

(

ζ′(α̂, xmin)

ζ(α̂, xmin)

)2]
, (21)

which is straightforward to evaluate once we have α̂. Al-
ternatively, Eq. (17) yields roughly similar results for rea-
sonably large n and xmin.

Although there is no exact closed-form expression for α̂
in the discrete case, an approximate expression can be
derived using a variant of the idea introduced in Sec-
tion II.B in which true power-law distributed integers are
approximated as continuous reals rounded to the nearest
integer. The details of the derivation are given in Ap-
pendix B. The result is

α̂ ( 1 + n

[

n
∑

i=1

ln
xi

xmin − 1
2

]−1

. (22)

This expression is considerably easier to evaluate than
the exact discrete MLE and can be useful in cases where
high accuracy is not needed. The size of the bias intro-
duced by the approximation is discussed in the next sec-
tion, where we show that in practice this estimator gives
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FIG. 1 (color online) Points represent the cumulative density
functions P (x) for synthetic data sets distributed according
to (a) a discrete power law and (b) a continuous power law,
both with α = 2.5 and xmin = 1. Solid lines represent best
fits to the data using the methods described in the text.

quite good results provided xmin ! 6. An estimate of the
statistical error on α̂ (which is quite separate from the
systematic bias of the approximation) can be calculated
by employing Eq. (17) again.

Another approach taken by some authors is simply to
pretend that discrete data are in fact continuous and then
use the MLE for continuous data, Eq. (16), to calculate α̂.
This approach, however, gives significantly more biased
values of α̂ than Eq. (22) and, given that it is no easier
to implement, we see no reason to use it in any circum-
stances.1

B. Tests of scaling parameter estimators

To demonstrate the working of the estimators de-
scribed above, we now test their ability to extract the
known scaling parameters of synthetic power-law data.
Note that in practical situations we usually do not know
a priori, as we do here, that our data are power-law dis-
tributed. In that case, our MLEs will give us no warning
that our fits are wrong: they tell us only the best fit to
the power-law form, not whether the power law is in fact
a good model for the data. Other methods are needed to
address the latter question, which are discussed in Sec-
tion IV.

1 The error involved can be shown to decay as O
`

x
−1
min

´

, while the

error on Eq. (22) decays much faster, as O
`

x
−2
min

´

. In our own
experiments we have found that for typical values of α we need
xmin ! 100 before Eq. (16) becomes accurate to about 1%, as
compared to xmin ! 6 for Eq. (22).

est. α est. α
method notes (discrete) (continuous)
LS + PDF const. width 1.5(1) 1.39(5)
LS + CDF const. width 2.37(2) 2.480(4)
LS + PDF log. width 1.5(1) 1.19(2)
LS + CDF rank-freq. 2.570(6) 2.4869(3)
cont. MLE – 4.46(3) 2.50(2)
disc. MLE – 2.49(2) 2.19(1)

TABLE IV Estimates of the scaling parameter α using vari-
ous estimators for discrete and continuous synthetic data with
α = 2.5, xmin = 1 and n = 10 000 data points. LS denotes a
least-squares regression on the log-transformed densities. For
the continuous data, the probability density function (PDF)
was computed in two different ways, using bins of constant
width 0.1 and using up to 500 bins of logarithmic width. The
cumulative density function (CDF) was also calculated in two
ways, as the cumulation of the fixed-width histogram and
as a standard rank-frequency distribution. In applying the
discrete MLE to the continuous data, the non-integer part
of each measurement was discarded. Accurate estimates are
shown in boldface.

Using the methods described in Section II.B we have
generated two sets of power-law distributed data, one
continuous and one discrete, with α = 2.5, xmin = 1
and n = 10 000 in each case. Applying our MLEs to
these data we calculate that α̂ = 2.50(2) for the contin-
uous case and α̂ = 2.49(2) for the discrete case. (Val-
ues in parentheses indicate the uncertainty in the final
digit, calculated from Eqs. (17) and (21).) These esti-
mates agree well with the known true scaling parameter
from which the data were generated. Figure 1 shows the
actual distributions along with fits using the estimated
parameters. (In this and all subsequent such plots, we
show not the probability density function but the com-
plementary cumulative density function P (x). Generally,
the visual form of the CDF is more robust than that of
the PDF against fluctuations due to finite sample sizes,
particularly in the tail of the distribution.)

In Table IV we compare the results given by the
MLEs to estimates of the scaling parameter made us-
ing several competing methods based on linear regres-
sion: a straight-line fit to the slope of a log-transformed
histogram, a fit to the slope of a histogram with “loga-
rithmic bins” (bins whose width increases in proportion
to x, thereby reducing fluctuations in the tail of the his-
togram), a fit to the slope of the CDF calculated with
constant width bins, and a fit to the slope of the CDF cal-
culated without any bins (also called a “rank-frequency
plot”—see Newman (2005)). As the table shows, the
MLEs give the best results while the regression methods
all give significantly biased values, except perhaps for
the fits to the CDF, which produce biased estimates in
the discrete case but do reasonably well in the continuous
case. Moreover, in each case where the estimate is biased,
the corresponding error estimate gives no warning of the
bias: there is nothing to alert unwary experimenters to
the fact that their results are substantially incorrect. Fig-



7

1.5 2 2.5 3 3.51.5

2

2.5

3

3.5
es

t. 
α

1.5 2 2.5 3 3.51.5

2

2.5

3

3.5

es
t. 
α

true 

(a)

(b)

α

 

 
Disc. MLE
Cont. MLE
LS + PDF
LS + CDF

FIG. 2 (color online) Values of the scaling parameter esti-
mated using four of the methods of Table IV (we omit the
methods based on logarithmic bins for the PDF and constant
width bins for the CDF) for n = 10 000 observations drawn
from (a) discrete and (b) continuous power law distributions
with xmin = 1. We omit error bars where they are smaller
than the symbol size. Clearly, only the discrete MLE is accu-
rate for discrete data, and the continuous MLE for continuous
data.

ure 2 extends these results graphically by showing how
the estimators fare as a function of the true α for a large
selection of synthetic data sets with n = 10 000 observa-
tions each.

Figure 3 shows separately the performance of the ap-
proximate MLE for the discrete case, Eq. (22), as a func-
tion of xmin. As shown in Appendix B, the bias in the
estimator decays as O(x−2

min) and in practice falls below
1% when xmin ! 6 for typical values of α. Many real-
world data sets have xmin at least this large (see Table V)
and hence the approximate MLE is a very practical alter-
native to the more cumbersome exact estimator in many
cases.

Finally, the maximum likelihood estimators are only
guaranteed to be unbiased in the asymptotic limit of
large sample size, n → ∞. For finite data sets, biases
are present but decay as O(n−1) for any choice of xmin—
see Fig. 4 and Appendix B. For very small data sets,
such biases can be significant but in most practical situ-
ations they can be ignored because they are much smaller
than the statistical error on the estimator, which decays
as O(n−1/2). Our experience suggests that n ! 50 is a
reasonable rule of thumb for extracting reliable param-
eter estimates. For the examples shown in Fig. 4 this
gives estimates of α accurate to about 1% again. Data
sets smaller than this should be treated with caution.
Note, however, that there is another reason to treat small
data sets with caution, which is typically more impor-
tant, namely that it is difficult with such data to rule out
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FIG. 3 (color online) The error on the estimated scaling pa-
rameter for discrete data that arises from using the approx-
imate MLE, Eq. (22), for α = 2, 2.5, and 3, as a function
of xmin. The average error decays as O(x−2

min) and becomes
smaller than 1% of the value of α when xmin ! 6.
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FIG. 4 (color online) The error on the estimated scaling pa-
rameter from sample size effects for continuous data (similar
results hold for the discrete case), for α = 2, 2.5, and 3, as a
function of sample size. The average error decays as O(n−1)
and becomes smaller than 1% of the value of α when n ! 50.

alternative forms for the distribution. That is, for small
data sets the power-law form may appear to be a good
fit even when the data are drawn from a non-power-law
distribution. We address this issue in Section IV.

C. Estimating the lower bound on power-law behavior

We now turn to the problem of estimating the lower
limit xmin on the scaling behavior from data. This is-
sue is important in the typical case where there is some
non-power-law behavior at the lower end of the distribu-
tion of x. In such cases, we need a reliable method for
estimating where power-law behavior starts: without it,
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we cannot make a reliable estimate of the scaling param-
eter. If we choose too low a value for xmin we will get
a biased estimate of the scaling parameter since we will
be attempting to fit a power-law model to non-power-law
data. On the other hand, if we choose too high a value
for xmin we are effectively throwing away legitimate data
points xi < x̂min, which increases both the statistical er-
ror on the scaling parameter and the bias from finite size
effects. Our goal is to find a good compromise between
these cases.

Traditionally, x̂min has been chosen either by visually
identifying a point beyond which the PDF or CDF of the
distribution becomes roughly straight on a log-log plot, or
by plotting α̂ (or a related quantity) as a function of x̂min

and identifying a point beyond which α̂ appears relatively
stable. But these approaches are clearly subjective and
can be sensitive to noise or fluctuations in the tail of
the distribution—see Stoev et al. (2006) and references
therein. A more objective and principled approach is
desirable.

One approach that is appropriate for the discrete case
has been described by Handcock and Jones (2004) who
proposed a general model for the data both above and be-
low xmin in which points above follow the normal power-
law distribution and those below have a distribution
parametrized by a separate probability pk = Pr(X = k)
for each possible integer value k. They then look for the
best fit of this model to the observed data, allowing xmin,
as well as all the model parameters, to vary. One cannot,
however, fit such a model to the data directly within
the maximum likelihood framework because the num-
ber of parameters in the model is not fixed: it is equal
to xmin +1.2 One can always achieve higher values of the
likelihood by increasing the number of parameters, thus
making the model more flexible, so the maximum likeli-
hood would always be achieved for xmin → ∞. The stan-
dard approach in such cases is instead to maximize the
marginal likelihood, i.e., the likelihood of the data given
the number of model parameters, but with the model pa-
rameters themselves integrated out. Unfortunately, the
integral cannot usually be performed analytically, but
one can employ a Laplace or steepest-descent approxi-
mation in which the log-likelihood is expanded to leading
(i.e., quadratic) order about its maximum and the result-
ing Gaussian integral carried out to yield an expression
in terms of the value at the maximum and the deter-
minant of the appropriate Hessian matrix. Usually we
don’t know the Hessian, but Schwarz (1978) has pointed
out that for large n the terms involving it become negli-

2 There is one parameter for each of the pk plus the scaling pa-
rameter of the power law. The normalization constant does not
count as a parameter, because it is fixed once the values of the
other parameters are chosen, and xmin does not count as a pa-
rameter because we know its value automatically once we are
given a list of the other parameters—it is just the length of that
list.

gible anyway and, dropping these terms, one derives an
approximation for the log marginal likelihood of the form

ln Pr(x|xmin) ( L− 1
2 (xmin + 1) lnn, (23)

where L is the value of the conventional log-likelihood at
its maximum. This type of approximation is known as
a Bayesian information criterion or BIC. The maximum
of the BIC with respect to xmin then gives the estimated
value x̂min.

This method works well under some circumstances, but
can also present difficulties. In particular, the assump-
tion that xmin parameters are needed to model the data
below xmin may be excessive: in many cases the distri-
bution below xmin, while not following a power law, can
nonetheless be represented well by a model with a much
smaller number of parameters. In this case, the BIC
tends to underestimate the value of xmin and this could
result in biases on the subsequently calculated value of
the scaling parameter. More importantly, it is also un-
clear how the BIC should be generalized to the case of
continuous data, for which there is no obvious choice for
how many parameters are needed to represent the distri-
bution below xmin.

Here we present an alternative method for selecting
xmin in both discrete and continuous cases. The funda-
mental idea behind the method is very simple: we choose
the value x̂min that makes the probability distributions
of the measured data and the best-fit power-law model as
similar as possible above x̂min. In general, if we choose
x̂min higher than the true value xmin, then we are ef-
fectively reducing the size of our data set, which will
make the probability distributions a poorer match be-
cause of statistical fluctuation. Conversely, if we choose
x̂min smaller than the true xmin, the distributions will
differ because of the fundamental difference between the
data and model by which we are describing it. In between
lies our ideal value.

There are a variety of measures for quantifying the dis-
tance between two probability distributions, but for non-
normal data the commonest is the Kolmogorov-Smirnov
or KS statistic (Press et al., 1992), which is simply the
maximum distance between the CDFs of the data and
the fitted model:

D = max
x≥xmin

|S(x) − P (x)| . (24)

Here S(x) is the CDF of the data for the observations
with value at least xmin, and P (x) is the CDF for the
power-law model that best fits the data in the region
x ≥ xmin. Our estimate x̂min is then the value of xmin

that minimizes D.
There is good reason to expect this method to pro-

duce reasonable results. Note in particular that for right-
skewed data of the kind we consider here the method is
especially sensitive to slight deviations of the data from
the power-law model around xmin because most of the
data, and hence most of the dynamic range of the CDF,
lie in this region. In practice, as we show in the following
section, the method appears to give excellent results.
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FIG. 5 (color online) (a) Examples of the test distribution,
Eq. (25), used in the calculations described in the text, with
power-law behavior for x above xmin but non-power-law be-
havior below. (b) Value of xmin estimated using the KS statis-
tic as described in the text and using the Bayesian informa-
tion criterion approach of Handcock and Jones (2004), as a
function of the true value, for discrete data with n = 50 000.
Results are similar for continuous data.

D. Tests of estimates for the lower bound

As with our MLEs for the scaling parameter, we can
test our method for estimating xmin by generating syn-
thetic data and examining the method’s ability to recover
the known value of xmin. For the tests presented here we
use synthetic data drawn from a distribution with the
form

p(x) =

{

C(x/xmin)−α for x ≥ xmin,

Ce−α(x/xmin−1) for x < xmin,
(25)

with, in our case, α = 2.5. This distribution follows a
power law above xmin but an exponential below. Fur-
thermore, it has both a continuous value and a continu-
ous slope at xmin and thus deviates only gently from the
power law as we pass this point, making for a challenging
test of our method. Figure 5a shows a family of curves
from this distribution for different values of xmin.

In Fig. 5b we show the results of the application of our
method for estimating xmin to a large collection of data
sets drawn from this distribution. The plot shows the av-
erage estimated value x̂min as a function of the true xmin

for the discrete case using the KS statistic. Results are
similar for the continuous case, although they tend to
be slightly more conservative (i.e., to yield slightly larger
estimates x̂min). We also show in the same figure esti-
mates of xmin made using the BIC method, which also
performs acceptably, but displays a tendency to underes-
timate xmin, as we might expect based on the arguments
of the previous section. At least for these data, there-
fore, the method described in this paper appears to give
better results.
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FIG. 6 (color online) Convergence of estimates for (a) xmin

and (b) α as a function of the number ntail of observations
in the power-law region, for both continuous and discrete
variables. (Standard deviations of the estimates are shown
as the dashed lines.) The large deviations for the contin-
uous estimator and small ntail are due to finite-size sample
effects. In general, we find that our parameter estimates ap-
pear to be asymptotically consistent, i.e., as ntail → ∞, both
x̂min → xmin and α̂ → α.

These tests used synthetic data sets of n = 50 000 ob-
servations, but good estimates of xmin can be extracted
from significantly smaller data sets (Fig. 6). The method
is sensitive principally to the number of observations in
the power-law part of the distribution. For both the con-
tinuous and discrete cases we find that good results can
be achieved provided we have about 1000 or more ob-
servations in this part of the distribution. This figure
does depend on the particular form of the non-power-law
part of the distribution. In the present test, the distri-
bution was designed specifically to pose a challenge to
the method. Had we chosen a form that makes a more
pronounced departure from the power law below xmin

then the task of estimating x̂min would be easier and pre-
sumably fewer observations would be needed to achieve
results of similar quality.

Another slightly different class of distributions to test
our method against would be those that only tend to
a power law asymptotically, such as the shifted power
law p(x) = C(x + k)−α with constant k or Student’s
t-distribution with α − 1 degrees of freedom. For dis-
tributions such as these there is, in a sense, no correct
value of xmin. Nonetheless, we would like our method to
choose an x̂min such that when we subsequently calculate
a best-fit value for α we get an accurate estimate of the
true scaling parameter. In tests with such distributions
(not shown) we find that our estimates of α appear to be
asymptotically consistent, i.e., α̂ → α as n → ∞. Thus
our estimator for xmin seems to work well, although we
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do not have rigorous guarantees of its performance in this
situation.

Variations on the method described here are possi-
ble. We could use some other goodness-of-fit measure
on place of the KS statistic. For instance, the KS statis-
tic is known to be relatively insensitive to differences be-
tween distributions at the extreme limits of the range
of x because in these limits the CDFs necessarily tend to
zero and one. It can be reweighted to avoid this problem
and be uniformly sensitive across the range (Press et al.,
1992); the appropriate reweighting is

D∗ = max
x≥x̂min

|S(x) − P (x)|
√

P (x)(1 − P (x))
. (26)

In addition a number of other goodness-of-fit statis-
tics have been proposed and are in common use,
such as the Kuiper and Anderson-Darling statistics
(D’Agostino and Stephens, 1986). We have performed
tests with each of these alternative statistics and find
that results for the reweighted KS and Kuiper statistics
are very similar to those for the standard KS statistic.
The Anderson-Darling statistic, on the other hand, we
find to be highly conservative in this application, giving
estimates x̂min that are too large by an order of magni-
tude or more. When there are many samples in the tail
of the distribution this degree of conservatism may be ac-
ceptable, but in most cases the reduction in the number
of tail observations greatly increases the statistical error
on our MLE for the scaling parameter and also reduces
our ability to validate the power-law model.

Finally, as with our estimate of the scaling parameter,
we would like to quantify the uncertainty in our estimate
for xmin. One way to do this is to make use of a non-
parametric “bootstrap” method (Efron and Tibshirani,
1993). Given our n measurements, we generate a syn-
thetic data set with a similar distribution to the origi-
nal by drawing a new sequence of points xi, i = 1 . . . n
uniformly at random from the original data. Using the
method described above, we then estimate xmin and α for
this surrogate data set. By taking the standard devia-
tion of these estimates over a large number of repetitions
of this process, we can derive principled estimates of our
uncertainty in the original estimated parameters.

In summary, it is possible to make reliable estimates
of xmin, and thus also α, by minimizing the standard KS
statistic. Some other statistics (Kuiper, reweighted KS)
give results of comparable quality but not better. We do
not recommend using the Anderson-Darling statistic in
most cases.

IV. TESTING THE POWER-LAW HYPOTHESIS

The tools described in the previous sections allow us
to fit a power-law distribution to a given data set and
provide good estimates of the parameters α and xmin.
They tell us nothing, however, about whether the data
are well fitted by the power law. In particular, data that

are actually generated from a different distribution—an
exponential, say, or a log-normal—can always be fit to
a power-law model, but the fit may be very poor and in
any case tells us nothing if the model itself is wrong. In
practice, therefore, when considering a data set that may
be derived from a power-law distribution, our challenge
is to decide not only what the best parameter choices
are but also whether the power-law distribution is even
a reasonable hypothesis to begin with.

Many previous empirical studies of ostensibly power-
law distributed data have not attempted to test the
power-law hypothesis quantitatively. Instead, they typ-
ically rely on qualitative appraisals of the data, based
for instance on visualizations. But these can be decep-
tive and can lead to claims of power-law behavior that
do not hold up under closer scrutiny. Consider, for ex-
ample, Fig. 7a, which shows the CDFs of three test data
sets drawn from a power-law distribution with α = 2.5,
a log-normal distribution with µ = 0.3 and σ = 2.0, and
an exponential distribution with exponential parameter
λ = 0.125. In each case the distributions have a lower
cut-off of xmin = 15. Because each of these distributions
looks roughly straight on the log-log plot used in the fig-
ure, one might, upon cursory inspection, judge all three
to follow power laws, albeit with different scaling param-
eters. This would, however, be an erroneous judgment—
being roughly straight on a log-log plot is a necessary but
not sufficient condition for power-law behavior.

In this section we describe quantitative methods for
testing the hypothesis that a given data set is drawn from
a power-law distribution for x ≥ xmin. The approach we
recommend has two parts. The first, described in Sec-
tion IV.A, focuses on the question of whether the data we
observe could plausibly have been drawn from a power-
law distribution. The second (Sections IV.B and IV.C)
focuses on whether there exist other competing distribu-
tions that fit the data as well or better. Together, the
techniques we describe can be used to provide objective
evidence for or against the power-law hypothesis.

A. Goodness-of-fit tests

Given an observed data set and a power-law distribu-
tion from which, it is hypothesized, the data are drawn,
we want to know whether that hypothesis is a likely one
given the data. That is, could the data we see have plau-
sibly been drawn from the specified power-law distribu-
tion? If the answer to this question is no, then we are
wasting our time: the power law is the wrong model for
our data. Questions of this type can be answered us-
ing goodness-of-fit tests that compare the observed data
to the hypothesized distribution. Many such tests have
been proposed, but one of the simplest, and the one we
apply here, is based on the Kolmogorov-Smirnov statis-
tic, which we encountered in Section III.C.

As we have seen, we can quantify how closely a hypoth-
esized distribution resembles the actual distribution of an
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FIG. 7 (color online) (a) The CDF P (x) for small samples
(n = 100) from three continuous distributions, a log-normal
with µ = 0.3 and σ = 2, a power law with α = 2.5, and an
exponential with λ = 0.125, all with xmin = 15. (Definitions
of the parameters are given in Table II.) (b) The average p-
value relative to the maximum likelihood power-law model for
samples from the same three distributions, as a function of n.
(c) The average number of observations n required to make
the p-value less than 0.1 for the log-normal and exponential
distributions, as a function of xmin.

observed set of samples by calculating the Kolmogorov-
Smirnov (KS) statistic, Eq. (24). The calculation returns
a single number that is smaller for hypothesized distri-
butions that are a better fit to the data. Our approach
in this section is to calculate this number for the ob-
served data set and the best-fit power-law distribution
computed as described in Section III. Then, if this value
is suitably small we can say that the power law is a plau-
sible fit to the data; if the value is too large the power-law
model can be ruled out. The crucial question we need to
answer, of course, is how large is too large?

The standard way to answer this question is to com-
pute a p-value. The p-value quantifies the probability
that our data were drawn from the hypothesized distri-
bution, based on the observed goodness of fit. It is de-
fined to be the probability that a data set of the same

size that is truly drawn from the hypothesized distribu-
tion would have goodness of fit D as bad or worse than
the observed value. In essence, it tells you how likely it
is that you saw results as bad as you did if the data re-
ally are power-law distributed. If the p-value is much less
than 1, then it is unlikely that the data are drawn from a
power law. If it is closer to 1 then the data may be drawn
from a power law, but it cannot be guaranteed. This last
point is an important one: the goodness-of-fit test and
the accompanying p-value are a tool only for ruling out
models, not for ruling them in. They can tell us when
a model such as the power law is probably wrong, but
they cannot tell us when it is right. The best we can do
by way of confirming the power-law model, in a strictly
statistical sense, is to say that it is not ruled out by the
observed data.

One of the nice features of the KS statistic is that its
distribution is known for data sets truly drawn from any
given distribution. This allows one to write down an ex-
plicit expression in the limit of large n for the p-value
as a function of D—see for example Press et al. (1992).
Unfortunately, this calculation assumes that you know
in advance the hypothesized distribution for the data.
In our case, however, the distribution is not known. In-
stead it is determined by fitting to the very same data
whose goodness-of-fit we wish to test. This introduces a
correlation between the distribution and the data that
makes the standard formula for the p-value incorrect
(Goldstein et al., 2004).

The problem is that, even if a data set is drawn from a
perfect power-law distribution, the fit between that data
set and the true distribution will on average be poorer
than the fit to the best-fit distribution, because of statis-
tical fluctuations. This means we cannot treat the best-
fit distribution as if it were the true distribution; if we
did we would find an apparent fit that was misleadingly
good, and hence calculate too large a p-value.

In cases such as this, there is no known formula for
calculating the p-value, but we can still calculate it nu-
merically by the following Monte Carlo procedure. We
generate a large number of synthetic data sets drawn
from the power-law distribution that best fits the ob-
served data, fit each one individually to the power-law
model using the methods of Section III, calculate the KS
statistic for each one relative to its own best-fit model,
and then simply count what fraction of the time the re-
sulting statistic is larger than the value D observed for
the true data. This fraction is our p-value.

Note crucially that for each synthetic data set we com-
pute the KS statistic relative to the best-fit power law
for that data set, not relative to the original distribution
from which the data set was drawn. In this way we ensure
that we are comparing apples to apples: we are perform-
ing for each synthetic data set the same calculation that
we performed for the real data set.

In the present case we need to create synthetic data
that have a distribution similar to the empirical data be-
low xmin but that follow the fitted power law above xmin.
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To do this, we make use of a semi-parametric approach.
Suppose that our observed data set has ntail observations
x ≥ xmin and n observations in total. We generate a new
data set with n observations as follows. With probability
ntail/n we generate a random number xi drawn from a
power law with scaling parameter α̂ and x ≥ xmin. Oth-
erwise, with probability 1−ntail/n, we select one element
uniformly at random from among the elements of the ob-
served data set that have x < xmin and set xi equal to
that element. Repeating the process for all i = 1 . . . n
we generate a complete synthetic data set that indeed
follows a perfect power law above xmin but has the same
(non-power-law) distribution as the observed data below.

It is now quite straightforward to test the hypothesis
that an observed data set is drawn from a power-law
distribution. The steps are as follows:

1. Determine the best fit of the power law to the data,
estimating both the scaling parameter α and the
cutoff parameter xmin using the methods of Sec-
tion III.

2. Calculate the KS statistic for the goodness-of-fit of
the best-fit power law to the data.

3. Generate a large number of synthetic data sets us-
ing the procedure above, fit each according to the
methods of Section III, and calculate the KS statis-
tic for each fit.

4. Calculate the p-value as the fraction of the KS
statistics for the synthetic data sets whose value
exceeds the KS statistic for the real data.

5. If the p-value is sufficiently small the power-law dis-
tribution can be ruled out.

An obvious question to ask is what constitutes a “large
number” of synthetic data sets. Based on an analysis
of the expected worst-case performance of the method,
a good rule of thumb turns out to be the following: if
we wish our p-values to be accurate to within about ε of
the true value, then we should generate at least 1

4ε
−2 syn-

thetic data sets. Thus if, for example, we wish our p-value
to be accurate to about 2 decimal digits, we would choose
ε = 0.01, which implies we should generate about 2500
synthetic sets. For the example calculations described in
Section V we used numbers of this order, ranging from
1000 to 10 000 depending on the particular application.

We also need to decide what value of p should be con-
sidered sufficiently small to rule out the power-law hy-
pothesis. In our calculations we have made the relatively
conservative choice that the power law is ruled out if
p ≤ 0.1: that is, it is ruled out if there is a probabil-
ity of 1 in 10 or less that we would merely by chance
get data that agree this poorly with the model. (Many
authors use the more lenient rule p ≤ 0.05, but we feel
this would let through some candidate distributions that
have only a very small chance of really following a power
law. Of course, in practice, the particular rule adopted

must depend on the judgment of the investigator in the
particular circumstances at hand.3)

It is important to appreciate, as discussed above, that
a large p-value does not necessarily mean the power law
is the correct distribution for the data. There are (at
least) two reasons for this. First, there may be other dis-
tributions that match the data equally well or better over
the range of x observed. Other tests are needed to rule
out such alternatives, which we discuss in Sections IV.B
and IV.C.

Second, the statistical variation of the KS statistic
becomes smaller as n becomes large. This means that
the p-value becomes a more reliable test as n becomes
large, but for small n it is possible to get quite high p-
values purely by chance even when the power law is the
wrong model for the data. This is not a deficiency of the
method; it reflects the fact that it genuinely is harder
to rule out the power law if we have less data. For this
reason, the p-value should be treated with caution when
n is small.

As a demonstration of the approach, consider data of
the type shown in Fig. 7a, drawn from continuous power-
law, log-normal, and exponential distributions. In Fig. 7b
we show the average p-value for data sets drawn from
these three distributions with the same parameters as in
panel (a), calculated for the best-fit power-law model in
each case, as a function of the number n of samples in the
data sets. As the figure shows, the p-values for all three
distributions are well above our threshold of 0.1 when
n is small: for samples this small one cannot typically
distinguish between the three distributions because we
simply do not have enough data to go on. As the sizes of
the samples become larger however, the p-values for the
two non-power-law distributions fall off and it becomes
possible to say that the power-law model is a poor fit for
these data sets, while remaining a good fit for the true
power-law data set.

For the log-normal and exponential distributions the p-
value first falls below the threshold of 0.1 when n ( 300
and n ( 100, respectively, meaning that for these distri-
butions samples of about these sizes or larger are needed
if we wish to firmly rule out the power-law hypothesis. As
shown in Fig. 7c, these values of n depend quite strongly
on the choice of xmin. They also depend more weakly on
the other parameters of the distributions.

3 Some readers may be familiar with the use of p-values to confirm
(rather than rule out) hypotheses for experimental data. In the
latter context, one quotes a p-value for a “null” model, a model
other than the model the experiment is attempting to verify.
Normally one then considers low values of p to be good, since they
indicate that the null hypothesis is unlikely to be correct. Here,
by contrast, we use the p-value as a measure of the hypothesis we
are trying to verify, and hence high values, not low, are “good.”
For a general discussion of the interpretation of p-values, see
Mayo and Cox (2006).
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B. Goodness-of-fit tests for competing distributions

As discussed above, one of the problems that arises in
attempting to validate the power-law hypothesis is that,
even though our data may fit a power law quite well, there
is still the possibility that another distribution, such as
an exponential or a log-normal, might also give a good
fit over the range of x covered by the data. We can use
the approach described in the previous section to address
this problem as well: we simply calculate a p-value for a
fit to the competing distribution.

Suppose, for instance, that we believe our data might
follow either a power-law or an exponential distribution.
If we discover that the p-value for the power law is rea-
sonably large (say larger than 0.1) then the power law
is not ruled out. To strengthen our case for the power
law we would like to rule out the competing exponential
distribution if possible. To do this, we would find the
best-fit exponential distribution, using the equivalent for
exponentials of the methods of Section III, and the cor-
responding KS statistic, then repeat the calculation for a
large number of synthetic data sets and hence calculate
a p-value. If the p-value is sufficiently small, we can rule
out the exponential as a model for our data.

By combining p-value calculations with respect to the
power law and several plausible competing distributions,
we can in this way make a good case for or against the
power-law form for our data. In particular, if the p-value
for the power law is high, while those for competing dis-
tributions are small, then the competition is ruled out
and, although we cannot guarantee that the power law is
correct, the case in its favor is strengthened.

It is worth emphasizing that we cannot of course com-
pare the power-law fit of our data with fits to every com-
peting the distribution, of which there are an infinite
number. Furthermore, it will always be possible to find
a distribution that fits the data better than the power
law if we define a family of curves with a sufficiently
large number of parameters. Fitting the statistical dis-
tribution of data should therefore be approached using a
combination of statistical techniques like those described
here and physical intuition about what constitutes a rea-
sonable model for the data. Statistical tests can be used
to rule out specific hypotheses, but it is up to the re-
searcher to decide what a reasonable hypothesis is in the
first place.

C. Direct comparison of models

Sometimes we would like to ask not whether a spe-
cific model or models are ruled out as a description of
the data, but which, if any, of two models is the better
fit to the data. For instance, one might like to know
whether a given data set is better fit by a power law
or an exponential. This question can be answered us-
ing the methods of the previous section, but there are
other more direct approaches too. In this section we de-

scribe one such approach, the likelihood ratio test, which
is typically considerably easier to implement than KS
tests against competing distributions. The disadvantage
of the likelihood ratio test is that it cannot tell us when
both of our two distributions are poor fits to the data;
it tells us only which (if either) is the least bad. In the
same circumstances the methods of the previous section
would rule out both distributions. On the other hand,
if we already know, for example from performing a KS
test against the power-law model as in Section IV.A, that
the power-law model is not ruled out by the data, then
there is no danger that both models are poor fits and it
is safe to use the likelihood ratio test. In these circum-
stances this test can give us exactly the information we
need without demanding a great deal of work.

The basic idea behind the likelihood ratio test is to
compute the likelihood of our data in two competing dis-
tributions. The one with the higher likelihood is then the
better fit. Equivalently one can calculate the ratio R of
the two likelihoods, and the winning distribution is in-
dicated by whether this likelihood ratio is greater than
or less than unity. In fact, more commonly we use the
logarithm, R, of the ratio, which is positive or negative
depending on which candidate distribution is the winner.

The simple sign of the log likelihood ratio, however,
does not on its own tell us definitively if one distribu-
tion is better than the other; the log likelihood ratio, like
other quantities, is subject to statistical fluctuation. If
its true value, meaning its mean value over many inde-
pendent data sets drawn from the same distribution, is
close to zero, then the fluctuations can easily change the
sign of the ratio and hence the results of the test cannot
be trusted. In order to make a firm choice between dis-
tributions we need a log ratio that is sufficiently positive
or negative that it could not plausibly be the result of
a chance fluctuation from a true result that is close to
zero.4

To make a quantitative judgment about whether the
observed value of the log likelihood ratio is sufficiently
far from zero, we need to know the size of the expected
fluctuations, i.e., we need to know the standard deviation
on R. This we can estimate from our data using the
following method, which was first proposed and analyzed
by Vuong (1989).

Let us denote our two candidate distributions by p1(x)
and p2(x). Then the likelihoods of our data set within

4 An alternative method for choosing between distributions, the
Bayesian approach described by Stouffer et al. (2005), is asymp-
totically equivalent to the likelihood ratio test under reasonable
conditions. Bayesian estimation in this context is equivalent to a
smoothing of the MLE, which buffers the results against fluctua-
tions to some extent (Shalizi, 2007), but the method is incapable,
itself, of saying whether the results could be due to chance (Mayo,
1996; Wasserman, 2006).
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FIG. 8 (color online) The cumulative distribution functions P (x) and their maximum likelihood power-law fits, for the first
twelve of our twenty-four empirical data sets. (a) The frequency of occurrence of unique words in the novel Moby Dick by
Herman Melville. (b) The degree distribution of proteins in the protein interaction network of the yeast S. cerevisiae. (c) The
degree distribution of metabolites in the metabolic network of the bacterium E. coli. (d) The degree distribution of autonomous
systems (groups of computers under single administrative control) on the Internet. (e) The number of calls received by US
customers of the long-distance telephone carrier AT&T. (f) The intensity of wars from 1816–1980 measured as the number of
battle deaths per 10 000 of the combined populations of the warring nations. (g) The severity of terrorist attacks worldwide from
February 1968 to June 2006 measured as the number of deaths greater than zero. (h) The size in bytes of HTTP connections
at a large research laboratory. (i) The number of species per genus in the class Mammalia during the late Quaternary period.
(j) The frequency of sightings of bird species in the United States. (k) The number of customers affected by electrical blackouts
in the United States. (l) Sales volume of bestselling books in the United States.
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the two distributions are given by

L1 =
n

∏

i=1

p1(xi), L2 =
n

∏

i=1

p2(xi), (27)

and the ratio of the likelihoods is

R =
L1

L2
=

n
∏

i=1

p1(xi)

p2(xi)
. (28)

Taking logs, the log likelihood ratio is

R =
n

∑

i=1

[

ln p1(xi) − ln p2(xi)
]

=
n

∑

i=1

[

&(1)i − &(2)i

]

, (29)

where &(j)i = ln pj(xi) can be thought of as the log-
likelihood for a single measurement xi within distribu-
tion j.

But since, by hypothesis, the xi are independent, so

also are the differences &(1)i − &(2)i , and hence, by the cen-
tral limit theorem, their sum R becomes normally dis-
tributed as n becomes large with expected variance nσ2,
where σ2 is the expected variance of a single term. In
practice we don’t know the expected variance of a single
term, but we can approximate it in the usual way by the
variance of the data:

σ2 =
1

n

n
∑

i=1

[

(

&(1)i − &(2)i

)

−
(

&̄(1) − &̄(2)
)

]2
, (30)

with

&̄(1) =
1

n

n
∑

i=1

&(1)i , &̄(2) =
1

n

n
∑

i=1

&(2)i . (31)

Now suppose that the true log likelihood ratio is in
fact zero or close to it, so that the observed sign of R is a
product purely of the fluctuations and cannot be trusted
as an indicator of which model is preferred. Then the
probability that the measured log likelihood ratio has a
magnitude as large or larger than the observed value |R|
is given by

p =
1√

2πnσ2

[
∫ −|R|

−∞
e−t2/2nσ2

dt +

∫ ∞

|R|
e−t2/2nσ2

dt

]

=
∣

∣erfc(R/
√

2nσ)
∣

∣, (32)

where σ is given by Eq. (30) and

erfc(z) = 1 − erf(z) =
2√
π

∫ ∞

z
e−t2 dt (33)

is the complementary Gaussian error function (a func-
tion widely available in scientific computing libraries and
numerical analysis programs).

This probability is another example of a p-value of the
type discussed in Section IV.B. It gives us an estimate
of the probability that we measured a given value of R

when the true value of R is close to zero (and hence is
unreliable as a guide to which model is favored). If p is
small (say p < 0.1) then our value for R is unlikely to
be a chance result and hence its sign can probably be
trusted as an indicator of which model is the better fit to
the data. (It does not however mean that the model is a
good fit, only that it is better than the alternative.) If on
the other hand p is large, then the likelihood ratio test is
inadequate to discriminate between the distributions in
question.5

Vuong (1989) in fact recommends quoting the nor-
malized log likelihood ratio n−1/2R/

√
σ that appears in

Eq. (32). This quantity contains, in theory, everything
one needs to know about the results of the likelihood ra-
tio test. Its sign tells us which model is favored and its
value, via Eq. (32), allows us to compute p and hence
test the significance of the result. In practice, however,
we find it convenient to quote both the normalized ratio
and an explicit value for p; although technically the latter
can be computed from the former, it is helpful in mak-
ing judgments about particular cases to have the actual
p-value at hand. In our tests on real data in Section V
we give both.

D. Nested hypotheses

In some cases the distributions we wish to compare
may be nested, meaning that one family of distributions
is a subset of the other. The power law and the power law
with exponential cutoff in Table II provide an example of
such nested distributions. When distributions are nested
it is always the case that the larger family of distributions
will provide a fit as good or better than the smaller, since
every member of the smaller family is also a member of
the larger. Thus, the test just described can never select
the smaller of the two families, even if the data truly
were drawn from the smaller family and the data are
abundant. A different test is thus required for nested
hypotheses.

When the true distribution lies in the smaller family
of distributions, the best fits to both distributions con-
verge to the true distribution as n becomes large. This

means that the individual differences &(1)i −&(2)i in Eq. (29)
each converge to zero, as does their variance σ2. Conse-
quently the ratio |R|/σ appearing in the expression for
the p-value tends to 0/0, and its distribution does not
obey the simple central limit theorem argument given
above. A more refined analysis, using a kind of prob-
abilistic version of L’Hopital’s rule, shows that in fact
R adopts a chi-squared distribution as n becomes large

5 Note that, if we are interested in confirming or denying the
power-law hypothesis, then a small p-value is “good” in the
likelihood ratio test—it tells us whether the test’s results are
trustworthy—whereas it is “bad” in the case of the KS test,
where it tells us that our model is a poor fit to the data.
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FIG. 9 (color online) The cumulative distribution functions P (x) and their maximum likelihood power-law fits, for the second
twelve of our twenty-four empirical data sets. (m) Population of cities in the United States. (n) Size of email address books at
a university. (o) Number of acres burned in California forest fires. (p) Intensity of solar flares. (q) Intensity of earthquakes.
(r) Number of adherents of religious sects. (s) Frequency of surnames in the United States. (t) Net worth (in USD) of the
richest American citizens. (u) The number of citations received by published academic papers. (v) The number of authors on
published academic papers. (w) The number of hits on web sites from AOL users. (x) The number of hyperlinks to web sites.
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(Wilks, 1938). One can use this result to calculate a cor-
rect p-value giving the probability that the log likelihood
ratio takes the observed value or worse, if the true distri-
bution falls in the smaller family. If this p-value is small,
then the smaller family can be ruled out. If not, then the
best we can say is that the there is no evidence that the
larger family is needed to fit to the data, although nei-
ther can it be ruled out. For a more detailed discussion
of this special case see, for instance, Vuong (1989).

V. TESTS OF REAL-WORLD DATA

We are now in a position to apply the methods we have
described to real-world data. In this section we examine
a large number of data sets representing measurements of
quantities whose distributions, it has been conjectured,
follow power laws. For each data set, we fit and test the
power-law hypothesis using the methods described in the
previous sections. As we will see, the results indicate that
some of the data sets are indeed consistent with power-
law distributions, some are not, and some are marginal
cases for which the power law is a possible candidate
distribution, but is not strongly supported by the data.

The data sets we study are all previously published
and come from a broad variety of different branches of
human endeavor, including physics, astrophysics, earth
sciences, biology and biochemistry, ecology, paleontology,
computer and information sciences, engineering, forestry,
geography, economics and finance, and the social sci-
ences. They are as follows:

a) The frequency of occurrence of unique words in the
novel Moby Dick by Herman Melville (Newman,
2005).

b) The degrees (i.e., numbers of distinct interaction
partners) of proteins in the partially known protein-
interaction network of the yeast Saccharomyces
cerevisiae (Ito et al., 2000).

c) The degrees of metabolites in the metabolic
network of the bacterium Escherichia coli
(Huss and Holme, 2006).

d) The degrees of nodes in the partially known net-
work representation of the Internet at the level of
autonomous systems for May 2006 (Holme et al.,
2007). (An autonomous system is a group of IP
addresses on the Internet among which routing is
handled internally or “autonomously,” rather than
using the Internet’s large-scale BGP routing mech-
anism.)

e) The number of calls received by customers of
AT&T’s long distance telephone service in the
US during a single day (Abello et al., 1998;
Aiello et al., 2000).

f) The intensity of wars from 1816–1980 measured
as the number of battle deaths per 10 000 of
the combined populations of the warring nations

(Roberts and Turcotte, 1998; Small and Singer,
1982).

g) The severity of terrorist attacks worldwide from
February 1968 to June 2006, measured as the
number of deaths directly resulting (Clauset et al.,
2007).

h) The number of bytes of data received as the result
of individual web (HTTP) requests from computer
users at a large research laboratory during a 24-
hour period in June 1996 (Willinger and Paxson,
1998). Roughly speaking this distribution repre-
sents the size distribution of web files transmitted
over the Internet.

i) The number of species per genus of mammals. This
data set, compiled by Smith et al. (2003), is com-
posed primarily of species alive today but also in-
cludes a subset of recently extinct species, where
“recent” in this context means the last few tens of
thousands of years.

j) The numbers of sightings of bird species in the
North American Breeding Bird Survey for 2003.

k) The number customers affected in electrical black-
outs in the United States between 1984 and 2002
(Newman, 2005).

l) The numbers of copies sold in the United States
of bestselling books for the period 1895 to 1965
(Hackett, 1967).

m) Human populations of US cities in the 2000 US
Census.

n) Sizes of email address books of computer users at
a large university (Newman et al., 2002).

o) The size in acres of wildfires occurring on US federal
land between 1986 and 1996 (Newman, 2005).

p) Peak gamma-ray intensity of solar flares between
1980 and 1989 (Newman, 2005).

q) Intensity of earthquakes occurring in California be-
tween 1910 and 1992, measured as the maximum
amplitude of motion during the quake (Newman,
2005).

r) Number of adherents of religious denominations,
bodies, or sects, as compiled and published on the
web site adherents.com.

s) Frequency of occurrence of US family names in the
1990 US Census.

t) Aggregate net worth in US dollars of the richest
individuals in the US in October 2003 (Newman,
2005).

u) The number of citations received between publica-
tion and June 1997 by scientific papers published
in 1981 and listed in the Science Citation Index
(Redner, 1998).
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quantity n 〈x〉 σ xmax x̂min α̂ ntail

count of word use 18 855 11.14 148.33 14 086 7 ± 2 1.95(2) 2958 ± 987
protein interaction degree 1846 2.34 3.05 56 5 ± 2 3.1(3) 204 ± 263
metabolic degree 1641 5.68 17.81 468 4 ± 1 2.8(1) 748 ± 136
Internet degree 22 688 5.63 37.83 2583 21 ± 9 2.12(9) 770 ± 1124
telephone calls received 51 360 423 3.88 179.09 375 746 120 ± 49 2.09(1) 102 592 ± 210 147
intensity of wars 115 15.70 49.97 382 2.1 ± 3.5 1.7(2) 70 ± 14
terrorist attack severity 9101 4.35 31.58 2749 12 ± 4 2.4(2) 547 ± 1663
HTTP size (kilobytes) 226 386 7.36 57.94 10 971 36.25 ± 22.74 2.48(5) 6794 ± 2232
species per genus 509 5.59 6.94 56 4 ± 2 2.4(2) 233 ± 138
bird species sightings 591 3384.36 10 952.34 138 705 6679 ± 2463 2.1(2) 66 ± 41
blackouts (×103) 211 253.87 610.31 7500 230 ± 90 2.3(3) 59 ± 35
sales of books (×103) 633 1986.67 1396.60 19 077 2400 ± 430 3.7(3) 139 ± 115
population of cities (×103) 19 447 9.00 77.83 8 009 52.46 ± 11.88 2.37(8) 580 ± 177
email address books size 4581 12.45 21.49 333 57 ± 21 3.5(6) 196 ± 449
forest fire size (acres) 203 785 0.90 20.99 4121 6324 ± 3487 2.2(3) 521 ± 6801
solar flare intensity 12 773 689.41 6520.59 231 300 323 ± 89 1.79(2) 1711 ± 384
quake intensity (×103) 19 302 24.54 563.83 63 096 0.794 ± 80.198 1.64(4) 11 697 ± 2159
religious followers (×106) 103 27.36 136.64 1050 3.85 ± 1.60 1.8(1) 39 ± 26
freq. of surnames (×103) 2753 50.59 113.99 2502 111.92 ± 40.67 2.5(2) 239 ± 215
net worth (mil. USD) 400 2388.69 4 167.35 46 000 900 ± 364 2.3(1) 302 ± 77
citations to papers 415 229 16.17 44.02 8904 160 ± 35 3.16(6) 3455 ± 1859
papers authored 401 445 7.21 16.52 1416 133 ± 13 4.3(1) 988 ± 377
hits to web sites 119 724 9.83 392.52 129 641 2 ± 13 1.81(8) 50 981 ± 16 898
links to web sites 241 428 853 9.15 106 871.65 1 199 466 3684 ± 151 2.336(9) 28 986 ± 1560

TABLE V Basic parameters of the data sets described in this section, along with their power-law fits.

v) The number of academic papers authored or coau-
thored by mathematicians listed in the Ameri-
can Mathematical Society’s MathSciNet database.
Data compiled by J. Grossman.

w) The number of “hits” received by web sites from
customers of the America Online Internet service
in a single day (Adamic and Huberman, 2000).

x) The number of links to web sites found in a
1997 web crawl of about 200 million web pages
(Broder et al., 2000).

Many of these data sets are only limited samples
of much larger collections (such as the web sites,
which are only a small fraction of the entire web).
In some cases it is known that the sampling proce-
dure used can be biased, e.g., for the protein inter-
actions (Sprinzak et al., 2003), citations and author-
ships (Bhattacharya and Getoor, 2007), and the Inter-
net (Achlioptas et al., 2005; Dimitropoulos et al., 2007).
The cited references provide details of these issues, but
our analysis does not attempt to estimate or correct for
the biases.

In Table V we show results for the best fits of the
power-law form to each of these data sets, using the
methods described in Section III, along with a variety
of generic statistics such as mean, standard deviation,
and maximum value.

As an indication of the importance of correct analysis
methods for data such as these, we note that many of
the values we find for the scaling parameters differ con-
siderably from those deduced by previous authors from

the same data, using ad hoc methods. For instance,
the scaling parameter for the protein interaction net-
work of Ito et al. (2000) has been reported to take a
value of 2.44 (Yook et al., 2004), which is quite differ-
ent from, and incompatible with, the value we find of
3.1 ± 0.3. Similarly, the citation distribution data of
Redner (1998) have been reported to have a scaling pa-
rameter of either 2.9 (Tsallis and de Albuquerque, 1999)
or 2.5 (Krapivsky et al., 2000), neither of which are com-
patible with our maximum likelihood figure of 3.16±0.06.

In Tables VI and VII we show the results of our tests
of the power-law hypothesis, which quantify whether the
hypothesis is tenable for the data in question. Based on
the results of these tests, we summarize in the final col-
umn of the table how convincing the power-law model
is as a fit to each data set. In some cases, the p-values
alone give us a fairly unambiguous measure of how be-
lievable the power law is, while in others, the likelihood
ratio tests are also needed.

For most of the data sets considered the power-law
model is in fact a plausible one, meaning that the p-value
for the best fit is large. Other distributions may be a bet-
ter fit, but the power law is not ruled out, especially if
it is backed by additional physical insights that indicate
it to be the correct distribution. In just one case—the
distribution of the frequencies of occurrence of words in
English text—the power law appears to be truly convinc-
ing in the sense that it is an excellent fit to the data and
none of the alternatives carries any weight.

For seven of the data sets, on the other hand, the
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power law log-normal exponential stretched exp. power law + cut-off support for
data set p LR p LR p LR p LR p power law
birds 0.55 −0.850 0.40 1.87 0.06 −0.882 0.38 −1.24 0.12 moderate
blackouts 0.62 −0.412 0.68 1.21 0.23 −0.417 0.68 −0.382 0.38 moderate
book sales 0.66 −0.267 0.79 2.70 0.01 3.885 0.00 −0.140 0.60 moderate
cities 0.76 −0.090 0.93 3.65 0.00 0.204 0.84 −0.123 0.62 moderate
fires 0.05 −1.78 0.08 4.00 0.00 −1.82 0.07 −5.02 0.00 with cut-off
flares 1.00 −0.803 0.42 13.7 0.00 −0.546 0.59 −4.52 0.00 with cut-off
HTTP 0.00 1.77 0.08 11.8 0.00 2.65 0.01 0.000 1.00 none
quakes 0.00 −7.14 0.00 11.6 0.00 −7.09 0.00 −24.4 0.00 with cut-off
religions 0.42 −0.073 0.94 1.59 0.11 1.75 0.08 −0.167 0.56 moderate
surnames 0.20 −0.836 0.40 2.89 0.00 −0.844 0.40 −1.36 0.10 with cut-off
wars 0.20 −0.737 0.46 3.68 0.00 −0.767 0.44 −0.847 0.19 moderate
wealth 0.00 0.249 0.80 6.20 0.00 8.05 0.00 −0.142 0.59 none
web hits 0.00 −10.21 0.00 8.55 0.00 10.94 0.00 −74.66 0.00 with cut-off
web links 0.00 −2.24 0.03 25.3 0.00 −1.08 0.28 −21.2 0.00 with cut-off

TABLE VI Tests of power-law behavior in the data sets studied here that are comprised of continuous (non-discrete) data.
(Results for the discrete data sets are given in Table VII.) For each data set we give a p-value for the fit to the power-law
model and likelihood ratios for the alternatives. We also quote p-values for the significance of each of the likelihood ratio tests.
Statistically significant p-values are denoted in bold. Positive values of the log likelihood ratios indicate that the power-law
model is favored over the alternative. For non-nested alternatives, we give the normalized log likelihood ratio n−1/2R/σ which
appears in Eq. (32), while for the power law with exponential cut-off we give the actual log likelihood ratio. The final column
of the table lists our judgment of the statistical support for the power-law hypothesis for each data set. “None” indicates data
sets that are probably not power-law distributed; “moderate” indicates that the power law is a good fit but that there are other
plausible alternatives as well; “good” indicates that the power law is a good fit and that none of the alternatives considered is
plausible. (None of the data sets in this table earned a rating of “good,” but one data set in Table VII, for the frequencies of
words, is so designated.) In some cases we write “with cut-off,” meaning that the power law with exponential cutoff is clearly
favored over the pure power law. However, in each of the latter cases some of the alternative distributions are also good fits,
such as the log-normal or the stretched exponential distribution.

Poisson log-normal exponential stretched exp. power law + cut-off support for
data set p LR p LR p LR p LR p LR p power law
Internet 0.29 5.31 0.00 −0.807 0.42 6.49 0.00 0.493 0.62 −1.97 0.05 with cut-off
calls 0.63 17.9 0.00 −2.03 0.04 35.0 0.00 14.3 0.00 −30.2 0.00 with cut-off
citations 0.20 6.54 0.00 −0.141 0.89 5.91 0.00 1.72 0.09 −0.007 0.91 moderate
email 0.16 4.65 0.00 −1.10 0.27 0.639 0.52 −1.13 0.26 −1.89 0.05 with cut-off
metabolic 0.00 3.53 0.00 −1.05 0.29 5.59 0.00 3.66 0.00 0.000 1.00 none
papers 0.90 5.71 0.00 −0.091 0.93 3.08 0.00 0.709 0.48 −0.016 0.86 moderate
proteins 0.31 3.05 0.00 −0.456 0.65 2.21 0.03 0.055 0.96 −0.414 0.36 moderate
species 0.10 5.04 0.00 −1.63 0.10 2.39 0.02 −1.59 0.11 −3.80 0.01 with cut-off
terrorism 0.68 1.81 0.07 −0.278 0.78 2.457 0.01 0.772 0.44 −0.077 0.70 moderate
words 0.49 4.43 0.00 0.395 0.69 9.09 0.00 4.13 0.00 −0.899 0.18 good

TABLE VII Tests of power-law behavior in the data sets studied here that are comprised of discrete (integer) data. Statistically
significant p-values are denoted in bold. Results for the continuous data sets are given in Table VI; see that table for a
description of the individual column entries.

p-value is sufficiently small that the power-law model
can be firmly ruled out. In particular, the distributions
for the HTTP connections, earthquakes, web links, fires,
wealth, web hits, and the metabolic network cannot plau-
sibly be considered to follow a power law; the probability
of getting a fit as poor as that observed purely by chance
is very small in each case and one would have to be un-
reasonably optimistic to see power-law behavior in any
of these data sets. (For two data sets—the HTTP con-
nections and wealth distribution—the power law, while
not a good fit, is nonetheless better than the alternatives,
implying that these data sets are not well-characterized

by any of the functional forms considered here.)

Of the remaining data sets, each is compatible with the
power-law hypothesis according to the KS test, but we
can gain more insight by looking at the likelihood ratio
tests, which tell us whether other distributions may be a
good fit as well.

We find that for all the data sets save three, we can
rule out the exponential distribution as a possible fit—
the likelihood ratio test firmly favors the power law over
the exponential. The three exceptions are the blackouts,
religions, and email address books, for which the power
law is favored over the exponential but the accompanying
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p-value is large enough that the results cannot be trusted.
For the discrete data sets we can also rule out the Poisson
distribution in every case.

For the log-normal and stretched exponential distribu-
tions the likelihood ratio tests are in most cases incon-
clusive: the p-values indicate that the observed likelihood
ratios have a high probability of being purely the result
of chance. This mean that for most of the data sets the
power law may be a plausible model but the log-normal
and stretched exponential are also plausible. In cases
such as these, it will be important to look at physical mo-
tivating factors to make a sensible judgment about the
true distribution—we must consider whether there is a
mechanistic reason to believe one distribution or another
to be correct.

In other cases the likelihood ratio tests do give con-
clusive answers. In some the tests rule firmly in favor of
the power law. For instance, the stretched exponential
is ruled out for the book sales, telephone calls, and cita-
tion counts. In other cases the tests rule in favor of the
alternative—the stretched exponential is strongly favored
over the power law for the forest fires and earthquakes,
for example. Note however that the log-normal is not
ruled out for any of our data sets, save the HTTP con-
nections. In every case it is a plausible alternative and
in a few it is strongly favored. In fact, we find that it
is in general extremely difficult to tell the difference be-
tween a log-normal and true power-law behavior. Indeed
over realistic ranges of x the two distributions are very
closely equal, so it appears unlikely that any test would
be able to tell them apart unless we have an extremely
large data set. Thus one must again rely on physical
intuition to draw any final conclusions. Otherwise, the
best that one can say is that the data do not rule out
the power law, but that other distributions are as good
or better a fit to the data.

Finally a word concerning the cut-off power law is in
order. Since this model is a superset of the power-law
model, it can, as discussed in Section IV.D, never truly
be ruled out, as reflected in the fact that the likelihood
ratio is always either zero or negative; the power law
with cut-off can never be a worse fit than the pure power
law. In many cases, however, the corresponding p-value
shows that the likelihood ratio is not significant and there
is no statistical reason to prefer the cut-off form. For
almost a dozen data sets, however—the forest fires, solar
flares, earthquakes, web hits, web links, telephone calls,
Internet, email address books, and mammal species—the
cut-off form is clearly favored. For surnames, the cut-off
form is favored over the pure form but only weakly, as the
p-value is very close to our threshold. In each of these
cases some of the other models, such as log-normal or
stretched exponential, are also plausible, so again some
physical insight must be added into the mix to reach a
conclusion about the true underlying distribution.

VI. OTHER TECHNIQUES

Before giving our concluding thoughts, we would be
remiss should we fail to mention some of the other tech-
niques for the analysis of power-law distributions, partic-
ularly those developed within the statistics and finance
communities. We give only a very brief summary of
this material here; readers interested in pursuing the
topic further are encouraged to consult the books by
Adler et al. (1998) and Resnick (2006) for a more thor-
ough explanation.6

In the statistical literature, researchers often consider
a family of distributions of the form

p(x) ∝ L(x)x−α, (34)

where L(x) is some slowly varying function, i.e., in the
limit of large x, L(c x)/L(x) → 1 for any c > 0. An im-
portant issue in this case—as it is in the calculations pre-
sented in this paper—is deciding the point xmin at which
the x−α dominates over the non-asymptotic behavior of
the function L(x), a task that can be tricky if the data
span only a limited dynamic range or if |L(x) − L(∞)|
decays only a little faster than x−α. A common approach
involves plotting an estimate α̂ of the scaling parameter
as a function of xmin and choosing for x̂min the value
beyond which α̂ appears stable. If we use the popular
Hill estimator for α (Hill, 1975), which is equivalent to
our maximum likelihood estimator for continuous data,
Eq. (16), such a plot is called a Hill plot. Other estima-
tors, however, can often yield more useful results—see,
for example, Kratz and Resnick (1996) and Stoev et al.
(2006). An alternative approach, quite common in the
economics literature, is simply to limit the analysis to
the largest observed samples only, such as the largest

√
n

or 1
10n observations (Farmer et al., 2004).

The methods we describe in Section III offer several
advantages over these visual or heuristic techniques. In
particular, the goodness-of-fit-based approach gives ac-
curate estimates of xmin with synthetic data (Fig. 5b)
and appears to give reasonable estimates in real-world
situations too (Fig. 8). Moreover, its simple implemen-
tation and low computational cost readily lends it to fur-
ther analyses such as the calculation of p-values in Sec-
tion IV.A.7 And because our method removes the non-
power-law portion of the data entirely from the estima-
tion of the scaling parameter, we end up fitting simpler
functional forms to the data, which allows us more easily

6 Another related area of study is “extreme value theory,”
which concerns itself with the distribution of the largest or
smallest values generated by probability distributions, val-
ues that assume some importance in studies of, for instance,
earthquakes, other natural disasters, and the risks thereof—
see de Hann and Ferreira (2006).

7 We further note that the goodness-of-fit-based approach for esti-
mating xmin can easily be adapted to estimating a lower cut-off
for other distributions.
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to test the statistical agreement between the data and
the best-fit model.

VII. CONCLUSIONS

The study of power-law distributed quantities spans an
impressive variety of disciplines, including physics, com-
puter and information sciences, the earth sciences, molec-
ular and cellular biology, evolutionary biology, ecology,
economics, political science, sociology, and statistics. Un-
fortunately, well founded methods for analyzing power-
law data have not yet taken root in all, or even most,
of these areas and in many cases hypothesized distribu-
tions are not tested rigorously against the data, which
leaves open the possibility that apparent power-law be-
havior is, in some cases at least, merely an figment of the
researcher’s imagination.

The common practice of identifying and quantifying
power-law distributions by the approximately straight-
line behavior of a histogram on a doubly logarithmic plot
is known to give biased results and should not be trusted.
In this paper we have described a collection of simple
but reliable alternative techniques that can be used to
search for power-law behavior in real-world data. These
techniques include methods for fitting a power law or re-
lated form to data, methods for gauging the range over
which power-law behavior holds, methods for assessing
whether the power law is a good fit to the data, methods
for comparing the quality of fit to that of competing dis-
tributions, and a number of related tools such as methods
for generating random numbers from power-law distribu-
tions for use in Monte Carlo or bootstrap calculations.

Applying these methods to data sets from a broad
range of different fields, we find an interesting picture.
In many of the cases studied in this paper the power-
law hypothesis turns out to be, statistically speaking, a
reasonable description of the data. That is, the data
are compatible with the hypothesis that they are drawn
from a power-law distribution, at least over a part of
their range, although in many cases they are compati-
ble with other distributions as well, such as log-normal
or stretched exponential distributions. In the remaining
cases the power-law hypothesis is found to be incompat-
ible with the observed data, although in a number of
instances the power law becomes plausible again if one
allows for the possibility of an exponential cut-off that
truncates the tail of the distribution. Thus it appears
that the conclusions drawn from ad hoc methods of anal-
ysis are sometimes correct and sometimes not, a result
that highlights the inadequacy of these methods. The
methods described here, by contrast, give us solid evi-
dence to back up our claims when we do find power-law
behavior and in cases where two or more competing hy-
potheses appear plausible they allow us to make quanti-
tative statements about relative merit.

In some cases, the interesting scientific conclusions do
not rest upon a quantity having a perfect power-law

distribution. It may be enough merely that the quan-
tity have a heavy-tailed distribution. For instance, in
studies of the Internet the distributions of many quan-
tities, such as file sizes, HTTP connections, node de-
grees, and so forth, have heavy tails and appear visu-
ally to follow a power law, but upon more careful anal-
ysis it proves impossible to make a strong case for the
power-law hypothesis; typically the power-law distribu-
tion is not ruled out but competing distributions may
offer a better fit. Whether this constitutes a problem
for the researcher depends largely on his or her scien-
tific goals. For a computer engineer, simply quantify-
ing the heavy tail may help address important questions
concerning, for instance, future infrastructure needs or
the risk of overload from large but rare events. Thus
in some cases pure power-law behavior may not be fun-
damentally more interesting than any other heavy-tailed
distribution. (In such cases, non-parametric estimates of
the distribution may be useful, though making such es-
timates for heavy-tailed data presents special difficulties
(Markovitch and Krieger, 2000).) If, on the other hand,
our goal is to infer plausible mechanisms that might un-
derlie the formation and evolution of Internet structure
or traffic patterns, then it may matter greatly whether
the observed quantity follows a true power law or some
other form.

In closing, we echo comments made by Ijiri and Simon
(1977) more than thirty years ago and similar thoughts
expressed more recently by Mitzenmacher (2006). They
argue that the characterization of empirical distributions
is only a part of the challenge that faces us in explaining
the ubiquity of power laws in the sciences. In addition we
also need methods to validate the models that have been
proposed to explain those power laws. They also urge
that, wherever possible, we consider to what practical
purposes these robust and interesting behaviors can be
put. We hope that the methods given here will prove use-
ful in all of these endeavors, and that these long-delayed
hopes will at last be fulfilled.
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methods described in this paper can be found online at
http://www.santafe.edu/∼aaronc/powerlaws/.

APPENDIX A: Problems with linear regression and power
laws

The most common approach for testing empirical data
against a hypothesized power-law distribution is to ob-
serve that the power law p(x) ∼ x−α implies the linear
form

log p(x) = α log x + c. (A1)

The probability density p(x) can be estimated by con-
structing a histogram of the data or one can construct the
cumulative distribution function by a simple rank order-
ing of the data and the resulting distribution fitted to the
linear form by least-squares linear regression. The slope
of the fit is interpreted as the estimate α̂ of the scaling pa-
rameter. Many standard packages exist that can perform
this kind of line-fitting and also provide standard errors
for the estimated slope and calculate the fraction r2 of
variance accounted for by the fitted line, which is taken
as an indicator of the quality of the fit.

Although this procedure appears frequently in the lit-
erature there are several problems with it. As we saw
in Section III, the estimates of the slope are subject to
systematic and potentially large errors (see Table IV and
Fig. 2) and there are a number of other serious problems
as well. First, the errors are hard to estimate because
they are not well-described by the usual regression for-
mulas, which are based on assumptions that do not apply
in this case. Second, a fit to a power-law distribution can
account for a large fraction of the variance even when
the fitted data do not follow a power law, and hence high
values of r2 cannot be taken as evidence in favor of the
power-law form. And third, the fits extracted by regres-
sion methods usually do not satisfy basic requirements
on probability distributions, such as normalization, and
hence cannot be correct. Let us look at each of these
objections in a little more detail.

1. Calculation of standard errors

The ordinary formula for the calculation of the stan-
dard error on the slope of a regression line is correct when
the assumptions of linear regression hold, which include
independent, Gaussian noise in the dependent variable
at each value of the independent variable. When fit-
ting a histogram of the PDF, the noise, though inde-
pendent, is Gaussian (actually Poisson) in the frequency
estimates p(x) themselves, so the noise in the logarithms
of those frequency estimates cannot also be Gaussian.
(For ln p(x) to have Gaussian fluctuations, p(x) would
have to have log-normal fluctuations, which would vio-
late the central limit theorem.) Thus the formula for the
error is inapplicable in this case.

For fits to the CDF the noise in the individual values
P (x) is also Gaussian (since it is the sum of indepen-
dent Gaussian variables), but the noise in the logarithm
of P (x) again is not. Furthermore, the assumption of
independence now fails, because P (x) = P (x + 1) + p(x)
and hence adjacent values of the CDF are strongly corre-
lated. Fits to the CDF are, as we showed in Section III,
empirically more accurate as a method for determining
the scaling parameter α, but this is not because the as-
sumptions of the fit are any more valid. The improvement
arises because the statistical fluctuations in the CDF are
typically much smaller than those in the PDF. The error
on the scaling parameter is thus smaller but this does
not mean that the estimate of the error is any better.
(In fact, it is typically a gross underestimate because of
the failure to account for correlations in the noise.)

2. Validation

If our data are truly drawn from a power-law distribu-
tion and n is large, then the probability of getting a low
r2 in a straight-line fit is small, so a low value of r2 can be
used to reject the power-law hypothesis. Unfortunately,
as we saw in Section IV.A, distributions that are nothing
like a power-law can appear as such for small samples
and some, like the log-normal, can approximate a power
law closely over many orders of magnitude, resulting in
high values of r2. And even when the fitted distribution
approximates a power law quite poorly, it can still ac-
count for a significant fraction of the variance, although
less than the true power law. Thus, though a low r2 is
informative, we in practice rarely see a low r2, regardless
of the actual form of the distribution, so that the value
of r2 tells us little. In the terminology of statistical the-
ory, the value of r2 has very little power as a hypothesis
test because the probability of successfully detecting a
violation of the power-law assumption is low.

3. Regression lines are not valid distributions

The CDF must take the value 1 at xmin if the prob-
ability distribution above xmin is properly normalized.
Ordinary linear regression, however, does not incorporate
such constraints and hence, in general, the regression line
does not respect them. Similar considerations apply for
the PDF, which must integrate to 1 over the range from
xmin to ∞. Standard methods exist to incorporate con-
straints like these into the regression analysis (Weisberg,
1985), but they are not used to any significant extent in
the literature on power laws.

APPENDIX B: Maximum likelihood estimators for the
power law

In this section we give derivations of the maximum
likelihood estimators for the scaling parameter of a power

http://www.santafe.edu/~aaronc/powerlaws/
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law.

1. Continuous data

In the continuous case the maximum likelihood esti-
mator for the scaling parameter, first derived (to our
knowledge) by Muniruzzaman (1957), is equivalent to the
well-known Hill estimator (Hill, 1975). Consider the con-
tinuous power-law distribution,

p(x) =
α− 1

xmin

(

x

xmin

)−α

, (B1)

where α is the scaling parameter and xmin is the mini-
mum value at which power-law behavior holds. Given a
data set containing n observations xi ≥ xmin, we would
like to know the value of α for the power-law model that
is most likely to have generated our data. The probability
that the data were drawn from the model is proportional
to

p(x |α) =
n

∏

i=1

α− 1

xmin

(

xi

xmin

)−α

. (B2)

This probability is called the likelihood of the data given
the model. The data are mostly likely to have been gen-
erated by the model with scaling parameter α that max-
imizes this function. Commonly we actually work with
the logarithm of the likelihood, which has its maximum
in the same place:

L = ln p(x |α) = ln
n

∏

i=1

α− 1

xmin

(

xi

xmin

)−α

=
n

∑

i=1

[

ln(α− 1) − lnxmin − α ln
xi

xmin

]

= n ln(α− 1) − n lnxmin − α
n

∑

i=1

ln
xi

xmin
. (B3)

Setting ∂L/∂α = 0 and solving for α, we obtain the
maximum likelihood estimate α̂ for the scaling parameter:

α̂ = 1 + n

[

n
∑

i=1

ln
xi

xmin

]−1

. (B4)

There are a number of theorems in mathematical
statistics that motivate and support the use of the MLE.
We describe them briefly below and show that they ap-
ply. Note that these theorems are independent of any as-
sumptions regarding the prior distribution of values for
the scaling parameter, the equating of observed values
with expectations, and so forth.

Theorem 1 Under mild regularity conditions, if the
data are independent, identically-distributed draws from
a distribution with parameter α, then as the sample size
n → ∞, α̂ → α almost surely.

Proof: See, for instance, Pitman (1979). (Note that his
proof is stronger than the usual consistency result for
the MLE, which gives only convergence in probability,
Pr(|α̂− α| > ε) → 0 for all ε > 0.)

Proposition 1 (Muniruzzaman (1957)) The maxi-
mum likelihood estimator α̂ of the continuous power law
converges almost surely on the true α.

Proof: It is easily verified that ln(x/xmin) has an expo-
nential distribution with rate α − 1. By the strong law
of large numbers, therefore, 1

n

∑n
i=1 ln xi

xmin
converges al-

most surely on the expectation value of ln(x/xmin), which
is (α− 1)−1.

Theorem 2 If the MLE is consistent, and there exists
an interval (α− ε,α+ ε) around the true parameter value
α where, for any α1,α2 in that interval,

∂3L(α1)/∂α3

∂2L(α2)/∂α2
(B5)

is bounded for all x, then asymptotically α̂ has a Gaussian
distribution centered on α, whose variance is 1/nI(α),
where

I(α) = −E

[

∂2 log p(X |α)

∂α2

]

(B6)

which is called the Fisher information at α. Moreover,
∂2L(α̂)/∂α2 → I(α).

Proof: For the quoted version of this result, see
Barndorff-Nielsen and Cox (1995, ch. 3). The first ver-
sion of a proof of the asymptotic Gaussian distribution
of the MLE, and its relation to the Fisher information,
may be found in Fisher (1922).

Proposition 2 (Muniruzzaman (1957)) The MLE
of the continuous power law is asymptotically Gaussian,
with variance (α− 1)2/n.

Proof: By applying the preceding theorem. Simple
calculation shows that ∂2 logL(α)/∂α2 = −n(α− 1)−2

and ∂3 logL(α)/∂α3 = 2n(α− 1)−3, so that the ratio in
question is 2(α2 − 1)2/(α1 − 1)3. Since α > 1, this ratio
is bounded on any sufficiently small interval around any
α, and the hypotheses of the theorem are satisfied.

A further standard result, the Cramér-Rao inequality,
asserts that for any unbiased estimator of α, the variance
is at least 1/nI(α). (See Cramér (1945, §32.3), or, for an
elementary proof, Pitman (1979).) The MLE is thus said
to be asymptotically efficient, since it attains this lower
bound.

Proposition 2 yields approximate standard error and
Gaussian confidence intervals for α̂, becoming exact as
n gets large. Corrections depend on how xmin is esti-
mated, and the resulting coupling between that estimate
and α̂. As they are O(1/n), however, while the leading
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terms are O(1/
√

n), we have neglected them in the main
text. The corrections can be deduced from the “sam-
pling distribution” of α̂, i.e., the distribution of its de-
viations from α due to finite-sample fluctuations. (See
Cramér (1945) or Wasserman (2003) for introductions to
sampling distributions.) In general, these are hard to
obtain analytically, but may be found by bootstrapping
(Efron and Tibshirani, 1993; Wasserman, 2003). An im-
portant exception is when xmin is either known a priori
or an effective xmin is simply chosen by fiat (as in the
Hill estimator). Starting from the distribution of lnx, it
is then easy to show that (α̂−1)/n has an inverse gamma
distribution with shape parameter n and scale parameter
α − 1. This implies (Johnson et al., 1994) that α̂ has a
mean of

α
n

n − 1
−

1

n − 1
,

and a standard deviation of

(α− 1)
n

(n − 1)
√

n − 2
,

differing, as promised, from the large-n values by O(1/n).

2. Discrete data

We define the power-law distribution over an integer
variable by

p(x) =
x−α

ζ(α, xmin)
, (B7)

where ζ(α, xmin) is the generalized Riemann zeta func-
tion. For the case xmin = 1, Seal (1952) derived the
maximum likelihood estimator. One can also derive an
estimator for the more general case as follows.

Following an argument similar to the one we gave for
the continuous power law, we can write down the log-
likelihood function

L = ln
n

∏

i=1

x−α
i

ζ(α, xmin)

= −n ln ζ(α, xmin) − α
n

∑

i=1

lnxi. (B8)

Setting ∂L/∂α = 0 we then find

−n

ζ(α, xmin)

∂

∂α
ζ(α, xmin) −

n
∑

i=1

lnxi = 0. (B9)

Thus, the MLE α̂ for the scaling parameter is the solution
of

ζ′(α̂, xmin)

ζ(α̂, xmin)
= −

1

n

n
∑

i=1

lnxi. (B10)

This equation can be solved numerically in a straightfor-
ward manner. Alternatively, one can directly maximize
the log-likelihood function itself, Eq. (B8).

The consistency and asymptotic efficiency of the MLE
for the discrete power law can be proved by applying
Theorems 1 and 2. As the calculations involved are long
and messy, however, we omit them here. Brave readers
can consult Arnold (1983) for the details.

Equation (B10) is somewhat cumbersome. If xmin is
moderately large then a reasonable figure for α can be
estimated using the much more convenient approximate
formula derived in the next section.

3. Approximate estimator for the scaling parameter of the
discrete power law

Given a differentiable function f(x), with indefinite in-
tegral F (x), such that F ′(x) = f(x),

∫ x+ 1

2

x− 1

2

f(t) dt = F
(

x + 1
2

)

− F
(

x − 1
2

)

=
[

F (x) + 1
2F ′(x) + 1

8F ′′(x) + 1
48F ′′′(x)

]

−
[

F (x) − 1
2F ′(x) + 1

8F ′′(x) − 1
48F ′′′(x)

]

+ . . .

= f(x) + 1
24f ′′(x) + . . . (B11)

Summing over integer x, we then get

∫ ∞

xmin− 1

2

f(t) dt =
∞
∑

x=xmin

f(x) +
1

24

∞
∑

x=xmin

f ′′(x) + . . .

(B12)

For instance, if f(x) = x−α for some constant α, then we
have

∫ ∞

xmin− 1

2

t−α dt =

(

xmin − 1
2

)−α+1

α− 1

=
∞
∑

x=xmin

x−α +
1

24α(α+ 1)

∞
∑

x=xmin

x−α−2 + . . .

= ζ(α, xmin)
[

1 + O
(

x−2
min

)]

, (B13)

where we have made use of the fact that x−2 ≤ x−2
min for

all terms in the second sum. Thus

ζ(α, xmin) =

(

xmin − 1
2

)−α+1

α− 1

[

1 + O
(

x−2
min

)]

. (B14)

Similarly, putting f(x) = x−α lnx we get

ζ′(α, xmin) = −
(

xmin − 1
2

)−α+1

α− 1

[

1

α− 1
+ ln

(

xmin − 1
2

)

]

×
[

1 + O
(

x−2
min

)]

+ ζ(α, xmin)O
(

x−2
min

)

.
(B15)

We can use these expressions to derive an approxima-
tion to the maximum likelihood estimator for the scaling
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parameter α of the discrete power law, Eq. (B10). The
ratio of zeta functions in Eq. (B10) becomes

ζ′(α̂, xmin)

ζ(α̂, xmin)
=

[

1

α̂− 1
− ln

(

xmin − 1
2

)

]

[

1 + O
(

x−2
min

)]

+ O
(

x−2
min

)

, (B16)

and, neglecting quantities of order x−2
min by comparison

with quantities of order 1, we have

α̂ ( 1 + n

[

n
∑

i=1

ln
xi

xmin − 1
2

]−1

, (B17)

which is in fact identical to the MLE for the continuous
case except for the − 1

2 in the denominator.
Numerical comparisons of Eq. (B17) to the exact dis-

crete MLE, Eq. (B10), show that Eq. (B17) is a good
approximation when xmin ! 6—see Fig. 3.
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