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Summary of Fourier transforms and DFT

Time series

x t , its transform  S f , time interval T

a) expand

x t in an orthogonal set of basis functions


x t  Sme2ifmt

m



, fm 
m

T

and


Sm 

1

T
x t e2ifmt

T / 2

T / 2

dt

NB: orthogonality


ei nm x





dx  2mn

we will discuss the importance of this in a moment…

b) Parseval's theorem


x t

2

T / 2

T / 2

dt  T Sm

2

m



c) Defns: since

Sm  Sm eim - in general complex

amplitude spectrum

Sm, Sm

2
 SmSm

* phase spectrum

m ; (discrete) power spectrum Sm

2


the power in mode fm .

d) We then take the continuous limit

fN  f , T  to obtain the Fourier transform pair:



x t  S f e2ift df




S f  x t e2ift dt




NB: Notation – choosing variables f and t retains symmetry. If we worked in terms of


  2 f in eit term this results in a factor

1

2
in front of the IFT.

e) Parseval becomes:



x t
2

dt  S f
2

df








.
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f) Defns:


S f amplitude spectrum

 
2

S f power spectral density

ie  
2

S f df is the power in band f f df 

again, S is complex

     i fS f A f e 

One can construct surrogate data sets by modifying (randomising)  f .

Some important theorems:

g) Convolution

Defn: convolution



g t * h t  g 




h t   d

then



FT g t * h t e2ift dt  G f .H




f

product of FT of g and h
(convolution theorem)

h) Cross correlation

Defn: cross correlation



g t h t  g  h t   d




not the same as convolution. However:



FT g t h t e2ift dt  G f .H f




NB: g - complex conjugate

i) Auto correlation – put h g x 



x t  x t  x  x t   d  R t




then



x t  x t



 e

2ift dt  S f S f  S f
2





amp. spectrum phase spectrum
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or



R t  S 2 f e2ift df




Wiener-Khintchine theorem
[Will relate to "statistical correlation" and covariance in a moment.]

j) Uncertainty principle/resolution

Consider a well known example (diffraction)

 x t is a "top hat" function

 S f is a sinc function

proof:



S f  e2ift dt 
a

a


e2ift

2if













a

a


e2iaf  e2iaf

2if




sin2af

 f
1st zero at 2 af  or

1 / 2f a

thus, "width" of function has the property ~ 1t f  .

Finite window in t thus implies spectral leakage in f – to come later.

-a a

1

cf diffraction at
slits in optics

-1/2a
1/2a
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k) Finally….(an aside)

A relationship with the moments of a function
(relates to cumulants)

Since



S f  x t e2ift dt






dS

df
 2it x t e2ift dt





so,



dS

df
f  0 2i tx t dt





and



1

2i
P

d P

df P
S f  0  t Px t dt  mp





the pth moment of  x t

hence, if  x t is PDF then  S f is the characteristic function – useful in handing PDFs.
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Discrete Fourier Theory

What you actually calculate for real time series

a)  x t is sampled every t over interval T


x t  xk k  0,1...N 1 t  kt

Discrete Fourier Transform (DFT) are



xk 
1

Nt
Sme2imk / N

m0

N1

Sm  t xke
2ikm / N

k0

N1

NB: usually 1t  - given explicitly here to be clear about units, normalisation.

b) Now mS is associated with frequency (mode) m

m
f

N t



and kx is associated with time kt k t  .

Thus "resolution” t corresponds to
1

f
N t

 


, "uncertainty principle" becomes

~ 1 /f t N  .

c) Cyclic behaviour

Note, indices can be written as

k  k  p m  m p

or sums over
... 1

... 1

k p N p

m p N p

  

  

This implies periodicity over N, that is periodicity in time over T.

General implications of the DFT pair - I
(which also hold for continuous limit – not done here).

Write the DFT pair again:


xk 

1

T
Sme2ifmtk

m0

N1

- this is just an expansion of  x t in an orthogonal basis 2 m kif te  , but the series is truncated at

1m N  , ie, summing over finite number of modes fm.
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- this expresses the fact that  x t is represented by a linear superposition of a finite set of modes - a

linear process.

General implications – II – co-ordinate rotations

Write
2 /imk N

mkA e  a matrix
* 2 /imk N
mkA e  complex conjugate

A  complex conjugate transpose

since A is symmetric

Setting normalizations 1 / N ,t  1 etc for now;

Then

k km mx A S a rotation/projection

The DFT simply projects the vector kx into a (useful) co-ordinate system to give vector mS .

mkA is a rotation matrix.

Follows that 1
m mk kS A x - inverse rotation.

We can treat all transforms in this way.

Desirable property – from the DFT – defn. we have the following:

 m mk k mk kp pS A x A A S   - from DFT

thus mk kp mpA A  - A is orthogonal

 so inverse FT exists.

Alternatively, if A is a rotation

1
m mk kS A x so 1A A  

 1
mk kp pA A S - A is orthogonal

d) Orthogonality of the DFT
For the Fourier transform:

2 /imk N
mkA e 

so



Amp
Aqp  e2imp / N e2iqp / N

p0

N1

 e2ip mq / N

p0

N1

 mq
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The discrete version of the orthogonality condition seen earlier

e) Parseval's theorem - follows from orthogonality.

Consider inner product

  k k kp p kq qx x A S A S

 kp p qk qA S A S  since *TA A

qk kp p qA A S S 

pq p q p pS S S S 

ie:



xk
2  S p

2

p0

N1

k0

N1

or putting back normalisation!


t xk

2


1

Ntk0

N1

Sk

2

k0

N1

ie: Parseval's theorem states that the length of the vector kx is unchanged under rotation  to

the mS .

 will hold for any transform that is orthogonal.

f) Convolution – of time series ,k kg h


gk * hk  t guhku

u0

N1

and DFT gives convolution theorem:


t gk * hk e2ikm / N  GmHm

k0

N1

where

Gm  t gke

2ikm / N

k0

N1

- same for mH

again, this is cyclic – write k  k  p

sum is over ... 1p N p  .

NB: notation – often refer to "lag" 


g  h


 t gk hk

k0

N1

and   t .
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g) Cross correlation


C  gk hk

k0

N1

and again we have


 Ce

2im / N

0

N1
*
m mG H

(note t   here).

h) Auto correlation


R  xk xk

k0

N1

and


Sm

* Sm  Sm

2
  Re

2im / N

0

N1

- Wiener-Khintchine.

NB: Normalisation – often normalised to the "zero lag" ( 0  term).


R  xk xk  xk xk

k0

N1

k0

N1

Statistical correlation and covariance

Other things are called "correlation", ie: correlation coeff:


Qxy  xi  x yi  y

i

N

this is just the 0  value 0C of the cross correlation for an iid zero mean process

ie: 0xxQ R

covariance


Qxy 

xi  x yi  y

Ni

N

since the correlation (statistical) is often normalised to 2
ix and 2

iy we have

22wherexy
xy x

x y

Q
Q x x

 
  


