
Scaling, complex systems and all that…

S. C. Chapman

Notes for MPAGS MM1 Time Series Analysis

•SCALING: Some generic concepts: universality, Pi theorem,
turbulence, and other systems that show scaling (Self Organized
Criticality) and order- disorder transitions (flocking)
•Fractal measures-‘BURST’ MEASURES- waiting times, avalanche
distributions
•Nonlinear correlation- Mutual information and information entropy



Scaling

Some more ideas and examples



Scaling and universality-Branches
on a self-similar tree
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Each branch grows 3 new branches, 1/5 as long as itself..



Segregation/coarsening- a
selfsimilar dynamics

Courtesy P. Sethna

Rules: each square changes to be like the majority of its neighbours
Coarsening, segregation, selfsimilarity



‘Fractal –like’ patches of magnetic
polarity on the quiet sun

Patches of opposing polarity –
Zeeman effect photosphere, quiet sun,
(Stenflo, Nature 2004, See eg Janssen et al A&A 2003,
Bueno et al Nature 2004+..) - spatial



Power law statistics of flares

Peak flare count rate Lu&Hamilton ApJ 1991

TRACE nanoflare events Parnell&Judd ApJ 2000

-temporal



Scaling and similarity

Buckingham PI theorem
(‘dimensional analysis’) of
systems that show scaling



Similarity in action…



Similarity in action…

Peck and Sigurdson, A Gallery of Fluid Motion, CUP(2003)



Universality- 1 d.o.f.
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Universality- many d.o.f.

Keep coarsegraining-
rescaled system ‘looks the same’ (selfsimilar), insensitive to details



Similarity and universality
 Different systems, same physical model
 The same function (suitably normalized) can describe

them
 This function is universal (the details do not matter)
 The values of the normalizing parameters are not

universal
 How can we find the physical model (solution)?
 Particularly useful in nonlinear systems which are ‘hard’

to solve – i.e. turbulence!
 ‘Classical’ inertial range turbulence- self similarity,

intermittency…
 Leads to order/control parameters
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System described by ( ... ) where are the relevant macroscopic variables

must be a function of dimensionless groups ( )

if there are physical dimensions (mass,

Buckingham theorem
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there are distinct dimensionless groups.
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Barenblatt,Scaling,self - similarity and intermediate asymptotics,CUP,[1996]

Longair,Theoretical concepts in physics,Chap 8,CUP [2003]
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1.. 1..

System described by ( ... ) where is a macroscopic variable

must be a function of dimensionless groups ( )

if there are physical dimensions (mass,

Example: simple (nonlinear) pendulum
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Step 1: write down the relevant macroscopic va

length, time etc.) there are dimensionless groups

variable dimension description
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( ) then the period:

NB ( ) is universal ie same for all pendula-

we can find it knowing some other

simplifying assumption:

property eg conser
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1.. 1..

System described by ( ... ) where is a macroscopic variable

must be a function of dimensionless groups ( )

if there are p

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'
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Step 1: write down the relevant variables

hysical dimensions (mass, length, time etc.

(incompressible so energy/mass):

) there are dimensionless groups

variable dimension description

( ) energy/u
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3,Step 2: form dimensionless groups:

Step 3: make some simplifying assumption
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if there are physical dimensions (mass, length, time etc.) there are dimensionless groups

variable dimension description
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Turbulence and ‘degrees of freedom’

System is driven on one lengthscale (L) and dissipates on another (η) –forward cascade
Inverse cascade- same thing, just the other way around
System has many degrees of freedom i.e. structures on many lengthscales (eddies here)
System is scaling- structures, processes can be rescaled to ‘look the same on all scales’
These structures transmit some dynamical quantity from one lengthscale to another
that is, over all the d.o.f.
There is conservation of flux of the dynamical quantity- here energy transfer rate
Steady state (not equilibrium) means energy injection rate balances energy
dissipation rate on the average
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Statistics of ‘bursts’

Avalanche distributions, waiting
times



Avalanching systems and scaling
behaviour

Avalanche models: add grains slowly,
redistribute only if local gradients exceeds a
critical value

Suggested as a model for bursty transport
and energy release in plasmas- solar
corona, magnetotail, edge turbulence in
tokamaks (L-H), accretion disks

Avalanching systems
• Threshold for avalanching
• Avalanches are much faster than feeding

rate
• Avalanches on all sizes, no characteristic

size
• Feeding rate=outflow rate on average only
• System moves through many metastable

states- rather than toward an equilibrium



Measures of ‘burstiness’

Statistics of:

• Waiting time between events

• Energy dissipated

• Peak size

• Duration

Questions:

• Scaling? PDF, CDF, rank order plots etc

• Finite size scaling?



Statistics of avalanches (rice)

Shown: Statistics of energy
dissipated per avalanche
Power law- no characteristic
event size: scaling
‘finite size scaling’-
Normalize to the size of the box
Frette et al, Nature (1996)

Dynamical quantity- rice
Flux is conserved
d.o.f. are the possible
avalanche (sizes/topplings)



• 1 month of POLAR UVI
data=200,000 ‘blobs’

• Quiet and active times

• Robust power law(?)

• +substorms

Lui et al GRL, 2000, see also Lui NPG 2002

Counting auroral snapshot ‘blobs’



Blob statistics-
Edwards Wilkinson- dynamics

A linear model
Shown: 100² grid D=0.3
Solves:
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 Chapman et al PPCF 2004



Edwards Wilkinson- statistics
Statistics of instantaneous patch
size are power law

Linear model- driver (random
rain of particles) has inherent
fractal scaling (Brownian
surface) +selfsimilar diffusion
which preserves scaling

•No robustness- scaling
exponent depends on drive.
•No transport of patches

Chapman et al PPCF 2004



Power laws and blobs?
• Linear systems e.g. EW model give ‘blobs’ with

power law statistics

• Missing element is ‘bursty’ (intermittent)
transport via avalanches. Requires threshold
(nonlinear diffusion)- breaks symmetry

• It matters what the exponent is
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p-model for intermittent turbulence- shows finite
range power law avalanches

p-model timeseries shows multifractal
behaviour in structure functions as expected

Thresholding the timeseries to form
an avalanche distribution- finite range power law
Watkins, SCC et al, PRL, 2009, SCC et al, POP 2009



Recurrence, Information
Entropy and Correlation

Recurrence and Mutual
Information- principles and

practice



Recurrence measures

R is a recurrence matrix

2 coupled nonlinear oscillators (left) plus noise (right)

After Romano et al Eur Lett (2005)

Normalize..

Solar wind driving of space weather- March, SCC et al, (2005)



Information and Mutual
Information

• A given signal can be thought of as a sequence
of symbols that form an alphabet.

• Signal has alphabet

• Each symbol in the alphabet has a probability of
occurrence

X={x1
,x

2
. . . x

i}
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n
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N



Information entropy



Information and entropy

• A signal (X) carries a certain amount of
information expressed as an entropy H(X) in the
order of its symbols {xi}

• Log2 => binary units

• We assume the relation

      2logi i
i

H X = P x P x

0× log
2
0= 0



• Entropy can also be defined for joint probability
distributions

• Mutual Information compares the information
content of two signals

Mutual Information

      i j 2 i j
ij

H X,Y = P x , y log P x , y

         /i j 2 i j i j
ij

I X;Y = P x , y log P x , y P x P y 
 

       I X;Y = H X + H Y H X,Y



Timeseries



Mutual Information
a) P(WIND |B|, ACE |B|)

b) Raw data WIND |B| vs
ACE |B|

c) P(WIND |B|)

d) P(ACE |B|)

MI = 1.09 bits

Ratio of MI to H = 0.39

a) b)

c) d)



The Ising Model- phase transition

• Matsuda et al (1996):

• MI peaks at the phase
transition and is robust to
coarse graining



Competition between order and
disorder
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Vicsek bird model



The Vicsek Model
Dynamical rules for each particle:

Order parameter and susceptibility:



The Vicsek Model



The Vicsek Model

• Mutual information is calculated between position and
angle of motion for a snapshot.

• MI for each dimension is the averaged to give total.

• This is done for 50 realisations of the model.



The Vicsek Model

X X

X

θ θ

θ



The Vicsek Model

Wicks, SCC et al PRE (2007)



‘real world’- follow only a few
particles

• 10 particles chosen at
random.

• Time series of 5000
steps used.

• MI calculated between
each particle's X
position and X velocity
for 500 step sections

• Compared to
susceptibility for same
sections.

(assumption: Vicsek
model is ergodic)



Follow only a few particles-
linear measure

• Average cross
correlation
between the
same 10
particles.



End

See the MPAGS web site for more
reading…


