Scaling, complex systems and all that...

S. C. Chapman
Notes for MPAGS MM1 Time Series Analysis

-SCALING: Some generic concepts: universality, Pi theorem, turbulence, and other systems that show scaling (Self Organized Criticality) and order- disorder transitions (flocking)
-Fractal measures-'BURST’ MEASURES- waiting times, avalanche distributions
-Nonlinear correlation- Mutual information and information entropy

Scaling

Some more ideas and examples

centre for fusion, space and astrophysics

Scaling and universality-Branches on a self-similar tree

Each branch grows 3 new branches, $1 / 5$ as long as itself..
Number N of branches of length L

Segregation/coarsening- a selfsimilar dynamics

Rules: each square changes to be like the majority of its neighbours Coarsening, segregation, selfsimilarity

Courtesy P. Sethna

'Fractal -like' patches of magnetic polarity on the quiet sun

Patches of opposing polarity -
Zeeman effect photosphere, quiet sun, (Stenflo, Nature 2004, See eg Janssen et al A\&A 2003, Bueno et al Nature 2004+..) - spatial

centre for fusion, space and astrophysics

Power law statistics of flares

Peak flare count rate Lu\&Hamilton ApJ 1991 TRACE nanoflare events Parnell\&Judd ApJ 2000 -temporal
centre for fusion, space and astrophysics

Scaling and similarity

Buckingham PI theorem
('dimensional analysis') of
systems that show scaling

centre for fusion, space and astrophysics

Similarity in action...

Similarity in action...

Peck and Sigurdson, A Gallery of Fluid Motion, CUP(2003)
centre for fusion, space and astrophysics

THE UNIVERSITY OF WARWICK

Universality- 1 d.o.f.

Pendulum
$F=m g, F_{t}=m g \sin \theta, a_{t}=l \frac{d^{2} \theta}{d t^{2}}$
$F_{t}=m a_{t} ; \frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \sin \theta=-\omega^{2} \frac{\partial V}{\partial \theta}$
$V(\theta)=1-\cos (\theta) \sim \frac{\theta^{2}}{2}+\ldots$

same behaviour at
any local minimum in $V(\theta)$
(insensetive to details)

Universality- many d.o.f.

Keep coarsegraining-
rescaled system 'looks the same' (selfsimilar), insensitive to details
centre for fusion, space and astrophysics

Similarity and universality

$>$ Different systems, same physical model
$>$ The same function (suitably normalized) can describe them
$>$ This function is universal (the details do not matter)
$>$ The values of the normalizing parameters are not universal
$>$ How can we find the physical model (solution)?
$>$ Particularly useful in nonlinear systems which are 'hard' to solve - i.e. turbulence!
$>$ 'Classical' inertial range turbulence- self similarity, intermittency...
$>$ Leads to order/control parameters
centre for fusion, space and astrophysics

Buckingham π theorem

System described by $F\left(Q_{1} \ldots Q_{p}\right)$ where $Q_{1 . . p}$ are the relevant macroscopic variables
F must be a function of dimensionless groups $\pi_{1 . . M}\left(Q_{1 . . p}\right)$
if there are R physical dimensions (mass, length, time etc.)
there are $M=P-R$ distinct dimensionless groups.
Then $F\left(\pi_{1 . . M}\right)=C$ is the general solution for this universality class.
To proceed further we need to make some intelligent guesses for $F\left(\pi_{1 . . M}\right)$

See e.g. Barenblatt, Scaling, self - similarity and intermediate asymptotics, CUP, [1996] also Longair, Theoretical concepts in physics, Chap 8, CUP [2003]

Example: simple (nonlinear) pendulum

System described by $F\left(Q_{1} \ldots Q_{p}\right)$ where Q_{k} is a macroscopic variable
F must be a function of dimensionless groups $\pi_{1 . . M}\left(Q_{1 . . p}\right)$
if there are R physical dimensions (mass, length, time etc.) there are $M=P-R$ dimensionless groups

Step 1: write down the relevant macroscopic variables:

variable	dimension	description
θ_{0}	-	angle of release
m	$[M]$	mass of bob
τ	$[T]$	period of pendulum
g	$[L][T]^{-2}$	gravitational acceleration
l	$[L]$	length of pendulum

Step 2: form dimensionless groups: $P=5, R=3$ so $M=2$
$\pi_{1}=\theta_{0}, \pi_{2}=\frac{\tau^{2} l}{g}$ and no dimensionless group can contain m
then solution is $F\left(\theta_{0}, \tau^{2} l / g\right)=C$
Step 3: make some simplifying assumption: $f\left(\pi_{1}\right)=\pi_{2}$ then the period: $\tau=f\left(\theta_{0}\right) \sqrt{l / g}$
NB $f\left(\theta_{0}\right)$ is universal ie same for all pendula-
we can find it knowing some other property eg conservation of energy..

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'

System described by $F\left(Q_{1} \ldots Q_{p}\right)$ where Q_{k} is a macroscopic variable
F must be a function of dimensionless groups $\pi_{1 . . M}\left(Q_{1 . . p}\right)$
if there are R physical dimensions (mass, length, time etc.) there are $M=P-R$ dimensionless groups

Step 1: write down the relevant variables (incompressible so energy/mass):

variable	dimension	description
$E(k)$	$[L]^{3}[T]^{-2}$	energy/unit wave no.
ε_{0}	$[L]^{2}[T]^{-3}$	rate of energy input
k	$[L]^{-1}$	wavenumber

Step 2: form dimensionless groups: $P=3, R=2$, so $M=1$
$\pi_{1}=\frac{E^{3}(k) k^{5}}{\varepsilon_{0}^{2}}$
Step 3: make some simplifying assumption:
$F\left(\pi_{1}\right)=\pi_{1}=C$ where C is a non universal constant, then: $E(k) \sim \varepsilon_{0}^{2 / 3} k^{-5 / 3}$

Buchingham π theorem (similarity analysis)
universal scaling, anomalous scaling
System described by $F\left(Q_{1} \ldots Q_{p}\right)$ where Q_{k} is a relevant macroscopic variable
F must be a function of dimensionless groups $\pi_{1 . . M}\left(Q_{1 . . p}\right)$
if there are R physical dimensions (mass, length, time etc.) there are $M=P-R$ dimensionless groups
Turbulence:

variable	dimension	description
$E(k)$	$[L]^{3}[T]^{-2}$	energy/unit wave no.
ε_{0}	$[L]^{2}[T]^{-3}$	rate of energy input
k	$[L]^{-1}$	wavenumber

introduce another characteristic speed....

variable	dimension	description
$E(k)$	$[L]^{3}[T]^{-2}$	energy/unit wave no.
ε_{0}	$[L]^{2}[T]^{-3}$	rate of energy input
k	$[L]^{-1}$	wavenumber
v	$[L][T]^{-1}$	characteristic speed

$$
M=2, \pi_{1}=\frac{E^{3}(k) k^{5}}{\varepsilon_{0}^{2}}, \pi_{2}=\frac{v^{2}}{E k} \text { let } \pi_{1} \sim \pi_{2}^{\alpha}, E(k) \sim k^{-(5+\alpha) /(3+\alpha)}
$$

Turbulence and 'degrees of freedom’

(b)

$>$ System is driven on one lengthscale (L) and dissipates on another (η)-forward cascade $>$ Inverse cascade- same thing, just the other way around
$>$ System has many degrees of freedom i.e. structures on many lengthscales (eddies here)
$>$ System is scaling- structures, processes can be rescaled to 'look the same on all scales'
$>$ These structures transmit some dynamical quantity from one lengthscale to another that is, over all the d.o.f.
$>$ There is conservation of flux of the dynamical quantity- here energy transfer rate
$>$ Steady state (not equilibrium) means energy injection rate balances energy dissipation rate on the average
centre for fusion, space and astrophysics

Homogeneous Isotropic Turbulence and Reynolds Number
Step 1: write down the relevant variables:

variable	dimension	description
L_{0}	$[L]$	driving scale
η	$[L]$	dissipation scale
U	$[L][T]^{-1}$	bulk (driving) flow speed
v	$[L]^{2}[T]^{-1}$	viscosity

Step 2: form dimensionless groups: $P=4, R=2$, so $M=2$
$\pi_{1}=\frac{U L_{0}}{v}=R_{E}, \pi_{2}=\frac{L_{0}}{\eta}$ and importantly $\frac{L_{0}}{\eta}=f(N)$, where N is no. of d.o.f
Step 3: d.o.f from scaling ie $f(N) \sim N^{\alpha}$ here $\frac{L_{0}}{\eta} \sim N^{3}$, or $N^{3 \beta}$ or $\frac{L_{0}}{\eta} \sim \lambda^{N / 3}$ or \ldots
Step 4: assume steady state and conservation of the dynamical quantity, here energy...
transfer rate $\varepsilon_{r} \sim \frac{u_{r}^{3}}{r}$, injection rate $\varepsilon_{i n j} \sim \frac{U^{3}}{L_{0}}$, dissipation rate $\varepsilon_{\text {diss }} \sim \frac{v^{3}}{\eta^{4}}-$ gives $\varepsilon_{i n j} \sim \varepsilon_{r} \sim \varepsilon_{\text {diss }}$
this relates π_{1} to π_{2} giving: $R_{E}=\frac{U L_{0}}{v} \sim\left(\frac{L_{0}}{\eta}\right)^{4 / 3} \sim N^{\alpha}, \alpha>0$ thus N grows with R_{E}

Statistics of 'bursts'

Avalanche distributions, waiting times

centre for fusion, space and astrophysics

Avalanching systems and scaling behaviour

Avalanche models: add grains slowly, redistribute only if local gradients exceeds a critical value
Suggested as a model for bursty transport and energy release in plasmas- solar corona, magnetotail, edge turbulence in tokamaks (L-H), accretion disks

Avalanching systems

- Threshold for avalanching
- Avalanches are much faster than feeding rate
- Avalanches on all sizes, no characteristic size
- Feeding rate=outflow rate on average only
- System moves through many metastable states- rather than toward an equilibrium

Measures of 'burstiness'

Statistics of:

- Waiting time between events
- Energy dissipated
- Peak size
- Duration

Questions:

- Scaling? PDF, CDF, rank order plots etc
- Finite size scaling?
centre for fusion, space and astrophysics

Statistics of avalanches (rice)

Shown: Statistics of energy dissipated per avalanche
$>$ Power law- no characteristic event size: scaling
>'finite size scaling'-
Normalize to the size of the box
Frette et al, Nature (1996)

$>$ Dynamical quantity- rice
$>$ Flux is conserved
$>$ d.o.f. are the possible avalanche (sizes/topplings)

Counting auroral snapshot 'blobs'

- 1 month of POLAR UVI data=200,000 'blobs'
- Quiet and active times
- Robust power law(?)
- +substorms

Lui et al GRL, 2000, see also Lui Nopa 20022^{10}

Pseudo-Breakup

1 Power (Watt)

Blob statisticsEdwards Wilkinson- dynamics

A linear model
Shown: 100^{2} grid $D=0.3$
Solves:
$\frac{\partial \bar{h}}{\partial t}=D \nabla^{2} \bar{h}+\eta$
where η is iid 'white'
random source of grains
'height' $\bar{h}=h-\langle h\rangle$
blue patches are $\bar{h}>h_{0}$

Chapman et al PPCF 2004

Edwards Wilkinson- statistics

Statistics of instantaneous patch size are power law

Linear model- driver (random rain of particles) has inherent fractal scaling (Brownian surface) +selfsimilar diffusion which preserves scaling
-No robustness- scaling exponent depends on drive. - No transport of patches

Chapman et al PPCF 2004
centre for fusion, space and astrophysics

Power laws and blobs?

- Linear systems e.g. EW model give 'blobs’ with power law statistics
- Missing element is 'bursty' (intermittent) transport via avalanches. Requires threshold (nonlinear diffusion)- breaks symmetry
- It matters what the exponent is

$$
\begin{aligned}
& \frac{\partial \bar{h}}{\partial t}=D(\bar{h}) \nabla^{2} \bar{h}+\eta \\
& D(\bar{h}) \propto \mathrm{H}\left(\nabla \bar{h}-\bar{h}_{0}\right) \text { - avalanche models } \\
& D(\bar{h}) \propto(\nabla \bar{h})^{2} \text { KPZ - transforms to Burgers eqn. }
\end{aligned}
$$

centre for fusion, space and astrophysics

p-model for intermittent turbulence- shows finite range power law avalanches

p-model timeseries shows multifractal behaviour in structure functions as expected

Thresholding the timeseries to form an avalanche distribution- finite range power law Watkins, SCC et al, PRL, 2009, SCC et al, POP 2009
centre for fusion, space and astrophysics

Recurrence, Information Entropy and Correlation

Recurrence and Mutual Information- principles and practice

Recurrence measures

R is a recurrence matrix
$\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{N}$, with $\boldsymbol{x}_{i} \in \mathcal{R}^{n}$ of a dynamical system and are based on the matrix

$$
\begin{equation*}
R_{i, j}^{(\varepsilon)}=\Theta\left(\varepsilon-\left\|x_{i}-\boldsymbol{x}_{j}\right\|\right), \quad i, j=1, \ldots, N \tag{1}
\end{equation*}
$$

where ε is a predefined threshold and $\Theta(\cdot)$ is the Heaviside function. Then the value " 1 " is coded as a black dot and the value " 0 " as a white dot in the plot. Hence, one obtains an $N \times N$ matrix which provides a visual impression of the system behavior.

$$
\hat{P}^{(\varepsilon)}(\tau)=\frac{\sum_{i=1}^{N-\tau} \Theta\left(\varepsilon-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{i+\tau}\right\|\right)}{N-\tau}=\frac{\sum_{i=1}^{N-\tau} R_{i, i+\tau}^{(\varepsilon)}}{N-\tau}
$$

Normalize..

$$
C P R=\left\langle\bar{P}_{1}(\tau) \bar{P}_{2}(\tau)\right\rangle /\left(\sigma_{1} \sigma_{2}\right)
$$

Solar wind driving of space weather- March, SCC et al, (2005)
2 coupled nonlinear oscillators (left) plus noise (right)
After Romano et al Eur Lett (2005)

THE UNIVERSITY OF WARWICK

Information and Mutual Information

- A given signal can be thought of as a sequence of symbols that form an alphabet.
- Signal has alphabet $X=\left\{x_{1}, x_{2} \ldots x_{i}\right\}$
- Each symbol in the alphabet has a probability of occurrence

$$
P\left(x_{i}\right)=\frac{n_{x_{i}}}{N}
$$

centre for fusion, space and astrophysics

Information and entropy

- A signal (X) carries a certain amount of information expressed as an entropy $H(X)$ in the order of its symbols $\left\{\mathrm{x}_{\mathrm{i}}\right\}$

$$
H(X)=-\sum_{i} P\left(x_{i}\right) \log _{2}\left(P\left(x_{i}\right)\right)
$$

- $\log _{2}=>$ binary units
- We assume the relation

$$
0 \times \log _{2} 0=0
$$

Mutual Information

- Entropy can also be defined for joint probability distributions

$$
H(X, Y)=-\sum_{i j} P\left(x_{i}, y_{j}\right) \log _{2}\left(P\left(x_{i}, y_{j}\right)\right)
$$

- Mutual Information compares the information content of two signals

$$
\begin{aligned}
& I(X ; Y)=\sum_{i j} P\left(x_{i}, y_{j}\right) \log _{2}\left[P\left(x_{i}, y_{j}\right) / P\left(x_{i}\right) P\left(y_{j}\right)\right] \\
& I(X ; Y)=H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

Timeseries

Mutual Information

The Ising Model- phase transition

- Matsuda et al (1996):
- Ml peaks at the phase transition and is robust to coarse graining

centre for fusion, space and astrophysics

Competition between order and disorder

Rules: random fluctuation plus 'following the neighbours'
$\mathbf{x}_{n+1}^{k}=\mathbf{x}_{n}^{k}+\mathbf{v}_{n}^{k} d t, \quad\left|\mathbf{v}_{n}^{k}\right|$ constant
$\theta_{n+1}^{k}=\left\langle\theta_{n}^{k}\right\rangle_{k \cap R}+\delta \theta, \delta \theta=[-\eta, \eta]$ iid random variable
order parameter: total speed $\frac{1}{N}\left|\sum_{i=1}^{N} \mathbf{v}_{i}\right|$

Vicsek bird model
centre for fusion, space and astrophysics

The Vicsek Model

Dynamical rules for each particle:

$$
\begin{aligned}
x_{n+1} & =x_{n}+\vec{v} \delta t \\
\theta_{n+1} & =\left\langle\theta_{n}\right\rangle_{R}+\delta \theta_{n}
\end{aligned}
$$

Order parameter and susceptibility:

$$
\begin{aligned}
& \phi=\frac{1}{N v_{0}}\left|\sum_{i=1}^{N} \underline{v}_{i}\right| \\
& \chi=\sigma^{2}(\phi)=\frac{1}{N}\left(\left\langle\phi^{2}\right\rangle-\langle\phi\rangle^{2}\right)
\end{aligned}
$$

The Vicsek Model

The Vicsek Model

- Mutual information is calculated between position and angle of motion for a snapshot.
- MI for each dimension is the averaged to give total.
- This is done for 50 realisations of the model.

$$
\begin{aligned}
I(X, \Theta) & =\sum_{i, j} P\left(X_{i}, \Theta_{j}\right) \log _{2}\left(\frac{P\left(X_{i}, \Theta_{j}\right)}{P\left(X_{i}\right) P\left(\Theta_{j}\right)}\right) \\
I(Y, \Theta) & =\sum_{i, j} P\left(Y_{i}, \Theta_{j}\right) \log _{2}\left(\frac{P\left(Y_{i}, \Theta_{j}\right)}{P\left(Y_{i}\right) P\left(\Theta_{j}\right)}\right) \\
I & =\frac{I(X, \Theta)+I(Y, \Theta)}{2}
\end{aligned}
$$

The Vicsek Model

\qquad

The Vicsek Model

Wicks, SCC et al PRE (2007)

'real world'- follow only a few particles

- 10 particles chosen at random.
- Time series of 5000 steps used.
- MI calculated between each particle's X position and X velocity for 500 step sections
- Compared to susceptibility for same sections.
(assumption: Vicsek model is ergodic)

centre for fusion, space and astrophysics

Follow only a few particleslinear measure

- Average cross correlation between the same 10 particles.

End

See the MPAGS web site for more reading...

centre for fusion, space and astrophysics

