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Abstract 

Terahertz radiation has many uses in a broad range of fields including medicine and 

healthcare security, earth science, production monitoring and astronomy. The use of 

terahertz in many of these applications has been precluded by the lack of an 

inexpensive source that can operate without cryogenic cooling. If a Si-based 

terahertz quantum cascade laser could be developed, it is a likely candidate to fill this 

role. It is possible that the largest challenge facing the development of a Si-based 

quantum cascade laser is that of the demand requiring epitaxial growth. The main 

achievement of this study is the growth of challenging n-type Ge/Si1-xGex 

superlattice structures which are intended for terahertz emission. Comprehensive 

materials characterisation is presented for the structures. The final structures have 

been sent to collaborators for further characterisation and to be processed into 

devices. The results of which will be used to optimise future growth of Si-based QCL 

structures. The effects of the low temperature used in the growth of the QCL 

structures on the critical thickness is investigated and Si0.4Ge0.6/Si layers grown far 

beyond the critical thickness predicted by theory are presented. These layers have 

applications in electronic devices such as field effect transistors (FETs). 

 

The fabrication and characterisation of flat, single crystal Ge membranes is 

presented. The strain, membrane thickness, crystalline tilt and crystalline quality are 

determined by micro-diffraction, performed on the membranes at Beamline B16 at 

the Diamond Light Source. These membranes are shown to be of high crystal quality 

which gives them many applications, including as a possible platform for Si-based 

quantum cascade laser structures.  
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1 Introduction 

1.1 Terahertz Radiation 

Terahertz (THz) radiation describes frequencies of electromagnetic radiation 

between           (0.3 THz), the high end of the millimetre wave band, to 

         (30 THz), the low end of the far-infrared band (Figure 1-1).  

Traditionally, terahertz radiation has had little study outside of astronomy and 

analytical science [1], when compared to other regions of the electromagnetic 

spectrum; however, with the recent development of new terahertz sources, a wide 

range of new applications of terahertz radiation are rapidly being developed. In the 

following section, some of the main applications of terahertz radiation are given in 

order to highlight the benefits of the development of cheap, room temperature 

terahertz source. 

 

 

 

Figure 1-1:  Electromagnetic spectrum in Hz showing the location of the terahertz 

region 
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1.2 Uses of Terahertz Radiation 

1.2.1 Medicine and Health Care 

One of the most promising fields for terahertz radiation is in medicine, for both 

imaging and spectroscopy. Unlike X-rays, terahertz radiation does not pose an 

ionization risk to tissue, due to the lower energy of its quanta [2]. When compared to 

visible light and near infrared, terahertz radiation can penetrate much further into the 

body, since its longer wavelengths are less affected by Rayleigh scattering. Pulses of 

terahertz radiation have been detected through up to 1.5 mm of skin. This longer 

penetration depth gives terahertz applications in novel medical imaging techniques. 

The energy of terahertz radiation corresponds to the energy of rotational and 

vibrational transitions of molecules, including hydrogen bonds and so can be used in 

spectroscopy to differentiate between materials. Terahertz radiation is strongly 

attenuated by water, so terahertz imaging is strongly sensitive to tissue water content. 

This sensitivity to water acts as contrast mechanism in terahertz medical imaging.  

 

One of the medical applications of THz radiation is in dentistry, where it is possible 

that it may be able to replace or at the very least support X-rays for imaging. Early 

studies have shown that terahertz pulse imaging can distinguish between the tooth 

enamel and softer tissue can be used for early detection of dental carries [3].  

 

Another medical application of terahertz radiation is in the diagnosis of skin cancer 

[4]. Research has shown that some types of cancer tumour typically have increased 

water content when compared to surrounding tissue. Since water has strong terahertz 

absorption, diseased tissue will exhibit different terahertz properties, such as altered 
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refractive index and absorption coefficient [5].  Ex vivo measurements have been 

performed where terahertz imaging was able to detect basal cell carcinoma, the most 

common form of skin cancer [6]. Regions of increased absorption agreed well with 

the tumour site locations. Due to its penetration depth, terahertz radiation is better 

suited to detecting tumours close to the tissues surface. This is advantageous for 

imaging during surgery for tumour removal, such as in breast-conserving surgery 

where knowledge of the position of the tumour is important to save removing tissue 

unnecessarily. Fitzgerald et al have carried out ex vivo studies into the possibility of 

using terahertz radiation to assist with the removal of breast cancer during an 

operation and have found that the size and shape of the tumour as imaged in the 

terahertz region agrees with other more established techniques. 

 

The development of a cheap, room temperature terahertz source will aid the uptake 

of terahertz radiation in medicine. Medicine is not the only field where terahertz 

radiation can be used for imaging and spectroscopy; it also has applications in 

security. 

 

1.2.2 Security  

In the last 5 years, there has been a significant interest in the use of THz radiation for 

security applications [7]. Terahertz is ideal for detecting concealed weapons since 

non-metallic, non-polar materials are relatively transparent to terahertz, allowing 

imaging of concealed weaponry through clothing, packing material etc. Many 

substances such as certain drugs and explosives have distinct terahertz spectra [8], 

which enables them to be rapidly fingerprinted and identified using terahertz 
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radiation. As previously discussed, since terahertz radiation is non-ionising, its use 

carries a low health risk to both operators and those being scanned by the terahertz 

system. This is in contrast to X-rays which are currently used in many security 

applications, where a health risk due to the ionising nature of X-rays is present. 

 

Relatively intense terahertz sources are needed for security imaging, the power 

required can be estimated [9]. For an array of cells required for imaging, the 

minimum detectable energy of a low-temperature terahertz detecting cell can be 

approximated as ~1 fJ (10
-15

 J) and this is required over a 2D array of pixels 

~100x100 (10
4
). The absorption and terahertz loses in the detection media can be 

approximated as ~10
9 

with a signal to noise ratio
 
of 100. This gives a minimum 

source power of around 1 W. 

 

1.3 Sources of Terahertz Radiaition 

The terahertz spectrum has traditionally been known as the ‘Terahertz Gap’. This 

name comes from the exponential drop in output power from electronic microwave 

sources as their frequency is increased towards the terahertz regime and the 

exponential drop in output power from laser diodes as their frequency is decreased 

toward the terahertz region [10]. The terahertz gap is slowly being filled with devices 

that can output in the terahertz region, with currently available terahertz sources 

summarised in figure 1-2 where the outputs power versus frequency are plotted for 

each. Since the major obstacle to the uptake of applications of terahertz radiation has 

been the lack of cheap, commercially available sources, the development of new 

sources is a topic of active research. In the following sections, more information is 

given on some of the currently available sources of terahertz radiation able to emit 
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with reasonable intensity, with the aim of illustrating the lack of a cheap, room 

temperature terahertz source.  

 

 

Figure 1-2 - Frequency vs output power for terahertz source technologies. Adapted 

from [10]. Original sources of technology output power can be found in references 

[11-27]. 

 

1.3.1 Free Electron Lasers 

Free electron lasers offer the highest output power available from any terahertz 

source, they are also easily tuneable. Operation occurs by sending a beam of 

relativistic electrons through an undulator, which is a side to side magnetic field 

created by arranging magnets periodically with alternating poles. Radiation is 

emitted with the frequency of the electrons oscillation in the undulator [24]. The 

frequency range of free electron lasers extends from microwaves, through the 
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terahertz spectrum to visible frequencies and X-ray. Free electron lasers are capable 

of providing very short pulses of radiation, with the pulse time reducing with 

frequency, with a typical pulse of approximately 2 ps at 1 THz.  Unfortunately free 

electron lasers are both very bulky and expensive due to requiring a source of 

accelerated electrons such a synchrotron. A powerful, but smaller and cheaper source 

of terahertz radiation is the gas laser which is discussed in the next section. 

 

1.3.2 Gas Lasers 

Powerful mid and high terahertz emission can be produced using a gas laser (figure 

1-2). A CO2 laser is used to optically pump a mixture of gases which has vibrational 

states in the THz. While lasers of this kind have existed for decades in research 

laboratories, it is only in the last 10 years that turn-key versions have become 

commercially available [28]. Gases used as gain media in terahertz gas lasers are 

molecular gases such as CH3F, CH3OH, NH3 and CH2F2, with the terahertz radiation 

coming from the rotational transitions of the molecules [29] . Gas lasers are still large 

and expensive, but fortunately, in recent years a powerful solid state source of 

terahertz radiation has been developed, the quantum cascade laser. 

 

1.3.3 III-V Terahertz Quantum Cascade Lasers 

It can be argued that quantum cascade lasers (QCLs) are the only practical solid state 

terahertz source, small and inexpensive when compared with other sources, with 

optical power output sufficient for terahertz imaging applications. QCLs operate by 

intersubband transitions in a multiple quantum well semiconductor structure repeated 

many times to form a superlattice. This is in contrast to a standard semiconductor 
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laser in which emission comes from a p-n junction where electrons and holes 

recombine.  

 

Since the demonstration of the first working terahertz QCL demonstrated by Köhler 

et al. in 2002 from a AlGaAs/GaAs heterostructure [30], there have been many 

technological advancements. Output power and operating temperature have both 

increased and coverage of the entire terahertz spectrum has improved. At the time of 

writing, the most powerful III-V terahertz QCL has been demonstrated by the 

University of Leeds, with an output power in excess of 1 W [31]. The device uses a 

AlGaAs/GaAs heterostructure, emits at ∼3.4 terahertz and has a maximum operating 

temperature of 123 K. Unfortunately, III-V terahertz QCLs still require cryogenic 

temperatures to operate and are difficult to integrate into existing facilities for mass 

fabrication. A possible method for increasing the operating temperature of QCLs and 

making them easy to integrate into mass fabrication facilities is to develop a Si based 

QCL. 

 

1.4 Si terahertz quantum cascade lasers 

Si is by far the most commonly used semiconductor in microelectronics, with Si 

technology dominating. For this reason, the integration of a semiconductor laser with 

Si has been a long standing goal, facilitating the combination of optical and 

microelectronic components on the same die. Si has an indirect band gap and so it 

cannot be used for a conventional semiconductor laser. For QCLs, a direct band gap 

is not a necessity (QCL operation is discussed in section 2.1.2) and so the 

development of a Si QCL is a possibility for a Si based laser. 
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Si offers many potential advantages over III–V technologies, especially in the 

terahertz frequency range.  The thermal conductivity of Si substrates is roughly three 

times that of III–V substrates, with the bulk thermal conductivity at 300 K for Si  

              [32] and                for GaAs [33]. The higher thermal 

conductivity substrate is advantageous in that it can easily dissipate excess heat. Si 

also offers mature processing techniques and is compatible with existing facilities for 

mass fabrication 

 

Si offers significantly higher operating temperatures for terahertz QCLs since, as 

opposed to III–Vs, Si is a non-polar material; this is due to the nature of the IV- IV 

bond. In non-polar semiconductors, polar optical phonon scattering is negligible 

when compared with polar semiconductors. This reduced polar optical phonon 

scattering gives greatly enhanced intersubband lifetimes in SiGe, which have been 

measured experimentally [34]. For a Ge/SiGe QW system, it is shown that the 

relaxation time is greater than 10 ps, including for transition energies above the Ge 

optical phonon energy up to 300 K. This is an improvement of at least an order of 

magnitude over GaAs, for which phonon scattering dominates the intersubband 

lifetimes above 40 K [35], giving Si based terahertz QCL devices the possibility of 

higher operating temperatures than III–V based terahertz QCL devices. 

 

Despite the many advantages that constructing a terahertz QCL from a Si based 

heterostructure could bring, to date, no Si based QCL has been realised, with all 

structures produced so far exhibiting gain below the threshold required for lasing. 

The aim of this study is to work toward a lasing Si based laser structure, with a focus 
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on the growth of n-type Ge/Si0.15Ge0.85 superlattice designs for terahertz emission (for 

reasons discussed in section 2.1.4). For QCL operation, it is necessary to create an 

optical cavity, and one of the most effective ways to do this for a terahertz QCL 

involves the removal of the substrate from the laser, leaving just the active region. 

The removal of the substrate from a Ge layer creating a Ge suspended membrane is 

discussed in the next section, both in the context of the development of a Si based 

QCL optical cavity and also more general applications.   

 

1.5 Suspended Ge membrane Structures 

In the context of realising a Si based QCL structure, Ge membranes can bring two 

advantages. For QCL operation, it is necessary to create an optical cavity using a 

waveguide.  The optical cavity/waveguide is designed to confine the optical mode in 

the vertical direction with a low loss, surrounding the active region and providing 

feedback of the laser light. Two kinds of waveguide are commonly used for terahertz 

lasers, the single plasmon waveguide and the more recent double-metal waveguide 

which offers better high temperature performance [36,37]. The single plasmon 

waveguide is constructed by sandwiching the active region between a highly 

conducting layer, such as a metal and a dielectric, such as a semiconductor. If the 

imaginary part of the refractive index of the conducting layer is bigger than both the 

real part and that of the dielectric, then electron waves known as plasmons will be 

created at the interface between the materials and propagate along the interface. The 

double-metal waveguide is constructed by depositing single plasmon waveguides 

directly above and below the active region. This is obviously more complicated to 

construct than the single plasmon waveguide since it requires the substrate to be 
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removed from the back of the active QCL region, to provide access to the rear of this 

region, and difficult metal bonding. The Si-based QCL structures to be presented in 

this work use virtual substrates as a platform for growth, which begin with a layer of 

Ge-on-Si. If this Ge-on-Si layer which supports the QCL structure is fabricated into a 

membrane, and possibly given an additional etch to remove the virtual substrate, a 

suspended QCL structure will remain that is ideal for the fabrication of a double-

metal waveguide since it is exposed from both sides.  

 

Semiconductor membranes are one of the basic micro-electro-mechanical systems 

(MEMS) components. Their many applications include capacitive pressure sensors 

[38,39], gas flowmeters [40], high performance tactile imagers [41], micropower 

thermoelectric generators [42] and mirrors for optical sensor applications [43]. Single 

crystal Si membranes have been reported, with thicknesses as low as 10 nm and areas 

around 1 mm
2 

[44]. While Si membranes have been the subject of much research, 

relatively little work has been done on Ge membranes. High quality, easy to produce 

Ge membranes can find uses in applications that currently use Si membranes, due to 

the different mechanical and electrical properties offered by Ge. Also, the additional 

functionality that epitaxial Ge-on-Si brings to the Si platform (such as Ge-on-Si 

photodetectors [45], optoelectronic modulators [46], lasers [47] and solar cells [48]) 

could benefit from high quality, easy to produce Ge membranes.  High quality layers 

of III-V materials can be grown on Ge-on-Si [49], these layers could be turned into 

membranes by adapting the Ge membrane process.  
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1.6 Summary 

Terahertz radiation has a wealth of application which can benefit from the 

development of a cheap, practical, room temperature source of terahertz radiation. 

Currently, the most practical terahertz source is the III-V terahertz QCL. If a Si-

based terahertz QCL could be demonstrated, it would offer many potential 

advantages over its III-V based counterparts. In order for a Si-based terahertz QCL to 

lase, it will require an optical cavity/waveguide - the basis for this could be a 

suspended Ge membrane structure. 

 

In this work, progress is made towards the demonstration of a Si based QCL with the 

growth of high Ge content n-type Si based QCL structures. These structures will be 

fabricated into devices by collaborators, which when tested, should exhibit 

electroluminescence and possibly lasing. Even if these structures do not function as 

lasers, then the knowledge gained from their materials characterisation can be fed 

into the design of future Si based QCL structures. Work on suspended Ge membrane 

structures is also presented, which has applications in the construction of the optical 

cavity/waveguide for a Si based QCL. 
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2 Theoretical Discussion 

In this chapter the theory which is relevant to the rest of this study is discussed. The 

theory behind QCL operation is first given and then progress of p-type and n-type Si 

QCLs reported on. N-type Si terahertz QCLs, the most likely candidate for a Si-

based QCL are discussed. Background theory for the growth of single crystal 

superlattice structures required for QCL operation is then given. This includes the 

basic properties of silicon, germanium and SiGe, the theory of epitaxial growth, 

precursors and chemical reactions, dislocations, critical thickness, diffusion, 

segregation and virtual substrates. 

 

2.1 Quantum cascade lasers 

2.1.1 Interband laser operation 

It is helpful to first understand the operation of the standard interband semiconductor 

laser diode before that of the intraband laser, the QCL. If an incident photon has 

energy near that of the separation between energy levels,           (figure 2-1), 

then it can strongly interact with the electrons in these levels. The interaction 

depends on the initial state of the electron. If the electron lies in the lower energy 

level,    (figure 2-1), then the photon can be absorbed and the electron excited to the 

upper energy level   . If the electron occupies the upper energy level,    (figure 2-1) 

then the photon causes the electron to drop to the lower energy level,   , and a new 

photon is emitted. The emitted photon has a time and phase relation to the incident 

photon and so the two photons are highly coherent. This process is known as 
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stimulated emission. When a system is in thermodynamic equilibrium, there will 

always be fewer electrons in the lower energy level than in the higher energy level, 

so the majority of incident photons are absorbed as they travel through the system.  

 

 

Figure 2-1 - Photon interacting with excited electron to give stimulated emission 

 

In a laser the electrons are pumped into the higher energy level, this is achieved 

either by an electric current or an external light source. The situation where more 

electrons exist in the higher energy level than the lower energy level is known as 

population inversion. Due to the population inversion, when photons travel through 

the system, stimulated emission occurs more frequently than absorption resulting in 

light amplification and the production of coherent light.  

 

For a standard interband laser diode, the electrons are pumped into the conduction 

band and the optical transition occurs in the energy bandgap between the conduction 

and the valence band. Since this transition is between bands it is known as an 

interband transition and its energy is limited to the range of energy bandgaps 

available in semiconducting materials. Quantum well (QW) lasers have also been 

developed where layers of different semiconducting material (having different 

energy bandgaps) create a potential well in the conduction band that traps electrons. 

Since the QW is narrow, the electrons can only occupy quantised energy subbands 
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inside it. The energy between the lowest conduction subband and the highest valence 

subband minima can be changed by varying the size of the QW giving a tuneable 

emission frequency, however the bandgap of the semiconductor still places a low 

frequency limit on the emission from the laser. A way to remove the limit placed by 

the bandgap on the emission frequency is to utilise QCLs, which are described in the 

next section. 

 

2.1.2 Quantum cascade laser operation 

In QCLs, transitions between subbands are used as opposed to transitions between 

the conduction band and valence band. This allows for low energy transitions and 

hence low frequency laser emission.  

 

The building block of the QCL is the QW. Semiconductor QWs are one dimensional 

potential wells of finite depth with wave functions that penetrate into the surrounding 

barriers. For multiple quantum wells, if the barrier thickness is sufficiently reduced, 

the tails of QW wave functions can reach across and experience the potential 

confinement of adjacent QWs. In the most basic case of two identical QWs with a 

thick barrier, the wave functions are the same in each QW and the wells are not 

coupled. As the thickness of the barrier between the two QWs is reduced, the wave 

functions become degenerate in energy with an energy gap between them. This can 

be extended to multiple QWs. The wave functions can be delocalised over many 

QWs with a small emery gap between each, forming a broad energy continuum 

called a miniband. This is important for QCL design. 
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The idea behind QCL operation, was originally proposed by R.F. Kazarinov and 

R.A. Suris in 1971 [50]. This was the use of a staircase of QWs for light 

amplification. The staircase is created by applying an electric field to a multiple QW 

structure. Electrons can cascade down the QWs with a photon emitted at each step. 

Unfortunately, lasing was not observed experimentally from this design. This was 

due to non-uniform uniform electric field formation and the emission of longitudinal 

optical-phonons (LO-phonons). 

 

A benefit of using intersubband transitions in a laser is that that the active region can 

be easily cascaded. Carriers travel from period to period as they cascade through the 

structure. The cascade has two significant advantages. A single carrier has the 

potential to emit a number of photons equivalent to the number of periods in the 

cascade, increasing the devices efficiency. Also, less population inversion is required 

per period for a cascade, since the gain is occurring over a larger area. This gives a 

lower threshold current for the device. 

 

Despite the many challenges, the use of a biased superlattice for light amplification 

has gone on to be the foundation of the QCL. Lasing in QCLs has been achieved by 

using multiple coupled QWs to form a miniband in each period of the active region 

as opposed to the single QW that was used in each period of the early biased 

superlattices intended for light emission. This is the reason behind the complex 

designs seen in QCL structures. 

 

The QCL period can be split into the following regions, an active region, where light 

is emitted by an optical transition between subband energy levels and a 
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injector/extractor region which is responsible for quickly extracting the electrons 

from the lowest lasing level in the active region and injecting them into the top of the 

next active region. These regions are illustrated in figure 2-2. It is important that that 

correct electric field is applied to a QCL structure to give the band-alignment 

required in the regions for radiative transitions in the active region. 

 

Figure 2-2 - Simplified schematic diagram of regions in a QCL structure period. The 

energy levels indicated all lie within the conduction band. Adapted from [51] 

 

Intersubband emission was first observed in 1988 in the terahertz spectrum from a 

GaAs/AlGaAs superlattice grown by organometallic chemical vapour deposition 

[52]. Due to the many challenges present in fabrication a functioning QCL, it was not 

until 1994 that lasing was observed in a quantum cascade structure, at Bell Labs at a 

frequency of 75 THz [53] by Faist et al.  This was achieved in a AlInAs-GaInAs 

superlattice grown by MBE.  The active region in this design utilised fast optical 

phonon (LO-phonon) scattering to quickly remove carriers from the lowest lasing 

level. In 1997, a new bound-to-continuum (BTC) QCL active region design was 

presented [54]. In this structure, the laser transition is between two minibands and the 

rapid carrier scattering within a superlattice is utilised to give population inversion.  
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Figure 2-3 - Schematic diagram of the relevant levels and injection efficiencies in a 

cascade laser. Adapted from [55] 

 

For a QCL, gain,  , is proportional to the population inversion,    , that exists 

between the upper radiative state,     and the lower radiative state,    . If, as is 

shown in figure 2-3, a fraction    of the current flow is injected into the upper state 

of the active region and a fraction    into the lower state, the gain can be described 

by equation 2-1 [56], where       are the total lifetimes,     the intersubband 

scattering time between the     and      states and   the transition cross 

section. 

 

       
 

  
(    (  

  

   
)      ) 2-1 

It can be seen from equation 2-1 that the gain of the laser is strongly dependant on 

the efficiency of the injector region and the ratio of the lifetimes. If the injector 

region is efficient, a large fraction of the carriers is injected into the upper state, 

creating a large population inversion. Also, if the carriers have a long lifetime before 

being non-radiatively scattered between the upper and lower states, and a short 

lifetime before being removed from the lower state, a large population is created. A 

QCL design must aim to maximise       -        and minimise 
  

   
 if it is to give a 
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reasonable gain. Since the injection efficiencies and lower state lifetimes are difficult 

to both predict and measure [55], equation 2-1 is not ideal for predicting device gain, 

however it is useful in explaining the different strategies employed in QCL design. 

 

The two QCL designs which have come to be accepted as the most successful in the 

THz regime GaAs QCLs [10] are the bound-to-continuum and the phonon 

depopulation design. Bound-to-continuum designs use radiative transitions between 

an isolated state and a miniband. The miniband both quickly depopulates the lower 

laser level by electron-electron scattering and then acts as an injector into the single 

bound state. The efficiency of the injection into the upper radiative subband is 

intended to be maximised by this design [56]. In the phonon depopulation design fast 

electron–optical-phonon scattering is utilised to depopulate the lower laser level 

[14,57].  

 

An example of the simulated bandstructure in a bound-to-continuum Si/Si0.15Ge0.85 

QCL design is given in figure 2-4 for the L-valley (conduction band minima at the L-

symmetry point of the Brillouin zone [192]). The design has been calculated by Dinh 

et al [60] using a density matrix method which includes coherent transport and 

electron scattering effects.  
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Figure 2-4 – Example of bound-to-continuum Ge/Si0.15Ge0.85 QCL design adapted 

from [59]. The simulated conduction band profile and electron wavefunctions are 

shown for two periods of the structure. The design has a repeating period of 6 QW’s, 

with thicknesses (in nm) from the left of the figure of 

5.0/1.2/14.3/1.3/12.9/1.6/7.9/1.8/7.1/2.5/7.8/4.3 where the italic font represents 

Si0.15Ge0.85 barriers, the standard font Ge QW’s and the underlined sections regions 

doped at 8 x 10
18 

cm
-2

. The wave functions in bold lines are the upper laser states and 

the wavefunctions in dotted lines the lower laser states. 

 

The lasing transition in figure 2-4 is between the two states in the widest quantum 

well, the main QW, with a frequency of 4 THz. The barrier to the left of the main 

QW is known as the injection barrier, since it is the main factor in determining the 

injection efficiency into the upper radiative subband in the main QW. A miniband is 

formed by the wave functions from the QWs between the main QWs. Due to the 

lattice mismatch of Si and Ge, a structure of this kind must be grown on a virtual 

substrate (discussed in section 2.5). 
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2.1.3 Si QCL Material Configurations 

When deciding the best material system with which to construct a QCL, the 

following parameters must be considered; the band structure of the material, electron 

effective mass m*, mobility and most importantly (and the subject of this work) the 

ease with which the structure can be grown to the operating tolerances of the design. 

 

Since QCL operation relies on quantum mechanical tunnelling, the effective mass is 

an important parameter. For an electron with energy   impinging on a barrier with 

height      and width  , the transmission coefficient   can be approximated by 

equation 2-2 [58]. 

  
   

   
 

[  √          
 

 ]
 2-2 

From equation 2-2 it can be seen that the quantum mechanical tunnelling coefficient 

decreases exponentially with effective mass, so low effective mass is required for 

QCLs to give sufficient tunnelling between states for operation. Larger effective 

masses can be compensated for by reducing the barrier thickness, however this can 

cause difficulties with growth due to the very high tolerance needed for growth of 

thin barriers. 

 

A number of different material configurations have been explored in the Ge/Si 

material system. The predicted peak optical gain per unit length for different material 

configurations is given in figure 2-5 for bound-to-continuum QCLs. For lasing to be 

achieved, the gain must be greater than the waveguide losses, which are illustrated by 

the dashed yellow line in figure 2-5. This lasing threshold is reached when the gain 

provided by the active region is balanced by the cumulative losses for a round trip of 
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light in the optical cavity of the QCL. If the gain is below this threshold, the optical 

output will be dominated by spontaneous emission as opposed to stimulated emission 

and only electroluminescence (EL) will be observed. It can be seen that the Si-based 

system with the largest simulated gain is the n-type Ge/SiGe cascade laser with high 

Ge content barriers grown on (001) substrates. Since a low effective mass is an 

important consideration when choosing a material system for a QCL, tunnelling 

effective masses (m*) for the relevant lowest subband states are given for different 

material configurations are given in table 1. For a comprehensive review on Si-based 

QCLs see Paul [10].  

 

 

Figure 2-5 -  The predicted maximum gain vs. current density (at peak gain) for 

bound-to-continuum QCLs fabricated from diferent Ge/Si materials systems. Where: 

"n-Si (001)" and "n-Si (111)" represents n-type Si/SiGe csascades with Si-rich alloy 

barriers, grown on (001) and (111) substrates respectively; “p-Si” represents p-type 

Si/SiGe cascades with Ge-rich barriers grown on (001) substrates; “n-Ge” represents 

n-type Ge/SiGe cascades with high Ge content barriers grown on (001) Si substrates. 

For comparison, simulation results are also shown for GaAs/AlGaAs bound-to-

continuum cascades. Simulations were performed using a self-consistent rate 

equation model. Figure adapted from [59]. The dashed yellow line corresponds to the 

minimum waveguide losses, above which, devices should produce lasing. 
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Material system Ground state m* 

n-GaAs (001) 0.067 m0 

p-Si0.7Ge0.3 (001) 0.35 m0 

p-Si0.2Ge0.8 (001) 0.16 m0 

p-Ge 0.284 m0 

n-Si (001) 0.93 m0 

n-Si (111) 0.26 m0 

n-Ge 0.113 m0 

Table 1 - Tunnelling effective mass (m*) for the relevant lowest subband state. 

Adapted from [10] 

 

2.1.4 Previous SiGe QCLs (p-type Si QCLs) and n-type Si QCLs 

The prevalent Si-based QCL design demonstrated to date has been p-type. In p-type 

QCLs, hole transitions in the valence band are used for operation. The preference for 

p-type comes from holes having a lower effective mass than electrons in the 

tunnelling direction for the  -valley (conduction band minima at the  -symmetry 

point of the Brillouin zone [192]) for Si-like band structures (for Si1-xGex, x<0.85, 

the lowest valleys exist in the   directions and so the majority of the electron 

population lies here). The high segregation of n-type dopants in Si1-xGex when 

compared to p-type dopants also made p-type designs more attractive. Examples of 

p-type Si-based QCL structures are given in [61-63], for mid-infrared emission and 

for THz in [19,64,65].  
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All p-type designs so far have produced a relatively low level of gain, below the 

minimum waveguide losses which must be exceeded for lasing. This is mainly due to 

extreme sensitivity of p-type designs to small deviations in grown thickness, leading 

to states being misaligned and also due to the relatively large effective mass which 

limits the gain. 

 

Past research has generally focused on p-type Si based QCL designs instead of n-

type. This is partly due to p-type designs requiring high Ge composition Si1-xGex 

structures with pure Ge quantum wells, for which the growth technology is 

comparatively immature when compared to that for low Ge composition Si1-xGex. It 

is also due to the negligibly small conduction band offset of ~10 meV, which is most 

likely to be too low for a functioning QCL device. For comparison, a typical value 

for the conduction-band offset in AlGaAs terahertz QCLs is around 130 meV. 

However, recent work on n-type Si based QCL designs have shown these to be very 

promising, with the potential for high gain devices. 

 

In references [66] and [67] an n-type structure with pure Ge QWs grown on a 

Si1-xGex  virtual substrate with a final composition of x ≥  0.85 is proposed by 

Driscoll and Paella. The structure uses the L-valleys (for Si1-xGex, x<0.85, the lowest 

valleys exist in the L-directions and so the majority of the electron population is in 

this valley) of the Ge QWs for operation, which as can be seen in Table 1 have a 

relatively low effective mass, which is ideal for QCL operation. In [68] it is shown 

that the maximum usable energy range of ~90 meV is available if a Ge fraction of 

0.85 is used for the barriers. As can be seen in Figure 2-4, simulation of n-type QCLs 

with Ge QWs predicts high gain - above all other Si-based materials systems and 
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almost on a par with GaAs/AlGaAs devices. This makes n-type designs the most 

likely candidate for a Si-based QCL. The design and growth of an n-type Si based 

QCL requires good knowledge of the properties of Si/Ge/Si1-xGex material system, 

the basics of which are described in the next section.  

2.2 Basic Properties of Silicon Germanium 

Silicon and germanium both share the same crystal structure, that of the diamond 

lattice. The diamond lattice is comprised of two face centred cubic lattices, displaced 

by a quarter of the diagonal across the cube. The unit cell contains 8 atoms with each 

atom bonded to four nearest neighbour atoms (figure 2-6) by covalent bonding. The 

distance between each atom and its nearest neighbours is √      ⁄  , where a is the 

lattice parameter. 

 

 

 

Figure 2-6 - Diagram of face centred diamond cubic crystal structure. Bonds between 

atoms are given by thick black lines and an is the lattice parameter. 

 

 

When unstrained, the lattice exhibits cubic symmetry and an=ax=ay=az. Silicon has a 

bulk lattice parameter       of 5.43102 Å [69] and germanium has a bulk lattice 
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parameter       of 5.6579 Å [69]. The silicon and germanium lattice parameters 

have a 4.17% mismatch. Lattice mismatch      can be calculated from equation 2-3, 

where    is the substrate lattice parameter and    the lattice parameter of the layer. 

   
             

  
   

2-3 

 

Vegard’s law states that the lattice parameter of a solid varies linearly with 

composition. For a relaxed SiGe alloy, the variation in lattice parameter with 

composition is accurately fitted with the corrected-Vegard’s law, equation 2-4, which 

was experimentally derived by measuring the alloy lattice parameter by X-ray 

diffraction and the alloy composition by Rutherford Backscattering [69]. 

  

xxxaxaa GeSiGeSi xx
02733.002733.0)1( 2
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
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The phase diagram for SiGe is given in figure 2-7. The diagram was initially 

calculated by Stöhr and Klemm [70] and has been refined in references [71] and [72]. 

It can be seen from figure 2-7 that the liquid and solid states have a large gap of 

coexistence. For a given temperature, the compositions of the solid and liquid phases 

are different, for example at 1200 
o
C the solid is ~33% Ge while the liquid is ~64% 

Ge. This explains why the conventional Czochralski technique is unsuitable for the 

production of bulk SiGe. As the SiGe solidifies, the melt is depleted in Si, changing 

the alloy composition of the growing crystal [73]. The growth interface can also be 

destabilised by the variation in alloy composition [73].  
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Figure 2-7 -  Liquidus-solidus for Si1-xGx adapted from [74]. Blue lines are from [71] 

and crosses and circles from [72], [70] respectively. 

 

 

In Table 2, the properties for bulk Si and Ge are given, along with those for Si1-xGex. 

A crystal growth technique is needed to produce the complex superlattice structure of 

a QCL whilst remaining a single crystal, such that crystal defects and dislocations 

that would lead to non-radiative recombination are eliminated. Single crystal growth 

is the subject of the next section.  
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 Silicon (Si) Germanium (Ge) Si1-xGex 

    

Lattice parameter 

(Ǻ) [69]  

 

5.43102 5.6579 2-4 

Elastic constants 

(GPa) [75] 

   

C11  165.8 128.8           

C12 63.9 48.3            

C44 79.6 66.8  

Poisson Ratio ((100) 

Orientation) [75] 

0.28 0.26 0.28-0.02x 

Melting point 

(K)[76] 

1687 1210 Figure 2-7 

Linear thermal 

expansion coefficient 

(k
-1

) [76] [75] 

2.92x10-6 (293 K) 5.9x10-6 (300 K)                  
(x <0.85, 300 K) 

 

                   
(x >0.85, 300 K) 

   (2.6+2.55x) x 10-6 

Density at 298 K 

(g/cm
3
) [76] 

2.3290 5.3234  

    

Refractive index [77] 

 

(E0=photon energy in 

eV, 0 to ~0.5eV) 

 

(1 terahertz = 0.004 

eV) 

             
  

 

            
 

             

             
  

 

            
 

            

             
  

 

                
        

 

     
             
         

    

Energy band gap 

(eV) [76] 

1.1242 
(between 

             ) (at 
300 K) 

0.664 
(between 

           ) (at 291  
K) 

 

Mobility (cm
2
V

-1
s

-1
) 

[76] 

   

Electrons 1450 (300 K) 3800 (300 K)  

Holes 370 (300 K) 1800 (300 K)  

effective mass (m*) See Table 1 See Table 1  

Table 2 - Properties of bulk Si, Ge and Si1-xGex 
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2.3 Epitaxial growth 

 

Epitaxy is the process of growth of a single-crystal film on a crystalline substrate, 

where the film adopts the crystalline structure and orientation of the substrate. 

Homoepitaxy is when epitaxy is performed with only one material. Heteroepitaxy, 

which will be the basis of this work, is when epitaxy is performed with different 

materials. Methods typically used for epitaxy are molecular beam epitaxy (MBE) and 

chemical vapour deposition (CVD). For all epitaxial growth in this work, CVD was 

used and it is described in depth in the next section. 

 

 

2.3.1 Chemical Vapour Deposition 

 

CVD is growth by chemical process. The semiconductor industry uses CVD as the 

preferred process for the deposition of thin crystalline films. This preference comes 

from CVD’s ability to give fast, reproducible growth with uniformity over large 

wafers. CVD was chosen as the growth technique for this work for a number of 

reasons. CVD growth of Ge/Si1-xGex has a low interfacial roughness when compared 

with other techniques such as MBE [10]. In MBE electron beam evaporation is used 

as the source of Si due to the extreme reactivity of molten Si with the crucible in 

thermal evaporation sources. Electron beam evaporators struggle to provide constant 

growth rates, since the growth rate changes as the source is used up and the amount 

of molten material changes. CVD is able to provide constant growth rates for long 

periods. ‘Spitting’ can also occur in MBE when flakes of Si deposited in the growth 

chamber fall back into the fall electron beam evaporator. Also, any contaminates 
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present in the growth chamber can become charged which can cause deflection 

towards the substrate. 

 

2.3.2 Reduced Pressure Chemical Vapour Deposition 

All epitaxial growth in this study was performed using reduced pressure chemical 

vapour deposition (RP-CVD) with an ASM Epsilon 2000 reduced pressure reactor. 

This is an industry standard growth tool, with many similar systems manufactured by 

ASM installed in commercial semiconductor foundries and fabrication facilities. 

 

Figure 2-8 shows a typical reactor used for RP-CVD. First, precursors and dopants 

are fed into the quartz reaction chamber. The flow rate of precursor/dopant gas into 

the chamber is controlled by mass flow controllers (MFCs). Since the 

precursor/dopant gas flow affects growth rate and doping level, precise control is 

important. The gas then flows over the substrate, which is heated by infrared 

radiation generated by lamps. Temperature is monitored via thermocouples 

underneath the substrate. The reaction chamber is designed to give a uniform flow 

over the entire substrate via adjustment of gas flow and temperature profiles. Finally, 

the remaining gas is vented from the chamber where it is sent to chemical scrubbers 

to remove any dangerous gases from the exhaust flow. Growth by RP-CVD can be 

split into stages, given in figure 2-9. 
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Figure 2-8 - Simplified diagram of RP-CVD reactor 

 

 

Figure 2-9 - Steps of deposition in RP-CVD 

 

 

Precursors and carrier gas transported into reaction chamber where they 
diffuse to the wafers surface 

Decomposition of precursor gas 

Adsorption of precursors to wafers surface 

Reaction occurs at surface 

Crystal film growth occurs, desorption, then diffusion of reaction 
products 

Reaction products are transported out of reaction chamber with carrier 
gas 
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The correct choice of precursor gas is very important when growing a structure by 

RP-CVD since it effects the growth. The precursors used for the growth in this work 

are discussed in the next section. 

2.3.3 Precursors and chemical reactions 

For all epitaxial Si growth, disilane (     ) was used as a precursor. Disilane was 

chosen over silane (SiH4) because it enables faster growth rates at lower 

temperatures (~2 nm min
-1

 at 500
o
C). This is due to the Si-Si bond strength 

(226 kJ mol
-1

) being weaker than the Si-H bond strength (318 kJ mol
-1

) making it 

easier to form sylil, SiH3 [78].  This means growth can be performed with a lower 

thermal budget and use less precursor gas. 

 

Equations 2-5 - 2-8 can be considered the main steps in the deposition of Si with 

disilane for temperatures          [79], where     is a gaseous state,     is an 

absorbed species, X* a chemical species which is bonded to a surface site and * a 

free surface site. 

 

Molecules of disilane are absorbed onto Si(001) according to 

 

                  *. 2-5 

 

 

The sylil then decomposes to silylene and surface hydrogen through 

 

                    2-6 

 

 

The surface then becomes mobile along underlying Si dimer rows, reacting to form 

Si monohydride through  
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                  . 2-7 

 

Finally the remaining hydrogen atoms are desorbed through  

 

                . 2-8 

 

 

For all epitaxial Ge growth in this study, germane (    ) was used as a precursor.  

At approximately 280 
o
C, germane begins to thermally decompose on a surface 

giving Ge deposition [80]. Equations 2-9 and 2-10 can be considered the main steps 

in the deposition of Ge with germane. 

 

                                    2-9 

 

               . 2-10 

 

 

All doping was n-type phosphorus provided by phosphine,    . The initial 

adsorption reaction for phosphine is given by equation 2-8 [81].  

                . 
2-11 

 

 

For exchange of material between the gaseous phase and the solid, crystal phase, a 

number of atomic scale processes occur. These can be split into two categories, the 

processes occurring in the bulk phases and the processes on the substrate growing 
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surface. The processes occurring at the substrate surface are responsible for the 

morphology of the growth. 

 

 

2.3.4 Growth Morphology 

 

Epitaxial growth morphology can be divided into three distinct types , Frank-van der 

Merwe morphology, Volmer-Weber morphology and Stranski-Krastanov 

morphology. The different growth morphologies can be explain using the concept of 

free energies, of the substrate   , interface   ,  and of the layer   , if the assumption 

of thermodynamic equilibrium is used. When the system reaches thermodynamic 

equilibrium, the free energy is at a minimum. Epitaxy is often under dynamic 

equilibrium, but it is still useful to consider the thermodynamic case. 

 

If the free energy of the substrate is larger than that of the combined free energies of 

the interface and layer: 

 

          , 2-12 

 

 

then growth proceeds layer by layer, resulting in a single crystal, 2D flat film 

(figure 2-10). This 2D growth occurs due to the atoms attaching preferentially to 

surface sites and is known as Frank-van der Merwe morphology. 
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Figure 2-10 -  Frank-van der Merwe morphology 

 

 

 

If the free energy of the substrate is smaller than that of the combined free energies 

of the interface and layer: 

 

          , 2-13 

 

 

then growth proceeds in 3-dimensional islands (figure 2-11), resulting in a rough 

surface. This 3D growth occurs due to attractions between adatoms being stronger 

than those between adatoms and the surface and is known as Volmer-Weber 

morphology. 

 

Figure 2-11 -  Volmer-Weber morphology 

 

 

 

Stranski-Krastanov (SK) morphology is a combination of the two previously 

mentioned growth modes (figure 2-12). It commonly occurs when there is a lattice 

mismatch between the growing layer and the substrate. The SK morphology can be 
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split into three stages, initial growth is layer by layer, forming what is known as the 

wetting layer on the substrate. Due to the lattice mismatch between the layer and 

substrate causing strain in the wetting layer, when the film thickness reaches a 

certain point, island growth begins. As growth progresses, the islands begin to 

coalesce. 

 

 

 

 

 

Figure 2-12 - Stranski-Krastanov morphology 

 

 

 

If there is a lattice mismatch between the growing layer and the substrate, it can lead 

to build up of strain in the layer, which can in turn lead to a degradation of the crystal 

quality of the layer through strain relief by dislocation formation. This is discussed in 

the next section.  

2.3.5 Relaxation and Critical Thickness 

If growth is performed on a substrate with a different lattice parameter to the 

epitaxial layer and growth proceeds pseudomorphically (the layer is forced to adopt 

the same out in-plane lattice parameter as the substrate) then strain will build up in 

the layer as the growth thickness increases. The magnitude of the strain is equal to 

the additive inverse of the lattice mismatch,   . The strain will be bi-axial in the 
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growth plane, with the [100] and [010] directions assumed to be equal, giving the in-

plane lattice parameters as      .  For a strained layer, the out-of-plane lattice 

parameter will be tetragonally distorted compared to the in-plane lattice parameter 

(figure 2-13, figure 2-14). The relationship between the in-plane lattice parameters 

and the out-of-plane lattice parameter is given by equation 2-14, where C11 and C12 

are the elastic moduli, the values of which are given for Si, Ge and SiGe in Table 2, 

abulk is the layers bulk lattice parameter, az the lattice parameter in the <001> 

direction and ax the lattice parameter in the <100> or <010> directions.  

 

         
    

   
          . 2-14 

 

 

 

 

 

Figure 2-13 - Epitaxial layer under compressive strain 

 

 

 

[100] 

[001] 
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Figure 2-14 - Epitaxial layer under tensile strain 

 

 

The strain, ε, in a layer with respect to its substrate can be found with equation 2-15, 

where R is the relaxation of the layer,    the in-plane lattice parameter of the layer 

and          is the bulk lattice parameter of the layer. 

 

         
           

  
   2-15 

 

Relaxation is defined by equation 2-16 and is commonly given as a percentage. 

  
     

           
   2-16 

 

[001] 

[100] 
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If the in-plane lattice parameter of a layer is larger than its value in bulk material 

             , the strain is positive (ε>0) and the layer is tensile strained. If the in-

plane lattice parameter of the layer is smaller than the bulk value            , the 

strain is negative (ε<0) and the layer is compressively strained. When the relaxation, 

R, is greater than 100% the layer is described as being over-relaxed and if 

                the layer is tensile strained. Layer relaxation can occur through the 

formation of dislocations. 

 

2.3.6 Defects and Dislocations 

A dislocation represents a defect or irregularity in the structure of a crystal. The 

strain accumulated as the pseudomorphic layer thickness increases can be relieved by 

the formation of dislocations and by surface roughening.  Dislocations can be 

thought of as the termination of a plane of atoms in the crystal lattice and can be 

divided into two main types, edge dislocations and screw dislocations. Edge 

dislocations can be visualised as an extra half plane of atoms inserted into the crystal 

lattice (figure 2-15 a) ). Screw dislocations can be visualised as a cube of crystal 

lattice with a shear stress applied at the top of the cube, such that it has started to rip 

(figure 2-15 b) ).  The ‘ripped’ atoms will have re-established bonds in their new 

position, but atoms in the process of moving will have broken bonds, forming a 

dislocation. The dislocations observed experimentally are generally a mixture of 

these two kinds, edge and screw. 
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Figure 2-15 - Schematic of a) edge dislocation b) Screw dislocation with large black 

arrows showing direction of stress casusing dislocation motion and small arrows 

showing direction of dislocation motion. 

 

The Burgers circuit can be used to define a dislocation. A Burgers circuit is an atom-

to-atom path in a crystal lattice that contains dislocations and completes a closed 

loop [82]. A path of this kind is illustrated in figure 2-16. When the same atom-to-

atom path is made in a perfect crystal lattice containing no dislocations and the 

circuit is unable to close (figure 2-17), then the circuit in the imperfect crystal must 

contain one or more dislocations. The additional vector required to complete the 

circuit is called the Burgers vector, b. The Burgers vector describes both the 

magnitude and the direction of lattice distortion of a dislocation. The energy of a 

dislocation is proportional to the square of the Burgers vector,   . 

 

 

a) 

Direction of 

dislocation motion 

Direction of 

dislocation motion 

b) 
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Figure 2-16 - Burgers Circuit around edge dislocation 

 

 

Figure 2-17 - Burgers circuit from previous figure in a perfect, dislocation free 

lattice. The failure to close the circuit is the Burgers vector, MQ. 

 

The Burgers vector around an edge dislocation is given in figure 2-16. It can be seen 

that the Burgers vector is at a right angle to the dislocation line in figure 2-17. 
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Figure 2-18 - Burgers circuit around screw dislocation 

 

 

 

Figure 2-19 - Burgers circuit from previous figure in a perfect, dislocation free 

lattice. The failure to close the circuit is the Burgers vector. 
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The Burgers vector around a screw dislocation is given in figure 2-18. It can be seen 

that the Burgers vector is parallel to the dislocation line (figure 2-19). If a dislocation 

is combination of edge and screw, then the dislocation line will lie at an arbitrary 

angle to its Burgers vector and the dislocation is said to be mixed in character.  

 

Since a dislocation causes a distortion of the crystal lattice, if a body contains a 

dislocation it will have additional strain energy. The total energy contained in a 

mixed dislocation is given by the sum of its screw and edge components. The total 

energy per unit length of a mixed dislocation is given by equation 2-17. For an 

explanation and derivation of 2-17 the author recommends the book by Hirth [83]. 

 

   
              

        
[   (

  

 
)]  

2-17 

 

 

2.3.7 Dislocations in the SiGe system 

For lattice mismatched SiGe on Si(001), strain relaxation occurs mainly through the 

formation of misfit dislocations with a Burgers vector of     
 

 
      , where 

the 60 refers to the dislocation orientation. These dislocations are oriented at a 60
o 

angle with the <110> direction and are hence known as 60
o 
dislocations. Edge misfit 

dislocations can also be formed, with a Burgers vector of       
 

 
      . 

These dislocations are oriented at a 90
o 
angle with the <110> direction and are hence 
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referred to as 90
o 

dislocations. The fraction of 90
o 

dislocations
 
increases with the 

lattice mismatch in the system and the degree of stress relaxation [84].  

 

Dislocation motion can be divided into two basic types, glide motion and climb 

motion [82].  In glide motion, the dislocation moves in the surface containing both its 

line and Burgers vector. The glide of many dislocations in a crystal causes slip, 

which is the most common form of plastic deformation in crystalline solids. The 

glide planes for Si, Ge and SiGe are the [111] planes (figure 2-20). 

 

Slip can be visualised as the sliding of one plane of atoms over another. The 

favoured plane for slip is known as the slip plane and is generally the plane with the 

highest density of atoms. This occurs because in the plane with the highest atomic 

density, the distance between atoms is on average shorter than in other planes. Slip 

occurs in the direction with the highest linear density of atoms. The slip planes are 

the same as the glide planes for Si, Ge and SiGe, [111] (figure 2-20). 

 

In climb motion, the dislocation moves out of the glide surface normal to its Burgers 

vector, however there is a higher energy barrier for dislocation climb over dislocation 

glide for the SiGe system, thus strain relaxation proceeds by the glide of 60
o 

dislocations. Dislocation glide is thermally activated and thus can be supressed at 

low temperature. 
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Figure 2-20 - [111] glide plane for Si, Ge and SiGe (red) overlaid on unit cell. On 

this [111] plane dislocation motion occurs. 

 

2.3.8 Dislocation nucleation and critical thickness 

During epitaxial layer growth, assuming a lattice mismatch between the layer and 

that the substrate, strain energy increases proportionally to the layer thickness. The 

strain energy cannot increase beyond a certain point before the layer begins to relax. 

The relaxation occurs by the introduction of dislocations at the layer/substrate 

interface and by an increase in the surface roughness of the layer. 

 

For a cubic, biaxially strained pseudomorphic layer which is allowed to relax 

according to the Poisson ratio, the areal elastic energy density       is given by 

equation 2-18 [85]. 

Here   is the strained layer thickness,   is the shear modulus,    the in-plane strain 

parallel to the interface and   is the poisons ration of the layer. It can be seen that 
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      increases linearly with the layer thickness and quadratically with   , which is 

given by the lattice misfit for the strained layer. 

 

For plastic relaxation by the introduction of dislocations, strained epitaxial layers 

have a certain critical thickness, beyond which the layer begins to relax. Critical 

thickness for a strained layer was first discussed by Frank and van der Merwe in 

1949 [86] for one dimension.  This led to the development of the most commonly 

cited critical thickness model by Matthews and Blakeslee [87]. 

 

2.3.8.1 Matthews and Blakeslee model for critical thickness 

The Matthews and Blakeslee (MB) model gives a value for critical thickness by 

balancing the effective stress acting on a pre-existing threading dislocation against 

that of the line tension in the dislocation. This model makes the assumption that the 

threading dislocations are present in the layer before strain relaxation begins. When 

the force on the threading dislocation,   , is sufficient, the threading dislocation will 

glide to relieve strain, forming a misfit dislocation. This is shown in figure 2-21. 
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Figure 2-21 Matthews-Blakeslee model for the generation of misfit dislocations. 

Cross-sectional diagram of substrate/layer showing forces acting on a threading 

dislocation during glide. 

 

The strain energy,   , relieved by a dislocation is given by equation 2-19 where   is 

the layers stress, A is the area of the slipped plane perpendicular to the strain 

direction  and      the effective Burgers vector of the dislocation. The effective 

Burgers vector is the component of the Burgers vector in the interface plane in the 

direction perpendicular to a misfit dislocation [88], defined as               , 

where   is the Burgers vector of the dislocation and   the angle between   and the 

direction within the interfacial plane perpendicular to the line direction.  

 

          . 2-19 

 

 

The layer strain   is related the stress by equation 2-20, where   is the shear 

modulus. 

     (
   

   
)   

2-20 

 

From equations 2-19 and 2-20 it can be seen that the strain energy relieved by a 

dislocation can be written as equation 2-21, where the area   is given by A=hl. 
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      (
   

   
)             

2-21 

 

For dislocations to be energetically favoured in the layer,      . The critical 

thickness can then be defined as      ., which is given in equation 2-22.  

 

              

        
[   (

  

 
)]

    (
   

   
)            

2-22 

 

Equation 2-22 can then be rearranged to give the Matthews and Blakeslee critical 

thickness model, equation 2-23. 

 

   
              

               
  (

   

 
)   

2-23 

 

Equation 2-23 can be solved numerically and is plotted for a Si1-xGex/Si 

heterostructure in figure 2-23. The following parameters were used,         ,  

      =0.5,   )=0.5 (for      dislocations), a from equation 2-4,   from equation 

2-15 and v, the Poisson ratio from table 2. 

2.3.8.2 People and Bean model for critical thickness 

 

Following the initial work of Matthews and Blakeslee, fully-strained Si1-xGex on 

Si (001) layers have been grown far beyond the critical thickness predicted by the 

Matthews-Blakeslee model [89].  This is in part due to the crystal quality of Si 

substrates increasing, with fewer pre-existing dislocations. This has increased the 

experimental critical thickness by reducing the number of dislocations grown into the 

layer. 
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To accommodate the difference between the Matthews-Blakeslee model and the 

experimental results, People and Bean developed a critical thickness model that 

requires no pre-existing dislocations. In the People and Bean model (figure 2-22), 

strain relaxation occurs by formation of a misfit dislocation from the homogenous 

(spontaneous formation of a dislocation within the semiconductor material) 

nucleation of a dislocations loop from a point source. This process requires a higher 

energy than the creation of a misfit dislocation from the glide of a pre-existing 

threading dislocation. 

 

 

Figure 2-22 The People and Bean model 

 

 

To nucleate a single screw dislocation, the areal energy density,  , is approximately 

given by equation 2-24 ([90]) where a is the bulk lattice constant of the strained 

layer. The energy densities of edge and-half loop dislocations were also calculated in 

reference [90] and the screw dislocation was found to have the minimum energy 

density. 

 

   (
   

  √  
)   (

  

 
)   

2-24 
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When the areal elastic energy density contained in the layer (equation 2-18) is 

equated with that necessary to nucleate a dislocation (equation 2-24), giving Ed=Ed, 

the People and Bean critical thickness is obtained: 

   (
   

   
)(

  

   √    
)   (

  

 
)   

2-25 

 

In figure 2-23, both the People and Bean and Matthews and Blakeslee critical 

thickness models are plotted. The following parameters were used for the people and 

Bean model, b=3.9 nm, a from equation 2-4,   from equation 2-15 and v, the Poison 

ratio from table 2. It can be seen that the People and Bean critical thickness is 

significantly larger than that given by the Matthews and Blakeslee model. It is 

possible to grow layers above their predicted critical thickness without strain 

relaxation occurring, these layers are known as metastable.  

 

Figure 2-23 - Critical thickness as a function of Ge concentration for a Si1-xGex/Si 

heterostructure 
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2.3.8.3 Metastable layers 

Fully-strained SiGe on Si layers with a thickness greater than their critical thickness 

have been frequently reported [91]. Below the critical thickness, the mismatch strain 

should be entirely accommodated by the strain in the film and above the critical 

thickness the strain is relieved to an extent by the generation of misfit dislocations. 

Unfortunately, experimental limitations make determining the exact thickness at 

which misfits are first introduced to the layer/substrate interface difficult [92]. The 

practical resolution of misfit dislocations gives a minimum detectable relaxation of 

around 10
-3

 [93], giving one possible reason why the measured critical thickness is 

generally higher than that predicted by theory. Another explanation is that strain 

relaxation depends on the kinetics of plastic deformation, the speed of which is 

reduced at lower growth temperatures. This gives the possibility of growing strained 

layers well beyond their critical thickness at low growth temperature. 

 

 

2.4 Superlattice strain balance criteria and strain relaxation 

Only single strained layers have so far been discussed, however a Si based QCL will 

require many strained layers in the form of a superlattice. Strain relaxation must be 

avoided in a superlattice structure designed for QCL applications, because it 

introduces dislocations into the superlattice that reduce the crystalline quality. The 

change in strain can affect key parameters such as the energy offsets between states 

in the QWs. Any roughness introduced will also affect the shape of the QWs and 

hence the energy levels therein.  
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For a strained layer superlattice system, there are two possible strain relaxation 

methods, both of which are illustrated in figure 2-24. In the first instance, each 

strained layer adds to the overall stress of the entire superlattice. If the overall stress 

causes a lattice mismatch between the superlattice and its supporting layer (and 

capping layer), then strain relaxation can occur at the bottom (and top) of the 

superlattice [94]. The superlattice lattice parameter then tends towards that of the 

superlattice structure were it unsupported. This is shown in the left of figure 2-24. In 

the second instance, the thickness of any individual layer in the superlattice can 

exceed its critical thickness. If this occurs, misfit strain relief occurs inside the 

superlattice structure with individual layers relaxing towards their bulk lattice 

parameters. This is shown on the right of figure 2-24. 

 

 

 

Figure 2-24 - Schematic diagram of possible strain relaxation methods for strained 

layer superlattices. Left, superlattice with lattice mismatch between substrate causing 

dislocations to be introduced at the base of the superlattice. Right, superlattice with 

individual layers grown beyond their critical thickness causing paired dislocations 

and loops to be introduced in individual strained layers. Adapted from [95]. 
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2.4.1 Criteria for superlattice strain balance 

 

In reference [96], different approaches to developing a criteria for superlattice strain 

balance are examined. A zero-stress method is proposed as the most accurate 

approach for designing strain balanced structures. The model is based on the 

requirement of zero average in-plane stress for the tensile/compressive strained layer 

combination. The zero-stress method is given in equations 2-26 and 2-27. Equation 

2-27 gives the corresponding substrate lattice parameter were it unsupported. If this 

does not match the lattice parameter of the substrate used for the superlattices 

growth, then relaxation will begin if it is grown beyond a certain thickness. The 

thickness at which relaxation begins can then be calculated by using the standard 

critical thickness models for strained SiGe layers. 

 

                    
2-26 

 

   
        

          
 

      
          

  
2-27 

 

 

Here   and    are the lattice parameters of the compressive and tensile layers,    and 

   the thickness of the compressive and tensile layers,   and    the lattice 

mismatch/strain of the compressive and tensile layers,    the corresponding substrate 

lattice parameter, and     and    are constants for each layer given by equation 2-28, 

where    and     are the elastic stiffness coefficients of the layers. 
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2-28 

 

 

It can be seen that the lattice parameter of a superlattice must be lattice matched with 

the substrate that it is grown on to avoid strain relaxation. The superlattice designs 

for a n-type Si based QCL which are reported on in this work are comprised of Ge 

and Si0.15Ge0.85 and have a superlattice lattice parameter of Si0.05Ge0.95.To avoid 

strain relaxation, these superlattices must be grown on a substrate of Si0.05Ge0.95. 

Starting from the ubiquitous Si (100) this can be achieved through the use of a virtual 

substrate. 

2.5 Virtual substrates 

 

A virtual substrate is an intermediary layer that allows strained layers with a different 

lattice parameter to the original substrate to be grown. In this study, a virtual 

substrate design with a final composition of Si0.05Ge0.95 has been used, which has 

been proposed and designed by M. Myronov. This design is similar to the reverse 

linearly graded (RLG) design (figure 2-25) originally reported by Shah et al [97]  for 

a final Ge composition of Si0.2Ge0.8 and is shown to be highly suitable as a platform 

for high-quality strain-symmetrized multiple quantum well structures in reference 

[98]. The design in reference [96] (with a thin, total thickness of       ) can give a 

relaxed, high Ge composition final layer, with a threading dislocation density (TDD) 

of              and surface roughness of 3 nm [99]. When compared with other 

virtual substrate designs, such as linearly graded [100], these results are very good. 
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The virtual substrate design begins with a high quality      Ge layer grown on a 

Si (001) substrate using the two temperature method described in reference [101]. 

This comprises first growing a Ge layer at low temperature in the range of (300
o
C-

400
o
C) in which dislocations nucleate but surface roughness remains low due to the 

low temperature suppressing 3D growth. A high temperature Ge layer is then grown 

at  

670
o
C which reduces the TDD and also reduces the overall growth time. The 

structure is then annealed at 830 
o
C for 10 min to further reduce the TDD. Ge grown 

by the two temperature method is generally found to be under tensile strain. Ge has a 

larger coefficient of thermal expansion than Si (table 2) and when the layers are 

heated during growth, the Ge layer expands more than the Si substrate, but the 

additional thermal energy allows the atoms to rearrange themselves to be 

commensurate with the substrate. As the Ge layer cools, it contracts more than the Si 

substrate but now the atoms do not have the freedom to move. The over relaxation 

occurs when the bonds between the substrate and Ge layer prevent the Ge layer from 

fully relaxing. 

 

 

Following the      Ge layer, the graded region is grown. Using a reverse graded, as 

opposed to forward graded, region gives a thinner virtual substrate and a smoother 

surface due to the structure relaxing under tensile as opposed to compressive strain 

[102].  It can be seen in figure 2-25 that the majority of dislocations are confined 

within this sacrificial layer. Finally, the structure is capped with Si0.05Ge0.95 to give a 

high quality final layer. 
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Figure 2-25 –a) Schematic design of the reverse linearly graded 

Si0.05Ge0.95/RLG/Ge/Si(001) virtual substrate b) Cross-sectional TEM micrograph of 

Si1-xGex/RLG/Ge/Si(001) virtual substrate. 

 

Dislocation introduction through strain relaxation is not the only growth issue that 

has the possibility to adversely affect the electronic behaviour of a Si-based QCL. 

Diffuse Ge profiles can change the subband spacings in the QWs and also the 

scattering rates between wells. One of the main factors in determining interface 

quality is diffusion, which is discussed for the Si/Ge/Si1-xGex material system in the 

next section. 

 

 

2.6 Diffusion  

 

Diffusion can be described by a diffusivity or diffusion coefficient, D. It is the 

proportionality constant that relates the molar flux to the concentration gradient for a 
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species. During diffusion, an atom moves between sites and crosses an energy barrier 

with the movement being assisted by thermal energy. The diffusion coefficient is 

commonly given via an Arrhenius expression, equation 2-29. Where D0 is the pre 

exponential factor, H the activation enthalpy, kB the Boltzmann constant and T the 

temperature. 

                 
2-29 

 

2.6.1 Si and Ge Diffusion 

In figure 2-26 the diffusion coefficients for Si and Ge in Si1-xGex (for x=0 to x=1)  

are given in a Arrhenius plot. It can be seen that diffusion increases with Ge 

concentration and that Ge diffusion is favoured more by a high Ge content than Si.  

This is explained by the increasing contribution of vacancies to self-diffusion with 

increasing Ge content [103]. Figure 2-26 illustrates why low growth temperature is 

important for high Ge content SiGe heterostructures if diffusion is to be minimised. 

While the data given in figure 2 21 is for temperatures higher than those used in this 

study, it can be seen in [104] that the self-diffusivity for Ge can be given by a single 

Arrhenius equation from 429
o
C and 904

o
C (H= 3.13±0.03 eV, D0=2.54x10

-3
 m

2
s

-1
), 

and so the trends in Arrhenius plot in figure 2-26 can confidently be extended to 

lower temperatures, at least for Ge and high Ge composition SiGe. 
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Figure 2-26  - Arrhenius plot of diffusion coefficient in Si1-xGex for a number of alloy 

concentrations against inverse temperature. Adapted from Kube et al [103]  

 

Dopant profiles are also strongly affected by diffusion. In the next section the 

diffusion of common dopants for the Si/Ge/Si1-xGex material system is discussed.   

2.6.2 Dopant diffusion 

In figure 2-27 the diffusion coefficients for dopants P, As, B in Ge and self-

diffusivity are given in an Arrhenius plot. While this data is for higher temperatures 

than those used for growth in this study, little information is available for lower 

temperatures. It can be seen that while the diffusivity for B, a p-type dopant is 

relatively low, the diffusivities for the n-type dopants, P and As, are both relatively 

high, exceeding the Ge self-diffusivity. This is one of the reasons why preference has 

been given to p-type Si based QCL structures in previous work on Si based QCLs, 

since attaining sharp doping profiles in n-type structures is difficult. A low growth 

temperature will be required for a n-type structure to minimise dopant diffusion. 
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Figure 2-27 - Arrhenius plot of intrinsic diffusivities of P, As, B in Ge. Ge self-

diffusivity, SD is also included. Adapted from Shiraki and Usami [74]. 

 

Another factor affecting interface quality in the Si/Ge/Si1-xGex materials system is Ge 

surface diffusion. This segregation must be minimised in order to give sharp 

interfaces in an n-type Si based QCL superlattice structure. 

2.6.3 Ge Surface Segregation 

During the growth of Si1-xGex and Si/Ge layers, the surface concentration of Ge has 

been found to be higher than the rest of the layer [105-106]. This is due to the 

preferential surface segregation of Ge atoms over Si atoms. Ge surface segregation is 

driven by a difference in the elements surface tension and by the difference in atomic 

size (The atomic radius of Ge is 0.137 nm and for Si is 0.132 nm) [107]. In CVD 

growth, Ge segregation can be supressed by surface passivation by hydrogen [108]. 
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To give sharp interfaces in the superlattice structures in this work, with minimal Ge 

surface segregation, all growth is being performed in a hydrogen atmosphere. 

. 

2.7 Summary and outlook 

From section 2.1.4 it can be seen that the most likely candidate for a Si-based QCL is 

an n-type Ge/SiGe structure with high Ge content barriers. A structure of this kind is 

particularly challenging from a growth perspective. This is due to the requirement for 

a high Ge composition virtual substrate to achieve strain balance (section 2.5), which 

in turn presents higher diffusion than for lower Ge content structures leading to 

barrier degradation (section 2.6), and in addition the high diffusivity of n-type 

dopants when compared to p-type dopants (section 2.6.2).  
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3 Experimental Techniques 

In this chapter, the techniques used are first compared and contrasted, then described 

in detail. The techniques are high resolution X-ray diffraction, microbeam X-ray 

diffraction, atomic force microscopy, transmission electron microscopy, scanning 

transmission electron microscopy, secondary ion mass spectrometry and atom probe 

tomography. The simplified theory and experimental method are given for each 

technique. 

  

3.1 Introduction to characterisation techniques 

In order to perform comprehensive structural characterisation on structures designed 

to operate as QCLs it is necessary to use a number of complementary 

characterisation techniques. In the context of producing a functioning QCL structure, 

the structural parameters that are important to measure include alloy composition, 

strain state, layer thickness, interface quality, surface morphology, dopant 

concentration, and crystal quality. The choice of characterisation techniques must be 

capable of measuring these parameters. 

 

The most frequently used technique in this this work is X-ray diffraction. X-ray 

diffraction is highly suitable as a probe for measurements on the QCL structures 

since the wavelengths of X-rays are on the order as the atomic spacing in the 

structures. X-ray diffraction is a fast and non-destructive technique. Structural 

parameters that can be extracted from X-ray diffraction measurements include alloy 

composition, strain state, layer thickness, interface quality and crystal quality. 
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Electron microscopy is also a highly suitable technique for characterising the 

structures presented in this work and is complementary to X-ray diffraction. X-ray 

diffraction gives information from a relatively large volume of the sample whereas 

electron microscopy is able to probe a much smaller volume.  Unfortunately electron 

microscopy is a destructive technique and producing the high quality specimens 

required is very time consuming. 

 

Both X-ray diffraction and electron microscopy struggle to resolve small changes in 

alloy concentration within a multilayer structure (such as that from 

segregation/diffusion at interfaces) and neither can measure dopant concentration. To 

measure these parameters, it is necessary to use either secondary ion mass 

spectrometry (SIMS) or atom probe tomography (APT). Both are destructive 

techniques. Secondary ion mass spectrometry is only able to produce a dopant/alloy 

concentration profile in one direction through a sample, with the profile averaged 

over a large area while atom probe tomography has the advantage of being able to 

provide it in 3D. However, since atom probe tomography has a considerably longer 

sample preparation time, it is the more difficult of the two techniques. 

 

Finally, a technique is needed to measure the surface morphology of the samples, 

from which the surface roughness and long and short range order through the 

structure can be inferred. This can be performed using atomic force microscopy, 

which is both fast and non-destructive. 
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3.2 Atomic Force Microscopy 

All the atomic force microscopy (AFM) results presented in this work were produced 

using a Veeco Multimode AFM (see figure 3-1, 3-2) with a Nanonis SPM controller 

operating in both contact and tapping mode. The surface morphology of a sample can 

be recorded with AFM with very high vertical (z) resolution. 

 

 

Figure 3-1 - Veeco  Multimode AFM 

Piezoelectric scanner 

Optical microscope for sample 

alignment 

AFM head 

Displays showing 

photodetector voltage 
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Figure 3-2- AFM head of Veeco multimode AFM. The labelled parts are 1) Laser,  

2)Mirror,  2)Mirror, 3)Cantilever, 4)Tilt Mirror and 5)Photo-detector. Reproduced 

from [109]. 

 

 

3.2.1 Contact Mode 

The operation of the AFM in contact mode can be described by the following: The 

sample is placed on a sample stage mounted on a piezoelectric scanner. The 

piezoelectric scanner is capable of moving the sample in the x, y and z planes, where 

x and y are parallel to the samples surface and z is perpendicular to the surface. A 

silicon nitride tip mounted on a thin, flexible cantilever is lowered towards the 

sample surface. When the tip nears the sample, forces occurring between the tip and 

the sample surface cause the cantilever to bend, according to Hooke’s law. The tip is 

observed to ‘snap-in’ towards the sample surface. A laser beam is directed at the 

back of the cantilever and is deflected towards a split photo-diode detector, as can be 

seen in figure 3-2. From the voltage output of the photo-diode, both the lateral flex 

and the twist of the cantilever can be determined. Feedback from the photodiode is 
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used to maintain a constant laser deflection by changing the height of the sample 

using the piezoelectric scanner. A constant laser deflection implies that the cantilever 

flex remains constant and so the force between the tip and the sample remains 

constant. The sample is rastered (the sample is moved, the tip stays stationary) over 

an area defined by the AFM software and, via the AFM controller, a computer 

records the height or z position of the sample at each (x,y) position. From the x, y and 

z positions, the computer constructs an image of the sample’s surface morphology. 

 

3.2.2 Tapping Mode 

AFM in contact mode suffers effects from degradation of both the sample and the tip 

as the tip is rastered across the sample. Non-contact mode AFM utilizes the attractive 

inter-atomic force occurring between the tip and sample surface. Unfortunately, in 

non-contact mode, the meniscus force can cause the sample to stick to the tip and 

when it is freed by the piezoelectric stage, the cantilever flicks vertically causing a 

glitch in the image recorded. A solution to this is to perform the scan in tapping 

mode which was introduced by Zhong et al [110]. 

 

In tapping mode the tip is rastered across the surface of the sample, just as in contact 

mode; however, the cantilever is driven to oscillate at a frequency near its resonant 

frequency. The cantilever oscillation is driven using a piezoelectric element at the 

base of the cantilever inside the tip holder. As the oscillating tip approaches the 

surface, the oscillation amplitude is decreased. Whereas in contact mode the z height 

is constantly adjusted to maintain a constants cantilever flex, in tapping mode, the 

sample z height is constantly adjusted to maintain a constant oscillation amplitude. 
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Tapping mode reduces the damage to the sample surface and tip when compared to 

contact mode. 

 

3.2.3 AFM Image Analysis 

All AFM images presented in this work were analysed and processed using the 

Gwyddion SPM software. Many artefacts (caused by tip shape, piezoelectric scanner 

hysteresis, dirt on the sample, etc.) are present in unprocessed AFM images and these 

must be removed before extracting data, such as RMS surface roughness, from the 

images. Information can be lost during processing, so care must be taken during its 

application. 

The image is first levelled by the mean plane subtraction function. This function 

computes a plane from all of the image points and subtracts this from the data. The 

image is then processed with the remove polynomial background function. This 

function fits an nth order polynomial to both the horizontal and vertical directions 

and subtracts this from the data. If the image has horizontal lines running across it 

(an artefact from rastering the tip line by line across the sample) they are removed 

with the correct lines by matching height medium tool. Additionally, if the image has 

any artefacts from dirt on the sample, they can be excluded from the analysis by 

using the mask function. 

 

The use of AFM to record the surface morphology of a sample with very high 

vertical (z) resolution has been described. While much information about a sample 

can be inferred from its surface morphology, to fully characterise a QCL structure it 

is necessary to look beyond the samples surface and to measure parameters such as 
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doping and alloy concentration through the structure. These material parameters can 

be resolved through the structure by the technique described in the next section, 

secondary ion mass spectrometry 

3.3 Secondary Ion Mass Spectrometry 

 

Secondary ion mass spectrometry (SIMS) is a destructive technique with a high 

sensitivity to impurities in the sample under investigation. The technique involves 

accelerating a beam of ionised particles into the sample causing ions to be sputtered 

from the sample surface (figure 3-3). The sputtered ions are known as the secondary 

ions. The secondary ions are directed into a mass spectrometer where their masses 

are recorded as a function of erosion time. From the mass spectrometer data, the 

sputtered ions species and quantity can be determined as a function of time. The 

depth of the crater produced by the sputtering is then measured and if the sputtering 

rate is assumed to be constant, then the erosion rate of the sample can be combined 

with the mass spectrometer data to produce a mass vs. depth profile. The scale in a 

SIMS profile is not absolute and needs careful calibration for alloy content and 

depth. This is due to the ion yields and erosion rates varying with the composition of 

the sample material. 

 

A number of effects can affect the resolution of SIMS analysis. Due to the high 

energy of the incident ion beam, surface atoms can be forced deeper into the sample 

(figure 3-3), where they are then sputtered and recorded as secondary ions, causing a 

boarding of the profile. If the sample has a high surface roughness it can cause 

broadening in the profile since the ions are sputtered from a large area (a few 

hundred μm across) on the sample surface and then averaged. If the sample has a 
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high dislocation density it can affect the erosion rates, introducing a distortion to the 

profile. It is shown by Morris et al [111], that high depth resolution can be obtained 

for multiple Ge/Si1-xGex QW structures (similar to those presented in this study), if  

O2
+
 ions are used with an energy below 500 eV and care is taken to adjust for the 

changes in erosion rate between layers of different composition. 

 

The high resolution SIMS in this study was performed both by Evans Analytical 

group and by Dr . Richard Morris using a Atomika – 4500 SIMS Profilometer. The 

Atomika–4500 is capable of detecting dopant concentrations down to 5×10
16

 cm
-3

, 

depending on their species. 

 

Figure 3-3 -  SIMS sputtering process.  The primary ion beam sputters secondary 

ions from the surface. The high energy of the ion beam is causing intermixing. 

 

The use of SIMS to measure dopant/alloy concentration profile through a structure 

has been described. However, this is only in in one direction. The technique 
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described in the next section, atom probe tomography, shares the ability of SIMS to 

measure chemical species, but is able to do so in 3D. 

3.4 Atom probe tomography 

In atom probe tomography (APT), a time-of-flight mass spectrometer is used in 

conjunction with a point projection microscope to give atomic scale imaging [112] 

(figure 3-4). A high voltage (~10 kV) is applied between a needle shaped specimen 

cooled to cryogenic temperature and a local electrode. Since the sample has an 

extremely small tip radius <100 nm, a high electric field is created at its point 

(~10
10

 V/m) [113]. This high electric field causes atoms on the tip to be field 

evaporated. The tip evaporation is pulsed by modulating the high voltage so that the 

time of flight between each ion leaving the tip and interacting with the detector can 

be measured. Since the sharp tip point is projected onto the relatively large 

(~100 mm diameter) detector, a high magnification of 10
6
 is achieved. A computer is 

used to combine the detected position and  time of flight of each ion (from which the 

element can be found) and the sequence of the evaporation steps (provides depth 

information). This gives a 3D reconstruction of the sample complete with elemental 

distributions. 

 

Fabrication of the fine, needle like samples required for APT has traditionally been a 

difficult task, performed by electropolishing techniques. However, recently sample 

preparation by focused ion beam (FIB) techniques have been established which 

extend the range of materials suitable for APT to include electronic device structures 

[114].  
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Figure 3-4 - Schematic diagram of three dimensional local electrode atom probe. 

Adapted from [113] 

 

 

Since APT is highly sensitive to chemical species and has 3D spatial resolution, it is 

an excellent tool for the materials characterisation of semiconductor structures. In the 

context of the semiconductor superlattice structures studied in this work, APT is well 

suited to analysis of interface quality, dopant diffusion and alloy distribution. The 

depth resolution is higher than SIMS, so it is a useful tool for characterising thin 

layers that SIMS would struggle to resolve. An example atom probe tomograph for a 

section of a Ge/SiGe  superlattice structure with Ge quantum wells and Si0.15Ge0.85 

barriers is given in figure 3-5. Each dot represents the detection of an atom. It can be 

seen that the interfaces between the layers are sharp and uniform across the interface. 
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Figure 3-5 – Example APT atom map image of Ge/SiGe superlattice structure 

showing distribution of  Si atoms (red) and Ge atoms (white). Z is the distance 

through the sample in nm. From APT performed at Tohoku University with credit to 

Yasuo Shimizu, Masaki Shimodaira, Hisashi Takamizawa, Koji Inoue and 

Yasuyoshi Nagai. 

 

 

The use of APT to give a 3D reconstruction of the sample with elemental 

distributions has been described. While this can be used to give the samples interface 

quality, dopant diffusion and alloy distribution, it does not give any information on 

the samples crystal structure. This can obtained using the technique described in the 

next section, X-ray diffraction. 

3.5 X-ray diffraction 

High resolution X-ray diffraction (XRD) can be used to find the in- and out- of 

growth plane lattice parameter with a high degree of precision and find the 

composition of the layer grown, along with the degree of strain and relaxation. The 

lyer thickness can also be calculated if thickness fringes are present. All laboratory 

based X-ray diffraction in this study was carried out using a Panalytical X’Pert PRO 

Materials Research Diffractometer (MRD), the key components of which are shown 

in figure 3-6. The diffractometer features a horizontal, high resolution      

goniometer, with a radius of 320 mm. The sample is mounted in an open Eulerian 
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cradle which gives two additional axis of rotation, (-90
o
<   <90

o
) and (-460

o
<   

<360
o
) which can be seen in figure 3-6. The sample stage can also be moved in the x, 

y and z axis. The X-rays are generated by a water cooled, ceramic X-ray tube with a 

Cu anode, operating at 45 kV and 40 mA. 

 

. 

 

 

Figure 3-6 - Key components of PANalytical X'Pert diffractometer. The diagram in 

the top left shows x, y and z translation axis of the sample stage. In the centre the   

and   axis of the Eulerian cradle and incident and diffracted optics are shown. The 

path of the X-ray beam is drawn in red. 
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The incident beam passes through a collimating slit and a germanium Bartells 

4-bounce (220) monochromator. An automatic beam attenuator is positioned in front 

of the monochromator, which when the beam hits the detector with sufficient 

intensity to damage the detector, moves a nickel window into the beam path to 

reduce the intensity. Two receiving optics are available, a sealed Xe proportional 

counter detector with a collimating slit or a sealed Xe proportional counter detector 

with a germanium crystal positioned in front of it as an analyser crystal. The Ge 

crystal narrows the angular acceptance of the detector and when combined with the 

collimator slit, defines a small volume of reciprocal space. This is technique is called 

triple-axis diffractometry [115]. The relationship between reciprocal space and real 

space is described in the next section. 

 

3.5.1 Reciprocal space  

If the Fourier transform is taken of the crystal lattice, it produces a new lattice where 

each point, instead of corresponding to an array of atoms, is associated with a 

particular set of crystal planes. This is known as the reciprocal lattice. The reciprocal 

lattice axis basis vectors bi can be expressed in terms of the lattice bases vectors by 

equations 3-1 - 3-3. 

 

 

 

     
     

          
   3-1 
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   3-2 

 

 

     
     

          
   3-3 

 

 

Since the silicon/germanium system has a face centred diamond cubic structure, with 

a cubic unit cell, the angle between all of the unit cell lattice vectors is          . 

For two vectors with an angle of    , the cross product is 1. If this result is used in 

equations 3-1 - 3-3 then they can be simplified to the following: 

 

 

   
  

  
   3-4 

 

   
  

  
   3-5 

 

   
  

  
   3-6 
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Figure 3-7 - The Ewald Sphere of reflection showing the process of diffraction 

geometrically. 

 

 

A geometrical construct, called the Ewald Sphere, is useful in understanding 

diffraction in reciprocal space, (figure 3-7). The radius of the Ewald sphere is     . 

Its circumference passes through the origin of the reciprocal lattice. Incident X-rays 

enter the sphere along a radius of the sphere. When a reciprocal lattice point lies on 

the circumference of the sphere, the conditions for Bragg’s law are met and 

diffraction occurs.  
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For diffraction to occur: 

 

          3-7 

where    is the wave vector of the diffracted wave,    the wave vector of the 

incident wave and   is defined as the scattering vector. This is equivalent to the 

conditions for Bragg’s law being met, as is shown by the following: 

From figure 3-7 and its radius,     : 

 

     (
| |

 
)  (

  

 
)    3-8 

 

From equation 3-4 to equation 3-6, it can be seen that | | is related to real space by: 

| |  
  

 
   3-9 

When this is substituted into equation 3-8, it results in Bragg’s law (equation 3-10). 

 

If   satisfies Braggs law and diffraction occurs, the amplitude of the reflection is 

expressed by a quantity known as the structure factor which is discussed in the next 

section.  

 

3.5.2 Structure Factors 

The resultant wave scattered by the collective atoms in a unit cell is called the 

structure factor,     . Knowledge of the structure factor for a particular diffraction 

     
 

  
   3-10 



J. E. Halpin – PhD Thesis 

 76 

(Bragg peak) from a material is important when working with XRD, since the 

structure factor determines the scattering intensity from a set of crystal planes. 

 

     can be found by integrating over the total charge distribution of the unit cell 

(UC). This is given in equation 3-11, where       is the charge density,   the 

scattering vector and   the radius. 

      ∫       
        

  

   3-11 

 

Equation 3-11 can be approximated by summing over all of the waves scattered by 

individual atoms in the unit cell [116]. For an isolated atom (at), the measure of the 

scattering amplitude is given by the atomic form factor,  , defined in equation 3-12.  

 

   ∫       
        

  

    3-12 

For the collective atoms in a unit cell, since equation 3-12 is the wave scattered by an 

individual atom, this gives equation 3-13, where N is the sum of all the atoms in the 

unit cell, numbered by n, counted from 1 to N. 

 

      ∑ ∫       
           

  
 
   dr  . 3-13 

The integration over a single atom’s charge distribution is already known from the 

atomic form factor given in equation 3-12.  This can be used to rewrite equation 3-13 

as, where    is the atomic form of the n
th 

and rn is the vector for the position of each 

atom in the unit cell (calculated by              , where  ,   and   are the 

atoms positions, measured in unit cell vectors) giving equation 3-14. 
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      ∑             

 

   

 3-14 

The Laue conditions state that: 

 

                   3-15 

The proof of the Laue equations has been excluded, but is available in reference 

[116]. When the Laue conditions and the full expression for    are substituted into 

equation 3-14, a final expression for a crystals structure factor is found,  

 

      ∑                      

 

   

    3-16 

 

The crystal structure of Si and Ge is based on the face centred cubic lattice. The face 

centred cubic lattice contains atoms located at        ,  
 

 
   

 

 
 ,  

 

 
 
 

 
    and    

 

 
 
 

 
 . 

These positions can be substituted into equation 3-16 giving equation 3-17. 

 

          (   (      )   (      )

  (      )) {
                      

         
   

3-17 

If equation 3-17 is to give a non-zero structure factor, then       must either all be 

even or all odd. This is the first condition for the visibility of a Bragg peak in Si or 

Ge. 
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There are also atoms attached to the basis of the lattice points at        ,  
 

 
 
 

 
 
 

 
  in 

the unit cells of Si and Ge. If these positions are substituted into equation 3-16 it 

gives equation 3-18. 

        (   
(
 
 
        )

)  {
           

              
  3-18 

 

If equation 3-18 is to give a non-zero structure factor then       must not be an 

odd multiple of two. This is the second condition for the visibility of a Bragg peak in 

Si or Ge. In table 3 the exact structure factors are given. The square of the structure 

factor gives the intensity of the diffracted Bragg peak. For XRD from silicon and 

germanium, to yield structural information, the Bragg peaks from the symmetric 

(004) (figure 3-11) and asymmetric (224) (figure 3-12) planes are most commonly 

used, with both giving a large scattered intensity when compared with other peaks 

(table 3). In the next section, a method of recording X-ray scans around the 

symmetric [0 0 4] Bragg peaks of silicon and germanium is discussed.  
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Reflection |    |   in electron units per Å
3
 

for one crystal of silicon [115] 

001 0 

002 

004 

111 

222 

333 

011 

022 

044 

112 

224 

113 

115 

0 

0.39 

0.38 

0 

0.24 

0 

0.45 

0.31 

0 

0.35 

0.30 

0.24 

Table 3 –Values of  |    |   in electron volts for silicon for a number of useful reflections. 

 

 

3.5.3 X-ray ω-2θ scans 

For measurement of an ω-2θ scan,    is fixed relative to    and scanned around a 

Bragg peak in a fixed ratio of 1:2. All the ω-2θ scans in this study have been 

recorded around the symmetric [0 0 4] Bragg peaks. As can be seen from figure 3-11, 

the Bragg peak from the (004) planes only carries information about the out of plane 
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lattice parameter,   . Since the out of plane lattice parameter,    is determined by 

layer strain and composition, (004) ω-2θ scans are unable to give independent 

measures of strain and composition. However, they are useful since they require far 

less time to obtain than a full (004) and (224) reciprocal space map (discussed in 

section 3.5.4). 

 

The X-ray ω-2θ scans featured in this study can be divided into those performed on 

two different kinds of heterostructure, strained/partially relaxed Si0.4Ge0.6 on Si (001) 

and Ge/Si0.15Ge0.85 superlattices with reverse graded virtual substrates on Si (001). 

Since the Si0.4Ge0.6 on Si (001) ω-2θ scans are easiest to interpret, in figure 3-8 one is 

given as an example for a fully strained 21 nm layer of Si0.4Ge0.6. To the right of the 

ω-2θ scan is the narrow, intense Si (004) peak from the substrate. The position of this 

peak is used as a reference for all scans. To the left of the ω-2θ scan the Si0.4Ge0.6 

layer peak is seen. The position of this peak is determined by the strain in the layer 

and its composition. If the Ge content in the layer is increased,    will increase and 

the layer peak will move to the left. If the Si content in the layer is increased,    will 

decrease and the layer peak will move to the right. To either side of the Si0.4Ge0.6 

peak and interference fringes are visible. These are called thickness fringes and can 

be used to measure the thickness of the layer using equation 3-20 [117] (only for a 

symmetrical ω-2θ scan), where t is the layer thickness,  .the wavelength,   the 

Bragg angle and     the fringe separation. 

 

  
 

         
   3-19 
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The presence of thickness fringes indicates that the layer is of high quality for SiGe 

on Si. In this case, the ω-2θ scan can be used to find layer composition since the 

layer will share the same in-plane lattice parameter as the Si substrate as it has not 

undergone strain relaxation.  

 

Figure 3-8 - Example ω-2θ scans around the symmetric (004) Bragg peak for a 

21 nm Si0.4Ge0.6 layer. Distinct thickness fringes can be seen. 

 

 

For all X-ray ω-2θ scans in this study, the simulation function was used in the 

PANalytical X'Pert Epitaxy software package. The simulation function is based on 

the Takagi-Taupin equations of dynamical X-ray scattering [188-190]. To extract 

information from the ω-2θ scans a fitting algorithm known as Smoothfit, first 

described by Klappe and Fewster for ion implanted samples was used [191]. This 

fitting algorithm works by first smoothing the measured and simulated scans then 

matching major peaks. Initially fitting is performed on heavily smoothed data, this 
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highlights only the major peaks allowing parameters describing these peaks to be 

fitted. With subsequent iterations of fitting the measured and simulated scans are 

progressively smoothed less, so that finer details can be fitted. The simulated data is 

compared to the measured data using the least squares method. For every data point 

in the simulation, the difference between the log intensity of the simulation and the 

log intensity of the measured scan is squared. A fit value is then calculated by 

dividing the sum of the squared values by the number of data points in the simulated 

scan. The Smoothfit algorithm finds the parameter that gives the largest change in fit 

value and adjusts it until no further improvement in fit value is seen. This process is 

then repeated for subsequent next most significant parameter. The process continues 

until no change in any of the fitting parameters gives an improved fit value. So that 

the algorithm can converge on realistic values, constraints must be applied to the 

parameters.  

 

As previously mentioned, (004) ω-2θ scans are unable to give independent measures 

of strain and composition. However, this can be achieved by (004) and (224) 

reciprocal space mapping which is discussed in the next section. 

 

3.5.4 Reciprocal Space Maps (RSMs) 

When the diffractometer is in the triple-axis configuration (described in section 3.5), 

it defines a small volume of reciprocal space. This enables the mapping out of 

reciprocal space, including the scatter surrounding a reciprocal lattice point. 

Reciprocal space maps are measured by the diffractometer by collecting a series of 

ω-2θ scans over a range of ω. 
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In figure 3-9, the directions moved in reciprocal space by the θ and ω diffractometer 

axis can be seen. If the incident beam is rotated through 180
o 

from parallel to the 

sample surface in one direction to parallel in the other direction, a range of reciprocal 

space can be probed. This area is given by the large white semicircle in figure 3-9. 

The small semicircle on the left is forbidden in reflection due to the incident beam 

entering below the surface of the sample. The small semicircle on the right is 

forbidden in reflection due to the diffracted beam exiting below the surface of the 

sample. The dotted arrow is for when ω ≠ 2θ/2. 

 

 

Figure 3-9 Schematic diagram showing directions moved in reciprocal space by θ 

and ω diffractometer axis. Adapted from Bowen [115] 

 

 

In figure 3-10, the reciprocal lattice points accessible by the lab based diffractometer 

are given for Si and Ge. It can be seen that the Ge peaks (pink) are closer to the 

origin of reciprocal space due to Ge having a larger lattice parameter.  
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Figure 3-10 – Accessible reciprocal lattice points for Si (black) and Ge (Pink). The 

Miller indices refer to the adjacent Si peaks, with their Ge counterparts displaced 

towards the origin. Adapted from [115].  

 

Figure 3-11 - Schematic diagram of (004) and (22) RSMs for Si, Ge and a generic 

SiGe alloy. Adapted from [115] and [119] 

 

 

Figure 3-11 is given to aid RSM interpretation for the SiGe system. Bragg peak 

positions are illustrated in the (004) and (224) RMS for a relaxed Si substrate (Sirel), 

a relaxed Ge layer (Gerel), a generic layer of SiGe which is strained to the Ge layer 

(SiGestr) and a SiGe layer with the same alloy composition as the first which is fully 

Qz 

QY 
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relaxed. If the Si composition of the SiGe layer is increased (decreasing the layers 

lattice parameter), the Bragg peak associated with the SiGe layer will move along the 

black arrows towards the Si substrate peak. If the Ge composition of the SiGe layer 

is increased (increasing the layers lattice parameter), the SiGe peak will move along 

the black arrows towards the Ge peak. 

 

It can be seen when the SiGe layer is strained to the Ge layer, (SiGestr), its Bragg 

peak is shifted horizontally in reciprocal space, lying directly above the Ge peak in 

the (224) RSM. This indicates that it has the same in-plane      and    , lattice 

parameters. The strained SiGe peak is also shifted vertically in reciprocal space, 

which is due to tetragonal distortion of the lattice. 

 

The Bragg peak from the (004) (figure 3-12) planes carry information about the out 

of plane lattice parameter and the (224) (figure 3-13) set of planes carries 

information about both the in-plane,     and    , and out-of-plane lattice 

parameters   , composition and strain can be determined independently using (004) 

and (224) reciprocal space mapping. A comprehensive guide to lattice calculation 

can be found in Capewell [118]. Layer tilt can also be determined using (004) and 

(224) reciprocal space mapping and is the angle between the normal to the layer 

surface and the normal to the substrate surface.  
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Figure 3-12 - (004) crystal planes (red) overlaid on silicon/germanium structure. The 

distance between (004) planes is determined by the out of plane lattice parameter    

 

 

Figure 3-13 - (224) crystal planes (red) overlaid on silicon/germanium structure. The 

distance between (224) planes is determined by the out of plane lattice parameter    

and the in plane lattice parameters    and   . 

 

 

The X-ray diffraction technique described so far has been laboratory based. 

Laboratory diffractometers use X-ray tubes as the X-ray source and this limits them 

in both intensity and wavelength. The low intensity makes diffraction with a small 
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X-ray spot size difficult using laboratory diffractometers, since the intensity becomes 

too low for practical applications after focusing. Far higher X-ray intensity’s can be 

obtained using synchrotrons and so much smaller spot sizes can be obtained. In the 

next section a technique for sample characterisation using microfocus HR-XRD at a 

synchrotron is given.  

 

3.6 Microfocus X-ray diffraction on suspended structures 

The following section describes the technique used for strain mapping by microfocus 

HR-XRD of Ge membranes using Beamline B16 at the Diamond Light Source. 

 

The X-ray beam size for a typical lab based source is on the order of several 

hundreds of microns in diameter. This means that lab based HR-XRD is insensitive 

to localized, real-space changes in crystal properties. Fortunately, in the last decade 

there has been considerable progress in the focusing of X-rays, leading to X-ray spot 

sizes smaller than 100 nm [120]. The small X-ray beam can be used as a local probe 

by scanning the beam over the sample, similar to various scanning microscopy 

techniques. This has opened up a wide range of possibilities for both micro- and 

nano-diffraction on different materials. The strain and composition of single micron 

sized SiGe islands has been determined [121-122], the degree of strain relief in 

single patterned SiGe nanostructures[123], silicon-on-insulator deformation induced 

by stressed linear structures [124] and the strain fields in a single SiGe island which 

is acting as the stressor for a Si channel for a functioning Si metal oxide 

semiconductor field-effect transistor [125]. X-ray micro-diffraction has also been 

performed on a suspended Ge bridge [126], but unlike this work, the sample was one 

dimensional and so has uniaxial strain, it was also thick (    ) and cracked. 
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3.6.1 Experimental technique 

The 3 GeV Diamond Light Source (DLS) is a third generation synchrotron light 

source facility based at Harwell in the UK.  Beamline B16 (figure 3-14) is a test 

beamline at DLS set up on a bending magnet source. B16 works over a 2 – 25 keV 

energy range with an acceptance of 3 mrad (h) x 0.5 mrad (v) [127]. For this study, 

X-rays with an energy of 12.4 keV (λ = 1 Å) were used. A schematic diagram of the 

beamline is given in Figure 3-14. The main beamline optics are comprised of a 

double crystal  monochromator, a toroidal mirror, a double multilayer 

monochromator and a set of Be compound refractive lenses CRLs [127], which are 

used for micro-focusing of the X-ray beam. Beam sizes of 1-5 µm are achievable 

with focal lengths adjustable from a few 100 mm to several meters. 
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Figure 3-14 - Schematic for Beamline 16 at Diamond Light Source. Adapted from [128]. 
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3.6.1.1 Micro-focus and CRLs 

Focusing X-rays using refractive lenses had long been dismissed as unfeasible. 

Refractive lenses for visible light are viable because they have an index of refraction 

significantly larger than 1 and only weak absorption. However for X-rays, refraction 

in condensed matter is weak and absorption is very strong, giving an unfeasibly long  

focal length for a standard lens. This refractive focusing problem was solved by 

Snigirev et al with the development of compound refractive lenses (CRLs) [129].  

 

 

Figure 3-15 - Schematic diagram of CRLs manufactured by drilling in an aluminium 

block demonstrated in [129] 

 

 

CRLs are a series of individual concave lenses in a linear array (figure 3-15). 

Concave lenses are used as opposed to convex ones since for X-rays, the index of 

refraction is slightly smaller than 1inside the material. CRLs do reduce the beam 

intensity, but it is still sufficient for most applications. Elements with a low X-ray 

attenuation coefficient such as Be are generally used for CRLs to minimise the loss 

in intensity. 
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At B16, CRLs were used to provide a micro-focused beam with a spot size of 

3.72 μm x 1.85 μm (horizontal x vertical). Since the beam does not hit the sample 

parallel to the surface normal, its footprint is approximately circular with a diameter 

of ~4 μm for the (004) reflection of Si. The use of CRLs for microfocus at Beamline 

16 at Diamond Light Source has been reported on in a number of studies [130-131] 

using a 1 Å wavelength.  

 

3.6.1.2 Sample mounting and cooling 

Membranes were attached to aluminium SEM stubs using sticky, conducting rubber 

pads. The SEM stub is mounted on a stage with XYZ translation having a precision of 

0.5 μm (figure 3-16). Since the X-ray flux hitting the sample may cause some local 

heating, resulting in sample damage or sample distortion caused by strain from 

thermal expansion, an Oxford Cryosystems Cryostream Plus sample cooler is 

mounted above the sample. The sample cooler uses a low flow liquid nitrogen jet to 

maintain the sample temperature at 20 
o
C. 
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.  

Figure 3-16 - Image of sample mounted on SEM stub on XYZ stage with cryocooling 

 

 

The XYZ sample stage is mounted on a 5-circle Huber diffractometer (figure 3-17, 

3-18). The detector arm of the diffractomter has a helium filled tube with a Kapton 

foil window at both ends, travelling the length of the arm from near the sample to the 

detector. This is to reduce signal loss from X-ray scattering in air. A Pilatus 300K 

area detector is used, with an array of 487 x 619 pixels, each having a size of 

172×172μm² [132]. The Pilatus detector has silicon pixel detectors, in which X-rays 

are converted to an electrical signal by the photoelectric effect when a bias voltae is 

applied. Each pixel on the detector has its own electronics for counting X-ray events. 

CCD area detectors are also available at beamline B16, but the Pilatus detector offers 

the following advantages: The area of Pilatus dectector is relatively large, which 

means that the detector did not need to be moved during scans and so reduces the 

Sample cooler 

XYZ Sample stage 

Sample on SEM stub 
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time taken to aquire RSMs. The Pilatus detector is energy discriminating, with an 

adjustable energy threshold value for events to exceed before they are detected, 

effectively giving a zero noise measurement.  

 

 

3.6.1.3 (0 0 4) reciprocal space mapping using micro-focus 

diffraction 

The sample is first moved up in the Z direction, to its half cut position (Z position 

where the sample cuts the X-ray beam intensity in half), then rocked in the ω-circle 

to give the position at which it is parallel to the X-ray beam. Since the half cut 

position changes with ω if the sample is not completely parralel to the beam, Z and ω 

are changed through a number of iterations, until the sample is both in the half cut 

position and completely parallel to the beam. 

 

 

Figure 3-17 - Sample mounted on 5-circle Huber difractomter with Pilatus 300 K 

area detector. 
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Figure 3-18 - Schematic of 5-circle diffractometer 

 

 

The X and Y position is adjusted so that the X-ray beam hits the sample on the bulk 

material surrounding the membrane. The Si (0 0 4) peak is then found by adjusting  

ω and δ. The membrane edge and both incident and scattered X-rays all lie parallel to 

[110] crystal plane (figure 3-19). 
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Figure 3-19 - Suspended Ge membrane with (004) scattering geometry. The edges of 

the membrane are aligned parallel to the <110> directions. RSMs at each point are 

obtained by scanning along the    ̅   and    ̅   directions. 

 

  

To locate the membrane, X and Y are rastered around the expected membrane postion 

until the Si (0 0 4) peak disappeares. An example (0 0 4) RSM taken from the bulk 

material at the edge of a suspended membrane structure is given in figure 3-20. A 

sufficiently wide scan range was used to capture both Si and Ge (0 0 4)  peaks. The 

Si substrate peak is fixed at    = 0 ± 0.00003 Å
-1

 and    = 0.7365 ± 0.00003 Å
-1

 and 

is used as a reference throughout.  
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Figure 3-20 - (0 0 4) Reciprocal space map taken from bulk Ge on Si(001) 

 

To characterise the strain along the membrane, the diffractometer is then aligned to 

the Ge (004) Bragg peak from the supported Ge on the frame surrounding the 

membrane. The detector position is adjusted so that its central scattering angle is 

halfway between that of the Si substrate and Ge peaks. RSMs are then measured by 

rotating the sample on the ω-circle around the (0 0 4) reflection.  

 

 

3.6.2 Analysis of Results 

 

For a given time interval, the Pilatus 300K detector counts incident X-ray events for 

each pixel. The pixels are recorded to a tagged image file format (TIFF) image, 

where the position corresponds to the physical pixel position on the detector and the 

intensity corresponds to the events counted. An example of an unprocessed TIFF 
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image is given in figure 3-21, where    is in the vertical axis and   in the horizontal 

axis. 

 

 

 

Figure 3-21 - Unprocessed tiff image from Pilatus detector showing (004) peak from 

a Ge membrane. The vertical axis is in the    direction and the horizontal axis in the 

χ direction. 

 

For speed and ease of processing, line profiles are taken from the TIFF image. To 

extract the peaks position in   , each horizontal row of pixels are summed, giving a 

line profile. Example line profiles through reciprocal space taken from a single TIFF 

image when the detector was aligned on a (004) peak from a Ge membrane are given 

in figure 3-22 and figure 3-23.  
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Figure 3-22 -    line profile extracted from single Pilatus TIFF image with the 

detector aligned on a (004) peak from a Ge membrane 
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Figure 3-23 -    line profile extracted from single Pilatus TIFF image with the 

detector aligned on a (004) peak from a Ge membrane 
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The vertical pixel values from the detector need to be converted to    values. Simple 

trigonometry gives equation 3-20, where   is the angle from the diffractometer,    

the detector pixel,    the central detector pixel (found from the direct beam 

condition),  w the width of the detector, N the total number of pixels (619 for the    

direction) and L the distance between the sample and detector.  

 

          (
        

  
) . 3-20 

 

Equations 3-21 and 3-22 [133] were then used to convert from real to reciprocal 

space, where λ = 1 Å and       .  

 

   
  

 
              3-21 

 

   
  

 
              3-22 

 

Matlab scripts are used to automate the conversion process for all scans. When the 

data is converted to reciprocal space, the scans are summed in the    and    

directions and Bragg peaks fitted with Gaussian profiles to obtain their position in    

and    and FWHM. An example fit is given in figure 3-24, where a Gaussian profile 

is fitted to a (004) Si Bragg peak in      It can be seen that the Gaussian profile gives 

a good fit to the peak, but does deviate slightly on the shoulders of the peaks. 
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Figure 3-24- (004) Si peak in    (black squares) fitted with Gaussian profile (red 

line).  

 

A technique for strain mapping by microfocus HR-XRD of Ge membranes using 

Beamline B16 at the Diamond lightsource has been presented. While synchrotron 

based microbeam X-ray diffraction allows a smaller sample volume to be probed 

than standard laboratory based X-ray diffraction, structural information is still given 

from a relatively large volume. Electron microscopy is able to probe a much smaller 

volume than both X-ray techniques and resolve some of the samples smallest 

features. 

 

3.7 Transmission Electron Microscopy 

In order to study small sample volumes TEM was used. The vast majority of the 

TEM microscopy presented in this work was performed on a JEOL 2000FX 

microscope operating at an accelerating voltage of 200 kV. This microscope uses a 
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W/LaB6 filament as the electron source and has a GATAN ORIUS 11 megapixel 

digital camera to record images.  

3.7.1 Sample preparation 

Fabricating a thin, high quality sample is essential for analysis by TEM. For a sample 

to be imaged by TEM, it must be sufficiently thin so that it is electron transparent, on 

the order of a few hundred nanometers for Si. The stages in the sample preparation 

process used for all TEM specimens in this work are illustrated in figure 3-25. 

 

The wafer for analysis is first cleaved into two identical ~5x10 mm sections using a 

diamond scribe along the [1 0 0] direction. The pieces are glued with the growth 

surface face to face using two part Araldite adhesive. Similarly sized pieces of scrap 

Si wafer are glued to either end as supports, forming a ‘sandwich structure (figure 

3-25 (a, b)). The sandwich structure is held in a steel clamp which applies pressure at 

either side while the glue is cured at ~180
o
C for several hours on a hot plate. To 

minimise the time the sample must be thinned for, a thin slice is taken of the 

structure using a Southbay Technology diamond saw figure 3-25 (c). 

 

The slice is transferred to a metal block so that it can be held while it is ground. The 

slice is held in place on the block with melted wax, this allows the sample to be 

easily removed when the grinding is completed. A 8” grinding wheel at ~150 rpm is 

then used to grind then polish the sample to a mirror like finish with silicon carbide 

grinding paper (P120 grit grade to P4000). The sample is then removed from the 

metal block by heating the wax and attached to a glass microscopy slide with wax, 

polished side facing down. The sample is again ground and polished, but this time 
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with the intention of thinning to ~20 - 40 μm.  This is very labour intensive and many 

samples are lost at this stage. 

 

A copper microscopy support ring with a 1 mm by 2 mm slit is glued to the sample 

lamina using Araldite Rapid. The slot of the ring is glued perpendicular to the sample 

interface. When the Araldite has cured, a scalpel is used to scrape away the lamina 

not covered by the copper ring and the ring and attached lamina is freed from the 

glass slide by heating the wax. The sample is then cleaned in acetone [(CH3)2CO] to 

remove any remaining wax. 

 

 

 

Figure 3-25 - Schematic diagrams of the stages in sample preparation for TEM. (a) 

Initial gluing of ‘sandwich’ surfaces together (b) completed ‘sandwich’ structure (c) 

diamond saw cut (d) section of sample bonded to metal block for grinding (e) ground 

and polished sample with copper support ring glued to surface (f) Ion beaming 

process 
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Finally the sample is thinned to electron transparency by ion milling and polishing 

using a Gatan 691 Precision Ion Polisher (PIPS), figure 3-25 (f).  This uses two 

beams of argon ions accelerated with 4.5 kV potential (higher voltages can be used to 

speed the milling process but can damage the sample) to slowly erode the surface.  

The sample is continually rotated to mill the sample uniformly and the ion guns are 

modulated to only mill the sample perpendicular to the epilayers to avoid damaging 

the samples surfaces. The ion guns are set at angles of 4.5º on the copper ring side. 

When the sample has been perforated, it is given a final polish at a lower acceleration 

voltage of 2.5 kV to gently polish it. An image of a prepared sample is given in 

figure 3-26. The perforation can be seen at the epilayer interface and a red/yellow 

tinge can be observed on the left of the sample, this is due to the Si becoming 

translucent due to the thinness of the lamina. Looking for the red tinge is a good 

indicator that the sample is suitable for TEM 

 

 

Figure 3-26 – Ground, polished and ion milled sample with copper support ring 

glued to surface  
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3.7.2 Imaging 

A simplified schematic diagram of a transmission electron microscope is given in 

figure 3-27.  At the top of the TEM column an electron gun is situated. This is 

comprised of a tungsten wire which is heated by a dc current to approximately 

2700 K [134] and emits electrons into the vacuum by thermionic emission. After 

emission, electrons are accelerated by an electric field which is parallel to the optical 

axis and collimated through a hole in a metal plate.  

 

The electrons then pass into the condenser lens system which controls the electron 

beam which is incident on the sample. There are generally two lenses present in a 

condenser lens system, the first de-magnifies the electron source and sets the spot 

size for the system and the second, when combined with the condenser aperture sets 

the angle at which the electron beam converges at the sample and the diameter of the 

illumination at the sample. There is also a stigmator present in the condenser lens 

system to correct for residual astigmatism of the C1 and C2 lenses. 

 

Following the condenser lens system there is the sample stage. This is designed so 

that the sample can be introduced into the TEM column without losing vacuum by 

means of an airlock and so that the sample can be tilted.  

 

The component parts below the sample stage in the TEM column are collectively 

known as the TEM imaging system. The role of the imaging system is to produce 

either a magnified image or diffraction pattern of the sample. The lens which is 

closest to the sample is called the objective lens. This is a powerful lens with a short 

focal length which requires a high current and water cooling. Since the focusing 
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strength of the lens is dependent on the current supplied to it, the power supply for 

this lens must be very stable. This lens is followed by the objective aperture, which is 

located at the plane where the specimens diffraction pattern is first produced. This 

aperture can be used to block electrons scattered above a certain angle, giving 

scattering contrast/diffraction contrast. The objective aperture also reduces the 

effects of spherical and chromatic aberration on the image. Moving down the TEM 

column, the next component is the selected-area aperture, also known as the 

diffraction aperture. The role of this aperture is to define a region of the sample from 

which an electron diffraction pattern is produced. It is standard for TEMs to have 

multiple lenses between the objective lens and the final projector lens, the combined 

function of these lenses can be thought of in terms of a single intermediate lens. This 

intermediate lens has two roles; changing the image magnification by altering its 

focal length in small steps, and, when the current through it is greatly reduced, 

producing an electron diffraction pattern on the phosphor screen/camera. Finally, at 

the very bottom of the TEM column is the projector lens. The role of this lens is to 

spread an image/diffraction pattern across the entire TEM screen. 

 

Finally a phosphor screen converts from an electron image to a visible image. The 

image can then be recorded using film or a CCD. For further reading on TEM the 

author recommends reference [134] and for an in-depth description of the principals 

reference [135]. 
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Figure 3-27 - A simplified schematic diagram of a transmission electron microscope 

 

 

3.7.3 TEM Image Contrast and Diffraction 

If a crystalline sample is imaged using TEM, changes in the crystal structure will 

change the elastic scattering diffraction condition. This in turn changes the intensity 

in the imaged electrons and hence gives image contrast.  
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As previous described, the projector lens strength can be reduced to give an electron 

diffraction pattern on the phosphor screen. The sample can be tilted, so that 

diffraction can occur from different crystal planes. The [000] direct beam is always 

visible. What is referred to as a two beam diffraction condition can be selected by 

tilting the sample so that only the direct beam and the spot from one other diffraction 

condition (the Bragg condition is only met for one point in the reciprocal lattice) are 

excited. The microscope’s objective aperture can then be used to select either the 

direct beam, giving what is known as a bright-field image or to select a diffracted 

beam giving what is known as a dark-field image. This is combined with the 

selection of specific diffraction conditions, to give a wide variety of possibilities for 

sample analysis. 

 

The strain field around dislocation causes a local bending of the crystal lattice which 

changes their diffraction condition and thus gives contrast in the image. If the 

Burgers vector (b) which defines the displacement of the crystal lattice is 

perpendicular to the diffraction condition, then the dislocation will be invisible in 

TEM (g∙b=0) (figure 3-28). 
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Figure 3-28 - Illustration of the dislocation invisibility criterion. In a) the dislocation 

is invisible due to the burgers vector being perpendicular to the diffraction condition 

(g∙b=0)  and in b) the dislocation is visible (g∙b≠0). 

If the Burgers vector of a dislocation is not known, it can be determined by what is 

known as g∙b analysis. Two non-parallel diffractions are found in which the 

dislocation is difficult to see, indicating g∙b=0. It should then be possible to find b.  

For more information on diffraction and contrast in the TEM the author recommends 

Williams and Carter [135]. 

3.7.4 Aberration-corrected TEM 

Unfortunately, despite operating with electrons with extremely small wavelengths (at 

200 kV, λ=0.0025 nm), the maximum resolution of conventional TEM is far from the 

wavelength of the electrons. The quality of the microscope’s objective lens and the 

illumination wavelength determine one of the basic resolution limits, this is referred 

to as the point resolution limit and is proportional to equation 3-23 [136], where λ is 

the electron wavelength and    is the coefficient of spherical aberration. The 

derivation of equation 3-23 can be found in [137] by Scherzer. For a lens exhibiting 

spherical aberration, rays travelling parallel to the optical axis but of varying 

distances away from the optical axis do not converge on the same point. 
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    3-23 

 

It can be seen from equation 3-23 that the microscope resolution can be improved by 

either reducing the electron wavelength or reducing    . Reducing the electron 

wavelength requires a higher accelerating voltage which is expensive and can cause 

sample damage. This leaves reducing   , which can be achieved through the use of 

aberration correctors. These generate negative values of    and cancel the positive 

   from the microscope lenses. The use of aberration correction has greatly increased 

TEM resolution, with resolutions obtained now below 1 nm. For more information 

on aberration correction see Hetherington [136]. 

 

The superlattice structures presented in this work are comprised of layers of Si1-xGex 

with only small change in Ge composition (15 %) between layers. This alloy 

difference is difficult to resolve with conventional TEM and gives poor contrast in 

images. A TEM based techniques that is able to give very good image contrast 

between layers of Si1-xGex, with small differences in Ge composition, is high-angle 

annular dark field scanning transmission electron microscopy and this technique is 

described in the next section. 

3.8 High-angle annular dark-field scanning transmission 

electron microscopy 

Scanning transmission electron microscopy (STEM), a schematic diagram of which 

is given in figure 3-29, can be compared to the more frequently used scanning 

electron microscope (SEM). Like SEM, in STEM the optics located before the 
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sample are used to form an illuminating spot which is rastered over the sample. The 

different signals this produces are recorded using a selection of detectors as a 

function of the probe location on the sample surface. Unlike SEM, a thin, electron 

transparent sample is used which causes little beam spreading, giving the technique a 

resolution that is mainly determined by the size of the probe. It is possible to achieve 

sub Å probe sizes so atomic resolution is possible. 

 

The technique of high-angle annular dark field (HAADF) STEM refers to a 

particular detector, which is positioned in the optics some distance from the sample. 

When the sample is not present, the detector receives no signal, hence the technique 

is called dark-field. When the electron probe interacts with the sample, scattered 

intensity is strongly related to the atomic number (Z) [138]. This is very useful for 

distinguishing between elements in atomic resolution images and is a distinct 

advantage over conventional TEM. In the cases of Si1-xGex, HAADF-STEM is able to 

distinguish between layers with an alloy difference of 2% [139]. 

 

All HAADF-STEM is this work was performed using a JEOL ARM200F TEM. For 

further reading on HAADF-STEM the author recommends reference [140]. 
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Figure 3-29 - Schematic diagram of the scanning transmssion electron microscope 

showing geometry of the annular dark-field (ADF) detector and the bright-field 

detector for phase contrast imaging. Adapted from [140] 

 

3.9 Summary 

In this chapter, a comparison of a number of complementary techniques for the 

materials characterisation of Si-based QCL structure is given. The parameters that 

can be measured with each technique are discussed. For each technique a detailed 

description was given, along with relevant theory. 
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4 Growth of Thin, Strained SiGe Layers 

In this chapter low temperature       ) epitaxial growth of Si0.4Ge0.6/Si is presented. 

Si0.4Ge0.6/Si layers are grown far beyond the critical thickness predicted by the 

People and Bean model and their high crystalline quality is confirmed by multiple 

techniques. Si0.4Ge0.6 was chosen since it is a higher Ge composition than has been 

reported in the literature for low temperature RP-CVD grown strained layers on 

Si (001). The high strain, high Ge composition and good crystalline quality mean that 

the layers have possible applications in electronic devices. The layers also offer an 

opportunity to investigate the growth quality of SiGe using germane and disilane 

precursors by low temperature RP-CVD, the technique which will be used to grow 

the QCL structures presented later in this work. 

4.1 Motivation 

The motivation behind the work in this chapter is to produce high quality, high Ge 

composition, strained SiGe layers that have applications in devices such as field 

effect transistors (FETs) [141], quantum-well transistors [150] and optical 

modulators [151]. This requires comprehensive materials characterisation to show 

the layers have good crystal quality and are not undergoing strain relaxation.  

4.2 Introduction - Low growth temperature and critical 

thickness 

Performing growth at relatively low temperature has the following advantages in the 

growth of Ge/Si1-xGex multilayers: improved interface quality, which is due to 

reduced Si/Ge diffusion and reduced Ge segregation and sharper dopant profiles 

from reduced dopant diffusion. Unfortunately, the degree to which growth 
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temperature can be lowered in RP-CVD is limited by greatly reduced growth rates at 

low temperature and by the physical limit of precursor gases requiring a certain 

temperature for thermal decomposition. This means that growth temperature is a 

compromise between growth quality and growth time. In the work on superlattice 

growth presented in Chapter 5, a relatively low growth temperature of        was 

used for all superlattice growth with the intention of achieving the highest quality 

possible. Few studies have explored the critical thickness for RP-CVD growth at 

such a low growth temperature and those that have are focused on low Ge 

concentration Si1-xGex [91, 141-142]. As discussed in Chapter 2, growth at low 

temperature is able to extend the critical thickness, due to the kinetics of plastic 

deformation being reduced with lower growth temperature. Since low growth 

temperature was already under investigation to give high quality, multi-layer growth 

for superlattices, it was decided to also investigate its effect on the critical thickness 

of high Ge content Si1-xGex, with a 60% Ge content. 

 

It is expected that the low temperature will give rise to layers grown beyond their 

critical thickness and with a high level of compressive strain, which is useful in 

device applications. This includes electronic devices like Field Effect Transistors 

(FETs) where it has been observed that for pseudomorphic layers of SiGe on Si 

[143-144] the mobility is improved with Ge content.  It is also very important to 

maintain the SiGe thickness around or above 10 nm in order to have a sufficiently 

thick layer so that material can be removed during processing, oxidation and cleaning 

steps, but still leave a sufficiently thick channel layer (the conducting channel region 

between the source and drain contacts in a FET). 
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4.3 Growth 

The precursor flow rates were first calibrated to give an alloy concentration of 

Si0.4Ge0.6 for growth at        by using HR-XRD reciprocal space mapping on thick 

layers of Si1-xGex. Following alloy calibration, a number of Si0.4Ge0.6/Si wafers (figure 

4-1) were grown with a wide range of growth times to give a range of layer 

thicknesses above and below the critical thickness. The critical thickness of a layer 

will be marked by the beginning of strain relaxation processes that result in the 

introduction of a small number of dislocations at the layer/substrate interface. 

Characterisation techniques that are sensitive to the appearance of these defects are 

therefore required.  

 

X nm strained Si0.40Ge0.60 

Si (001) substrate 

 

Figure 4-1 -Schematic diagram of  Si0.4Ge0.6/Si(0 0 1) heterostructure grown by RP-

CVD 

 

4.4 Characterisation 

4.4.1 Characterisation by XRD 

Initially (004) X-ray ω-2θ scans were performed on all of the Si0.4Ge0.6/Si wafers 

grown. The X-ray ω-2θ scans were fitted (using the method described in section 

3.5.3) to extract the Si0.4Ge0.6 layer thickness, giving values of 4.73 ± 0.04, 

6.30 ± 0.04, 18.1 ± 0.06, 21.12 ± 0.08, 24.26 ± 0.09 and 27.98 ± 0.09 nm. The error 

in thickness measurement decreased with decreasing layer thickness since the X-ray 

thickness fringes become better resolved for thinner layers. The maximum error in 
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thickness measurement of ± 0.09 nm was seen in the thickest (24.26 nm and 

27.98 nm) layers. This error is more than adequate for the critical thickness study to 

be performed on the layers. A layer with a long growth time did not exhibit any 

thickness fringes, however its thickness was estimated at ~40.6 nm by calculating a 

growth rate from the other layers. The X-ray ω-2θ scans for the 21.1 nm, 24.3 nm 

and 28.0 nm thick Si0.40Ge0.60 layers are shown in figure 4-2. For the 21.1 nm thick 

layer, the Si0.40Ge0.60 peak is symmetric and the thickness fringes are well defined; 

however, for the 24.3 nm thick layer and progressively more so for the 28.0 nm 

layer, the Si0.40Ge0.60 peak is asymmetric and the thickness fringes are poorly 

defined. The poorly defined thickness fringes are indicative of decreasing crystalline 

quality in the layers and the asymmetrical Si0.40Ge0.60 peak suggests a strain profile in 

the layers, with relaxation processes beginning to occur.  

 

Figure 4-2 - ω-2θ XRD scans around the symmetric (004) Bragg peak for Si0.4Ge0.6 

layers of increasing thickness of 21.1 nm (black), 24.3 nm (red) and 28.0 nm (blue). 

Simulated scans are given in green. Distinct thickness fringes can be seen in the 
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21.1 nm layer, but not in the 24.3 nm and 28.0 nm layers. The sharp peak on the right 

of each scan is from the Si substrate and is used as a reference.  

 

Symmetric (004) RSMs and asymmetric (224) RSMs were measured for all the 

Si0.4Ge0.6/Si wafers grown. In figure 4-3, (004) and (224) RSMs are given for the 

21.1 nm, 24.3 nm and 28.0 nm Si0.4Ge0.6 layers. The thickness fringes present in the 

X-ray ω-2θ scans in Figure 4-2 are also present in the RSMs, but are not as well 

defined. This is due to the shorter counting time and larger step size used in the 

RSMs due to time constraints when performing the scans ( each RSM scan duration 

is ~24 hours). For the 21.1 nm Si0.4Ge0.6 layer, sharp, narrow peaks are observed in 

both the (004) and (224) RSMs. For the 24.3 nm and 28.0 nm Si0.4Ge0.6 layers, the 

Bragg peaks observed in both the (004) and (224) RSMs are smeared, with 

significant diffuse scattering occurring. The smearing suggests the presence of a 

strain profile in the layers with strain relaxation beginning to occur.   
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Figure 4-3 – (004) symmetric HR-XRD RSMs from A) 21 nm Si0.40Ge0.60 layer, C) 

24nm Si0.40Ge0.60 layer and E) 29 nm Si0.40Ge0.60 layer. (224) asymmetric HR-XRD 

RSMs from B) 21 nm layer, D) 24nm layer and F) 29 nm layer.  

The FWHM of the Bragg peak from the Si0.40Ge0.60 layer can be seen to increase for 

the layers thicker than 21 nm. 
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The relaxation of the Si0.40Ge0.60 layers with respect to the Si substrate, as measured 

from the RSMs and the FWHM of the (004) Bragg peak from the alloy layer  are 

given as a function of layer thickness in figure 4-4. For the layers with a thickness of 

28.0 nm and below, the relaxation is measured as 0% (within error), i.e. they are 

fully strained, however this is not supported by the FWHM of the Bragg peak, which 

increases quickly from the 21.1 nm layer, indicating the onset of strain relaxation. 
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Figure 4-4 - Si0.40Ge0.60 layer relaxation with respect to the Si substrate as measured 

by RSM vs. layer thickness from fitted peak positions (red line and crosses) and 

FWHM of the Si0.40Ge0.60 layer Bragg peak from symmetrical (004) RSMs vs. layer 

thickness from fitted peak positions (blue line and crosses) . 

 

 

 

4.4.2 Surface Characterisation 

The wafers grown were then characterised by surface morphology measurement by 

AFM, since the strain field created by the introduction of dislocation into the layers 

is expected to have an effect on surface morphology. Tapping mode was used to 
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resolve the features on the thinner, smoother samples and contact mode on the 

rougher, thicker samples. In figure 4-5, the RMS surface roughness, as calculated 

from the AFM measurements, is plotted against the thickness of the Si0.40Ge0.60 layer. 

The RMS roughness was calculated over multiple scans to account for any 

inhomogeneity across the wafer. The growth starts with an RMS roughness plateaued 

at approximately 0.08 nm, which is comparable to the roughness of the original Si 

substrate. Following the plateau, the RMS sharply rises for layers thicker than 

21.1 nm.  

 

Figure 4-5 - RMS surface roughness measured by AFM plotted against epilayer 

thickness 

 

 

 

Individual AFM scans are given for the 21 nm thick Si0.40Ge0.60 layer in figure 4-6 

and the 24 nm Si0.40Ge0.60 layer in figure 4-7. When comparing the two scans, the 

large difference in vertical scale must be taken into account. The 21.1 nm thick layer 
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can be seen to have a relatively smooth surface, exhibiting detail with a high spatial 

frequency, which is most likely due to noise in the AFM. The 24.3 nm thick layer has 

a far rougher surface than the 21.1 nm thick layer, with a characteristic cross-hatch 

pattern visible.  

 

Figure 4-6 - Surface morphology for 21.1 nm layer from AFM 

 

 

Figure 4-7 - Surface morphology for 24.3 nm layer from AFM 

 

4.5 Discussion 

The point at which the critical thickness is exceeded will be marked by the 

introduction of dislocations into the Si0.40Ge0.60 layer. From AFM measurements of 

the surface morphology, a sharp decrease in crystalline quality is seen between the 
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21.1 nm and 24.3 nm thick layers, indicated by an increase in surface roughness. 

This suggests that the critical thickness of the layer lies between 21.1 nm and 

24.3 nm. Additional evidence for this conclusion comes from the cross-hatch pattern 

that is only visible on the surface of the 24.3 nm thick layer. The formation of the 

cross-hatch pattern along the two <110> directions is indicative of an underlying 

stress field caused by the dislocations from strain relaxation [145] and so confirms 

that the critical thickness has been exceeded by the 24.3 nm thick layer.  

 

A critical thickness between 21.1 nm and 24.3 nm is confirmed by the (004) X-ray 

ω-2θ scans. A loss of definition in the thickness fringes of the X-ray ω-2θ scan is 

seen in Figure 4-2 for the 24.3 nm and 28.0 nm layers relative to the 21.1 nm layer 

and is due to a reduction in crystalline quality caused by strain relief through defect 

formation. An increase in the FWHM of the Si0.4Ge0.6 Bragg peaks for the 24.3 nm 

and 28.0 nm layers is also visible when compared with the 21.1 nm layer. This peak 

broadening is from a strain profile in the layer formed as relaxation occurs.  

 

The critical thickness between 21.1 nm and 24.3 nm is further confirmed by HR-

RSMs in figure 4-3 and figure 4-4. For the 21.1 nm layer, the symmetrical and 

asymmetrical RSMs show the Si0.40Ge0.60 layer is fully strained: the Bragg reflections 

are both narrow in the    direction and elongated in the    direction, indicative of the 

diffraction only occurring through coherent scattering processes. However, for the 

24 nm and 28.0 nm layers, the symmetrical and asymmetrical RSMs show relaxation 

processes are occurring in the Si0.40Ge0.60 layer. The Bragg reflections have much 

larger FWHM for   , indicative of the diffraction occurring through coherent and 

diffuse scattering processes, which is a signature of the early stages of relaxation 
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processes [147]. The Bragg peaks associated with the alloy layers are also smeared 

suggesting a strain distribution in the layers, which also indicates the beginning of 

relaxation processes. 

 

From the People and Bean model, the critical thickness for Si0.4Ge0.6/Si is 14.5 nm. A 

comparison of the result from this work with relevant results from the literature and 

the People and Bean model for critical thickness is given in figure 4-8. It can be seen 

that the result from this work lies above that predicted by People and Bean and 

corroborates results from similar low temperature RPCVD growth by other groups. 

 

 

Figure 4-8 –The critical layer thickness as a function of Ge concentration for growth 

temperatures of 450°C, 500°C, 550°C and 600°C, a) 500°C growth by RPCVD by 

Wirths et al [142], b) 450° growth by RPCVD by Wirths et al [142], c) 600° growth 

by RPCVD by Hartmann et al [91], d) 550°C growth by RPCVD by Hartmann et al 

[91] e) 450°C growth by RPCVD (this work), f) People and Bean critical thickness 

model [148-149]. 
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The strain relaxation occurs relatively slowly for the Si0.4Ge0.6/Si layers grown in this 

study (figure 4-4). This is to be expected due to the high Ge composition of the 

layers: for higher Ge composition layers, strain energy is built up more quickly so 

relaxation occurs earlier during growth; since the SiGe layer is thinner when 

dislocations start to form there is a greater chance of dislocation blocking by the 

strain field of other dislocations.  This increased dislocation blocking acts to slow the 

rate of strain relaxation for layers that have a greater strain contrast to their substrate. 

In reference [91] this effect was confirmed by Hartmann et al. for CVD grown 

samples by studying the relaxation rates of Si1-xGex for a number of Ge 

compositions. 

4.6 Summary 

Si0.4Ge0.6/Si layers were grown with a wide range of thickness at a low growth 

temperature of 450
o 
C to determine the critical thickness for these growth conditions; 

the critical thickness was then confirmed using a number of techniques, all of which 

are in agreement. The Si0.4Ge0.6 layer was reported to be fully strained up to a 

thickness of 21 nm, with layers up to and including 21 nm thick being of good crystal 

quality and having a defect density lower than the detectable limit for the 

characterisation techniques used. A combination of high Ge composition, good 

crystal quality and high strain gives the layers possible applications in increasing 

performance for electronic devices such as field effect transistors (FETs) [141], 

quantum-well transistors [150] and optical modulators [151] due to their strain 

enhanced electrical properties. 
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5 Growth of SiGe/Ge Superlattices for Terahertz 

Emission 

This work presented in this chapter was undertaken in collaboration with groups at 

the University of Leeds and the University of Glasgow. The aim of this EPSRC 

funded project is to work towards a Si-based QCL. Within the project, the remit for 

the University of Warwick is the epitaxial growth and materials characterisation of 

structures. 

 

In this chapter, growth and comprehensive materials characterisation of n-type 

Ge/Si0.15Ge0.85 superlattices is reported. n-type Ge/Si1-xGex are challenging to grow: 

in comparison to p-type Si/Si1-yGey structures since they require a high Ge 

composition virtual substrate to strain balance the structure (discussed in section 2.5), 

n-type dopants have a higher diffusivity, and Ge has a higher diffusivity in Ge rich 

structures. The work presented in this chapter has many uses outside of the specific 

QCL project, with Ge/Si0.15Ge0.85 superlattices having a wide range of other 

applications such as in thermoelectric structures [152-154] and quantum-confined 

Stark effect modulators (QCSEs) [155-157]. 

 

Initially, growth of superlattices intended for optical measurements by the University 

of Glasgow are presented with full materials characterisation and a discussion of the 

merits of the growth quality. Growth of complex n-type QCL structures for terahertz 

emission are then presented, with in-depth materials characterisation. The materials 

characterisation performed on the superlattices includes a number of complementary 

techniques, HR-XRD reciprocal space mapping, X-ray ω-2θ scans, AFM, ATP, 
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SIMS, cross-sectional TEM and HAADF-STEM. Finally, the QCL structure growth 

quality is discussed, in the context of the structures performance QCLs. 

 

 

5.1 Preparation for growth and growth calibration 

To give accurate growth of the structures, a number of steps were carried out prior to 

growth, with the aim of calibrating growth rates, alloy composition and doping 

concentration. 

 

5.1.1 Composition 

The concentration of Ge is affected by both the precursor gas flow rates and the 

growth temperature.  For RP-CVD at 550°C the Ge mole fraction  , has been found 

to follow a parabolic-like relationship given by equation 5-1 where F(GeH4)/F(Si2H6) 

is the precursor gas mass-flow ratio [78]. While the growth conditions differ from 

those used in this work, equation 5-1 can still be used as a guide. 

  

     
 

            

          
   

5-1 

 

For each temperature used during epitaxial growth of structures, a range of partially 

relaxed Si1-xGex  on Si(001) substrate samples was grown. (004) and (224) XRD 

RSMs were then performed on all samples, from which their composition was 

extracted. The XRD results were used to calibrate the precursor gas flow rates to 

achieve a certain Ge concentration for a given growth temperature. An example is 

given in figure 5-1 for a sample of Si1-xGex on Si(001) used to calibrate an intended 

growth of relaxed Si0.05Ge0.95. It can be seen in figure 5-1 that for a Si1-xGex layer 
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with a higher Ge composition, the Si1-xGex peak moves away from the Si peak 

towards the origin of reciprocal space and the opposite for a Si1-xGex layer with a 

lower composition. The layer of Si1-xGex actually grown is 99.7±0.2 % relaxed with 

respect to the substrate and has a composition of x= 0.938±0.001. 

   

Figure 5-1 - Example of 004 (left) and 224 (right) RSMs used to calibrate precursor 

flows for growth of Si0.05Ge0.95. From both RSMs SiGe composition can be 

determined very accurately 

5.1.2 Growth rate 

Growth rate is affected by growth temperature, precursor gas flow rates and the 

growth medium. To calibrate growth rate, a number of samples were grown, each 

comprised of multiple layers with alternating high and low Ge composition. The 

layers were grown with a progressively longer growth time through the sample 

(figure 5-2). Features can be seen at the layer interfaces, these are caused by strain 

relaxation in the structure.  Cross-sectional TEM was then performed on the structure 

and the thickness of each layer found by taking the absolute differential of relative 

intensity and the results used to plot growth time vs. layer thickness (figure 5-3). The 

data was then fitted with a linear relationship (a linear growth rate was assumed), 

with the gradient giving the growth rate. It can be seen in figure 5-3 that for certain 

Ge concentrations/precursor gas flows, growth did not begin immediately with the 
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introduction of precursors. The time elapsed before growth begins is known as the 

‘stagnation time’ or ‘incubation time’ and is caused by the growth needing a time to 

nucleate on the substrate surface. The stagnation time must be accounted for when 

calculating the growth time to produce a layer with a certain thickness. Stagnation 

time varies depending on the growth surface. For example, Si0.15Ge0.85 grown on Ge 

has a different stagnation time to Si0.15Ge0.85 grown on Si0.05Ge0.95.  Due to this, 

separate calibration samples must be grown for each different interface present in a 

superlattice. 

  

Figure 5-2 - Cross-sectional TEM micrograph of Si0.15Ge0.85 450
o
C growth rate 

calibration structure overlaid with absolute differential of relative intensity. Features 

at the interfaces are dislocations formed due to exceeding critical thickness of the 

particular material. 
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Figure 5-3 - Plot of measured thickness vs growth time for Si0.15Ge0.85 (red) and Ge 

(black). The points have been fitted with a linear fit (blue), which is in excellent 

agreement with the data. The gradient of the fit gives growth rate and the y-axis 

intercept gives the stagnation time. 

 

 

 

5.1.3 Doping 

To calibrate dopant concentration, samples were grown with the required Ge 

composition, each containing a number of steps, with the dopant gas flow increased 

in each step.  SIMS profiles were measured for each sample, from which the dopant 

precursor flow required for a given level of doping can be determined. An example is 

given in figure 5-4 for phosphorus doping in Si0.15Ge0.85. Average dopant 

concentrations were calculated for plateaus. The dopant gas flow was then 

extrapolated for the required dopant level in the superlattice.  
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Figure 5-4 - SIMS profile for phosphorus doping in Si0.15Ge0.85 calibration sample. 
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are designed for characterisation using FTIR and electrical characterisation to be 

performed at the University of Glasgow. These techniques will be performed with 

the intention of characterising the intersubband transitions for the Ge/Si0.15Ge0.85 

system which can be used in the design of Si-based QCLs. Similar studies have been 

performed on Ge/Si0.20Ge0.80 based superlattices [158]. 

 

The FTIR structures feature an n-type, high Ge content multiple QW superlattice 

grown on a reverse graded virtual substrate (discussed section in 2.5) with a final 

alloy composition of Si0.05Ge0.95. The growth was performed at low temperature to 

minimise Ge segregation and give sharp interfaces. This is similar to the n-type QCL 

structures that were grown at a later date in the project. The similarity makes them 

ideal preparatory structures on which to research growth techniques for the QCL 

structures. The QCL structures to be grown will feature a more complex active 

region (seven QWs in each period as opposed to one for the FTIR structures) along 

with a much greater thickness for the entire growth. Since the QCL structures are so 

large, their growth time will be extremely long, in the range of 12-60 hrs and 

consume large amounts of expensive precursor gas. Due to this, first perfecting 

growth on simpler, smaller structures such as the FTIR structures was highly useful. 

5.2.2 FTIR structure design 

The FTIR structure growth batch consists of six wafers, each with a different active 

region design. The entire structure is given in figure 5-5, with the parameters varied 

between samples given in table 4. 
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Sample 

Number 

QW Width 

X(nm) 

Spacer Y 

(nm) 

Supply Z 

(nm) 

Supply 

doping cm
-3

 

R Repeats 

of active 

region 

11-262 10.0 2.2 1.0 3.0 x 10
18

 49 

11-263 13.0 3.0 1.0 3.0 x 10
18

 49 

11-264 16.0 3.0 2.6 1.2 x 10
18

 49 

11-265 19.0 3.0 4.2 7.2 x 10
17

 49 

11-266 23.0 3.0 6.3 4.8 x 10
17

 49 

11-267 19.0 3.0 4.2 7.2 x 10
17

 100 

Table 4- Variable parameters in FTIR structures 
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Figure 5-5 - Schematic diagram of FTIR layer structure 

 

 

A reverse graded, high Ge composition, Si0.05Ge0.95 virtual substrate (discussed in 

section 2.5) was used as a platform on which to grow the structure in order to strain-
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balance the superlattice. With the exception of the initial Ge seed layer, the virtual 

substrate was grown at a relatively high temperature, giving a high growth rate. For 

the remainder of the growth, the temperature was reduced to       with the aim of 

reducing Ge segregation, improving interface quality and minimising dopant 

diffusion. The virtual substrate was capped with a layer of Si0.05Ge0.95, before 

proceeding with the active region. The active region contains 50 or 100 repeats of Ge 

layers sandwiched between two Si0.15Ge0.85 spacer layers, with an additional 

Si0.05Ge0.95 layer with n-type doping beyond the spacer. The Ge layers are strained 

and form QWs with their conduction band minimum in the L-direction (section 

2.1.4). The separated doped layer supplying carriers to the quantum well [159]. The 

active region was capped with a 100 nm Si0.05Ge0.95 layer, to prevent dopants 

diffusing to the surface and allow for a top metal contact without destroying the 

active region, then finally a 3 nm Ge layer to passivate the surface.   

 

 

5.2.3 FTIR Structure structural characterisation 

Following growth, comprehensive material characterisation was performed on the 

structures. To extract layer thickness and structure quality, cross-sectional TEM was 

used on the active regions of samples 11-262 to 11-267 and is shown in figures 5-6, 

to 5-11. The design and measured thickness of the entire active regions are 

summarised in table 5. It can be observed that the crystal quality is good for all FTIR 

structures, with no threading dislocations observed, suggesting that the TDD in the 

active region is low. The contrast and brightness fluctuation in the middle of the 

active regions (labelled in figure 5-6, since they are very pronounced in this image) 

are due to mechanical distortion of the sample lamina during sample preparation. For 
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structure 11-267, in the bottom left region of figure 5-11, what appears to be a 

dislocation threading arm can be seen. However since it is adjacent to the crater left 

by ion milling during sample preparation, it is presumed to be an artefact from 

sample preparation. Micrographs taken from further along the sample did not show 

any dislocations, but as they were further from the ion milling crater, the lamina was 

too thick to give good contrast to the superlattice active region. Unfortunately, 

contrast is poor in all micrographs, this is due to the small change in alloy (15 %) 

between the barriers and QW’s. 

 

 

 

Figure 5-6 - A cross-sectional TEM micrograph of active region for sample 11-262 
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Figure 5-7 - A cross-sectional TEM micrograph of active region for sample 11-263 

 

 

Figure 5-8 - A cross-sectional TEM micrograph of active region for sample 11-264 
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Figure 5-9 - A cross-sectional TEM micrograph of active region for sample 11-265 

 

 

Figure 5-10 - A cross-sectional TEM micrograph of active region for sample 11-266 
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Figure 5-11 - A cross-sectional TEM micrograph of active region for sample 11-267 

 

 

To investigate the interface quality and doping density, low energy SIMS was then 

performed on the structures. The Ge concentration extracted from SIMS measured on 

the active region is overlaid on a cross-sectional TEM micrographs in figures 5-12 to 

5-17 (at a higher magnification than those given earlier) for samples 11-262 to 11-

267. The thickness of each layer  measured from the cross-sectional TEM are 

summarised in Table 5. The SIMS shows that the Ge QWs are indeed pure Ge 

without major Si contamination (all QW plateaus are ~100 % Ge by SIMS profile) 

and the correct alloy concentration has been reached in the Si0.15Ge0.85. Both the 

Ge/Si0.15Ge0.85 and Si0.15Ge0.85/Ge barriers are sharp, with an approximate gradient of 

0.05% alloy change per nm. For the samples with the thinner supply layers, 11-262 

and 11-263,  a single sharp unintended peak in Ge concentration is seen at the 

position of the doped carrier supply layer with an alloy concentration at its peak of 
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approximately Si0.05Ge0.95. For the samples with the thicker supply layers, 11-264, 

11-265, 11-266 and 11-267 the peak splits into two separate peaks, which are located 

at either side of the supply layer. Dopant concentration was also measured for all 

samples, but was below the dectection limit for the technique (~10
18

 cm
-3

). The 

cross-sectional TEM shows that the interfaces are uniform and flat, with the mottled 

effect being due to sample preparation and the resolution limit of the microscope 

(figure 5-13). The thin dark line seen between the Si0.15Ge0.85 spacers confirms the 

presence of the Ge concentration spike seen in the SIMS measurement.  

 

Figure 5-12 – Ge concentration SIMS profile of FTIR structure 11-262 overlaid on 

cross-sectional TEM micrograph 
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Figure 5-13 - Ge concentration SIMS profile of FTIR structure 11-263 overlaid on 

cross-sectional TEM micrograph. 

 

 

Figure 5-14 - Ge concentration SIMS profile of FTIR structure 11-264 overlaid on 

cross-sectional TEM micrograph. 

220 230 240 250 260 270 280 290
0.85

0.90

0.95

1.00

Ge QWGe QW

 

 

G
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

%
)

Depth (nm)

11-263

220 240 260 280 300
0.8

0.85

0.9

0.95

1

1.05
Ge QWGe QW

 
 

G
e

 c
o

n
c
e

n
tr

a
ti
o

n
 (

%
)

Depth (nm)

11-264



J. E. Halpin – PhD Thesis 

 139 

 

Figure 5-15 - Ge concentration SIMS profile of FTIR structure 11-265 overlaid on 

cross-sectional TEM micrograph. 

 

 

Figure 5-16 - Ge concentration SIMS profile of FTIR structure 11-266 overlaid on 

cross-sectional TEM micrograph. 
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Figure 5-17 -  Ge concentration SIMS profile of FTIR structure 11-267 overlaid on 

cross-sectional TEM micrograph 
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Figure 5-18 - HR-XRD (0 0 4) ω-2θ scans of FTIR superlattice structure 11-262. The 

measured experimental data is shown (black) along with simulated curve (red). 

 

Figure 5-19 - HR-XRD (0 0 4) ω-2θ scans of FTIR superlattice structure 11-263. The 

measured experimental data is shown (black) along with simulated curve (red). 
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Figure 5-20 - HR-XRD (0 0 4) ω-2θ scans of FTIR superlattice structure 11-264. The 

measured experimental data is shown (black) along with simulated curve (red). 

 

Figure 5-21- HR-XRD (0 0 4) ω-2θ scans of FTIR superlattice structure 11-265. The 

measured experimental data is shown (black) along with simulated curve (red). 
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Figure 5-22  - HR-XRD (0 0 4) ω-2θ scans of FTIR superlattice structure 11-266. 

The measured experimental data is shown (black) along with simulated curve (red). 

 

Figure 5-23 - HR-XRD (0 0 4) ω-2θ scans of FTIR superlattice structure 11-267. The 

measured experimental data is shown (black) along with simulated curve (red). 
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To investigate the surface morphology AFM was performed on the surface of FTIR 

structure 11-262, an example of which is given in figure 5-24. Multiple scans were 

taken from positions across the wafer from which the RMS surface roughness was 

calculated to be 2.3 ±0.5 nm. A characteristic cross-hatch pattern can be observed. It 

was assumed that since the growth parameters remain relatively similar for each 

structure the surface morphology would stay the same. Hence, the results from  

11-262 can also be applied to wafers 11-263, 11-264, 11-265, 11-266 and 11-267.  

 

 

Figure 5-24 - AFM surface representation scan of FTIR superlattice structure 11-262 
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5.2.4 Summary of FTIR Structure characterisation 

 

Sample 

Number 

Active region 

width (nm) 

QW Width X(nm) Total SiGe layer width 

(nm)  

Design TEM 

±5 nm 
 

Design TEM 

±0.5 

nm 

XRD 

±0.5 

nm 

Design TEM 

±0.5 

nm 

XRD 

±0.5 

nm 

11-262 800 974 10.0 10.9 10.1 5.4 9.0 9.9 

11-263 1030 1194 13.0 14.4 13.2 7.0 9.3 10.6 

11-264 1244 1450 16.0 17.2 17.2 8.6 10.8 11.0 

11-265 1490 1670 19.0 19.3 19.7 10.2 11.6 13.6 

11-266 1792 1870 23.0 22.7 23.6 12.3 13.9 14.4 

11-267 2935 3424 19.0 20.4 19.9 10.2 13.6 12.8 

Table 5 - FTIR structure design thicknesses compared with those measured by TEM 

and XRD 

 

 

5.2.5 Discussion  

Strain-symmetrized Ge/Si0.15Ge0.85 multiple quantum well superlattice structures have 

been successfully grown at the low growth temperature of       on a reverse linear 

graded SiGe/Ge/Si virtual substrate, all of which exhibit good crystalline quality. 

 

Cross-sectional TEM on all FTIR superlattice structures grown shows no large scale 

roughening or dislocations, indicating a low TDD in the superlattice region. Since no 

strain relaxation is observed to be occurring in the superlattice then the TDD should 

be similar to that which is recorded for the underlying high Ge composition reverse 

linear graded virtual substrates, i.e. ~         [97-99].  

 

The following peaks are visible in the ω-2θ scans from all the structures: the Si 

substrate, the relaxed Ge, the Si0→0.05Ge1→0.95 reverse linearly graded region of the 
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virtual substrate, the Si0 → 0.05Ge1 → 0.95 constant composition region, and repeated 

superlattice peaks from the Ge/Si0.15Ge0.85 multiple quantum wells. The repeated 

superlattice peaks are sharp and extend over a wide scan range, with many higher 

order peaks visible. This is indicative that that the superlattice is of good crystalline 

quality, with sharp interfaces and relatively low inter-diffusion between layers. The 

intensity of the superlattices peaks is strongly affected by inter-diffusion, with the 

peaks intensity rapidly decreasing with inter-diffusion between layers [160-161].  

 

When the cross-sectional TEM measurement error is taken into account, the Ge QW 

thickness values are in good agreement with the designed structure, with a maximum 

variation of ~1 nm larger than the design, giving a relative error of 10% (where the 

relative error is defined as  
            

       
      ). The Si0.15Ge0.85 regions have a 

larger deviation from the design than the Ge QWs, with a maximum variation 

~3.5 nm larger than the design, giving a relative error of 66%.  Unfortunately, the 

error in the TEM measurement is relatively large (±0.5nm), which is due to the small 

difference in Ge composition between the barriers and QWs giving little 

compositional contrast for thin regions of the sample. Multiple TEM images were 

taken through each of the superlattice structures and each period was found to have 

the same thickness within this error. This illustrates the reproducible epilayer 

thickness achievable with RP-CVD over a complete structure that is more than 3 µm 

thick. Other growth techniques such as solid-state molecular beam epitaxy 

(SS-MBE) can exhibit significant growth rate drift and fluctuation during growth, 

with cell outputs differing as much as 2% during the long growth times required to 

grow such a complex superlattice structure [162]. 
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Figure 5-25 - Deviation of measured thickness from design for Ge QWs (filled) and 

alloy layers (open symbols) from TEM (square) and XRD (circles). The dotted blue 

line indicates a measured thickness equal to the design thickness. 
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from samples 11-263 and 11-266 (figures 5-19 and 5-22). These were the X-ray 

scans with most pronounced difference in intensity for higher order superlattice 
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However, for the thinner layers, there is a systematic deviation from the intended 

thickness which appears to follow a linear trend. It is possible that the systematic 

variation is either systematic measurement artefact or a systematic growth issue. It is 

most likely that the variation is a systematic growth issue for the following reasons: 

even when the error in the measurement techniques is taken into account, the linear 

variation still holds; both measurement techniques agree on the linear trend; and 

while it cannot be used to measure individual layers, the TEM micrographs at low 

resolution corroborate that the active regions are thicker than intended. It is possible 

that the microscope will introduce systematic errors at certain magnifications, due to 

incorrect calibration. Since the variation is systematic, the results of the 

characterisation performed in this study could be used to regrow all the structures 

with layer thicknesses extremely close to the original design. The possible 

mechanism behind the non-linear growth rate is discussed in section 5.3.11. 

 

All of the superlattice structures grown have Ge concentration spikes at the interface 

between the Si0.15Ge0.85 doped supply region and the Si0.15Ge0.85 spacers. This is 

caused by Ge surface segregation, where Ge rises to the surface of the growing 

crystal. The growth is interrupted before and after growing the doped region to allow 

for the purging and replacement of the gases in the growth chamber, during this time 

the Ge concentration spikes will be formed since the wafer is kept at the growth 

temperature during this time which will lead to of some of the Ge on the surface 

becoming incorporated into the crystal. For the structures with thinner supply layers 

of 1 nm (11-262, 11-263), only one Ge concentration spike is visible, which is 

because the spikes from either side of the supply layer have merged due to the small 

separation. 
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SIMS and X-ray measurements confirm the QWs are pure Ge for all the superlattice 

structures grown. For the Si0.15Ge0.85 regions, the correct alloy concentration has been 

reached outside of the Ge concentration spikes. Since the doping is below the 

detection limit for the SIMS measurements performed, no comment can be made on 

the dopant diffusion and concentration for all the structures grown. The effects of the 

growth variations observed on QCL operation are discussed in section 5.3.13. 
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5.3 Chirped Superlattice Structures 

5.3.1 Chirped superlattice growth motivation 

With the aim of working towards a functioning Si-based QCL structure, QCL 

designs were proposed by the University of Leeds. Details of the method used by the 

University of Leeds to design the structures can be found in references [60] and 

[163]. The chosen structure utilised a chirped superlattice (CSL) bound-to-continuum 

design (see section 2.1.2 for an explanation of the bound to continuum design). 

Chirping refers to a technique where the superlattice well and barrier thicknesses are 

varied or ‘chirped’ to compensate for the electric field applied to the superlattice, 

ensuring that the miniband edges remain at constant energy. The structures are 

designed to experimentally demonstrate intersubband emission, to study the effect of 

main quantum well size on emission frequency using an n-type Ge/SiGe on Si (001) 

QCL structure, and to investigate the effect of changing the size of the main quantum 

well on the electrical properties. The structures feature a complex seven QW active 

region and represent challenging epitaxial growth for the relatively immature high 

Ge content Ge/SiGe system. As with the previously discussed FTIR structures, 

growth was performed at low temperature to minimise Ge surface segregation, give 

sharp interfaces and reduce dopant diffusion. 

 

5.3.2 CSL Structure design 

The CSL structure growth batch consists of 3 wafers, each with a different active 

region design, intended show the effect of main quantum well size on emission 

frequency. The entire structure is given in figure 5-26, with the parameters varied 
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between samples given in table 6. As with the previously grown FTIR structures, a 

reverse graded high Ge composition Si0.05Ge0.95 virtual substrate was used as a 

platform on which to strain-balance the superlattices. The virtual substrate is capped 

with a thick (2 µm), doped bottom contact. Although a high growth temperature for 

the bottom contact would significantly reduce the growth time and precursor 

consumption, it was still grown at the lower temperature of       to avoid the large 

dopant segregation that would otherwise occur from the relatively highly doped 

bottom contact. 

 

Following the bottom contact, 50 periods of the active region superlattice were 

grown. The growth temperature for the QCL superlattice structure was      . Each 

period consists of 14 layers of alternating Ge QWs and Si0.15Ge0.85 barriers. A Ge 

fraction of 0.85 was used for the barriers, since it gives the maximum usable 

conduction band offset of ~90 meV [118] between the barriers and QWs that can be 

used for THz QCL design. In each period, barrier #3 to quantum well #6 were n-type 

doped. It can be seen that it is only the size of the main Ge quantum well that varies 

between the structures. The periods have been strain-balanced and should have the 

same in-plane lattice parameter as Si0.05Ge0.95 (5.6453 Å).  The strain-balance criteria 

was also shown to be met at the growth temperature. Following the active region, a 

Si0.05Ge0.95 50nm doped top contact was grown, followed by a Ge cap. 

 

The structures are designed to exhibit electroluminescence and the expected EL 

spectra has been simulated by the University of Leeds. EL can be used to 

demonstrate that the correct operation of the structures, even if they do not have 

sufficient gain to lase. Table 6 gives the frequency of the EL peak position for the 
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CSL QCL structures predicted from simulation, along with the bias voltage required 

for operation. It can be seen that the frequency decreases with increasing main QW 

width and lies in the mid-terahertz range.   
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Si0.05Ge0.95 reverse graded virtual substrate 

 

 

Si (100) substrate 

Figure 5-26 - Schematic diagram of CSL structure 
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Sample 

Number 

CSL 1 CSL 3 CSL 4 

b1 (nm) 4 4 4 

w1 (nm) 13 17 21 

b2 (nm) 4 4 4 

w2 (nm) 8.2 8.2 8.2 

b3 (nm) 2.5 2.5 2.5 

w3 (nm) 7.0 7.0 7.0 

b4 (nm) 3.3 3.3 3.3 

w4 (nm) 6.5 6.5 6.5 

b5 (nm) 3.5 3.5 3.5 

w5 (nm) 6.3 6.3 6.3 

b6 (nm) 3.7 3.7 3.7 

w6 (nm) 6.2 6.2 6.2 

b7(nm) 3.9 3.9 3.9 

w7 (nm) 6.0 6.0 6.0 

ND (cm-3) 4x10
16

 4x10
16

 4x10
16

 

NBC (cm-3) 1x10
18

 1x10
18

 1x10
18

 

EL Peak (THz) 8.05 5.50 3.95 

Bias (kV/cm) 4.5 4.5 4.5 

Table 6 – Barrier and layer thickness’s, doping concentrations, expected emission 

peak position and bias for CSL structures. The main quantum well thickness’s which 

are varied between structures are highlighted in yellow. 

 

 

For strained Ge, the lowest electron energy in the conduction band occurs at the L-

symmetry point of the Brillouin zone, with a significant energy gap to the higher 

lying Γ- and X-valleys [192]. Consequently, only L-valley electron wavefunctions 

are relevant to QCL operation. In figure 5-27 the L-valley  conduction band profile is 

given for one period of the CSL 3 structure, together with the probability distribution 

of the electron wavefunctions. The main 17 nm wide QW, where the radiative 

transition occurs, is labelled and from simulation performed by the University of 

Leeds is expected to produce electroluminescence at a frequency of 5.50 THz. The 

frequency of the EL peak varies with the width of the main QW due to its width 
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being one of the factors determining the energy offsets between states in the QW. 

The wavefunctions associated with the other wells form a continuum band that 

enables the efficient transfer of electrons from the lower radiative state of the main 

QW in one period into the upper radiative state of the main QW in the next period 

(see section 2.1.2 for the use of a continuum band in QCL design). 

  

Figure 5-27 - L-valley conduction band diagram of one period of the active region 

for the QCL CSL 3 structure [164]. The main QW’s where the radiative transition 

takes places are labelled, with their wave functions plotted in thick lines. The wave 

functions for the other wells are also plotted. A miniband is formed by the wells 

between the main QW’S.  

 

5.3.3 Initial growth 

Following calibration of all the necessary growth parameters, structures were grown 

using the parameters given in table 6 and named test-CSL 1, test-CSL 3 and test-

CSL 4. The growth time was extremely long at ~ 24 hours per wafer.  The fact that 

no issues occurred with the growth system during this time illustrated its capability in 
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principle to grow structures of this kind. The structural characterisation of these 

samples is reported in the following section. 

5.3.3.1 CSL structures: initial growth  

Before any structural characterisation was performed, the samples were noted to be 

visibly dull and hazy. Wafers with good crystal quality growth should have a mirror 

like finish. Dulling of the wafers surface is caused by diffuse scattering of light from 

an extremely rough surface. To ascertain the location in the structure at which the 

quality of growth was deteriorating, cross-sectional TEM was performed. In figure 

5-28, cross-sectional TEM is given for the entire growth. It can be seen that the 

surface has extremely high roughness, with feature sizes a few microns in size. 

Cracks are present in the growth, extending through to the substrate. The 

growth/substrate interface is smooth, suggesting the issue is with growth and not a 

defective substrate. 
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Figure 5-28- A cross-sectional TEM micrograph of initial-CSL QCL superlattice 

showing entire growth. Two sections of growth are visible, glued face to face during 

TEM sample preparation. It can be seen the growth is extremely poor quality 

 

In figure 5-29, cross-sectional TEM is given for the bottom contact and a small 

section of the superlattice growth. The bottom contact/virtual substrate can be seen to 

be of good crystalline quality. No defects are observed in them and the interface 

between the bottom contact and superlattice is flat. This suggests that the defective 

growth is in the superlattice region.   
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Figure 5-29 - A cross-sectional TEM micrograph of initial-CSL QCL superlattice 

growth showing virtual substrate, bottom contact and a small section of the 

superlattice growth. 

 

In figure 5-30, cross-sectional TEM is given for the interface between the bottom 

contact and the superlattice. While the bottom contact is observed to be of good 

quality, the interface between it and the superlattice appears rough. The superlattice 

layers are distorted and have two boundaries running through them, possible caused 

by stacking faults. 

 

CSL structure 

Bottom contact and 

virtual substrate 
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Figure 5-30- A cross-sectional TEM micrograph of initial-CSL QCL structure 

showing interface between the bottom contact and the superlattice. 

 

In figure 5-31 dark-field cross-sectional TEM is given for the interface between the 

bottom contact and the superlattice, using the (004) diffraction condition which gives 

good strain contrast. The superlattice can be seen to be highly defective. The 

distorted superlattice regions are possibly due to dislocation pile-up. 
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Figure 5-31 – A 004 dark field cross-sectional TEM micrograph of CSL QCL 

superlattice growth showing interface between the bottom contact and the 

superlattice. 

 

 

5.3.4 Discussion 

The first attempt at growing the initial-CSL structures was unsuccessful, with the 

superlattice regions being highly defective. The defective structures were studied by 

TEM to ascertain why the growth failed. 

 

In all the TEM images, the structure exhibits good crystallinity through the virtual 

substrate and bottom contact. It is only at the start of the superlattice that growth 

deteriorates. The deterioration appears to be caused when the strain relaxes by 

forming dislocations. The strain relaxation could be occurring for a number of 

different reasons: The thickness of any individual layer in the superlattice could be 

exceeding its critical thickness, possibly caused by incorrect SiGe alloy 

CSL structure 

Bottom contact 

Dislocation pile-up 
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concentration giving the layers a lower than expected critical thickness. 

Alternatively, the superlattice could be incorrectly strain-balanced and thus have a 

different in-plane lattice parameter to the platform on which it is grown, in this case 

the Si0.05Ge0.95.  

 

It is unlikely that any individual layer has exceeded its individual critical thickness in 

the superlattice. For a layer of Ge grown on Si0.05Ge0.95, the critical thickness 

according to the Matthews-Blakeslee model is ~70 nm, which is far larger than the 

expected thickness of any Ge layer in the superlattice. This is confirmed by TEM 

where the entire superlattice region is observed to be defective as opposed to any 

individual layer. It is also unlikely that the layers have been grown with an incorrect 

alloy composition since the same precursor flows were used for the previously grown 

FTIR structures where alloy composition was measured by SIMS and XRD. This 

leaves incorrect strain balance as the most likely cause of the defective superlattice. 

This is confirmed by TEM of the structure where the defects can be observed to be 

forming at the bottom of the superlattice, which is symptomatic of incorrect strain 

balance (see section 2.4 for a discussion of superlattice strain-balance). 

 

5.3.5 CSL Structure Strain balance 

The CSL QCL superlattice is designed to be strain-balanced, with the in-plane lattice 

parameter matching that of Si0.05Ge0.95. If the superlattice is not strain-balanced, then 

it can be treated in the same manner as an individual strained layer: If it is grown 

with a thickness beyond a certain critical thickness, which is determined by the 

lattice mismatch between the superlattice and its platform, then strain relaxation 
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occurs in the superlattice. To test the theory that the superlattice was not strain-

balanced, intial-CSL1 structure was grown with only three periods, in the hope that 

this was below the critical thickness for the superlattice. It was not feasible to 

measure the layer thickness in the original growth because the poor crystal quality 

made resolving individual layers difficult.  

 

The three-period structure was grown successfully, with good crystal quality in the 

superlattice. This supports the idea that the previous growth was not strain-balanced. 

Cross-sectional TEM of the three-period structure is given in figure 5-32. No defects 

can be observed in the active region and the layers are smooth with abrupt interfaces. 

The layer thickness was measured from the cross-sectional TEM, giving a total 

Si0.05Ge0.95 thickness of 37.1 ± 0.5 nm and a total Ge thickness of 59.0 ± 0.5 nm for 

one period. Significantly more Si0.15Ge0.85 has been grown than intended, giving the 

superlattice a smaller in-plane lattice parameter than the original design. The in-plane 

lattice parameter for the free-standing superlattice was calculated to be 5.6428 Å, 

which is lattice matched to a Si0.06Ge0.94 platform. However, the superlattice was 

grown on Si0.05Ge0.95, which gives the superlattice a critical thickness of 450 nm from 

the Matthews-Blakeslee model, a thickness far exceeded in the original 50 period 

structure growth, explaining the observed strain relaxation. 
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Figure 5-32 – Left - A cross-sectional TEM micrograph of initial-CSL1 QCL 

structure (grown with only three periods to test for incorrect layers thicknesses 

causing strain relaxation). The contrast is reversed (Ge is bright, SiGe is dark) due to 

tilt of the lamina. Right - One period of superlattice magnified from micrograph on 

left. 

 

 

5.3.6 Successful growth 

A number of growth rate calibration wafers were grown, which used thin layers for 

calibration as opposed to the original calibration wafers which used relatively thick 

layers. It was found that for thin layers, the growth rates deviate from those for thick 

layers (as previously noticed for the FTIR samples), with a nonlinear relationship 

between growth time and layer thickness. Through a process of iteration, new layer 

growth times were calculated for the next batch of CSL QCL structures. 

 

Following adjustment of the layer growth times, the CSL structures were grown 

successfully. In this section, the structural characterisation of these structures is 
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reported. The successfully grown structures were named CSL 1, CSL 3 and CSL 4 

and were again studied first by cross-sectional TEM to investigate the growth 

quality. 

 

5.3.7 Quantum cascade laser structure CSL 1 structural 

characterisation 

Bright-field TEM of the entire growth for structure CSL 1 is shown in figure 5-33. 

The contrast in the bottom half of the image is relatively low, because the wedge 

shape of the TEM lamina following ion beam polishing means this part of the lamina 

is thicker and so less transparent to electrons. It can be observed that the active 

region is of high quality, with all dislocations present terminating in the large bottom 

contact before reaching the active region. 

 

Figure 5-33 - Cross-sectional TEM micrograph of entire growth for sample 12-81, 

structure CSL 1 
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The use of conventional TEM for studying the thickness and interfaces of the layers 

in the active region is not ideal. The small alloy variation in the layers gives very 

little contrast between layers and at atomic resolution, the Ge/Si0.15SiGe0.85 layers are 

indistinguishable. Depending on the diffraction condition used, strain also causes 

contrast fluctuations, interfering with layer thickness measurements. To provide 

more accurate characterisation HAADF-STEM was used.  HAADF-STEM gives a 

high Z contrast when compared with conventional TEM and has been observed to 

give good contrast between SiGe layers with an Ge composition difference as low as 

2 % [139]. 

Due to the relatively large size of one period of the active region in the CSL 1 QCL 

structure, it was split into four sections for imaging by HAADF-STEM, as shown in 

figures 5-34 b) to 5-37 b). It can be seen that even at atomic resolution, HAADF-

STEM gives excellent alloy contrast between the Si0.15Ge0.85 barriers and the Ge 

quantum wells. The interfaces are observed to be smooth with no defects. To 

calibrate the scale on the HAADF-STEM images, the Ge monolayer was used as an 

internal reference. 

 

To extract the thickness of each layer from the images, a line profile was extracted of 

the relative intensity with vertical position. The differential of the relative intensity 

was taken and converted to an absolute value. This is referred to as the absolute 

differential in this study. The relative intensity and absolute differential of the 

relative intensity is given in figures 5-34 a) to 5-37 a). The peak positions in the 

absolute differential of the relative intensity plot correspond to the interface 

locations.  Peak positions were extracted by fitting Gaussian profiles to the peaks. 
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It can be observed that the interfaces between layers extend over ~2 nm and that the 

Si0.15Ge0.85/Ge interfaces (Ge grown on top of Si0.15Ge0.85) are sharper than the 

Ge/Si0.15Ge0.85 interfaces (Si0.15Ge0.85 grown on top of Ge). This can be seen in the  

HAADF-STEM images and is also visible in the relative intensity and absolute 

differential of the relative intensity plots.  The Si0.15Ge0.85/Ge interfaces have a higher 

gradient in the relative intensity plots than the Ge/Si0.15Ge0.85 interfaces and thus have 

peaks with a smaller FWHM in the absolute differential of the relative intensity. This 

suggests smearing of the Ge/Si0.15SiGe0.85 interface in the growth direction. The 

interfaces observed by HAADF-STEM may differ slightly from the as-grown 

interfaces as a result of looking through the thick TEM sample lamina (~50 nm) and 

due to smearing from sample preparation. 

 
 

Figure 5-34 – a) Relative intensity (blue line) and absolute differential of relative 

intensity (red line) b) HAADF-STEM of CSL 1 QCl structure showing SiGe barriers 

b1 to b3.  
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Figure 5-35 – a) Relative intensity (blue line) and absolute differential of relative 

intensity (red line) b) HAADF-STEM of CSL 1 QCl structure showing SiGe barriers 

b3 to b6.  

 

Figure 5-36 – a) Relative intensity (blue line) and absolute differential of relative 

intensity (red line) b) HAADF-STEM of CSL 1 QCl structure showing SiGe barriers 

b5 to b7.  
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Figure 5-37- a) Relative intensity (blue line) and absolute differential of relative 

intensity (red line) b) HAADF-STEM of CSL 1 QCl structure showing SiGe barriers 

b7 to b2.  

5.3.7.1 CSL1 12-81 structural characterisation by APT 

 

In order to corroborate the QW/barrier interface quality as measured by 

HAADF-STEM, atom probe tomography (APT) was performed on the structures. In 

figure 5-38, an atom probe tomograph is given for QCL structure CSL 1. This 

measurement was taken at Tohoku University and full credit goes to Yasuo Shimizu, 

Masaki Shimodaira, Hisashi Takamizawa, Koji Inoue and Yasuyoshi Nagai. The 

measurement confirms that the Si0.15Ge0.85 alloy composition is correct and that pure 

Ge has been achieved in the QWs.  On close inspection, it can be seen that the Ge 

QWs are smeared in the growth direction. 
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Figure 5-38 - Ge concentration profile for QCL structure CSL 1 from APT 

performed at Tohoku University with credit to Yasuo Shimizu, Masaki Shimodaira, 

Hisashi Takamizawa, Koji Inoue and Yasuyoshi Nagai. 

  

In figure 5-39, APT is compared with HAADF-STEM relative intensity, for a single 

Si0.15Ge0.85 barrier, b2. It can be observed that the Si0.15Ge0.85/Ge interface is far 

sharper than that of the Ge/Si0.15Ge0.85 interface.  The Ge/Si0.15Ge0.85 interface is 

~2.9 nm and that for Si0.15Ge0.85/Ge is ~1 nm. HAADF-STEM is in good agreement 

with APT on the asymmetrical barrier shape. This confirms the value of HAADF-

STEM in measuring interface quality and shows that the sample has not been 

degraded by the STEM sample preparation.  
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Figure 5-39 –Profile of Si0.15Ge0.85 barrier 2 from QCL structure CSL 1.  APT (pink 

line) and relative intensity from HAADF-STEM (black line) are given for 

comparison. The approximate positions of the wells and interfaces are marked in 

dotted red lines. 

 

 

The thickness of each layer in the CSL 1 QCL structure extracted using HAADF-

STEM are given in table 7. The thickness of the main quantum well, W1, is in 

excellent agreement with the design. However, some deviation from the design 
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Sample Number CSL 1 

Design 

thickness (nm) 

Thickness from 

HAADF-STEM 

(nm) (± 0.2) 

% error 

b1 (nm) 4.0 4.7 18 

w1 (nm) 13.0 13.0 0 

b2 (nm) 4.0 4.5 12 

w2 (nm) 8.2 9.0 10 

b3 (nm) 2.5 3.7 48 

w3 (nm) 7.0 7.1 1 

b4 (nm) 3.3 4.0 22 

w4 (nm) 6.5 8.3 28 

b5 (nm) 3.5 2.9 19 

w5 (nm) 6.3 7.9 25 

b6 (nm) 3.7 3.6 3 

w6 (nm) 6.2 7.2 15 

b7(nm) 3.9 3.4 13 

w7 (nm) 6.0 6.1 2 

Total thickness 78.1 85.2 9 

Table 7 - Layer thicknesses extracted from HAADF-STEM. The main QW is 

highlighted in yellow. 

 

Since the phosphorus doping was below the detection limit of ATP, low energy 

SIMS was also performed on QCL structure CSL 1. This is presented in figure 5-40 

where SIMS profiles are given showing secondary ion intensity for Si and P doping 

concentration. The depth resolution is very poor for both the Si and P profiles and so 

individual wells and barriers cannot be resolved. The peak doping value in the spikes 

is approximately                , approximately                  in the 

undoped region and approximately                  averaged over the doped 

region. 
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Figure 5-40 - SIMs profile showing secondary ion intensity for Si (black line) and P 

(red line) doping concentration 

 

To extract the strain state of the superlattice, an ω-2θ scan was performed. In 

figure 5-41, the HR-XRD  symmetric (004) ω-2θ scan is given for CSL 1 structure 

along with simulated data. The measured spectrum contains many superlattice peaks 

with a small FWHM.  Due to the relative complexity of the superlattice period, when 

fitting the spectrum it was found that the fit could converge on many different 

permutations. To give the fit shown, it was necessary to impose limits of ± 1 nm on 

the fitting parameters using layer thicknesses measured by HAADF-STEM. Layer 

compositions were also fixed to those predetermined from prior calibration samples.  

However since extremely accurate layer thickness values were from HAADF-STEM, 

it was not necessary to extract these from the X-ray scan simulation. 
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Figure 5-41 - HR-XRD (0 0 4) ω-2θ scans of QCL CSL1 superlattice structure. The 

measured experimental data is shown (black) along with simulated curve (red). 

 

In addition to ω-2θ scans, symmetric (004) and asymmetric (224) RSMs were also 

measured for the three CSL QCL samples. Tilt can occur in superlattices and while 

this is not measurable by (004) ω-2θ scan, it is visible in the (004) RSM. Information 

on the strain state and composition can also be inferred from the RSMs. 

 

In figure 5-42 the symmetric (004) RSM and in figure 5-43 the asymmetric (224) 

RSM are given for QCL structure CSL 1. In both RSMs, the Si peak is relatively 

weak, this is due to the thick superlattice region attenuating the beam before it 

reaches the substrate and is not a sign of misalignment. In the (004) RSM, figure 

5-42, the red line is a guide to illustrate any tilt in the growth. If tilt is present, then 

the layer peaks will have a different    to that of the Si substrate peak and lie to the 

side of the red line. It can be seen that all the peaks have the same   , indicating that 
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there is no tilt. In the (224) RSM, figure 5-43, the black line is a guide to illustrate 

100% relaxation and the red line represents peaks from layers with the same in-plane 

lattice parameter as bulk Si0.05Ge0.95. It can be seen that the Si0.05Ge0.95 buffer is fully 

relaxed and since all of the peaks arising from the Ge QWs and Si0.15Ge0.85 barrier 

layers are perfectly aligned to the red line, they must be fully strained to the 

Si0.05Ge0.95 buffer. 

 

 

Figure 5-42 - 004 symmetrical HR-XRD RSM from QCL CSL 1 structure. The red 

line is given to illustrate there is no distinguishable tilt in any of the epilayers grown.  
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Figure 5-43 - 224 asymmetrical HR-XRD RSM from QCL CSL 1 structure. The red 

line going through the peak associated with the relaxed Si0.05Ge0.95 layer corresponds 

to the position of fully strained Ge and SiGe layers, of various Ge content, grown on 

a fully relaxed Si0.15Ge0.95 buffer. 

 

5.3.8 Quantum cascade laser structure CSL 3 structural 

characterisation 

Between the three QCL structures (CSL 1, CSL 3 and CSL 4), the only growth 

parameter varied is the growth time of the main Ge QW, w1, and thus its thickness. 

Due to this, the structures are expected to be identical apart from thickness variation 

in the main QW and do not need as much in-depth characterisation as CSL 1. Since 

conventional TEM is more than adequate to measure the thick main Ge QW, 

HAADF-STEM was only performed on CSL 1 and conventional TEM on structures 

CSL 3 and CSL 4. 
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In Figure 5-44, a bright field TEM micrograph is given for CSL 3. The active region 

can be observed to be of good quality.  The main Ge QW, w1 is measured to be 

17.0 ±0.5 nm. This matches the design thickness of 17 nm within error. 

 

Figure 5-44 - A cross-sectional TEM micrograph showing 1 period of active region 

for structure CSL 2 

 

To investigate growth uniformity across the wafer, a number of ω-2θ scans were 

taken with a reduced step time on a number of positions across the wafer radius, and 

are presented in figure 5-45. The scan positions are 5 mm, 20 mm, 30 mm and 

35 mm from the wafer edge and are illustrated in Figure 5-46. ω-2θ scan superlattice 

peaks are very sensitive to a change in layer thickness. Any change in superlattice 

layer thickness across the wafer will result in a change in ω-2θ scan superlattice peak 

position. As can be seen in figure 5-45, the main superlattice peak positions show 

very little shift with position across the wafer. This implies that the thickness 

tolerance across the wafer in the active region is excellent, with very little variation. 

Again this is a very exacting test for the RP-CVD growth technology. Such 

1 period 
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uniformity would be highly unlikely in wafers grown by other epitaxy methods, such 

as LEPE-CVD, which has struggled with a significant variation in layer thickness 

across the wafer [165] for QCL structures. This is discussed in depth in 

Section 5.3.12. 

 

Figure 5-45 - HR-XRD (0 0 4) ω-2θ scans of QCL CSL3 superlattice structure. a) is 

taken from 5 mm from the wafer edge, b) 20 mm from the wafer edge, c) 30 mm 

from the wafer edge and d) 35 mm from the wafer edge. The pink lines drawn 

through major features in the ω-2θ scans are intended to highlight any peak shift 

between scans. 
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Figure 5-46 - Schematic diagram of position of ω-2θ scans on CSL 3 QCL structure 

wafer 

 

In figure 5-47 the symmetric (004) RSM and in figure 5-48 the asymmetric (224) 

RSM are given for QCL structure CSL 3. As observed in the RSMs for QCL 

structure CSL 1, no tilt in the growth is seen, the Si0.05Ge0.95 buffer is fully relaxed 

and the Ge QWs and Si0.15Ge0.85 barriers are fully strained to the Si0.05Ge0.95 buffer. 
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Figure 5-47 – (004) symmetrical HR-XRD RSM from QCL CSL 3 structure. The red 

line is given to illustrate there is no distinguishable tilt in any of the epilayers grown. 

 

Figure 5-48 – (224) asymmetrical HR-XRD RSM from QCL CSL 3 structure. The 

red line going through the peak associated with the relaxed Si0.05Ge0.95 layer 

corresponds to the position of fully strained Ge and SiGe layers, of various Ge 

content, grown on a fully relaxedSi0.15Ge0.95 buffer. 
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5.3.9 Quantum cascade laser structure CSL 4 structural 

characterisation 

In figure 5-49, a bright-field TEM micrograph is given for CSL 4. The active region 

can be observed to be of good quality.  The main Ge QW, w1 is measured to be 

20.6 ±0.5nm, this matches the design thickness of 21 nm within error. 

 

 

Figure 5-49 - A cross-sectional TEM micrograph showing 1 period of active region 

for structure CSL 4 

 

 

 

In figure 5-50, the HR-XRD symmetric (004) ω-2θ scan is given for the CSL 4 

structure (black line) along with simulated data (red line). It can be seen that the 

measured spectrum contains multiple superlattice peaks with a low FWHM, 

indicating sharp interfaces between layers. As with fitting previous scans, it was 

Main QW, W1  20.6 nm 
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necessary to impose limits of ± 1 nm on the fitting parameters using layer thickness 

values measured by TEM. 

 

Figure 5-50 -  HR-XRD (0 0 4) ω-2θ scans of QCL CSL4 superlattice structure. The 

measured experimental data is shown (black) along with simulated curve (red). 

 

 

In figure 5-51 the symmetric (004) RSM and in figure 5-52 the asymmetric (224) 

RSM are given for QCL structure CSL 4. As with the previous two structures, no tilt 

in the growth is seen, the Si0.05Ge0.95 buffer is fully relaxed and the Ge QWs and 

Si0.15Ge0.85 barriers are fully strained to the Si0.05Ge0.95 buffer. 
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Figure 5-51 - 004 symmetrical HR-XRD RSM from QCL CSL 4. The red line is 

given to illustrate there is no distinguishable tilt in any of the epilayers grown. 

 

Figure 5-52 - 224 asymmetrical HR-XRD RSM from QCL CSL 4. The red line going 

through the peak associated with the relaxed Si0.05Ge0.95 layer corresponds to the 

position of fully strained Ge and SiGe layers, of various Ge content, grown on a fully 

relaxedSi0.15Ge0.95 buffer . 
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5.3.10 Surface characterisation of CSL 4 by AFM 

Finally, to investigate the surface morphology, AFM was performed on the surface 

of QCL structure CSL 4. It was assumed that with the growth parameters staying the 

same for each structure, apart from the width of the main quantum well, the surface 

morphology would be the same for each structure. Hence the results from CSL 4 can 

also be generalised to CSL 1 and CSL 3. The surface of CSL 4 is shown in 

figure 5-53. 20x20 µm AFM scans were used due to the length scale of the 

roughness. Three scans were taken from position across the wafer from which the 

RMS surface roughness was calculated to be 3.4 ± 0.5 nm. 

 

 

 

 

 

 

 

Figure 5-53 - a) AFM surface representation scan of QCL structure CSL 4 b)The 

same scan of QCL structure CSL 4 in 3D. 

 

 

 

5.3.11 Discussion 

Following adjustment of the growth times for the superlattice layers, QCL structures 

CSL 1, CSL 3 and CSL 4 were successfully grown. The structures demonstrate the 

a) 

b) 
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feasibility of RP-CVD grown high Ge composition n-type QCL structures on reverse 

linearly graded virtual substrates.  

 

In all three structures, the active region is of good crystalline quality, with no 

threading dislocations seen by cross-sectional TEM. The structures are fully strain-

balanced, with no layer tilt. The Ge content of the buffer matches that of the designed 

value. A low surface roughness was measured for the structures of 3.4 ± 0.5 nm, 

which matches that of the reverse graded buffer used as a platform for the 

superlattice growth (3 nm) to within the experimental uncertainty [99]. While defect 

etching has not been performed on the samples, since no strain relaxation has 

occurred in the superlattice region, the TDD should be no higher than that of the 

reverse graded buffer used as a platform for the superlattice growth, ~         [97, 

99]. 

 

The Ge wells in the superlattice have an asymmetrical profile, with sharper interfaces 

of ~1 nm on the Si0.15Ge0.85/Ge interface than that of the Ge/Si0.15Ge0.85  interface of 

~2.9 nm. This profile is indicative of Ge surface segregation and possibly diffusion. 

Similar asymmetrical profiles have been observed in the literature [61-62,166]. 

When designing future QCL structures using similar growth parameters, this 

segregation and diffusion must be taken into account. 

  

The thickness tolerance of the thicker layers in the superlattice is excellent; with all 

of the main Ge QWs matching that of the design within measurement error. This 

illustrates that with careful calibration of growth parameters RP-CVD is capable of 

reproducible growth of layers with precision of a few monolayers which corroborates 
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previous work by this group [167].  Unfortunately, in the thinner superlattice layers, 

the grown thicknesses are less accurate. As observed in the initial QCL structure 

growth, for thin layers the growth rates are non-linear. These non-linear growth rates 

can be explained by Ge segregation. Hydrogen desorption is the rate limiting process 

for low temperature CVD growth.  As Ge on the surface lowers the hydrogen 

desorption barrier, the Si1-xGex growth rate will increase with surface Ge fraction 

[168]. Since significant Ge surface segregation is seen in the structures, it is likely 

that this is causing the non-linear growth rates and hence the thicker than expected 

Si0.15Ge0.85 layers. The Ge segregation enhanced growth rate is also presumed to be 

responsible for the initial CSL QCL growth failing.  

 

Growth rate enhancement from Ge surface segregation has been previously reported 

in the literature [169-171]. In reference [172], it is shown to affect the thickness of 

layers in SiGe superlattice’s grown by gas source MBE using disilane and germane; 

however, its effect on the layer thicknesses in a complicated thin layer superlattice 

such as the CSL QCLs has not been reported. It is also likely that an increased 

growth rate due to Ge surface segregation caused the larger than intended Si0.15Ge0.85 

regions in the FTIR structures reported on earlier in this chapter. 

 

With repeated iteration of the growth parameters it will be possible to reduce the 

thickness error in the thinner layers. Since the deviation in growth rate is caused by 

Ge surface segregation, reducing this segregation should also result in the growth 

rate tending towards a linear relationship. The Ge surface segregation is the limiting 

factor in the quality of the structures grown and for an increase in the structure 

quality the Ge segregation must be reduced. 



J. E. Halpin – PhD Thesis 

 186 

 

5.3.12 Comparison to Literature 

Since comprehensive materials characterisation of RP-CVD grown n-type QCL 

structures has not previously been reported in the literature, direct comparison is 

difficult. Also many of the structural characteristics critical to QCL operation, such 

as layer thickness tolerance and layer interface quality, are rarely reported. Ge/SiGe 

thermoelectric structures [153], Si/SiGe QCL structures [165,173], Ge/SiGe stark 

effect modulators [156, 157] and Ge/SiGe multiple quantum well structures that can 

be used for comparison of the structural characteristics. 

 

Early p-type QCL structures were all grown by MBE, which does not require high 

temperature for precursor decomposition and is therefore able to grow at low 

temperature and minimise the Ge surface segregation. The growth rate can also be 

monitored in situ, giving accurate control of layer thickness. 

 

The Ge surface segregation has only been previously reported in two MBE grown 

p-type QCL structures [61-62]. However, Ge surface segregation will have occurred 

in all SiGe QCL structures grown to date even if not reported. In reference [61], a 12 

period p-type QCL structure was grown at 350 °C by MBE directly onto a Si(001) 

substrate, with no virtual substrate. The structures consist of Si barriers and SiGe 

QWs, with a varying Ge alloy concentration of around 30%. TEM measurements of 

the SiGe QWs gave a roughness of    monolayers (0.3 nm) for the lower interface 

but 3 to 4 monolayers (0.6 nm) for the upper interface, indicative of Ge surface 

segregation. This is significantly lower than that reported in this work and is most 

likely to be due to the low growth temperature of 350°C. It is also possible that there 
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was a significant error in the measurement of the interface roughness/surface 

segregation when compared to this work due to the inaccuracy of conventional TEM 

for measuring interface quality. In reference [62] a 15 period p-type QCL structure 

with SiGe QWs having a maximum Ge content of 43% was grown at 480°C by 

MBE.  It is reported that the upper QW interface is noticeable poorer quality than the 

lower interface, but no quantitative value is given for the interface quality.  Little 

information is given in the literature for MBE grown p-type QCL structure thickness 

tolerances; so comparison is difficult. 

 

Recent p-type QCL structures have been grown by low-energy plasma-enhanced 

chemical vapour deposition (LEPE-CVD) [65,165]. This growth method uses low 

energy plasma focused onto the substrates surface to give fast growth rates while 

retaining abrupt interfaces [174], ideal for growth of large QCL superlattice 

structures. The fast growth rate is due to the plasma generating reactive radicals and 

quickly removing surface hydrogen, which limits growth rate in low temperature 

CVD processes [175]. 

 

In reference [165] a 100 period p-type QCL structure with SiGe QWs having a Ge 

content of Si0.5Ge0.5 was grown at 550°C by LEPE-CVD using     ,      and      

precursor gases.  The superlattice structure was grown on a virtual substrate with a 

final composition of Si0.65Ge0.35. Large variation across the wafer was seen in the 

thickness of superlattice layers; this is in contrast with the work presented here where 

no significant variation was seen. The superlattice period in the centre of the LEPE-

CVD grown wafer has a design and measured thickness of 40.6 nm and 53 nm, 

respectively, giving an error of 31% for one period. This is far larger than the 
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thickness error reported in this work, where the superlattice period in the centre of 

the wafer has a design thickness and measured thickness of 78.1 nm and 

85.2 ± 0.2 nm, respectively, giving an error of just 9 % for one period. Away from 

the centre of the wafer the plasma intensity drops dramatically, which leads to LEPE-

CVD layer thickness varying by factors of two or three across a 100 mm diameter 

wafer. No value was given for the Ge surface segregation in this structure; however, 

from the TEM image given, the QWs can be seen to have a broad, rounded profile, 

indicative of very high Ge surface segregation. It is possible that the removal of the 

surface hydrogen by plasma in LEPE-CVD prevents the hydrogen acting as a 

surfactant and results in higher Ge surface segregation. Threading dislocations were 

observed in the LEPE-CVD grown QCL structure, in contrast to the structures 

presented in this work where none were seen. This comparison to the quality of the 

most recently grown p-type SiGe QCL structures confirms the capability of RP-CVD 

in QCL structure growth. 

 

Ge segregation has also been reported in multi-layer thermoelectric structures, where 

is has been suggested to actually improve the performance of the thermoelectric 

device [176]. Since the Ge/SiGe system has applications in thermoelectric structures 

[154,177-178,] the accurate profiling of the Ge segregation reported in this work 

might have applications in the design of future thermoelectric devices. 

 

5.3.13 Comparison to theory 

In reference [179] the effects of variation in interface quality on SiGe-based QCLs 

are studied for different SiGe materials systems. This is investigated by performing 
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simulated annealing on a barrier sandwiched between two QWs, giving the barrier a 

diffuse profile. The diffusion at the barrier is sufficiently degraded that the two QWs 

begin to merge into a single well is then calculated. The diffusion is characterised by 

an interdiffusion length        
 

 ⁄ , where D and t are the diffusion coefficient (in 

units of m
2
s

-1
 and time respectively) [180]. It is shown that the Ge rich n-type system 

used for the structures grown in this work is the most tolerant to interdiffusion, with 

a maximum         nm before the QW’s begin to merge. The maximum 

interdiffusion length is approximately           nm for the structures grown in this 

work, showing that there is potential to grow a functioning Ge rich n-type Si-based 

QCLs using the growth techniques described in this work . 

 

In reference [181] the effects of variations in the thickness of barriers and QWs on 

the EL from Ge/SiGe CSL QCLs are reported by the University of Leeds, using the 

same simulation method as discussed in Section 5.3.1 used to design the CSL QCL 

structures of the current study. The results were then used to give an estimation of 

the maximum tolerable thickness variation in growth. Tolerable growth thickness 

variations were found for 6, 7 and 8 well QCL designs.  In figure 5-54, the maximum 

gain is plotted against bias for the 7 QW CSL design, grown in this work. The gain 

must be larger than the losses for any lasing to be observed. It can be seen in 

figure 5-54 that as the thickness deviates futher from the design the gain decreases 

rapidly. The average thickness variation measured is 15 %. It can be seen that the 

thick, main Ge QWs in the structures all have a thickness error between design and 

growth of far less than 5%.  This suggests that the layer thickness variations seen are 

due to incorrect growth rate calibration and not due to random error. With further 

growth rate calibration, factoring in the increase in growth rate due to Ge surface 
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segregation and the additional non-linear growth rate variation that particularly 

affects thin layers, it will be possible to reduce the thickness error to a similar value 

to that of the main Ge QWs. This shows RP-CVD has the potential for QCL structure 

growth with the higher tolerances necessary for a lasing QCL device. 

 

Figure 5-54 - Peak gain of 7 QWs per period CSL QCL design versus bias and 

growth thickness variation. Adapted from [181]. 

 

5.4 Summary 

The growth of challenging n-type Ge/Si0.15Ge0.85 QCL structures by RP-CVD has 

been presented. Initially, the superlattices were of poor quality with strain relaxation 

occurring. This is due to the superlattice not being correctly strain balanced due to 

incorrect layer thicknesses. Through iteration of the growth times, the layer 

thicknesses were brought closer to the design and the structures were strain-balanced, 

allowing high quality growth of the entire superlattices with no strain relaxation. 

Following successful growth, comprehensive materials characterisation was 
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performed on the superlattices, including HR-XRD reciprocal space mapping, X-ray 

ω-2θ scans, AFM, ATP, SIMS, cross-sectional TEM and HAADF-STEM. 

 

The successfully grown structures, along with results of their characterisation, have 

been passed to collaborators who will fabricate devices from the structures. When 

preliminary measurements have been made, it will be possible to refine growth 

parameters and the design of structures; however, this is outside the time frame of 

this study. 
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6 Suspended Ge structures 

In this chapter, fabrication and detailed materials characterisation of flat, single 

crystal Ge membranes is presented. The fabrication method is compatible with 

integrated-circuit (IC) wafer scale processing and is able to produce membranes of 

variable thickness [182], with both 112 ± 5 nm and ~700 nm demonstrated. Using 

micro-diffraction, performed at Beamline B16 at the DIAMOND Light Source, 

multiple reciprocal space maps were obtained over the membrane with a real-space 

resolution of ~4 µm.  From these reciprocal space maps, strain distribution, thickness 

(for the 112 ± 5 nm membrane only) and crystalline tilt were calculated. A small 

symmetric strain variation across the membrane was found for the 112 ± 5 nm 

membrane; however, if the membranes are to be used as a platform for further 

growth, this strain variation is insignificant. The micro-diffraction also showed the 

suspended material to be of better crystalline quality than the surrounding anchored 

material, which is confirmed by plan view TEM and AFM. The high crystalline 

quality of Ge membranes gives them many applications (see section 1.5). The 

membranes are also highly suited to use as a platform for QCL structures because 

since the Si substrate is removed in the membrane fabrication process, a double 

metal terahertz waveguide can be fabricated on them.  

6.1 Motivation 

The motivation behind this chapter is the necessity for an efficient waveguide for Si-

based terahertz QCL operation. The Ge membrane fabrication process presented in 

this chapter has the potential to form the basis of a double metal waveguide (see 

section 1.5). A secondary motivation is the large range of application that could 
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benefit from a high quality Ge membrane and knowledge of its material parameters 

including uniformity.  

 

6.2 Tensile strained Ge membrane fabrication 

The following outlines the fabrication of two wafers of tensile strained Ge 

membranes. The membrane fabrication technique is covered in detail in [182].  

 

Epitaxial growth was performed on a double-side polished low resistivity 4” Si (001) 

wafers with a thickness of 300 µm. Double sided wafers were used so that epitaxial 

Ge layers could be grown on either side. Tensile strained membranes could then be 

produced with the non-membrane layer being used as an etch mask for the 

membrane. Ge was grown using the RP-CVD system described in section 2.3.2 with 

a germane precursor.  

 

Initially, the wafers were baked at 1000 °C for 10 minutes to desorb the native oxide. 

For the first wafer of membranes, high quality tensile strained Ge was grown via the 

two temperature method (described in section 2.6) on the front of the wafer (see 

figure 6-1, a) to a total thickness of around 700 nm. Although the Ge layer is fully 

relaxed at the growth temperature of 670ºC, it acquires tensile strain as it cools to 

room temperature, due to the mismatch in thermal expansion coefficients between 

Ge and Si (for an explanation see 2.5). 

 

To grow the compressively strained Ge layer on the underside of the substrate 

(figure 6-1, b), the substrate needs to be flipped in the growth chamber. This is 

achieved by cooling the substrate to room temperature, unloading to a nitrogen 



J. E. Halpin – PhD Thesis 

 194 

atmosphere in a class 10 clean area, turning the wafer and then re-loading into the 

growth chamber. This unloading and re-loading process was carried out quickly to 

try to ensure the epitaxial surfaces remained hydrogen passivated. The hydrogen 

termination of bonds on the silicon surface will prevent oxidation of the surface (the 

growth rate of Ge oxide on H2 passivated Ge can be found in [183]). This is 

necessary to avoid a second high temperature bake, which would affect the existing 

Ge growth. The 700 nm of Ge is then deposited at 400 °C. Due to the low growth 

temperature, strain relaxation does not fully complete and some residual compressive 

strain stays in the layer.  

 

The two-temperature tensile strained Ge was intentionally grown before the 

compressively strained Ge on the underside of the substrate, since the tensile strained 

Ge requires a higher temperature than the compressively strained Ge to give a high 

quality final layer. For an explanation of why a high temperature is used for the 

growth of high quality tensile strained Ge on Si (for an explanation see section 2.5). 

The high temperature would otherwise cause interdiffusion at the 

substrate/compressively strained Ge interface. 

 

 

 

  

Figure 6-1 – a) Tensile strained Ge layer grown on top of wafer using two 

temperature method followed by an anneal. b) Wafer reversed with compressively 

strained layer grown. 

a) b) 
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 The state of strain of both layers was measured with HR-XRD, using (004) and 

(224) RSMs. The compressively strained layer was found to have a relaxation (see 

section 2.3.5 for an explanation of layer relaxation) of 97.1 ± 0.5 % and the tensile 

strained layer a relaxation of 104.2 ± 0.5 %, both with respect to the Si (0 0 1) 

substrate.  

 

A second wafer was grown for the fabrication of thinner tensile strained membranes 

with the intention of studying the effect of membrane thickness on the material 

properties.  For the second wafer, Ge was deposited on both sides of the wafer as 

previously described; however, this time a thinner 400 nm etch mask layer was 

grown on the back of the wafer (this could be grown thinner than in the previous 

wafer, since it was only intended as an etch mask and so a high crystalline quality 

was not necessary) and a thinner 200 nm tensile strained layer on the surface with the 

intention of producing a thinner membrane (figure 6-2). 

 

Figure 6-2 - Schematic diagram of Ge growth for thin membrane 

 

An Al2O3 layer was deposited on the underside Ge layer with atomic layer deposition 

using a Picosun SUNALE
(TM)

 R-150B with trimethylaluminium and H2O. The Al2O3 

layer was then patterned using a AZ5214E photoresist and a Karl Suss MA6 mask 

aligner followed by developing in AZ726 MiF then etched in a 30 °C buffered 

hydrofluoric acid etch. A HF:H2O2:CH3COOH etch was then used to selectively etch 
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through the Ge to the Si, creating Si windows. The remainder of the resist was then 

removed and the wafer was placed in a STS Silicon ICP etcher with a Bosch process, 

this alternated between SF6 & O2 mix and C4F8 with a power of 15 W to remove 

~275 ± 25 µm of Si. The etch depth was confirmed with optical focus variation 

microscopy. For the final process step, the wafer was placed in a 25% TMAH bath 

heated to 80 °C, with a reported Si etch rate of 0.45 ± 0.02 µm min
-1 

[184] and the 

wafer was etched for 420 min. This ensures that the Si was entirely removed from 

the top Ge layer.  Interferometry was performed using a Sci-soft Filmtek 2000M  

reflectometer, with wavelengths 380-890nm on the supported Ge. The unintentional 

etch rate of the Ge was measured to be 0.18 ± 0.09 nm min
-1

, resulting in a reduction 

in the thickness of the membranes compared with the as grown layer thicknesses of 

200 and 700 nm. The wafer was removed from the TMAH bath, soft rinsed in de-

ionised H2O before a final soft rinse in IPA. The reason for the final IPA rinse is that 

IPA has a higher vapour pressure than water so it can be quickly evaporated under a 

gentle flow of N2 without damaging the membrane. Approximately 50% of the 

membrane’s survived the fabrication process. A schematic diagram for a completed 

thick (~700 nm) membrane is given in figure 6-3. 

 

Figure 6-3 - Schematic diagram of completed tensile strained thick (~700 nm) Ge 

membrane 
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6.3 Initial membrane characterisation 

6.3.1 SEM 

Following fabrication, the membranes were evaluated with SEM. In figure 6-4 a) 

plan view SEM is given for one of the thinner membranes fabricated. A clear 

contrast difference is visible between the Ge membrane and its surrounding Ge on Si 

frame. This contrast difference is due to the membrane becoming electron 

transparent due to its reduced thickness. The lateral area of the membrane is 

measured as 3.5 mm
2
. The membrane can be observed to be of good crystal quality, 

with no ripples or cracks. In figure 6-4 b), the cross section of a broken membrane is 

given. From this cross-section the thickness of the membrane is measured as 

approximately 56 nm, however this is likely to be inaccurate due to the membrane 

being tilted in the SEM field of view. The significant difference in the thickness 

obtained from this measurement and that from XRD given later in this section can be 

explained by this tilt and by anisotropy in the TMAH etch rate for the Ge across the 

wafer. Following basic characterisation to check the membrane is of good quality, 

the technique of microfocus XRD was employed to measure the material parameters 

of the membrane with good spatial resolution. 
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Figure 6-4 - a) SEM  image taken looking perpendicular to the surface of the 

membrane. Electron transparency gives contrast between the membrane and the bulk, 

b) Side view of intentionally broken 60 nm membrane showing the dimensions of the 

cross section. The tilted thickness is 56 mn. 

 

 

6.4 Strain mapping by microfocus XRD using Beamline B 16 

at the Diamond Synchrotron of thin 112 ± 5 nm 

membrane 

The thin membrane was characterised using microfocus XRD using Beamline 16 at 

the Diamond Synchrotron using the technique described in section 3.6. Individual 

(004) RSMs were taken every 10 μm along the    ̅   direction, and across the 

middle of the sample (figure 3-19).  

 

6.4.1 Results 

In figure 6-5, a (004) RSM is given for the edge of the membrane. The Ge peak has a 

relatively low FWHM. By contrast to the (004) RSM for Ge on the substrate, 

thickness fringes are present. These are visible above the Ge peak. 



J. E. Halpin – PhD Thesis 

 199 

 

Figure 6-5 - (004) RSM taken from membrane’s edge 

 

In figure 6-5, a (004) RSM is given for the edge of the membrane. As in the (004) 

RSM for the edge of the membrane, the peak has a relatively low FWHM and 

displays thickness fringes above the Ge peak. 

 

Figure 6-6 - (004) RSM from the middle of the Ge membrane 
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In figure 6-7,    line profiles extracted from both suspended Ge and Ge-on-Si (001) 

are given. Five thickness fridges can be clearly resolved for the suspended Ge, in 

contrast to the Ge on Si (001) where no fridges are visible. The FWHM is also 

slightly smaller for the suspended Ge, which will be due to increased crystalline 

quality in the suspended material (good crystalline quality is indicated by high 

uniformity in the crystals lattice). The thickness of the tensile strained Ge membrane 

was calculated from the thickness fringes to be 112 ± 5 nm 

 

Figure 6-7 - Line profiles extracted from suspended Ge and supported Ge (004) 

RSMs. Thickness fringes are marked with blue arrows for the suspended Ge. 

 

In figure 6-8, the (004) Ge Bragg peak position in    and peak FWHM are given as a 

function of position across the membrane. Initially, the Ge peak is at  

   = 0 ± 0.00003 Å
-1

 for the supported material, before sharply dropping to  

   = -0.0004 ± 0.00003 at the left membrane edge. This corresponds to a crystal tilt 

of  ~0.035
o
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membrane edge, some edge effects are visible but not as pronounced as that on the 

left membrane edge. This is due to the membrane not being mounted precisely 

horizontal which is also seen in the upward drift in the FWHM from left to right 

across the membrane.  The FWHM of the peak is at its largest on the supported Ge, 

with an almost uniform decrease over the entire membrane. 

 

Figure 6-8 -  Position (solid black line) and FWHM (dotted red line) of the (004) Ge 

Bragg peak as a function of position for    .   

 

In figure 6-9 , the (004) Ge Bragg peak position in    and peak FWHM are given as 

a function of position across the membrane. For the Ge supported by Si, the Ge peak 

is at    = 0.70777 ± 0.00003 Å
-1

 (   = 5.6516 ± 0.0003 Å) with a sharp drop to  

   = 0.70775 ± 0.00003 Å
-1 

(   = 5.6517 ± 0.0003 Å) at the membrane edge.  This 

indicates a slight reduction in the tensile strain at the edge of the membrane. There is 

then a gradual increase in    towards the centre of the membrane, where at the 

central point    = 0.70781 ± 0.00003 Å
-1 

(  = 5.6512 ± 0.0003 Å).    then 

gradually decreases towards the other side of the membrane.  
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In calculating the strain, it is assumed that the Ge behaves elastically. The bulk 

material has a relaxation of 103.72 ± 0.02 % with respect to the Si (001) substrate. 

This value was verified with lab based XRD. For the membrane, the relaxation was 

calculated as 103.64 ± 0.02 %  for the edge and 103.91 ± 0.02 %  for the middle. The 

in-plane strain (   ) was calculated as 1.55(± 0.01)x10
-3

, 1.51(± 0.01)x10
-3

 and 

1.63(± 0.01)x10
-3

 for the supported Ge, membrane edge and middle. As for    , the 

FWHM is at its largest on the supported Ge, with an almost uniform decrease over 

the entire membrane. Slight edge effects are seen at both membrane edges. 

 

Figure 6-9 – Position (solid black line)  and FWHM (dotted red line) of the (004) Ge 

Bragg peak as a function of position for    

 

While not shown here, the    ̅   line profile was also taken. Peak behaviour was 

identical for both directions.  
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crystallographic tilt and strain was extracted with a spatial resolution of the 

microfocus spot size (~4 μm). The technique is non-contact and non-destructive and 

offers greater sensitivity to a change in lattice spacing than other techniques such as 

Raman Spectroscopy. 

 

The membrane body is shown to have no lattice plane tilt, making it ideal as a 

platform for devices and further epitaxial growth. Tilt is observed at the edges of the 

membrane, this is caused by the abrupt reduction in tensile strain leading to bending 

of the lattice planes. Tensile strain varies over the membrane, with the highest value, 

103.91%, reported in the membrane centre. The strain profile is symmetrical over the 

membrane. However, since the strain variation is small it should not affect optical 

device performance by strain-induced bandgap variation in the Ge, since it is 

negligible when compared to the magnitude of strain required for a functioning Ge 

device [185]. 

 

The FWHM of the Ge (004) peak’s is significantly lower for the membrane than for 

the surrounding supported Ge and, since improved crystal quality is indicated by a 

reduction in FWHM, this suggests that the membrane is of better crystal quality than 

the surrounding supported Ge. When Ge is grown via the two temperature method, 

the strain is released via the formation of misfit dislocations in the initial low 

temperature Ge layer [186]. The misfit dislocations are concentrated in a dislocation 

at the Ge/Si interface and since this region has been removed in the membrane 

fabrication process during the wet etch, the crystal quality of the Ge has been 

improved. 
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As a result of removing the misfit dislocation network, thickness fringes can be seen 

to the side of the (004) reflection.  This means the membrane thickness can be 

extracted by microfocus XRD. The thickness measured by XRD is almost two times 

that of the thickness measured by SEM on a different membrane, this is likely to be 

due to non-uniformity in both the Ge etch rate in the TMAH bath and the Ge growth 

rate across the wafer. The etch rate of TMAH is temperature dependent and so 

temperature variation in the etch bath will result in a large non-uniformity in the Ge 

thickness across the wafer. 

 

6.5 Membrane characterisation by plan view TEM 

To study the crystalline quality of the membrane and to compare it to that of the 

surrounding supported Ge layer, plan view TEM was performed on the membrane. 

Since the membrane would need to be broken to fit it in a conventional TEM sample 

holder, a sample holder was specially adapted for studying the membranes (figure 

6-10). The crystal quality of the membrane must be studied without it being 

damaged, since the damage could introduce strain and additional dislocations 

through plastic strain relief.  In conventional sample preparation for plan-view TEM, 

the sample is first thinned using mechanical polishing, before polishing with an ion 

beam. However, for the membrane this is not necessary. The membrane is 

sufficiently thin to be electron transparent and so needed no preparation. 
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Figure 6-10 - Modified TEM Sample holder containing Ge membrane. The 

membrane is faintly visible due to optical transparency. 

6.5.1 Results 

In figure 6-11, a plan-view (PV) TEM micrograph is given from the centre of the 

membrane. The features observed on the membrane are threading dislocations. These 

were counted using ImageJ software packages “cell counting” function to give a 

threading dislocation density (TDD) of approximately 3x10
9
 cm

-2
. 

 

Ge membrane 
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Figure 6-11 – Bright field PV-TEM micrograph taken from centre of Ge membrane. 

 

In figure 6-12, a (220) reflection micrograph is given from the position where the 

membrane meets the supporting frame. The (220) reflection was chosen to give 

strong strain contrast, highlighting dislocations by their surrounding strain field. The 

top of the image is looking through the unsupported Ge membrane, the horizontal 

line across the image is where the membrane meets the supporting frame and the 

bottom of the image is looking through the supporting Si frame and the epitaxial Ge 

layer. Contrast is lost toward the bottom of the image due to the increasing thickness 

of the supporting frame. Two threading dislocations can be seen in the suspended 

membrane, but in the frame a dense network of dislocations can be seen. The fringes 

visible in the frame are thickness fringes. 
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Figure 6-12 – Dark field (220) reflection  PV-TEM micrograph taken from Ge 

membrane showing membrane, membrane edge and frame. 

 

 

The membranes are ideal for study by plan-view TEM due to their electron 

transparency. The TDD of the membrane 3x10
9
 cm

-2, 
is the same as the TDD for the 

Ge on the frame, showing that suspending the Ge has not reduced the dislocation 

density. Earlier it was speculated that the membrane fabrication process had removed 

misfit dislocation network present on the as-grown Ge. This speculation is further 

supported by figure 6-12, where the dislocation network can be observed on the as-

grown Ge but not on the membrane. The misfit network removal means that the 

membrane is of better crystal quality than the as-grown Ge, since the strain field 

from the misfit network is no longer distorting the Ge. Removing the dislocation 

network also means that the membrane surface is isolated against surface to surface 

conduction through dislocations. In order to further investigate the effect of 

suspending the Ge on its materials parameters, the morphology of the membrane and 

support surface was measured. 

Ge membrane 

Membrane edge 

Membrane frame 

Dislocation Network 
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6.6 Membrane surface morphology from AFM 

The surface morphology was measured with an Asylum Research MFP-3D-SA 

AFM, operated in tapping mode.  Surface morphology for the membrane edge is 

given in figure 6-13, showing both the suspended Ge of the membrane and the 

supported Ge on the frame. When a line profile is taken over the membrane’s edge, a 

drop in height of ~2.5 nm is observed. Approximately 45-50 μm from the edge the 

height recovers to that of the average. For the frame, an RMS roughness of 2.66 ± 

0.05 nm was measured. A lower RMS roughness of 2.16 ± 0.16 nm was measured 

for the membrane. 

 

 

Figure 6-13 - Tapping mode AFM of the Ge membrane at its edge. 

 

 

The height drop at the edge of the membrane explains the tilt observed by X-ray and 

the reduction in RMS roughness on the membrane suggests that the change in 

internal stress of Ge layer has affected its surface. There are two possibilities for the 

stress change that has affected the surface morphology, that associated with the 

increase in tensile strain for the suspended material or the stress associated with the 
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removed misfit dislocation network. Dislocations have a stress field and it is possible 

that this was distorting the surface. 

 

6.7 Strain mapping by microfocus XRD using Beamline B 16 

at the Diamond Synchrotron of thick ~700 nm membrane 

The thick (~700 nm) membrane was also characterised using microfocus XRD using 

Beamline 16 at the Diamond Synchrotron using the technique described in section 

3.6. While the thin membrane was optically transparent which made it easy to locate 

on the sample stage, the thicker, ~700 nm was not easily visible. To aid its location 

on the sample stage L-shaped alignment trenches were milled at each membrane 

corner using a focussed ion beam scanning electron microscope (FIB-SEM). These 

alignment trenches are shown in the SEM micrograph given in figure 6-14. Multiple 

line scans comprising  many individual (004) RSMs were taken along the    ̅   

direction across a portion of the membrane. Over the main body of the membrane, 

RSMs were measured every       , however in regions over two membrane 

corners they were measured every      . This was done to measure any small 

features present at the membrane’s corners. The RSMs were then combined to give 

line profiles across the centre of the membrane and maps of both the in-plane strain 

(  ) and peak FWHM. It was only possible to complete a map of this kind for the 

thicker membranes due to the duration of the synchrotron time taken to produce the 

map being relatively long (~2 days). 
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Figure 6-14 – SEM micrograph showing ~700 nm membrane with L shaped 

alignment trenches at its corners 

 

In figure 6-15, a (004) RSM is given from the centre of the thick ~700 nm 

membrane. In contrast to the (004) RSM from the centre of the thinner membrane no 

thickness fringes are visible.  

 

Figure 6-15 - (004) RSM from the middle of the thick ~700 nm Ge membrane. 
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In figure 6-16, the (004) Ge Bragg peak position in    and peak FWHM are given as 

a function of position across the thick ~700 nm membrane. The variation in    is due 

to reaching the resolution limit of the technique and is within the error of the 

technique; apart from small edge effects,    can be considered to remain constant 

over the membrane. As with the thinner membrane, the FWHM of the peak is at its 

largest on the supported Ge, with an almost uniform decrease over the entire 

membrane. 

 

Figure 6-16 - Position (solid black line) and FWHM (dotted red line) of the (004) Ge 

Bragg peak as a function of position for    

 

 

In figure 6-17, the (004) Ge Bragg peak position in    and peak FWHM are given as 

a function of position across the thick ~700 nm membrane. As with the peak position 

in   , variation in    is due to reaching the resolution limit of the technique and 

within the error of the technique,     can also be considered to remain constant over 
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the membrane and bulk material. This indicates that the tensile strain and relaxation 

is the same for the membrane and the as-grown Ge. 

 

Figure 6-17 - Position (solid black line) and FWHM (dotted red line) of the (004) Ge 

Bragg peak as a function of position for    

 

 

 

In figure 6-18 a), the FWHM of the (004) Ge Bragg peak as a function of x and y 

sample stage position is given. The dotted black line is guide to the position of the 

membrane and the black dots are the position of the individual RSMs. The FWHM of 

the (004) Bragg peakis significantly reduced when compared to the bulk material. 

The reduction in FWHM can be seen to be uniform over the membrane. Sharp 

increases for the FWHM are see in the alignment trenches. 

 

In figure 6-18  b) Strain calculated from the (004) Bragg peak position as a 

function of x and y sample stage position is given. The position of the alignment 

trenches is also marked. The strain can be seen to be uniform over both the 
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membrane, its edges and the bulk material, with the only change seen in the 

alignment trenches. 

 

Figure 6-18 – a) FWHM of the (004) Ge Bragg peak as a function of position for q∥. 
The black dots indicate positions of individual RSMs b) The in-plane strain      

strain calculated from (004) bragg peak position 

 

As for the previous thinner membrane, microfocus XRD is highly suitable for 

determining material properties with good spatial resolution. It is also demonstrated 

how, with sufficient beam time, x-y maps of material properties can be measured for 

large (~mm
2
 ) areas of suspended structures. 
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further epitaxial growth. This is an improvement over the thinner membrane which 

has a small but measureable variation in strain variation and some tilt at its edges. 

Like the thinner membrane, a reduction in the FWHM is seen in the suspended 

region which is indicative of an improvement in crystal quality. This can be 

attributed to removing the misfit dislocation network at the Ge/Si interface during the 

membrane fabrication, as previously discussed. 

 

The thickness of the membrane could not be accurately determined by the method 

used for the previous thinner membrane due to a lack of thickness fringes being 

present in any of the RSMs on the membrane. This is due to the membrane being too 

thick to produce observable thickness fringes and not attributed to crystal quality. 

 

 

6.8 Summary 

The fabrication and characterisation of single crystal Ge membranes with two 

different thicknesses (~700 nm and 112 ± 5 nm) is presented. Micro-diffraction, 

performed at Beamline B16 at the DIAMOND Light Source is used to study the 

crystal properties of the membranes with a real space resolution of the microfocus 

spot size (~4 μm). For the thinner 112 ± 5 nm membrane, RSMs were taken as a line 

across the central portion of the membranes and, for the thicker ~700 nm membrane, 

multiple lines of RSMs were measured, from which x-y maps were constructed for 

the crystal properties of the membrane’s. 
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Micro-diffraction revealed the membranes to have a higher crystalline quality than 

the surrounding supported Ge. This was also confirmed by AFM and plan view 

TEM. While a small symmetric strain variation across the membranes was found for 

the thinner membrane, it is insignificant in the context of using the membranes as a 

platform for further growth.   

 

The membranes have potential as growth platforms for Si-based QCL structures 

since they can easily be converted into double-metal terahertz waveguides by 

backside metallisation due to the removal of the Si substrate. A membrane could 

either be fabricated from an entire QCL structure or there is the possibility that the 

QCL structure could be grown on a Ge membrane after it is released from the 

substrate. While the second method is preferable because it offers a platform for 

growth with improved crystal quality, it will be the most challenging; if the 

membrane is to be returned to the CVD growth chamber for regrowth, care must be 

taken during the membranes fabrication not to introduce contaminates; the 

membrane will need cleaning to remove any native oxide removed prior to regrowth, 

while for a standard Si substrate a bake in the growth chamber is used to remove 

native oxide, this cannot for used for membranes since they will be damaged by the 

high temperature; supporting a thick QCL structure may stress the thin membrane 

causing it to bow or break.  
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7 Conclusions and further work  

In this chapter, the study is concluded and possibilities for further work are discussed 

for each of the main areas of study presented in this thesis, the growth of thin, 

strained SiGe layers, the growth of Si-based QCL superlattice structures and the 

fabrication of suspended Ge structures. 

7.1 Conclusions 

It is possible that the largest challenge facing the development of a Si-based QCL is 

that of the demand placed on epitaxial growth [59]. It is hoped that this study is a 

significant step in meeting this challenge, with the highlight being the growth and 

characterisation of challenging n-type Ge/Si0.15Ge0.85 QCL structures by RP-CVD. 

Comprehensive materials characterisation was performed on the superlattices, 

including HR-XRD reciprocal space mapping, X-ray ω-2θ scans, AFM, APT, SIMS, 

cross-sectional TEM and HAADF-STEM. The structures and the material 

characterisation have been given to collaborators who will perform additional 

characterisation and fabricate devices, the results of which will be used to further 

refine the growth process with the aim of producing a working Si-based QCL. 

Ge/Si0.15Ge0.85 superlattice structures also have uses in devices such as 

thermoelectrics, [152-153,177-178], and other optoelectronic devices like quantum 

confined stark effect modulator, [156-157] so this study also has applications outside 

of the QCL project. 
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It was found that Ge segregation and, possibly, Si-Ge interdiffusion are the limiting 

factors in the quality of the structures grown, causing smearing at the interfaces 

between layers and non-linear growth rates in thinner layers. This is a useful finding 

for the growth of future structures, since steps can be taken to reduce the Ge 

segregation, giving structures with improved quality. 

 

It is highly likely that a working Si-based QCL: will eventually be fabricated and the 

author believes it will be in the n-type Ge/Si0.15Ge0.85 system explored in this work. 

This speculation comes from the simulation of n-type Ge/Si0.15Ge0.85 QCLs showing 

the structures to have gain close to that produced by simulated III-V QCL devices 

[10] and from the major hurdle of challenging heteroepitaxy being met to an extent 

by this work.  

 

The QCL structures were grown at a low temperature of 450 
o
C

 
to

 
minimise Ge 

surface segregation, give sharp interfaces and reduce dopant diffusion. Growth at low 

temperature by RP-CVD has been shown to extend the critical thickness of SiGe 

layers on Si due to the suppression of relaxation processes. Si0.4Ge0.6/Si layers grown 

past the critical thickness predicted by the People and Bean model are presented and 

the high crystal quality of the layers is confirmed by multiple techniques. The high 

strain, high Ge composition and good crystal quality makes the layers ideal for use in 

devices such as FETs. 

 

In addition to the work on n-type Ge/Si0.15Ge0.85 QCLs, results are also presented in 

this study for the characterisation of high quality Ge membranes. Membranes of both 

112 ± 5 nm and ~700 nm thickness were fabricated and comprehensively 
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characterised. Micro-diffraction, performed at Beamline B16 at the DIAMOND 

Light Source is used to characterise the membranes, giving the strain, membrane 

thickness, crystalline tilt and crystalline quality as a function of position over the 

membranes. The membranes show an increase in crystal quality over the surrounding 

material. The high quality of the membranes gives them many possible applications. 

 

7.2 Further work 

7.2.1 Critical thickness 

As was demonstrated in Chapter 4, that RP-CVD growth at low temperature       ) 

can yeild Si1-xGex/Si layers beyond their predicted critical thickness with no strain 

relaxation occurring. Since in Chapter 4 this was demonstrated for layers with a 

composition of Si0.4Ge0.6, a higher Ge composition than for similar studies previously 

reported in the literature, the logical progression for this work is to repeat the study 

for SiGe layers with an even higher Ge composition.  Since it is the low growth 

temperature which is held responsible for the extended critical thickness, a study 

could also be performed by measuring the critical thickness of SiGe layers grown in 

the limits of low temperature as a function of temperature. 

 

The fully strained Si0.4Ge0.6 layers presented in Chapter 4 can be described as 

metastable. For metastable layers, the onset of strain relaxation is retarded by the 

energy in the layer being below the barrier of dislocation nucleation and the slow 

motion of misfit dislocations [187]. If the Si0.4Ge0.6 layers are annealed beyond a 

certain temperature, strain relaxation will begin. Ascertaining the thermal budget that 

the layers can withstand would be very useful to ascertain the maximum temperature 
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the layers can withstand during devices processing. An annealing study could be 

carried out on the layers using an X-ray diffractometer with a heated stage and 

performing ω-2θ scans while annealing the layers  

7.2.2 Growth of SiGe/Ge Superlattices for Terahertz Emission 

At the time of writing, the samples grown in this section have been delivered to 

collaborators for further characterisation (in the case of the FTIR structures) and 

fabrication into devices (in the case of the CSL QCL structures). The results from 

this will then be used to look at how the growth can be modified to improve the 

device performance.  

 

The surface segregation of Ge was the biggest contributor to both the variation in 

layer thickness and interface quality and the structural quality could be greatly 

improved by reducing it. This could be achieved by growing at a lower temperature, 

which is challenging due to the reduced growth rate at lower temperature. It could 

also be reduced by exploring other precursor gases for the structure growth. In [106], 

it was found that the level of Ge segregation does not depend on the carrier gas 

(H2,N2) nor growth temperature for the 350–500 °C range, and it is solely the Si 

precursor that determines the amount of Ge segregation.  

 

A different QCL design could also improve the chances of lasing. The structures 

grown in this work feature seven QWs per period, but as is shown in figure 7-1, eight 

period designs offer a greater tolerance to variation in growth thickness. For seven 

well designs a maximum variation of 5% in layer thickness is permissible, but this 

increases to 10% for an eight well design. 
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Figure 7-1-Peak gain of 8 QWs per period CSL QCL design versus bias and growth 

thickness variation. Adapted from [104] 

 

7.2.3 Ge Membranes 

The next step with the Ge membranes in the context of the QCL project is to 

fabricate a suspended superlattice structure. With the etching away of the virtual 

substrate and metal deposition on top and bottom on the structure, a double metal 

waveguide can then be formed. Microbeam XRD can be used to look at the strain in 

the structure after it is suspended, as was demonstrated in chapter 6. 

 

To improve the quality of the virtual substrate underlying the superlattices, regrowth 

on the membrane could also be investigated. Since the suspension increases the 

crystal quality of the Ge it is likely this will improve the quality of the virtual 

substrate. 
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8 Overall Summary 

Progress has been made towards a Si-based terahertz QCL. Complex n-type QCL 

structures for terahertz emission have been grown and in-depth materials 

characterisation presented. The structures and materials characterisation results have 

been delivered to collaborators. Following fabrication and testing of devices by 

collaborators, it is hoped that the growth can be adjusted to produce lasing from a Si-

based terahertz QCL structure. Alongside the QCL structure development, work on a 

method to produce Ge membranes and map their material properties using 

microbeam XRD has been shown. The membranes have many applications, 

including as the foundation of a Si-based QCL waveguide. Finally, growth of thin, 

strained, high quality SiGe on Si that would be suitable for device applications is 

presented. 
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