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Abstract  

Growth of terrace graded virtual substrates, pioneered by Capewell (2002), 

has been conducted utilising solid-source molecular beam epitaxy (SS-MBE) to 

produce structures of higher composition (up to pure germanium) and greater 

thickness (up to 20 m) than previously investigated.  Terrace grading offers a 

number of advantages over more conventional grading techniques which include the 

reduction of surface threading dislocation density, reduction of surface roughness and 

the possibility of the complete elimination of threading dislocation pile-up.  The 

closely spaced pile-up of threading dislocations is believed to have a significant 

impact on the electrical properties of processed devices, and its elimination is a key 

goal in this work. 

Numerous terrace graded virtual substrate compositions have been grown and 

characterised during the course of this work and, were appropriate, comparison made 

with more conventional structures.  The complete elimination of threading dislocation 

pile-up has been demonstrated at compositions of 30% and 40%, with a reduced 

threading dislocation density in comparison to equivalent linear graded structures.  A 

major reduction in threading dislocation density has been accomplished though post 

growth ex-situ annealing at 900ºC for an extend period of time, though the exact 

mechanism remains uncertain.  The possible role of surface precipitates enabling 

reduction of dislocation pile-up and/or density is considered along with the effects of 

unwanted particulate contamination during growth. 
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Chapter 1 
 

1 Introduction 
 

1.1 Semiconductor Technology 

The semiconductor industry is one of the largest in the world with sales 

totalling more than $200 billion in 2004 (SIA-Online 2005).  Silicon based 

technologies constitute 97% of the industry (Paul 2004) and growth in the 

semiconductor industry has been driven by the every increasing performance and 

complexity of silicon based integrated circuits (IC) and micro-processors in particular.  

The low cost and abundance of raw silicon material, combined with the excellent 

oxide, SiO2, formed on its surface has historically allowed the density of transistor 

devices to double every eighteen months since the prediction was first made by Moore 

(1965).  The unprecedented pace of development in the semiconductor sector has 

primarily been achieved through scaling of the metal-oxide-semiconductor field effect 

transistor (MOSFET) feature size that form the basis of microprocessor technology.  

The current generation of AMD (Advanced Micro Devices) consumer 

microprocessors contain up to 233 million transistors in an area of less than 200 mm
2
 

and are fabricated at the 90 nm technology node with transistor channel lengths 

around 65 nm (AMD 2005). 

 

1.2 MOSFET Scaling 

The scaling of MOSFET device dimensions has allowed an increase in 

transistor packing density (Figure 1.1) and speed whilst moderating power 

consumption.  A basic guideline for device scaling is to retain a constant electric field 

within the device whilst reducing device dimensions (gate length, gate oxide thickness 
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etc) and applied voltages (supply voltage) and also increasing the substrate doping 

concentration by a common factor.  In principle, this yields a speed increase in the 

circuit whilst the power dissipated per chip area remains unchanged (Taur 1998).  A 

schematic of an n-MOSFET transistor is shown in Figure 1.2. 
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Figure 1.1 – Showing the rising number of transistors contained within Intel® processors (Intel 

2005). 

 

Unfortunately performance enhancement by scaling alone has a limited future as we 

rapidly approach a number of important obstacles.  Of primary concern is the 

spiralling cost of new fabrication plants required to manufacture each successive 

generation of scaled devices, predicted to exceed $10 billion by 2010 (Paul 1999).  

The reduction in oxide thickness, required with each new generation, is also resulting 

in an increasing current leakage due to quantum mechanical tunnelling, leading to 

higher power dissipation and reduced device reliability.  The oxide thickness in 

production by Intel® at the 90 nm technology node is only 1.2 nm (Ghani et al. 2003).  
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At present a great deal of research interest is focused toward development of high-k 

dielectrics to alleviate this problem. 

 

Figure 1.2 – Schematic representation of an n-MOSFET transistor. 

 

1.3 Introduction of Strain Engineering 

The introduction of strain to the MOS transistor channel provides the 

opportunity to obtain enhanced drive (on) currents and thereby device performance at 

existing technology nodes and a great deal of interest is currently focused on so-called 

strained silicon technologies.  Carrier mobility, , is an important parameter for 

device performance that determines the carrier drift velocity, v, in an applied electric 

field, E (at low electric fields), see equation (1.1). 

 

(1.1) 

 

Strain-induced enhancements in carrier mobility will result in increased MOSFET 

drain current, allowing faster transistor operation (Nicholas 2004). 

The application of biaxial tensile strain to silicon has a significant effect on the 

electronic band structure of the semiconductor, affecting both the conduction and 
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valence bands.  The conduction band minima of unstrained silicon occur along the six 

<001> crystal directions (  minima) and are six-fold degenerate. The application of 

biaxial tensile strain lifts this degeneracy forming a two-fold and four-fold degenerate 

set (Figure 1.3).  The energy of the two-fold degenerate valleys are lowered, 

becoming preferentially occupied by electrons, reducing intervalley scattering and 

lowering the in-plane conduction mass (related to the curvature of the surface).  This 

yields a higher electron mobility (Rim et al. 2003) as can be seen from examination of 

equation (1.2). 

 

(1.2) 

 

where  q is electronic charge,  is the mean free relaxation time of the carrier and m
*
 is the carrier 

effective mass. 

 

 

Figure 1.3 – Schematic representation of the constant-energy ellipses for unstrained and strained 

silicon showing the lifting of degeneracy by the application of tensile strain Takagi et al. (1996). 

 

Similarly the valence band has degeneracy of the light and heavy hole bands 

(so named because of the effective masses of carriers in these bands) lifted at the zone 
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valence band.  For a recent review of the electrical properties of strained silicon the 

reader is referred to Nicholas (2004). 

 

 

Figure 1.4 – Biaxial tensile induced changes in the valence band of silicon Rim et al. (2003). 

 

The application of strain to silicon material within the channel region of an 

FET (Field Effect Transistor) has been approached from two distinct directions.  

Intel® has pioneered process-induced strain, where uniaxial strain (tensile or 

compressive) is applied directly to the channel region of a device structure through 

novel processing steps (Ghani et al. 2003).  A second approach involves biaxial global 

straining of the whole silicon layer.  This is achieved through the epitaxial deposition 

of a relaxed silicon-germanium layer possessing a greater lattice constant than bulk 

silicon onto which a thin strained silicon channel may be deposited yielding a biaxial 

tensile strained silicon layer.  This global strain tuning layer is called a virtual 

substrate, and the work in this thesis is concerned with investigations that could lead 

to significant improvement in the quality of such structures. 
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1.4 Silicon-Germanium Technology 

Incorporation of germanium into a silicon lattice can be achieved over the 

entire compositional range of Si1-xGex for 0 < x < 1 to form a random alloy with the 

lattice parameter varying almost linearly with composition, in close accordance with 

Vegard’s Law (chapter 2 section 2.2.1).  Interest in low composition relaxed virtual 

substrates is mainly based on the benefits of increased carrier mobility provided, 

whilst retaining compatibility with existing fabrication technology.  Oberhüber et al. 

(1998) have theoretically predicted enhancements for electron mobility in silicon, 

when deposited on a fully relaxed Si1-xGex alloy with x = 15-25% to form a biaxial 

tensile strained layer.  An enhancement is also predicted for hole mobility but requires 

a greater strain, equivalent of deposition on a fully relaxed silicon germanium alloy 

with x = 30%.  These predictions are shown graphically in Figure 1.5. 

 

 

Figure 1.5 – Theoretical prediction of electron (dotted line) and hole (solid line) mobility 

enhancement in a strained silicon MOS device structure under low field conditions Oberhüber et 

al. (1998). 

 

A major problem with this technology is that the quality of the virtual substrate is 
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degradation of device performance, reliability and yield issues and manufacturing 

problems. 

Germanium possess the highest bulk electron and hole mobilities of any bulk 

elemental semiconductor (comparison with silicon given in Table 1.1) but the low 

natural abundance of germanium makes bulk wafers uneconomic for mass production. 

 

 
Bulk Electron Mobility 

(cm
2
V

-1
s

-1
) 

Bulk Hole Mobility 

(cm
2
V

-1
s

-1
) 

Silicon 1450 505 

Germanium 3900 1800 

Table 1.1 – Room temperature bulk lattice mobilities of electrons and holes in unstrained, 

undoped Si and Ge.  Reproduced from a paper by Schäffler (1997). 

 

The utilisation of silicon as a cheap platform on which a virtual substrate 

based relaxed pure germanium structure is formed could allow the integration of III-V 

optoelectronic devices, that share lattice parameters close to that of germanium (e.g. 

GaAs), to be incorporated into a highly integrated circuit, Figure 1.6. 

 

 

Figure 1.6 – A map of band gap versus lattice constant for the III-V alloys and Si and Ge 

Fitzgerald et al. (1999). 
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This would allow the development of optical interconnect technologies and allow 

further assimilation of high frequency device architectures into highly integrated 

circuits.  Also the possibility of virtual substrate based germanium channel (relaxed or 

strained) MOSFET devices is now of extreme interest with many investigations into 

high-k dielectrics for germanium underway.  This would allow very high channel 

carrier mobilities to be harnessed and would provide a valuable performance boost to 

the mainstream microelectronics industry. 

 

1.5 Layer Transfer Technology 

The reduction of transistor feature size has given rise to numerous so called 

short channel effects (SCE) that become an increasing problem for smaller devices 

(Nicholas 2004).  To combat some of these effects AMD have introduced a layer 

transfer technology into their mainstream device processing in the form of silicon-on-

insulator (SOI), demonstrating it to be a mature process (Soitec 2003).  The SOI is 

provided by bonding a thin (minimum 50 nm) silicon layer to the surface of an 

oxidised silicon wafer forming an SOI structure, illustrated in Figure 1.7. 

 

 

Figure 1.7 – Schematic illustration of the layered structure of an SOI (silicon-on-insulator) wafer. 

 

The relevance of this technology in the current study is that the Smart Cut™ 

technology (Soitec 2003) used in the layer transfer process, can be equally applied to 
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the transfer of other materials, including a strained-silicon layer produced on a virtual 

substrate.  Critically this process removes the virtual substrate from the active layer.  

In this situation the quality of the transferred layer reflects the quality of the virtual 

substrate and is paramount, almost certainly impacting on the behaviour of the 

strained layer during device processing.  The possibility of re-growing and reusing the 

base structure with this technology could further reduce cost. 

 

1.6 Thesis Aims and Structure 

The main drive of this thesis is to investigate and control the silicon-

germanium relaxation process to enable further improvement in the quality of relaxed 

virtual structures.  The virtual substrate structures were grown epitaxially using solid-

source MBE (molecular beam epitaxy) at the University of Warwick on commercial 

silicon (001) orientated wafers.  Specifically this work aims to extend that of 

Capewell (2002) on a novel germanium grading technique, known as terrace grading, 

to far greater thickness and composition ranges than hitherto, making comparison 

with more conventional structures.  Ultimately the work should enable progress 

toward the production of planar, defect free platforms, terminating at an arbitrary 

composition between silicon and pure germanium, thereby facilitating further 

improvements in CMOS device performance and integration of III-V optical devices. 

In the following chapters 2 and 3, the principles of silicon-germanium 

epitaxial growth and strain relief along with a description of the experimental 

techniques used in growth and characterisation are presented.  In chapters 4, 5 and 6 

experimental results and discussion for three compositional ranges are presented.  

Chapter 7 summaries the key points of the investigation and draws conclusions based 

on the combined evidence collected and proposes further avenues of work. 
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Chapter 2 
 

2 Principles of Epitaxial Growth and Strain Relief 
 

In this chapter issues concerning the epitaxial growth of silicon and silicon 

germanium alloys will be discussed and the process of strain relief through dislocation 

formation and propagation introduced. 

 

2.1 Epitaxial Growth 

Epitaxial growth is the extension of a crystalline substrate in a planer manner.  

A classical model of growth developed by Burton, Cabrera and Frank (BCF Model) 

remains a useful starting point for our understanding of epitaxial crystal growth 

(Burton et al. 1951).  This classical work is not concerned with the reconstruction or 

bonding of a real crystal surface and as such applies equally to all crystal systems.  

Growth is described as a result of exchange of molecules between an adsorbed surface 

layer and vapour (source of molecules) and diffusion of mobile species along the 

surface until incorporated at a step edge or defect.  Epitaxial growth can proceed with 

the nucleation and growth of two dimensional islands (2-D island growth) by the 

incorporation of mobile unbound surface atoms, now called adatoms, at the surface.  

On a stepped surface growth can proceed by incorporation at the existing step edges 

resulting in step flow growth.  Recognition of the reality of imperfect surfaces is 

highlighted as important in understanding nucleation rates observed in practice. 

Knowledge of the movement of an adatom across a real silicon surface is 

important in understanding epitaxial growth processes.  The movement of an adatom 

across an oxide free and clean silicon surface is greatly influenced by the 

reconstruction (re-ordering) of the surface.  Reconstruction of the silicon surface 
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allows a reduction in the number of dangling bonds providing a lower surface energy 

that is energetically favoured (Chadi 1983).  A high temperature cleaned silicon (001) 

surface has been found to display a (2x1) dimer construction lying along <110> 

directions.  A dimer is the rebonding of two neighbouring surface atoms due to the 

re-hybridisation of the surface dangling bonds (Gawlinski and Gunton 1987). 

The silicon substrates used for solid-source molecular beam epitaxy (SS-

MBE) in this work have vicinal surfaces (stepped) based on (001) with a surface 

misorientation of around 0.1º toward <110>.  Vicinal surfaces are preferred for 

epitaxial growth because their stepped surface promotes layer-by-layer growth 

through terrace extension (step flow) rather than 2-D islanding that can lead to less 

perfect growth.  Growth that proceeds primarily by 2-D island nucleation can lead to 

the formation of anti-phase boundaries between separately nucleated islands, Figure 

2.1. 

 

Figure 2.1 – Schematic illustration of silicon islands on the Si (001) – (2x1) surface and the 

formation of antiphase domain boundaries when these islands intersect.  Antiphase boundaries 

running parallel and perpendicular to the dimer rows are denoted AP1 and AP2 respectively.  a0 

is 3.85Å, the lattice (001) constant of the silicon (001) surface Bronikowski et al. (1993). 

 

Anti-phase boundaries form because there are two possible sites at which islands can 

nucleate; when islands initially formed from different sites meet they may be out of 

Growth 

2a0 3a0 

AP1 

AP2 
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phase and unable coalesce, resulting in a row of surface vacancies and eventually 

grown-in defects that may result in the loss of epitaxy (Bronikowski et al. 1993). 

As growth proceeds the orientation of each subsequent layer is perpendicular 

to the one before and a nomenclature related to the orientation of the dimerisation on 

the top terrace to the step edge was proposed by Chadi (1987) (although the opposite 

to that first proposed is now used!).  A single step having an upper terrace with 

dimerisation parallel to its edge is referred to as type A, SA, with the terrace above it 

labelled TA, and a single step with upper terrace of dimerisation perpendicular to its 

edge as a type B step, SB, terrace TB. 

 

 

Figure 2.2 – Schematic representation of a vicinal silicon wafer surface.  The mobile adatoms 

most easily move along dimer rows and this direction is indicated with arrows. 

 

Figure 2.2 is a schematic representation of a vicinal silicon wafer surface.  

Double height steps can also exist and are labelled DA and DB respectively as before 

and are bounded by terraces of the same type.  The reconstructed silicon surface 

greatly influences adatom transport and it has experimentally been found that 

TA - Terrace 

TA - Terrace 

TB - Terrace 

SA - Step 

SA - Step 

SB - Step 

Mobile Adatom 
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transport along dimer rows occurs more rapidly than across them and was determined 

by examination of denuded zone size (Mo and Lagally 1991).  Due to the presence of 

dangling bonds, attachment at the end of a dimer row is far more likely than at the 

sides, for this reason TB terraces will generally advance more quickly than TA 

terraces. 

Jernigan and Thompson (2001) have investigated the evolution of a silicon 

(001) substrate under normal growth temperatures (350 to 800ºC) and rates (1Å/s) 

using Scanning Tunnelling Microscopy (STM) to directly image the surface.  They 

have shown that a transition from step flow to 2-D island growth occurred as the 

temperature was reduced to around 500ºC and that the transition did not occur 

abruptly, but for a limited temperature window showed characteristics of both growth 

modes simultaneously.  This transition marks a shift from growth dominated by 

equilibrium processes to one more governed by kinetic processes.  This transition will 

be greatly dependent upon growth rate, surface orientation and the surface species 

present. 

 

2.2 Heteroepitaxial Growth 

The growth of an atomic species upon a substrate of differing composition is 

referred to as heteroepitaxy and is probably the most important application of epitaxy.  

There are three recognised growth modes that can be adopted by heteroepitaxial 

layers; the following inequality determines the mode of growth adopted: 

 

(2.1) 

 
where 12 - sum of the interface energy between the film and substrate, 1 - bare substrate surface 

energy, 2 - epilayer surface energy. 

1212
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For lattice matched systems two dimensional Frank-van der Merwe (FvM) growth 

will occur if equation (2.1) is satisfied (Frank and van der Merwe 1949).  The epilayer 

will otherwise be unable to wet the substrate surface and growth will result in the 

formation of isolated three dimensional islands, Volmer-Weber growth (VW) 

(Volmer and Weber 1926).  For non-lattice matched systems strain plays an important 

role in the evolution of film morphology.  A strained epitaxial layer may initially 

satisfy the above condition for Frank-van der Merwe growth, however at greater 

thicknesses the strain energy of the film may be sufficient to negate this situation.  If 

such a situation occurs then growth will evolve from van der Merwe to the Volmer 

Weber growth mode and as such is described separately as the Stranski-Krastanov 

(SK) mode of growth (Stranski and Krastanov 1938).  All 3 growth modes are 

depicted in Figure 2.3.  If the strained layer does not initially satisfy the condition in 

equation (2.1) then growth is in the Volmer-Weber mode. 

 

 

Figure 2.3 – Schematic representation of the growth modes (a) Frank-van der Merwe (FvM) (b) 

Volmer-Weber (VW) (c) Stranski-Krastanov (SK). 
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- Epitaxial Growth 
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2.2.1 Germanium Incorporation 

Silicon heteroepitaxy most commonly involves the addition of germanium and 

is the main focus of the work presented herein.  Germanium shares the same diamond 

lattice structure as silicon having a bulk lattice constant (length of unit cell) ~4.2% 

larger.  The diamond lattice structure (Figure 2.4) consists of a face centred cubic 

lattice (fcc) with a basis of atoms situated at (0, 0, 0) and (¼, ¼, ¼) relative to the 

sides of the unit cell.  Germanium forms a random alloy when introduced into a 

silicon lattice (silicon and germanium atoms randomly occupy lattice sites) over the 

entire compositional range, with the lattice parameter of the Si1-xGex mixture varying 

almost linearly.  This is in accordance with Vegard’s Law, an empirical rule that 

predicts a linear relationship (at constant temperature) for the variation of lattice 

constant for an alloy between that of the constituent elements.  The epitaxial growth 

of germanium and silicon-germanium alloy upon silicon has been found to follow a 

Stranski-Krastanov growth mode where both growth rate and temperature are 

important parameters. 

 

 

Figure 2.4 – Schematic diagram of the silicon or germanium diamond crystal lattice.  Lattice is 

fcc with a basis of atoms at (0, 0, 0) and (¼, ¼, ¼). 
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2.2.2 Critical Thickness 

An important parameter for Stranski-Krastanov growth is the critical 

thickness, hc, the thickness at which misfit strain starts to be relieved by dislocation 

introduction in a strained layer.  It is important to bear in mind that it is possible to 

have a strained layer which although below the critical thickness has already deviated 

from 2-D growth, undergoing elastic deformation of the surface.  Matthews and 

Blakeslee (1974) first described the critical thickness of an epitaxial layer to be 

determined by the mechanical equilibrium (force balance) of tension of a grown-in 

threading dislocation (dislocation that extends from the bulk to a free surface) and the 

force exerted by the misfit strain (see Figure 2.9 and Section 2.3).  For thicker layers it 

will become energetically favourable for the layer strain to be partially relieved by the 

propagation of a dislocation through the layer leaving a misfit dislocation at the 

substrate layer interface. 

The Matthews and Blakeslee approach assumes that a number of threading 

dislocations already exist in the underlying substrate and that growth is being 

conducted at an equilibrium temperature.  The assumption of growth at an equilibrium 

temperature led to an under estimation of the critical thickness experimentally 

observed in Si/Si1-xGex layers grown at temperatures lower than the 900ºC required 

for equilibrium.  People and Bean (1985) reviewed this work and produced an 

improved description of the problem suitable for application to growth at lower 

temperatures.  In this treatment the critical thickness is determined by energy balance, 

relaxation will only occur when a reduction of the strain energy by formation of a 

misfit dislocation is energetically favourable.  Their treatment provided a 

thermodynamically metastable upper limit for critical layer thickness and did not 

assume the pre-existence of threading dislocations.  The concept of a metastable film 
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with an effective critical thickness is introduced, where although reaching the 

equilibrium critical thickness is necessary to allow dislocation propagation, this will 

not occur unless sufficient thermal activation energy is present.  The effect of film 

roughening upon critical thickness is not considered. 

 

 

Figure 2.5 – Open circles show experimental data for critical layer thickness of GexSi1-x alloys vs 
Ge content x.  The misfit varies from 0 to 4.2% at x=1.0.  The solid curve gives the present 

results, as obtained by energy balance arguments People and Bean (1985). 

 

Houghton et al. (1995) demonstrated that at higher temperatures (comparable 

to those used for device processing) the effective hc approaches the equilibrium hc, and 

speculated on the role of surface morphology as an alternative means of strain 

relaxation.  It has been found experimentally that partial elastic relaxation of an island 
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permits a reduction in elastic free energy outweighing the increase in surface energy, 

due to the increased surface area, even though the strain energy at intervening cusps is 

locally higher (Cullis 1996).  A migration of germanium atoms occurs toward the tops 

of islands where the local lattice parameter is greater.  When the built-up strain can no 

longer be accommodated solely by elastic relaxation, plastic deformation inevitably 

occurs with dislocation formation preferentially occurring at the highly strained cusps. 

 

 

Figure 2.6 – Diagram showing elastic distortion of vertical lattice planes in a morphologically 

undulating heteroepitaxial layer (w is the wavelength of undulation) under compressive stress 

upon its substrate Cullis (1996). 

 

The sign of the strain is of additional importance, it has been demonstrated 

that layers under compressive strain (e.g. SiGe grown on Si) show far greater 

roughening than layers under tensile strain (e.g. Strained Si on SiGe) even for the 

same layer composition (Roland 1996).  Step density and in particular the step free 

energy have been suggested as a mechanism.  The step free energy is approximated to 

the step energy, defined as the energy difference between a surface with and without a 

step.  Theoretical investigation of this issue employing a molecular dynamics 

simulation has found that overall the effect of tensile strain is to lower step energies 

whilst compressive strain results in higher step energies, consistent with experiment 

(Xie et al. 1994; Roland 1996). 
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2.3 Exceeding the Critical Thickness and Virtual Substrates 

Pseudomorphic (fully strained) silicon-germanium layers become limited in 

their application at higher germanium concentration, where the critical thickness of 

such layers decrease to such an extent that they are no longer viable for applications 

such as carrier confinement.  To illustrate this point, a pure germanium layer grown 

directly onto a silicon substrate has a critical thickness of around 3 monolayers (Mo et 

al. 1990).  The fabrication of an intermediate layer with terminating lattice spacing 

between that of the silicon substrate and germanium has a number of important 

benefits.  Such intermediate layers could allow compressive, tensile or strain relaxed 

silicon-germanium layers with compositions reaching pure germanium.  For example 

allowing the production of tensile strained silicon on a silicon based substrate and a 

platform on which III-V technologies could be integrated, all of which could help 

further extend the life of this cheap, current and mature technology.  Such relaxed 

intermediate layers have become known as virtual substrates. 

The formation of a virtual substrate requires the strain relaxation of an 

intermediate layer, through the introduction of dislocations, assuming a lattice 

parameter equal to that of bulk material at the same composition (plastic 

deformation).  The strain within a pseudomorphic epitaxial layer can be expressed in 

terms of the misfit resulting from the differing lattice parameters, being equal in 

magnitude but opposite in sign to that of the misfit: 

 

(2.2) 

 

 
where alayer is the bulk lattice parameter of the epitaxial layer, asubstrate is the bulk lattice parameter of 

the substrate and  is the pseudomorphic layer strain. 

substrate

substratelayer
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A dislocation is the boundary between regions within a crystal that are discontinuous, 

with the accommodation of lattice mismatch between the layer and substrate being 

achieved through the generation and extension of misfit dislocations. 

 

2.3.1 Burgers Vector Analysis 

The magnitude and direction of a Burgers vector characterises the crystal 

displacement due to a dislocation.  Burgers vector analysis can be used to characterise 

a dislocation, its motion and interactions with other dislocations (Cottrell 1964).  The 

Burgers vector of a perfect dislocation can be determined by following the Burgers-

Frank method (Cottrell 1964), illustrated in Figure 2.7. 

 

 

Figure 2.7 – The Burgers vector of a dislocation can be determined by completing a right-handed 
circuit in a perfect region of crystal (i) and then making a comparative circuit around the 

dislocation (ii).  The Burgers vector, b, is defined as the vector needed to close the circuit from 

start to finish (RH/SF convention). 

 

A unit vector along the dislocation line is chosen at an arbitrary point and defined as 

its line direction.  In a clockwise direction, with respect to the line direction, complete 

a circuit around a region of perfect crystal lattice, stepping between atomic lattice 

positions.  The same circuit completed around a part of the lattice containing the 

dislocation will be incomplete, corresponding to the displacement in the lattice due to 

the dislocation.  The vector required for completion of the circuit directed from start 

Start Finish Start Finish 

b 

Dislocation line direction into page 
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to finish corresponds to the dislocations Burgers vector, b.  Importantly, a Burgers 

vector is a conserved quantity being the same along the entire length of a dislocation. 

 

2.3.2 Dislocation Motion 

The expansion of a misfit dislocation occurs preferentially by glide of the 

threading dislocation through the epilayer, Figure 2.8.  Glide is the movement of a 

dislocation within a plane purely by the local rearrangement of atomic bonds.  Glide 

of a dislocation can occur in any plane that contains both the line direction and the 

Burgers vector (Hull and Bacon 2002).  The glide velocity of a dislocation is an 

important quantity as will be discussed below, the thermally activated glide velocity is 

given by: 

 

(2.3) 

 

where vg is the glide velocity, is the mismatch strain, Eg is the thermal activation barrier for glide, k is 

Boltzmann’s constant, T is temperature in Kelvin and B is a constant (Mooney 1996). 

 

The activation barrier for glide has been measured for the silicon-germanium system 

and is given by: 

 

(2.4) 

 

where x is germanium content (Tuppen and Gibbings 1990). 

 

Equations (2.3) and (2.4) indicate that the glide velocity of a dislocation is 

highly sensitive to both temperature and composition and that the activation energy 

kTEBv gg /exp

eV7.016.2 xEg
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barrier for glide is relatively low at around 2 eV - this is low compared with the 

activation energies for homogeneous nucleation at 40 eV (Hull and Bean 1989) and 

modified Frank-Read multiplication nucleation at 4 eV (Mooney et al. 1994). 

 

 

Figure 2.8 – Schematic diagram of a threading dislocation propagating through an epitaxial layer 

leaving an interface misfit dislocation behind. 

 

Threading dislocations have been found to glide a factor of 5000 times more quickly 

in bulk germanium than bulk silicon (Kasper 1995).  Glide velocity can also be 

strongly influenced by presence of dopants and impurities, the presence of n-type 

doping >10
17

 cm
-3

 having been shown to enhance dislocation motion in silicon 

(Kasper 1995). 

Movement of a dislocation can occur in a manner that is none conservative, 

rather than by simple bond rearrangement, requiring mass transport and leading to the 

production of either voids or interstitials.  Such movement is called climb, as to 

perform such motion requires the dislocation to have climbed out of its glide plane.  

Climb only becomes an important factor in dislocation motion at higher temperatures 

or where there is an abundant supply of vacancies or interstitials. 
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The propagation of a dislocation occurs in order to relieve strain within the 

epitaxial layer.  The amount of strain relieved is related to the Burgers vector of the 

dislocation and in particular to the component of the Burgers vector resolved 

perpendicular to the line direction in the layer interface plane in which the strain is 

present.  This is known as the effective Burgers vector, beff. 

 

(2.5) 

 

where b is the Burgers vector of the dislocation and  is the angle between the Burgers vector and the 

direction within the interfacial plane which is perpendicular to the line direction (Bolkhovityanov et al. 

2001). 

 

The strain energy relieved, Er, by a misfit dislocation of length, l, at an epitaxial layer 

depth below a free surface, d, is given by (illustrated in Figure 2.9): 

 

(2.6) 

 

where G is the shear modulus and  is Poisson’s ratio.  For derivation see example in Capewell (2002). 

 

The elastic strain energy associated with screw, edge and mixed dislocations 

differs (section 2.3.3), however a further approximation of the strain energy per unit 

length is valid for all: 

 

(2.7) 

 

where 0.5-1.0, G is shear modulus, b is Burgers vector. 
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Importantly, the elastic strain energy is proportional to the square of the dislocations 

Burgers vector and as a result smaller Burgers vectors are favoured, the energy of a 

dislocation clearly also increases linearly with misfit length (Hull et al. 2002). 

 

 

Figure 2.9 – Diagram illustrating the strain relief provided by an expanding misfit dislocation as 

the threading arms glide apart. 

 

A dislocation cannot terminate within the crystal bulk, it must either terminate 

upon itself, at a node with another defect or at a free surface (Kasper 1995).  

Dislocations are usually connected at either end to the growth surface (closest free 

surface) by a threading dislocation.  Propagation of a dislocation will occur until (a) it 

reaches a wafer edge, where the misfit will terminate directly; (b) sufficient strain has 

been relieved by the misfit that further expansion is energetically unfavourable; (c) it 

meets another threading dislocation mutually annihilating; or (d) it is unable to pass 

another orthogonally placed dislocation becoming pinned (trapped).  The annihilation 

of two threading dislocations requires them to share equal Burgers vectors, forming a 

continuous misfit dislocation. 
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Ideally all threading dislocations will either mutually annihilate or reach the 

edge of the wafer reducing the number of threading dislocations remaining at the 

surface to zero.  Surface threading dislocations are unwelcome in virtual substrates 

(buffers) used for device processing, with a clear link between current leakage and 

threading density, that leads to degraded performance (Giovane et al. 2001).  Surface 

undulations have also been found to be increased when large numbers of threading 

dislocations pile-up along orthogonal misfit dislocations (Fitzgerald et al. 1999).  The 

annihilation of threading dislocations is statistically unlikely, although LeGoues 

(1994) has found that the modified Frank-Read multiplication mechanism can lead to 

self-aligned dislocations where the likelihood of annihilation is greatly increased 

(discussed in section 2.3.7.3). 

 

2.3.3 Nature of Dislocations 

The nature of a dislocation is commonly described in terms of the relationship 

between the Burgers vector and line direction.  When a dislocation Burgers vector and 

line dislocation are perpendicular it is referred to as an edge dislocation, and when 

parallel to one another as a screw dislocation.  In instances where a dislocations 

Burgers vector and line direction are at some other arbitrary angle then it is described 

as a mixed dislocation. 

The nature of a dislocation has important consequences in relation to 

propagation through a crystal.  As stated in Section 2.3.2, glide of a dislocation can 

only occur along planes that contain both the line direction and the Burgers vector.  In 

the case of pure screw dislocations where the Burgers vector and line direction are 

parallel glide is possible on any plane.  However for edge dislocations where the 
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Burgers vector and line direction are orthogonal, glide is possible in only one plane.  

Mixed dislocations will similarly be limited to glide on only one plane. 

 

2.3.4 Silicon and Germanium Crystal System 

In every crystal system a preferred glide plane exists, were dislocation 

propagation is most easily accomplished, having the lowest Peierls stress (Peierls 

1940).  The Peierls stress is the applied stress required to overcome the lattice 

resistance to the movement of a dislocation in an otherwise perfect lattice.  For the 

diamond lattice these are the (111) planes, being the most closely packed (Cottrell 

1964), with the intersection of these planes with the (001) occurring along [110], 

hence it is in these directions that misfit dislocations propagate.  In a face centred 

cubic structure such as the silicon and germanium crystal lattice the shortest 

translation vector is ½[110]. 

 

 

Figure 2.10 – Diagram illustrating the relationship between dislocation Burgers vectors of the 

form ½[110], with specific reference to the (111) glide plane and its intersection with the (001) 

along the [-110] line direction. 
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As the energy of a dislocation is proportional to the square of its Burgers vector 

(section 2.3.2), the most energetically favourable Burgers vectors are of this form.  

Such Burgers vectors are situated at angles of either 60º or 90º to the line direction of 

the dislocation and in this system are commonly referred to as 60º and 90º 

dislocations, see Figure 2.10. 

Although a 90º dislocation more efficiently relieves strain in the (001) plane, 

as the Burgers vector is the same as the effective Burgers vector in this case, it is 

unable to glide in the preferred (111) plane (this contrasts with the 60º dislocation) 

and so extension of the misfit can only occur through climb.  It is therefore most 

common under normal conditions that 60º dislocations are favoured even though they 

are less efficient at relieving strain, with misfit extension through glide along the 

(111) plane. 

It is important to note that a 60º dislocation (perfect) is unstable against 

dissociation into closely spaced 30º and 90º dislocations (partial) separated by a 

stacking fault (Hull and Bean 1993).  This is a demonstration of Frank’s Rule that if a 

dislocation with Burgers vector b1
2
 > (b2

2
 + b3

2
) then it is unstable and favourable to 

dissociate into two dislocations b2 and b3 (Hull et al. 2002).  The opposite case 

follows similarly. 

 

2.3.5 Dislocation Nucleation 

A modern silicon wafer can be expected to be essentially dislocation free 

(density < 10/cm
2
) (Goorsky 2000); however, the complete relaxation of a strained 

silicon-germanium epitaxial layer requires the presence of a large number of 

dislocations.  It is clearly important to identify and understand the manner in which 

new dislocations are nucleated (created) to be able to improve and optimise the 
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structure and growth parameters used in the creation of virtual substrates.  The 

mechanisms for dislocation nucleation can be placed into three broad categorises, 

homogeneous, heterogeneous and multiplication (Kasper 1995). 

Homogeneous nucleation is the spontaneous creation of dislocations at a free 

surface due to intrinsic epilayer strain.  An activation energy of 40 eV (Hull et al. 

1989) is calculated for dislocation formation of this type, and is only likely to occur 

under conditions of significant epilayer strain and high material quality were no other 

mechanisms are available or at very high temperature. 

Heterogeneous nucleation can occur through the inclusion of particulates or 

impurity precipitates that result in a local lattice strain that is significantly higher than 

in the bulk.  As such the rate of heterogeneous nucleation is likely to be very 

dependent on the cleanliness of the epitaxial growth chamber, and could contribute 

significantly to dislocation nucleation in an epilayer of low strain. 

Multiplication mechanisms allow for a rapid increase in dislocation 

nucleation, whereby a small number of initial dislocations can repeatedly act to 

generate many additional dislocations.  The rate at which multiplication sources can 

be generated is entirely governed by the presence of dislocations formed by other 

means.  There is strong evidence to suggest that the dominant mechanism for 

dislocation generation in a thick, low strained epilayer is multiplication (LeGoues et 

al. 1992).  The modified Frank-Read multiplication mechanism has been specifically 

proposed and will be discussed in detail later. 

 

2.3.6 Orthogonal Misfit Dislocation Interactions 

The driving force for dislocation motion in a strained epilayer is the net excess 

stress, σex, due to lattice mismatch and can be expressed as follows: 
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(2.8) 

 

where a is the applied stress from lattice mismatch, T is the self energy of the misfit dislocation line 

per unit length (line tension) (Dodson and Tsao 1987). 

 

A common and important interaction between misfit dislocations occurs at the 

intersection of a moving threading segment with an existing orthogonally located 

dislocation, see Figure 2.11.  The proximity of an orthogonally located misfit 

dislocation results in additional traction on the glide plane of the threading 

dislocation, termed the interaction force (GI) by Freund (1990) and described as: 

 

(2.9) 

 

where σij
I
 is the additional contribution to the applied stress field due to dislocation interaction, nj is the 

number of intersected orthogonal dislocations, bi is the Burgers vector of the intersecting dislocation, 

and Bg is the boundary defined by the intersecting dislocation threading arm, integrated in a direction 

orthogonal to the intersecting misfit within the glide plane. 

 

In layers with low amounts of strain all such interactions lead to blocking of the 

moving dislocation (Stach et al. 2000).  In this blocking regime, insufficient stress 

remains from lattice mismatch to overcome the local stress present due to the existing 

misfit dislocation, such that the excess stress experienced by the threading arm is 

reduced to zero and its progress is blocked. 

In general, for layers with greater excess stress the outcome of this type of 

interaction is dependent on the relationship between the dislocation Burgers vectors, 

the depth at which the encounter occurs, the material composition of the layer and the 

unrelieved misfit strain present.  Stach et al. (2000) observed that intersections 
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between dislocations with parallel Burgers vectors undergo a splitting reaction, 

forming into two separate dislocations each with a 90º bend, Figure 2.11. 

 

 

Figure 2.11 – Diagrams illustrating how (a) the intersection of an orthogonally placed misfit 

dislocation by a moving threading segment can (b) result in a splitting reaction, if the dislocations 

share parallel Burgers vectors.  Misfit segments both lie in the shaded plane with the glide planes 

for each represented. 

 

In all but the lowest composition and thinnest samples (the blocking regime) 

dislocation splitting was required (but not alone sufficient) for blocking to occur 

between two dislocations.  Importantly it was discovered that dislocations pinned after 

a splitting reaction required the application of far more stress to free than would have 

been required to initially avoid pinning.  It is suggested that dislocation motion can be 

stopped at thicknesses and compositions far in excess of that predicted theoretically, 

and that the reality of a 60º dislocation actually moving as a closely spaced 30º and 

90º partial dislocation may provide an explanation (Stach et al. 2000). 

A similarly important interaction occurs when a propagating misfit dislocation 

encounters multiple (more than one) closely spaced orthogonal misfit dislocations.  

Freund (1990) notes that if n closely spaced dislocations with identical Burgers 

vectors are encountered the magnitude of the interaction force is magnified a factor of 

approximately n, see equation (2.9).  This increase in interaction stress has the effect 

(b) (a) 
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of extending the blocking regime to regions of higher stress.  This type of interaction 

is extremely important when considering dislocation nucleation by multiplication, 

discussed in section 2.3.7.2. 

 

2.3.7 Multiplication Mechanisms 

 

2.3.7.1 Frank-Read Mechanism 

Frank-Read multiplication sources can result when a section of dislocation 

becomes pinned at either end by the climb or jog (step moving dislocation from one 

atomic slip plane to another) of the dislocation between different glide planes, 

represented schematically in Figure 2.12 (a). 

 

 

Figure 2.12 – Schematic cross-sectional representation of a Frank-Read dislocation source.  The 

central dislocation line marked (a) is pinned at either end by jog of the dislocation on to different 

glide planes marked by the cross and point.  Expansion of the dislocation is shown (b)-(d) until it 

eventually closes upon itself (e).  The complete loop continues to grow, intersecting the growth 

surface forming two threading arms which glide apart (indicated with arrows), whilst the 

original dislocation returns to its original state (a). 
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The influence of a shear stress on the pinned segment can cause it to bow out 

(LeGoues et al. 1992) toward the substrate along a single glide plane, Figure 2.12 (b-

d), eventually closing upon itself to form a complete dislocation loop as well as 

reforming the initial dislocation.  The loop then continues to expand until it intersects 

the surface at which point the formed threading arms glide away from one another, 

Figure 2.12 (f).  This process can be repeated as long as sufficient stress remains 

available to drive bowing of the initial dislocation. 

 

2.3.7.2 Modified Frank-Read Mechanism (MFR) 

A multiplication mechanism similar in nature to that of a Frank-Read source 

was first analysed by LeGoues (1992) in the silicon germanium crystal system in 

linearly graded layers with a shallow rate of grading, and has since become referred to 

as the modified Frank-Read mechanism (MFR). 

The intersections of orthogonal misfit dislocations having parallel Burgers 

vectors undergo a splitting reaction forming two corner dislocations (Lefebvre et al. 

1991).  MFR sources are formed at such intersections providing that one corner is able 

to initially reduce its length by bowing down into the substrate; configurations for the 

four slip systems of the MFR mechanism are detailed by Mooney et al. (1994).  In a 

similar manner to Frank-Read sources the dislocations begin to bow, however in this 

case the two orthogonal dislocations bow on separate glide planes connected along a 

line common to both.  The bowing continues until the two segments unite to form a 

dislocation loop connected between glide planes along the common line.  The loop 

continues to grow in size until the top intersects the sample surface whereby two 

threading dislocation arms form, gliding away and forming two new misfit 

dislocations on the same glide plane as the parent dislocations but spatially separated 
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in the layer.  Figure 2.13 (a) and (b) show schematically the initial situation with one 

corner starting to bow, as well as the situation a short time later once the loop has 

been formed intersecting the surface resulting in two new threading arms.  The MFR 

source is able to nucleate many additional dislocations provided sufficient misfit 

stress remains unrelieved, the resulting dislocation network is shown schematically in 

Figure 2.13 (c) and (d). 

A characteristic trait of dislocation multiplication is illustrated in Figure 2.13 

(d), where dislocations are pushed deep into the underlying substrate by the repeated 

generation of dislocations on the same two glide planes.  Each misfit dislocation has 

the effect of producing a small step upon the surface of the sample around 2.8 Å high 

(Lutz et al. 1995), further dislocations nucleated upon the same glide plane (the case 

for MFR) result in a linear increase in step size.  The commonly observed 

consequence of a pile-up of misfit dislocations is to produce a cross-hatch on the 

sample surface that is visible using optical methods. 

Cross-hatch is an undesirable quality on a relaxed buffer layer, a non-planar 

surface is detrimental to the electrical performance of devices processed on top and 

could prove a problem for lithography in more extreme cases.  Fitzgerald et al. (1992) 

proposed an alternate view that the amplitude of cross-hatching observed in graded 

buffer layers could not be explained as solely due to the steps produced by underlying 

dislocations.  It was proposed instead that the inhomogeneous strain fields emanating 

from dislocations were responsible for roughening of the surface during growth. 
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Figure 2.13 – Schematic representation of the formation and operation of a modified Frank-Read 

multiplication source.  Pictures (a) and (c) show a three dimensional representation whilst (b) 

and (d) show a corresponding [1-10] projection.  (a) and (b) Two dislocations with the same 

1/2[10-1] Burgers vector cross with a 90º angle in the plane of the interface.  All of the planes and 

directions are indicated.  The typical annihilation of the intersection is represented, as well as the 

bending of one of the corners toward the substrate resulting from the interaction between the two 

corners.  In addition a fully formed loop that has intersected the surface is shown.  (c) and (d) 
Repeated operation of the source results in a double pile-up of misfit dislocations along the two 

glide planes involved in the mechanism LeGoues et al. (1992). 

 

The presence of large misfit pile-ups within a sample has further consequences 

to the quality of the resulting buffer layer.  As mentioned previously in section 2.3.6 

the presence of n closely spaced misfits sharing identical Burgers vectors result in the 
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and can have the effect of arresting a mobile threading dislocation.  Many mobile 

threading dislocations will become trapped at the same misfit pile-up resulting in 

threading dislocation pile-up (section 2.4.3).  The work of Fitzgerald et al. (1999) 

indicates that the surface undulation resulting from misfit pile-ups is itself responsible 

for dislocation pinning by reducing the thickness of overlying material to less than the 

critical thickness required to drive dislocation motion.  Once pinned the strain field at 

the sample surface due to threading dislocations causes adatom incorporation to be 

reduced locally, further exacerbating the cross hatch amplitude, resulting in positive 

feedback (Fitzgerald and Samavedam 1997). 

The operation of MFR sources require that intersecting dislocations are pinned 

at a great enough distance apart so that sufficient stress is present to bow the 

dislocations.  For this reason the rate at which a layer is graded in composition plays 

an important role, a lower grading rate ensures a larger separation between pinning 

events. 

 

2.3.7.3 Self Annihilation of Threading Dislocations in MFR 

MFR sources are formed when a mobile threading dislocation intercepts a pre-

existing orthogonal misfit dislocation forming a corner dislocation.  It is highly likely 

that other corner dislocations will be formed by intersection of the same pre-existing 

dislocations.  The result of this is that newly formed dislocations (MFR) will be self-

aligned by virtue that they originate along the same original dislocation network and 

may annihilate one another.  The idea of self aligned sources as an explanation for the 

low threading dislocation densities, rather than extremely high glide velocities, found 

for samples having relaxed by MFR mechanism was first proposed by LeGoues 

(1994).  It is noted that this mechanism will only occur in isolated areas bounded by 
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the extent of the original dislocations that were present to form the MFR sources.  

Pinning is to be expected at intersection of regions originating from different misfit 

dislocations. 

 

2.4 Virtual Substrate Structures 

There have been many approaches explored in the production of high quality 

virtual substrates involving compositional variation, temperature variation and even 

the intentional introduction of defects (Kasper and Lyutovich 2004).  The following is 

a brief summary of the evolution of virtual substrate design (from the early 1980’s) 

leading to the idea of terrace grading that forms the main focus of this work. 

 

2.4.1 Constant Composition 

The most basic form of virtual substrate consists of a layer with uniform 

composition that greatly exceeds the critical thickness value for relaxation.  Such 

structures undergo sudden relaxation with a network of misfit dislocations forming at 

the epilayer growth interface.  The sudden onset of strain relief leads to large numbers 

of dislocations being formed and as the misfit dislocation network is confined to a 

single plane a significant number of interactions occur.  Numerous dislocations 

become pinned and are unable to further contribute to the relaxation process, resulting 

in the need to introduce even greater numbers of dislocations.  As a consequence 

virtual substrates of this variety contain extremely high numbers of surface threading 

dislocations, even a Si0.7Ge0.3 layer results in a threading dislocation density in the 

range 10
10

 – 10
11

 cm
-2

 (Larsen 2000). 
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2.4.2 Step Grading 

A much improved virtual substrate can be formed using a series of 

compositionally stepped layers.  Such a structure requires fewer dislocations to relax 

each layer, and with fewer dislocations at each interface less interaction occurs, less 

pinning events result in threading dislocation densities being reduced.  Subsequent 

layers also inherit existing dislocations that allows more gradual strain relief, forming 

longer misfits, again reducing the surface threading dislocation density.  It has been 

shown that reductions in dislocation numbers are obtainable in this way with 

dislocation densities <10
7
/cm

2
 for a Si0.7Ge0.3 virtual substrate (Mooney 1996) 

although this still remains high compared to that achievable through linear grading. 

 

2.4.3 Linear Grading 

The successive integration toward smaller more numerous steps in the extreme 

limit results in a layer of continual compositional grading, having in effect an infinite 

number of stepped interfaces.  The misfit dislocation network is no longer confined to 

either a single or small number of layers but can instead form anywhere throughout 

the layer.  Such a layer allows strain to build slowly with dislocations introduced a 

few at a time, promoting the expansion of existing dislocations with a reduced 

likelihood of interaction.  Once initial misfit dislocations have formed either 

homogeneously or heterogeneously the gradual application of strain is conducive to 

further nucleation by means of dislocation multiplication (MFR) as a consequence of 

the low nucleation energy barrier. 

Fitzgerald et al. (1992) and Dutartre et al. (1994) have demonstrated that the 

surface threading density is linked to the compositional grading rate and that a grading 
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rate of 10%/ m provides a good compromise between layer thickness and surface 

threading density, see Figure 2.14. 

 

 

Figure 2.14 – A graph showing threading dislocation density vs. grading rate for graded buffers.  

The cap layers are 1.1 m thick and 32% Ge rich.  The straight line corresponds to a 1.1 m 

thick uniform (32%) layer.  For comparison the results of Fitzgerald et al. (1992) are also shown 

contained within the broken rectangle.  Reproduced from a paper by Dutartre et al. (1994). 

 

Numerous authors have shown how linear compositional grading can allow the 

reduction of threading dislocation densities, for example Si0.7Ge0.3 layers have been 

fabricated with densities between 10
3
 – 8x10

5
/cm

2
 (Dutartre et al. 1994; Hartmann et 

al. 2004)  and even 100% germanium structures with densities as low as 10
6
/cm

2
  

(LeGoues et al. 1992; Currie et al. 1998) although additional processing steps were 

required to achieve some of these densities. 

The operation of the MFR mechanism as discussed earlier results in the 

formation of regular surface undulations (cross-hatch) and is the key limitation of this 

approach with such surfaces not well suited to device fabrication or lithographic 

definition of structures.  In addition the dislocations formed in this manner all share 
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the same Burgers vector lying on the same glide plane and can result in the pile-up of 

many mobile threading dislocations that are unable to contribute to further relaxation. 

 

 

Figure 2.15 – Schematic diagram showing the pinning of threading dislocations against a network 
of misfit dislocations generated by the modified Frank-Read multiplication mechanism.  (a) in 3-

D view (b) plan view looking along the [001] direction. 

 

Dislocation pile-up is believed to be of far greater detriment to the 

performance of a processed device than individual isolated threading dislocations.  

Individual dislocations are detrimental to device performance giving rise to an 

increased leakage current for devices containing threading dislocations (Giovane et al. 

2001) but at low threading dislocation levels < 10
4
/cm

2
 are at an acceptable level for 

operation of majority carrier devices (Tezuka et al. 2002).  However when large 

numbers of surface threading dislocations lie in close proximity in the form of pile-up, 

the current leakage could logically be imagined to increase by a factor of n (where n is 

the number of dislocations) and may result in complete device failure rendering an 

integrated circuit inoperable (device killer). 

The density of dislocation pile-up is often quoted as a length density (cm/cm
2
) 

and as a more conventional area density (dislocations/cm
2
) for lower levels, though 

whether such instances should be referred to as pile-up is debatable. 
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2.4.4 Terrace Grading 

The concept of terrace grading is a recent development in virtual substrate 

design (Capewell 2002; Capewell et al. 2002), in principle retaining the advantages of 

grading (dislocation separation) whilst offering reduced surface cross-hatch, fewer 

threading dislocations, the possibility of thinner structures and the elimination of pile-

up.  Terrace graded virtual substrates combine graded compositional layers with 

uniform compositional stages.  The introduction of the uniform composition regions 

allows for the separation of multiplication dislocation sources between graded 

regions, such that the formation of new multiplication sources is unlikely to occur in 

registry with those present in preceding graded layers as each layer will form a new 

network.  As a consequence of the limited amount of misfit dislocation pile-up that 

can occur at any one source, the amplitude of the resulting surface cross-hatch is 

limited, Figure 2.16. 

 

 

Figure 2.16 – Schematic cross-sectional diagram viewed along a [110] direction.  In a linearly 
graded layer (a) the dislocations form large pile-ups that traverse the layer.  In the terrace 

graded layers (b) pile-ups are confined in the graded layers and since these layers are isolated 

pile-ups do not build throughout the structure.  Reproduced with permission (Capewell 2002). 

 

Large amplitude 

cross-hatch 

Small amplitude 

cross-hatch 

Large dislocation 

pile-up 

Small dislocation 

pile-up 

(a) (b) 

Linearly 
graded 

region/s 



Principles of Epitaxial Growth and Strain Relief 

41 

An additional benefit of the uniform regions arise from the release of pinned 

threading dislocations, caught at the web like dislocation networks extending out from 

multiplication sources.  In extreme cases many dislocations can become trapped along 

a single plane leading to threading dislocation pile-up. 

The presence of an increased number of mobile threading dislocations at the 

start of a graded layer leads to a reduction in the required nucleation rate of 

multiplication sources in that region.  A terrace graded virtual substrate will therefore 

benefit from the more efficient utilisation of existing misfit dislocations in relaxation, 

containing fewer but longer misfit dislocations, as well as displaying a reduction of 

surface cross-hatch and reduced threading dislocation pile-up.  A threading 

dislocation density of 1x10
6
/cm

2
 has been demonstrated with this technique at a 

germanium composition of 50% in a thickness of only 2 m, with far greater 

improvement expected for layers of more conventional thickness (Capewell et al. 

2002). 
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Chapter 3 
 

3 Experimental Methods 
 

This chapter describes the equipment used to grow and characterise the 

silicon-germanium virtual substrate structures investigated within this thesis.  The 

basic operating principles of each technique are discussed and where appropriate any 

modifications made during the course of this work are presented. 

 

3.1 Solid Source Molecular Beam Epitaxy (SS-MBE) 

The majority of the samples investigated during the course of this thesis have 

been grown by the author using solid-source molecular beam epitaxy (SS-MBE) 

within a Vacuum Generators V90S growth system.  Unlike many forms of chemical 

vapour deposition (CVD) and similar competing technologies, SS-MBE enables 

independent alteration of certain growth parameters without any interdependence.  

Most importantly this allows modification of growth temperature independently of the 

epitaxial growth rate and layer composition is determined directly by the ratio of 

incident silicon to germanium flux.  Both of these advantages have been used to best 

effect in the creation of silicon-germanium virtual substrates with simultaneous 

variation of both composition and temperature. 

 

3.1.1 V90S Growth System and Vacuum Pumping 

The Vacuum Generators V90S growth system provides deposition of silicon, 

germanium and silicon-germanium alloys along with boron and antimony dopants 

within an ultra high vacuum (UHV) environment, essential for high quality epitaxial 

layer growth.  UHV describes pressures below ~10
-9

 mbar and are necessary to 
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maintain a low level of impurity influx (Farrow 1995).  The growth system consists of 

three main chambers conventionally referred to as the fast entry lock (FEL), 

preparation chamber (PREP) and growth chamber (GROWTH) each maintained at a 

successively higher vacuum, shown schematically in Figure 3.1. 

 

 

Figure 3.1 – Schematic of the Vacuum Generators V90S SS-MBE growth system. Reproduced 

with kind permission (Grasby 2000). 

 

The sequence of chambers is necessary to maintain UHV conditions within the 

GROWTH chamber by minimising exposure to atmospheric water vapour.  Wafers, 

thin crystalline discs of silicon (~1 mm thick, 4 inch diameter), are admitted into the 

vacuum system through the FEL which is vented and evacuated regularly to dry 

nitrogen to permit the loading and retrieval of wafers.  The vacuum is maintained 

independently within each chamber through a combination of vacuum pumps.  

Pumping in FEL and GROWTH is provided by a Pfeiffer turbo molecular pump, 

backed by an oil free Leybold Ecodry rotary to achieve an ultimate vacuum of 
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~10
-8

 mbar and 10
-11

 mbar respectively.  The oil free nature of all the pumps used is 

critical throughout but especially within GROWTH and precludes the possibility of 

oil back-streaming into the chamber introducing contamination (Grasby 2000). 

A turbo molecular pump consists of a series of high velocity spinning blades 

(rotors) separated by stationary blades (stators) with pumping achieved by a net 

momentum transfer from the rotor to an incident molecule directing it through the 

pump (Roth 1996).  Correct operation requires the particles mean free path to be large 

enough that is more likely to interact with the vessel containing it than another 

molecule and is known as molecular flow, occurring for pressures ≤ 1x10
-10

mbar.  For 

this reason it necessary to back (pump upon) a turbo molecular pump with a 

secondary pump to maintain a low back pressure for continued operation. 

Around an hour of pumping is necessary from atmospheric pressure to achieve 

an acceptable vacuum in FEL, allowing wafer admission into PREP, after which 

loading from PREP to GROWTH occurs automatically in quick succession.  During 

normal operation PREP is only ever open to one chamber at the same time.  The 

chamber is pumped by a Varian Star Cell ion getter pump operating at 2 kV and does 

not require secondary pumping; though a starting pressure less than ~10
-3

 mbar is 

needed for initial operation. 

During the course of this work the number of wafers that could be 

simultaneously admitted into the vacuum system was limited to less than the 

maximum 6 which the loading carriage is designed to handle.  Wafers held near the 

top of the carriage were shaken out of position by the sudden motion in opening FEL 

to PREP; following this work the problem has been rectified by softening the viton 

seal between FEL and PREP with in-situ heating. 
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3.1.2 Chamber Outgassing 

The necessity to achieve and maintain a UHV environment for epitaxial 

growth requires not only a specialised pumping system but also the baking or 

outgassing of the entire vacuum system each time either GROWTH or PREP is 

vented to atmosphere.  The large volume of gas initially contained within the vacuum 

system can be quickly pumped away achieving a vacuum around ~10
-7

 mbar.  Further 

reductions in pressure continue with an approximate t
-1

 (where t is time) dependence 

due to the slow release of physisorbed gases from chamber walls, with H2O becoming 

the dominant gas load at lower pressures.  Baking at high temperatures greatly 

accelerates this process with physisorbed gases, only weakly held onto surfaces by 

weak van der Waals forces, quickly removed by heating above 120ºC and 

chemisorbed layers, chemically bonded to the chamber surface, removed by surface 

heating in excess of 200ºC (Farrow 1995).  It is standard procedure after each growth 

series to bake the system for around seven days at approximately 200ºC to achieve 

UHV conditions. 

 

3.1.3 Substrate Heater and Control 

Substrate temperature is a critical growth parameter for SS-MBE, as for all 

epitaxial growth processes and is of importance to the work presented in this thesis.  

The V90S is equipped with a resistively heated graphite meander located a couple of 

millimetres behind the rear of the substrate and is capable of achieving sustained 

temperatures in the range ~20-1000ºC.  Substrate temperature was calibrated using 

both high and low temperature optical pyrometers situated outside of the vacuum 

system and a calibration curve created from these measurements was stored in the 

EpiCAD control software.  The EpiCAD (v2005.125) control software is provided by 
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EpiMax Computer Aided Design © 2003 and when utilising full growth automation, 

is responsible for control of all matrix and effusion sources as well as heater 

temperature, wafer rotation and shutter actions.  No real-time feedback was utilised 

for heater control, although the substrate temperature was continuously monitored by 

a high temperature pyrometer over the range 600-1000ºC.  Dependent upon a 

substrate’s bulk resistivity a small surface temperature difference can occur for a 

given power setting (Lambert 2000), though this effect can be neglected in the current 

work.  Improved uniformity in both heating and flux distribution was achieved by 

rotating the substrate at a constant velocity of approximately 5 rpm and has been 

shown to yield a uniformity of ± 3-5% across a 4 inch substrate (Grasby 2000). 

 

3.1.4 Electron Beam Evaporators 

Evaporation by radiative heating of silicon is not practical for matrix level 

epitaxial layer growth because of its high melting point (~1400º C) and chamber 

dimension.  It is far simpler to evaporate silicon and germanium sources by direct 

electron bombardment using an electron beam evaporator.  The V90S utilises three 

AP&T electron evaporators, two silicon and one germanium, to provide matrix level 

growth at a rate of between 0.01 As
-1

 and 1 As
-1

 (from each evaporator).  Improved 

flux uniformity is provided by the off-centre situation of each electron evaporator. 

The main body of the electron evaporator consists of an oxygen-free high-

purity copper hearth (see Figure 3.2) that has a number of channels machined through 

to permit water cooling.  A tungsten filament is held at a DC potential of -9 kV 

relative to the grounded hearth, and the filament heated by a superimposed AC current 

to provide electron emission.  The emitted electron beam is deflected by a permanent 

magnet through 270° along an arced path so that it is normally incident upon the 
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charge, shielding the substrate and charge from the filament (reducing the likelihood 

of contamination).  Fine adjustments of the beam position on the charge are possible 

using electromagnets situated near the filament and in the body of the evaporator.  

The AP&T position coils are additionally designed to allow defocusing of the electron 

beam, achieved by increasing the field in both lateral electromagnets equally. 

 

 

Figure 3.2 – Schematic of electron beam evaporator situated within the V90S growth chamber.  
Adapted from an image published by Kasper et al. (1998). 

 

A defocused beam is used to form a surface melt of around 5 cm diameter with 

a shallow depth, as this has been found to result in a lower ion yield believed to 

provide higher quality growth (Eifler et al. 2002).  To further prolong the life of each 

charge a melt-back is periodically conducted, where the energy input is increased over 

that in normal operation and the beam carefully moved to melt-back a significant 
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proportion of the charges surface, eliminating any crater that had been formed, 

returning a flat surface. 

Flux control of the electron evaporators is maintained by an adapted INFICON 

Sentinel III EIES (electron induced emission spectroscopy) close loop feedback 

system that eliminates any long term drift in the flux.  The Sentinel system only 

provides a relative correction with the absolute growth rate determined through 

separate calibration and stored as a lookup curve within the control software.  Each 

evaporator has a Sentinel flux monitoring head, placed at an angle protruding out 

from the chamber side wall, positioned so as to not intercept flux emitted from the 

other two evaporators; this is discussed in greater detail in section 3.2.1. 

Rapid interruption to the flux is achieved using shutter blades that physically 

shadow the substrate from the source of flux.  This highlights the fundamentally 

important operational principle of solid-source MBE, direct line of sight, without 

which growth on the wafer surface does not occur.  This simplistic approach of source 

shuttering means that rapid flux interruption is available (< 1 second) and largely 

determines the growth rate chosen to retain accurate control.  As previously stated, 

growth is typically conducted at a rate in the region of 1 Ås
-1

 providing in principle 

lateral thickness control in the order of Angstroms. 

The extended length of time required here to grow higher percentage virtual 

substrates meant that the longevity of the electron evaporator power supplies became 

an important issue.  During growth excess material can begin to flake from the 

chamber walls and may be electrostatically attracted to the electron evaporator 

filaments, sometimes forming a short circuit to ground.  Such events are often 

resolved immediately with the material vaporised by the arcing current but can 
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occasionally cause a drop in evaporator potential sufficient to trip safely interlocks on 

the power supply. 

For further information regarding silicon-germanium SS-MBE the reader is 

referred to Molecular Beam Epitaxy – Applications to Key Materials (Chapter 1) 

(Farrow 1995). 

 

3.1.5 Substrate Cleaning In-Situ and Ex-Situ 

Numerous approaches to substrate preparation were available during this 

work, the route chosen dependent upon the application of the substrate.  Chemical 

cleaning methods are typically utilised only for cases of fully strained structures or 

layer re-growth on relaxed buffers and such procedures are presented in Appendix I.  

Chemical cleaning was not available during the course of this work and so high 

temperature in-situ cleaning had to be adopted. 

 

3.1.6 In-Situ High Temperature Oxide Desorption 

The native oxide present on the surface of silicon substrates was desorbed 

under UHV conditions (Kasper et al. 1998) at the beginning of each growth sequence, 

ramping the wafer temperature up to 890ºC over a period of 15 minutes and holding it 

there for a further 20 minutes.  It was found that ramping over a period less than 15 

minutes resulted in the occurrence of slip lines at the wafer edge due to temperature 

non-uniformity across the wafer surface.  A 50 nm silicon buffer layer was grown 

immediately following this procedure whilst the temperature was simultaneously 

reduced to that required at the start of the virtual substrate growth sequence. 
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3.2 System Developments 

During the course of this work the V90S was retrofitted with an automated 

wafer transfer system utilising laser pickups to determine the position of the wafer 

platen.  Once a wafer cassette has been loaded and FEL has attained a high vacuum, 

further wafer manipulation is carried out automatically, transferring between FEL and 

GROWTH and visa-versa.  Ultimately the EpiCAD growth control software will be 

integrated with the automated wafer transfer software enabling unattended operation 

for extended periods of time, though this was not in place during the current work. 

 

3.2.1 Electron Induced Emission Spectroscopy (EIES) 

The INFICON Sentinel III flux monitoring system (EIES) utilised on the 

V90S SS-MBE growth system monitors the requested flux rate from the electron 

beam evaporators, providing a signal that is used in a control loop to compensate for 

changes in the flux with time.  The basic principle of operation involves the excitation 

of incident evaporant species, within a sensor head situated in the vacuum system, by 

direct electron bombardment from a heated tungsten filament.  Subsequent light 

emission is channelled along a light pipe through a thin film filter into a 

photomultiplier tube (PMT) located outside of the vacuum system.  The signal is used 

for feedback control to maintain the evaporant flux at the desired level.  Two 

distances play critical roles in determining signal strength, the source-to-sensor head 

and the sensor-head-to-photomultiplier tube distance.  The flux density of atomic 

species arriving at the sensor head falls off as 1/d2
 (d is distance) as does the light 

intensity transmitted along the light pipe. 

The initial arrangement had the sensor head placed at an inclined angle to the 

source at a distance of 240 mm with a sensor head PMT separation of 360 mm 
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(Kubiak et al. 1991), shown schematically in Figure 3.3.  As a consequence of this 

geometric arrangement part of the molten area of a depleted charge may lose line of 

sight to the sensor aperture and not be detected.  Ideally the sensor should be situated 

above the molten charge with a relationship similar to that of the wafer.  To achieve 

this, a unique sensor head assembly was constructed in which the light pipe length 

was substantially reduced to a distance of only 80 mm to allow its situation at the top 

of the growth chamber.  An opening made though the top internal water cooling panel 

allowed line of sight down onto the charge with a sensor to charge distance of 

650 mm, shown schematically in Figure 3.3.  This provided an overall source-to-PMT 

distance for the old and new sensor head positions of 600 mm and 730 mm 

respectively. 

 

 

Figure 3.3 – Schematic representation (not to scale) of a silicon electron evaporator and shutter 

situated inside the V90S UHV growth system with two sets of Sentinel heads, positioned at the 

side and top of the chamber.  Also shown is the modified internal upper water cooling panel 

allowing line of sight down to the evaporant source. 

 

Electron beam hearth 

Source 

Rotary shutter 

Toward 

substrate 
Sensor 

head 

Light pipe 

Filter 

Photomultiplier 

tube 

Photomultiplier 

tube 

Light pipe 

Filter 

Vacuum 

chamber wall Upper internal water 

cooling panel 

Sensor 

head 

New Position 

Old Position 



Experimental Methods 

52 

To assess the performance of the new head assembly measurements were 

made simultaneously with both the original and new heads.  The electron evaporator 

power level was incrementally increased under computer control, using first the 

original sensor head for feedback control, followed by the new sensor head, the 

resulting traces are given in Figure 3.4.  The PMT range (7) was set equal for both 

channels but different correction factors were applied to each trace so that the flux 

rate indicated between them was in close agreement at medium flux rates. 

It is immediately obvious from Figure 3.4 that the signal to noise ratio of the 

new upper sensor head position is greater than sensor head in the original side 

position.  This situation was expected given the greater overall path from source to 

PMT of the new upper sensor position.  The increased noise level can be seen to have 

only a small effect on the stability of the power control graph due to the purposely 

damped response of the feedback system. 

To allow usage of the upper sensor heads during a growth sequence will 

require further work, modification of the shutter blades is needed to allow continuous 

flux monitoring whilst retaining the ability to shutter a wafer from matrix species (see 

Figure 3.3).  In addition only silicon charges have so far been monitored in this new 

configuration and it remains to be seen whether the germanium melt can be controlled 

in the same manner given a noticeably higher initial noise level.  If this system were 

implemented it would have the further advantage of freeing three side ports that could 

be used to accommodate more effusion sources. 
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Figure 3.4 – Montage of graphs showing flux rate monitored from the silicon charge by Sentinel 
heads in the upper (new) and side (old) locations, as well as the actual set point and power usage.  

(a) Flux feedback control provided from the old Sentinel head position (b) Flux feedback control 

provided from the new Sentinel head position. 

 

(a) 

(b) 
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3.3 Nomarski Optical Interference Microscopy 

Optical observation of an epitaxially grown structure provides a direct means 

with which to quickly examine surface morphology.  A standard optical microscope 

does not possess the ability to resolve the small features present on a typical epitaxial 

layer, as stipulated by the Raleigh criterion.  Far smaller features can however be 

visualised by utilising optical interference contrast available in a Nomarski 

interference microscope.  A Reichart-Jung Nomarski inference microscope equipped 

with a Nikon DN100 digital camera was used to obtain interference contrast images of 

epitaxial wafer surfaces.  Interchangeable lenses allowed an image to be formed at a 

magnification of x10, x50 or x100 which was effectively increased in the digital 

image due to the size of the cameras CCD (charge coupled device) and by x10 at the 

eye piece. 

 

Figure 3.5 – Schematic representation of a Nomarski optical interference microscope. 
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In a Nomarski microscope the light source illuminating the object of interest is 

plane polarised before being split into two orthogonally polarised beams.  A phase 

shift between the beams will arise due to any slopes on the objects surface.  The 

beams are then reflect back from the objects surface through an objective lens and are 

subsequently recombined by the prism with which they had originally been split 

(Wollaston Prism).  Finally the light is reflected either toward an eye piece or camera 

through a second polariser that is crossed with respect to the first, recombining the 

two beams and giving rise to interference contrast.  Sensitivity to height change 

allows this technique to image tiny features, in the order of nanometres but provides 

no quantitative height information.  It is difficult to ascertain whether surface features 

protrude out from or into the surface of a substrate or to have much sense of depth and 

are the greatest shortcomings of this technique.  For further information the reader is 

directed to Optics 3
rd

 Edition (Hecht 1997). 

 

3.4 Defect Etching 

The presence of threading dislocations at the surface of a relaxed virtual 

substrate structure is undesirable due to the detrimental effect upon electronic devices 

(Giovane et al. 2001) and structures subsequently processed.  It is important therefore 

that the density and arrangement of any surface threading dislocations can be 

determined.  Schimmel etchants were employed in this study to reveal the presence of 

surface threading dislocations (Schimmel 1979; Archer 1982; Werner et al. 2004). 

The standard Schimmel etch utilised in the majority of this work comprised of 

a mixture of CrO3 (0.75M) : HF (50%) : H2O in the ratio 2 : 4 : 3.  This etchant 

removes surface silicon (or silicon-germanium) material through a continual process 

of oxidation (with CrO3) and oxide removal (with HF), diluted with H2O allowing 
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material removal at a controlled rate (Kulkarni 2003).  The etch rate is known to be 

highly sensitive to doping concentration and type (Archer 1982), surface strain, as 

well as having a strong dependency upon germanium concentration (Werner et al. 

2004).  The local strain associated with the emergence of a threading dislocation at the 

surface causes the local etch rate to be enhanced forming a visible etch pit and forms 

the basis of this technique.  It should be noted that temperature can also have a 

significant effect, and in extreme cases hillocks can from rather than pits over a 10º 

temperature range (Föll 2005).  A modified Schimmel etch comprising CrO3 (0.4M) : 

HF (50%) in the ratio 55 Vol% : 45 Vol% was used to allow defect revealing in 

samples where the uniform top layer was < 1 m for which this modified etchant was 

specifically developed. 

It should be made clear that this technique, though routinely utilised 

throughout the industry, should be treated with caution as not all of the conditions 

affecting the formation of etch pits are well understood.  Though the absence of 

countable etch pits may well indicate an extremely low defect density (here 

< 1x10
3
/cm

2
) the possibility that threading dislocations have not been revealed should 

also be considered. 

Etch pit counting was accomplished using an optical microscope equipped 

with Nomarski interference and digital images taken with a Nikon DN100 CCD 

camera.  The free image processing and analysis software Image Tool v3.00 

developed by the University of Texas Health Science Centre was used to count large 

numbers of etch pits where manual hand counting was impractical.  By selecting a 

narrow grey scale band containing the etch pits, an algorithm is able to identify 

objects marking them on screen.  Computerised etch pit identification was only 

possible for normal optical images where etch pits appear as dark diagonal dots.  
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These objects are then classified in terms of their pixel area to eliminate noise and 

large particulate contaminants, with selected area ranges tabulated and displayed as a 

colour coded map for clarity.  Any objects missed or misidentified can then by 

manually taken into account and the process repeated on further images. 

 

  

Figure 3.6 – Example images of etch pit formation after Schimmel etching around surface 
threading dislocations (a) at x50 magnification with interference contrast (b) at x10 magnification 

without interference contrast.  A threading dislocation is highlighted in each image by a white 

circle. 

 

3.5 Transmission Electron Microscopy (TEM) 

A transmission electron microscope operates in a way analogous to an optical 

microscope expect that an image, rather than being formed using electromagnetic 

radiation at an optical wavelength (600-900 nm) and focused with traditional lenses, is 

formed using highly accelerated electrons with far a shorter wavelength (~0.003 nm) 

and manipulated using electromagnetic lenses.  This characterisation technique allows 

the study of crystalline materials (amongst others) to determine such parameters as 

layer thickness, strain variation and the presence of defects and dislocations, all of 

which are important in obtaining an understanding of an epitaxially grown 

semiconductor layer.  The micrographs presented in this thesis were obtained by the 

author using a JEOL JEM-2000FX TEM.  Specimen preparation is of great 
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importance to this technique as transmission of electrons through a specimen 

necessarily requires electron transparency, in relation to this material system this 

equates to a thickness of ~500 nm. 

 

3.5.1 Sample Preparation 

Preparation of an epitaxially grown structure for analysis in a transmission 

electron microscope requires sample thinning in a selected orientation.  In general, a 

cross-sectional analysis of a layer structure provides the most useful information and 

requires numerous stages of preparation to meet the strict requirement of electron 

transparency.  These stages are shown schematically in Figure 3.7. 

 

 

Figure 3.7 – A series of schematics showing important stages in TEM sample preparation.  (a) 

initial bonding of epitaxial surfaces together (b) bonding of additional gash material (c) diamond 

sawn section for grinding (d) sample section waxed ready to grind (e) ground and polished 

sample with copper support ring attached (f) final sample structure ready to be ion beamed until 

electron transparent. 
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Small sections of the sample (approximately 10 mm x 5 mm) are prepared by 

cleaving along [110].  Two such pieces are glued face together with M-bond 610 

adhesive, with further sacrificial pieces added either side building out the cross-

sectional diameter so than it can be easily handled, Figure 3.7 (a, b).  Curing of the 

adhesive is accelerated by heating in an oven at 180ºC for 2 hours and to reduce the 

amount of material that must be ground away, a small segment of this layer sandwich 

is prepared using a Southbay Technology diamond saw, Figure 3.7 (c). 

An ultimate sample thickness of less than 10 m is required through the 

process of mechanical polishing.  Silicon carbide grinding paper (from P120 grit to 

P1200 grit) is used on a Buehler Metaserv Motopol 12 (at 150 rpm) grinding wheel to 

achieve an overall sample thickness of approximately 400 m and the surface 

polished using 6 m and 1 m diamond suspension and cloth pads to remove surface 

scratches that could weaken the thinned sample or lead to uneven thinning during ion 

beaming.  Further thinning and polishing down to less than 10 m is conducted on the 

opposite side of the sample, exposed by turning over and re-fixing.  The preparation 

of a sample in this manner is extremely time consuming and difficult, with a high rate 

of sample loss at this stage. 

To enable handling of the thinned section a copper supporting ring from Agar 

Scientific (G2500C slit) is glued to the sample surface using Araldite Rapid; the slot 

(1 mm x 2 mm) is directed along the central glue line revealing the region of interest, 

Figure 3.7 (e).  After 24 hours of curing the sample protruding past the copper ring 

perimeter is carefully removed with a scalpel blade and the sample released from its 

support and cleaned of residual wax in isopropanol [(CH3)2CHOH]. 

An electron transparent sample is produced by ion milling in a Gatan 691 

Precision Ion Polisher (PIPS) using an ionised beam of argon atoms accelerated at 
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4.5 kV to erode the sample surface whilst it is being continually rotated.  An incident 

gun angle setting of 3 units from below and 5 units from above has been found to 

provide optimum thinning, with beaming stopped once the thin film has perforated at 

its centre, Figure 3.7 (f). 

For further detailed information on specimen preparation techniques the reader 

is referred to Specimen Preparation in Materials Science (Goodhew 1972). 

 

3.5.2 Transmission Electron Microscope Construction 

The JEOL JEM-2000FX TEM consists of an evacuated column containing 

from top to bottom, an electron source, a condenser aperture, two electromagnetic 

(EM) condenser lenses, a sample holder, EM objective lens, objective aperture, a 

series of EM projector lenses and a phosphor imaging screen with camera below, see 

Figure 3.8. 

The electron beam emitted at the top of the column (200 kV) is collimated and 

passes through the first condenser lenses forming a well defined virtual electron 

source of variable size, whilst a second condenser lenses allows the illuminated beam 

area to be controlled.  After passing through the sample the objective lens forms a 

magnified intermediate image, which in normal imaging mode is in the object plane 

of the first projector lens, being further magnified and projected on to the phosphor 

screen.  Varying the strength of the objective lens provides adjustment of the image 

focus.  A diffraction mode (discussed later) is also available where an image of the 

samples reciprocal lattice can be observed.  This is achieved by adjusting the strength 

of the first projector lens so that its object plane coincides with the back focal plane of 

the objective lens.  At the back focal plane all parallel rays cross at the same point 

producing a spot with a position related to the incident beam angle. 
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Figure 3.8 – Schematic of a Transmission Electron Microscope (TEM) in (a) bright field imaging 

mode (b) diffraction imaging mode. 
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top condenser aperture is checked to ensure alignment along the central axis of the 

column by variation of the beams illuminated area from a condition of under to over 

focused, the beam remaining centralised when set correctly.  Correction is also made 

to ensure the beam remains central when the spot size is varied.  Any astigmatism 

(different focal planes in orthogonal directions) introduced by the condenser lenses 

should be corrected and the region of interest in the sample located and focused.  With 

no condenser aperture engaged a focused image should contain virtually no contrast 

(assuming little compositional variation).  It is extremely important that the specimen 

is held in the eucentric position, located along the central axis of the tilt holder.  

Positioning above or below the eucentric position will result in the region viewed 

changing upon tilting and can make it impossible to attain a sharp focus, see Figure 

3.9.  The eucentric sample position is found by rocking the sample back and forth 

through ~60º whilst altering its height; the sample remains almost still when set 

correctly. 

 

 

Figure 3.9 – Schematic diagrams showing (exaggerated) effect of sample tilt in various situations 

(a) sample above eucentric position (b) sample below eucentric position (c) sample at eucentric 

position. 

 

The micrographs presented throughout this thesis utilise diffraction contrast, set in the 

diffraction mode by sample tilting, discussed in section 3.5.4. 

Electron beam 

Central axis 

Sample 

Sample  

rotation 

On axis rotation 

(a) (b) (c) 



Experimental Methods 

63 

Further refinements often necessary when working at higher magnifications 

(> x50,000) include correction for non-parallel illumination falling on the objective 

lens that can degrade image quality, corrected by using the HT wobbler.  The potential 

on the electron gun anode is varied, periodically altering the electrons energy 

(velocity) hence their trajectories after passing through each of the lenses, when 

correctly compensated the image at the screen centre should not move.  Finally 

astigmatism of the objective lens can be correct to obtain an extremely sharp focus 

and is best altered whilst viewing an irregular material such as the glue join between 

sample pieces where a mottled pattern becomes evident. 

 

3.5.4 Two Beam Diffraction Condition 

Image contrast in transmission electron microscopy can arise for a number of 

reasons including: atomic density and sample thickness variations; selective 

diffraction from sample bending; and variation in atomic plane spacing caused by 

strain or crystal imperfections.  Selective use of diffraction provides the best contrast 

in TEM micrographs. 

The phenomenon of electron diffraction arises from the elastic scattering of 

electrons (in this case considered to be waves) by atoms within a crystal lattice such 

that in particular directions coherent scattering occurs resulting in a strong reflection.  

Although such scattering occurs due to the interaction with individual atoms, Bragg 

(1913) gave a simple geometric analysis based on coherent reflections from planes of 

atoms that has become known as Bragg’s Law. 



Experimental Methods 

64 

 

Figure 3.10 – Schematic diagram illustrating the geometric relationship between the incident 
electron radiation, atomic lattice planes and the diffracted beam. 

 

(3.1) 

 

where n is an integer, λ is wavelength, dhkl is atomic plane spacing and θ is the angle between the lattice 

planes and the incident beam. 
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the sample such that diffraction occurs from a single set of planes, leaving only two 
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corresponds to the direction of the surface normal of the planes in question, further 

detail in section 3.6.1. 

 

Figure 3.11 – Reciprocal lattice sections visible in the TEM diffraction mode when an fcc crystal 
is viewed along (a) [110] direction (cross-sectional) (b) [001] direction (plan view).  Only selected 

lattice points are shown. 

 

In practice the desired plane is selected by following and positioning of the lattice 

points along Kikuchi lines visible in thicker sample regions, providing a convenient 

reference frame for navigation and orientation when in the diffraction imaging mode. 

Kikuchi lines are phenomena visible in the diffraction mode arising from 

inelastic scattering of electrons within the sample.  Inelastically scattered electrons 

give rise to a general background intensity of the diffraction pattern; however a 

number of electrons from these secondary sources will be incident at the Bragg angle 

of specific planes and undergo diffraction.  As most electrons are only scattered 

through small angles a net gain and associated net loss will occur in two directions as 

illustrated in Figure 3.12.  The angular separation 2θ results in the intersection of the 

Kikuchi lines with the beam centre and corresponding reciprocal lattice point. 
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Figure 3.12 – Schematic representation of the origin of Kikuchi lines from inelastic scattering 

events.  Paired light and dark bands originate due to net gain and loss in directions that satisfy 

the Bragg condition for diffraction.  Reproduced from Specimen Preparation in Materials Science 

(Goodhew 1972). 

 

Selection of the appropriate two beam condition is in general made by 

choosing a set of planes that have had their spacing disturbed by the feature of 

interest.  In the case of a fully strained pseudomorphic layer the biaxial tetragonal 

distortion results in alteration of the spacing between (001) planes.  Due to symmetry 

considerations the (001), (002) and (003) diffraction spots are forbidden, hence the 

(000) and (004) diffraction spots are chosen for strain contrast.  The other major 

features of interest are dislocations within relaxed (fully or partially) silicon-

germanium layers where the diffraction condition is chosen dependant upon the 

dislocations Burgers vector (lattice displacement).  Clearly the spacing of atomic 

planes orthogonal to this direction will be altered, shown schematically in Figure 3.13, 

with dislocation Burgers vector of the form ½[110] in this crystal system the spacing 

of (110) planes and those parallel will be effected.  For this reason dislocation 

contrast is achieved by selection of the (000) and (220) diffraction spots. 
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Figure 3.13 – Schematic diagram showing the effect of an edge dislocation on lattice planes in 
orthogonal directions.  Clearly the planes highlighted in (a) are more distorted by the dislocation 

than in (b) and are perpendicular to the dislocations Burgers vector.  Reproduced with kind 

permission (Capewell 2002). 

 

It is important to note that length distortion will occur upon movement away 

from the major pole axis in the diffraction mode as in real space the sample is being 

viewed at an increasing angle.  When imaging with (000) and (004) (strain contrast 

mode) deviation in length along a grown layer will occur whilst when imaging (000) 

and (220) (dislocation contrast) layer thickness will be distorted, this is simply 

understood with aid of the pictorial representation in Figure 3.14. 

 

 

Figure 3.14 – Schematic of real space sample tipping with respect to reciprocal space observed in 

diffraction mode.  Arrows indicate the respective motions. 
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Enough emphasise cannot be placed on the importance of good specimen 

preparation as no amount of setup can compensate for a poorly prepared sample.  

Warped or rippled films can also prove difficult to clearly image as segments will 

undoubtedly meet the Bragg condition yielding dark bands across the image, though 

minimisation of such effects can be achieved with experience. 

For a comprehensive consideration of the principles and practice of electron 

microscope operation the reader is referred to Principles and Practice of Electron 

Microscope Operation (Agar 1974). 

 

3.5.5 Energy Dispersive X-ray Spectroscopy (EDS) 

Energy dispersive X-ray spectroscopy provides valuable quantitative 

compositional analysis to the TEM.  EDS is the measurement of characteristic X-rays 

emitted from a selected area of a specimen during high energy electron bombardment 

within the TEM.  A qualitative analysis of elements present within the sample can be 

obtained from the characteristic X-ray spectrum resulting from this interaction, with a 

quantitative analysis obtained through the rate detection of these characteristic X-rays. 

EDS was provided in the JEOL JEM-2000FX by an EDAX instrument 

operating at normal incidence, requiring the removal of the objective aperture from 

the electron beam and insertion of the detector head into the main column.  Spot size 

was reduced until the received counts dropped to around 2500 cps providing optimal 

counting conditions with minimal detector dead time.  The typical collection time 

used in this work was 50 seconds and quantification of the spectrum made 

automatically by the Genesis collection software.  Care should be taken when 

performing analysis to ensure a sufficiently thin region is imaged to avoid the matrix 

effects of absorption and fluorescence (GENSIS Spectrum User’s manual).  In 
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practice a region is thin when a count rate of ~2500 cps can be obtained at a spot size 

of 4L and a beam current of 119 A.  It is also important to understand that the finite 

spot size can make accurate compositional determination of very thin (< 50 nm) 

epitaxial layers impossible due to beam overlap with adjacent layers. 

 

3.6 High Resolution X-ray Diffraction 

High resolution X-ray diffraction allows the determination of both the 

composition and strain state of an epitaxial layer; during this work it was used to 

determine these parameters only for epitaxial layers of uniform composition.  In 

simple terms the principle of high resolution X-ray diffraction is a practical 

application of Bragg’s Law combined with highly precise angular positioning.  

The high resolution diffractometer used in this work was a Philips PW1835 

with a high power copper X-ray source (CuKα1 λ= 1.540597Å) operating at 

40 kV / 40 mA, and fitted with a germanium 4 crystal monochromator to provide a 

well collimated parallel beam. 

 

Figure 3.15 – Schematic diagram of a high resolution X-ray spectrometer. 

Omega (  

Theta (  

Phi (Φ) 

Psi (  

Germanium 

monochromator 

X-ray source 

Slit or Triple axis analyser 

Detector 

Sample 

X 

Y 

Z 



Experimental Methods 

70 

The sample was fixed using 3M Scotch tape (for stress free mounting) to a 

stage providing linear motion in 3-dimensions as well as rotation in three separate 

directions.  The angular resolution of the detector is determined either by a copper slit 

(1 mm wide) or a triple axis germanium crystal analyser, permitting resolution at 

~12 arc seconds (with slight loss of beam intensity).  A schematic diagram is shown 

in Figure 3.15. 

The characterisation of the epitaxial layers grown during this work required 

collection of symmetric [004] and asymmetric [224] omega ( - omega-2theta 

( 2  scans more commonly referred to as reciprocal lattice maps.  Two scans are 

required to enable the calculation of the in-plane and out-of-plane lattice constant.  

The [004] scan allows direct determination of the out-of-plane lattice spacing whilst 

the [224] scan consists of components from both, allowing the extraction of the in-

plane lattice parameter when combined with the [004] scan.

 

 

Figure 3.16 – Schematic representations of a tetragonally distorted cubic unit cell showing that 
the (004) spacing is entirely out of plane whilst the (224) contain components both in plane, ax, 

and out of plane, az. 

 

ax 

(224) 

az 

(004) 



Experimental Methods 

71 

3.6.1 The Reciprocal Lattice and Ewald Sphere Construction 

The planes of a crystal lattice in real space can be represented by a series of 

points in reciprocal lattice space.  A reciprocal lattice can be constructed from a real 

space lattice by combining a series a reciprocal lattice vectors with lengths inversely 

proportional to lattice spacing and orientation defined by the surface normal of the 

corresponding planes. 

 

Figure 3.17 – Diagrams illustrating how a reciprocal lattice is derived from the real space lattice 

and how they are related.  d1 and d2 are the spacing between sets of planes 1 and 2 respectively 

whilst d
*
 are the corresponding reciprocal lattice vectors.  Reproduced from The Basics of 

Crystallography and Diffraction (Hammond 2001). 
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planes. 
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wavelength) with the reflecting crystal located at its centre and the origin of reciprocal 

space located at the intercept between the transmitted beam and the sphere.  When the 

crystal is orientated such that the Bragg condition is satisfied then the intersection of 

the diffracted beam with the sphere will coincide with the position of the 

corresponding reciprocal lattice point.  Hence satisfaction of Bragg’s Law is 

equivalent to the intersection of a reciprocal lattice point by the sphere in this 

arrangement. 

 

 

Figure 3.18 – Ewald reflecting sphere construction for a set of planes at the correct Bragg angle.  
Reproduced from The basics of crystallography and diffraction (Hammond 2001). 

 

A more complex geometrical construction based upon the Ewald reflecting sphere 

construction which is related to the experimental setup of the high resolution 
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Figure 3.19 – Schematic diagrams showing how the Ewald sphere construction relates to the 

experimental parameters of the apparatus.  Diagrams are reproduced with kind permission of 

Stuart Jollands (University of Warwick, unpublished). 

 

For further information regarding general crystallographic and diffraction 

theory the reader is referred to The Basics of Crystallography and Diffraction 

(Hammond 2001). 
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3.6.2 Setup for an Omega - Omega-2Theta Scan 

Initial setup requires the 2theta (2 ) position to be calibrated, as this will serve 

as a reference for all subsequent positioning; with the sample out of the X-ray beam 

and the triple axis analyser in place, 2theta (2  is scanned and the peak maxima 

zeroed.  The sample is located at the centre of stage rotation and the Z position 

(Figure 3.15) adjusted to achieve a half-cut beam, where half the maximum straight 

through intensity reaches the detector.  An omega ( ) scan is conducted with the peak 

position chosen and zeroed, the half-cut beam is then reset and omega (  rescanned.  

The stage is now moved using the data collector software to the reflection of interest, 

usually the asymmetric [224] scan is conducted first enabling phi (Φ) and psi ( ) to be 

adjusted accurately. 

An initial omega (  scan is followed by a 2theta (2  scan with each peak 

maxima set in the software centring the scan.  A phi (Φ) scan is made over the large 

angular range of 10º and once set (at peak maxima) is only altered in an increment of 

90º for the second set of orthogonal scans.  To maximise the diffracted beam intensity 

a series of psi ( ) scans are conducted each made with a small change in the value of 

omega (  until a single peak (often starts as a double) with a maximum intensity is 

observed.  Psi ( ) is then set and a final omega (  scan conducted to ensure the scan 

has remained centralised in omega ( . 

An omega-2theta ( 2  scan involves scanning the detector arm at twice the 

rate of the sample stage to maintain the Bragg angle relationship for parallel planes 

with varying lattice spacing.  That is to say those reflections from parallel planes with 

different lattice spacing will occur at different Bragg angles but have an equal incident 

and reflected angle, thus as the angle between source and stage increases as omega 

(  the relative difference between the stage and detector must also increase as 



Experimental Methods 

75 

omega (  and so as 2theta (2  relative to the source.  To enable an omega (  - 

omega-2theta ( 2  scan to be performed the diffractometer must be programmed to 

scan over an appropriate angular range in both omega (  and omega-2theta ( 2 .  

An omega-2theta ( 2 line scan is made to identify the appropriate range and 

centre, whilst the omega (  range is estimated from experience or prior knowledge.  

This procedure is then repeated for the [004] symmetric scan and again for both [224] 

and [004] scans with phi (Φ) +90º to determine if any asymmetry in the relaxation 

exists between orthogonal directions. 

Once the values of omega ( ), 2theta (2 ), phi (Φ) and psi ( ) have been 

identified for each scan, an automated batch scan file is created that performs a 

sequence of omega-2theta ( 2 scans stepping omega ( ) between each, saving the 

results to hard disk for later analysis. 

 

3.6.3 Analysis of an Omega - Omega-2Theta Scan 

The collected scans are analysed using the specialised X-ray software X’Pert 

Epitaxy v4 provided by Pan Analytical.  The four scans are loaded together and peaks 

corresponding to the substrate and epitaxial layers are marked and the reflections from 

which the scan originated entered.  The software is then able to directly calculate the 

lattice parameter in the growth direction (inversely proportional to the distance in 

reciprocal space) from the [004] reciprocal space map.  The deviation of the layers 

reciprocal lattice point from a straight line passing through the silicon substrate 

reciprocal lattice point from the origin is due to layer tilt.  With the layer tilt known 

the in-plane lattice parameter can be directly determined and the layer relaxation can 

be calculated from the position of the equivalent reciprocal lattice point in the [224] 

reciprocal space map (Bauer et al. 1995). 
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For more in-depth information concerning sample alignment and general 

X-ray diffraction from crystalline semiconductors the reader is referred to X-ray 

Scattering from Semiconductors (Fewster 2000). 

 

3.7 Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) is a form of scanning probe microscopy 

(SPM) capable of high vertical resolution imaging of surface topographical features 

on a wide variety of surfaces (both conducting and insulating) relying upon the mutual 

repulsion of a sample surface and scanning tip due to interaction between all of their 

associated electrons.  Features are imaged using piezoelectric scanners to raster a fine 

probe attached to the end of a cantilever across the surface of a sample over an area up 

to 100 m x 100 m.  The AFM work presented herein was conducted on behalf of 

the author by Neil Wilson (University of Warwick) using a Digital Instruments 

Nanoscope III AFM in which the sample stage is scanned and the probe held still, 

Figure 3.20. 

 

Figure 3.20 – Schematic diagram of a scanned sample AFM instrument with the main 

components indicated.  Reproduced from Veeco training manual (Veeco 2000). 

Labels: 
1. Laser 

2. Mirror 

3. Cantilever 
4. Tilt mirror 

5. Photodetector 
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The extremely high vertical resolution of this technique is due to a highly 

accurate position sensitive detector allowing detection of movements < 1 Å, detailed 

in Figure 3.21.  Two main imaging modes exist in AFM, contact mode and tapping 

mode. 

 

3.7.1 Contact Mode 

Contact mode is the most basic manner of operation in which the probe is held 

directly in contact with the sample surface whilst it is being scanned.  A constant 

force is maintained between the sample and probe by monitoring and restoring the 

deflection of the cantilever at the end of which the probe is attached.  The cantilever 

deflection is monitored by collecting laser light, emitted from a solid state diode that 

is reflected off the back of the cantilever, using a position sensitive detector consisting 

of a four part photodiode.  The deflection is restored using a highly sensitive 

piezoelectric height controller in a feedback loop, with height information derived 

from this feedback signal. 

 

 

Figure 3.21 – Schematic diagram showing the basic principle of AFM operation.  Movement of 
the sample beneath the probe causes it to rise and fall altering the path of the reflected laser light.  

Feedback control compensates lowering or raising the sample to maintain a constant applied 

force to the surface. 

 

Information 

provided back to 

feedback control 

Photodiode 

detector 

Mirror 

Solid State 

Laser Diode 

Probe 

Sample Surface 

Sample movement 



Experimental Methods 

78 

Contact mode uses a silicon nitride tip mounted on a short thin cantilever to provide a 

low contact force that can accurately follow surface morphology.  The images in this 

thesis were obtained in contact mode over areas no larger than 10 m x 10 m at a 

scanning frequency of 1 Hz. 

 

 

Figure 3.22 – Scanning electron microscope (SEM) image of a silicon carbide tipped cantilever 

AFM probe.  Reproduced from Veeco training manual (Veeco 2000). 

 

The scan rate is chosen to allow time for the feedback loop to respond to changes in 

sample morphology to provide close tracking of the surface.  The lateral (X, Y) 

positioning of the tip is far less accurate than the vertical (Z) positioning and is not 

tracked in real-time.  The resolution of lateral positioning is ultimately limited by the 

tip radius and side wall angle.  A clean sample surface is essential as debris build up 

at the tip can result in a generally lower image resolution as well as image distortions, 

Figure 3.23.  All samples investigated were ultrasonically cleaned in de-ionised water 

after cleaving. 
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Figure 3.23 – Schematic diagrams showing (a) the image profiles of spheres scanned with a sharp 
(left) and dull (right) probe (b) Image profile of trenches scanned with a dirty tip.  Reproduced 

from Veeco training manual (Veeco 2000). 

 

3.7.2 Image Processing 

It is necessary to perform a certain level of image processing before useful 

information can be extracted from scanned images.  As the piezoelectric scanners are 

attached at one end and free at the sample, the motion obtained often deviates from 

that of an ideal plane, resulting in a bowed motion.  The planefit filter allows the 

elimination of such anomalies by calculating a single polynomial fit for the entire 

image and then subtracting it.  All images presented have undergone a 3
rd

 order 

planefit removing both tilt and bow from the image. 

Selected images have additionally undergone zero order flattening to remove 

vertical offsets between adjacent scan lines in the fast scanning direction.  Zero order 

flattening subtracts an average Z value from each point in the scan line.  Such offsets 

can arise from a number of sources, in this case the hard samples investigated resulted 

in tip damage causing sudden offsets in a number of images. 

It is clearly important that any processing is applied equally to all images that 

are being compared to ensure a fair comparison is made. 

(a) 

(b) 
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Chapter 4 
 

4 Low Composition Regime (0-25%) 
 

The concept of terrace grading introduced by Capewell (2002) (Capewell et 

al. 2002) has been shown to offer clear improvements over more conventional stepped 

and linear graded structures.  Capewell (2002) demonstrated that a good quality 

virtual substrate with a terminating germanium composition of 50% could be 

fabricated entirely within a thickness of only 2 m with the following characteristics, 

≥ 96 percent relaxation in the final layer, an RMS (root mean square) roughness of 

3.1 nm and a surface threading density of 3x10
6
/cm

2
 with only a small number of pile-

ups visible.  Due to the relatively thin layers used, annealing became essential to 

achieve high levels of relaxation.  The persistence of multiplication sources between 

graded regions was substantially reduced, a central aim of terrace grading, though 

doubts remained as to whether relaxation of the lower layers had fully occurred before 

the addition of subsequent layers. 

The application of low composition virtual substrates has primarily been for 

the production of strained silicon surface channel device structures.  It is theoretically 

predicted that strain increases electron and hole mobility, but there is no additional 

electron mobility enhancement for strain resulting from a relaxed germanium 

concentration of more than 15% (Oberhüber et al. 1998), although experimental 

evidence appears contradictory (Takagi et al. 2005).  The mobility enhancement for 

holes is predicted and experimentally found to continue to increase beyond 25%, see 

Figure 4.1.  In this work these structures have the additional role of providing a basis 

for higher composition virtual substrates, discussed in chapters 5 and 6. 
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Figure 4.1 – Experimental and theoretical enhancement factors of electron and hole mobility, 
defined by the ratio of mobility in strained-Si to unstrained Si MOSFET’s, as a function of 

composition. Since the enhancement factor of hole mobility is dependent on Eeff, the maximum 

values, typically seen in low Eeff region, are plotted in this figure.  Reproduced from a paper by 

Takagi et al. (2005). 

 

The current state of the art 15% conventionally graded virtual substrate 

structures for which data has been published contain a surface threading density of 

2x10
4
/cm

2
 (Olsen et al. 2003) and represent an order of magnitude improvement over 

the work a decade earlier of Fitzgerald et al. (1991).  More exotic approaches also 

exist for low composition virtual substrates, including low temperature 15% buffers 

with a threading density ≤ 10
4
/cm

2
 (Linder et al. 1997), 15% stepped layers with high 

and low temperature stages with a threading density of 10
3
/cm

2
 (Gaiduk et al. 2000) 

and isolated 25% SiGe mesa structures on SOI with a threading density ≤ 10
3
/cm

2
 

(Tezuka et al. 2002). 

Low composition silicon-germanium virtual substrates are currently available 

from numerous commercial sources such as IQE who provide highly relaxed 17% 

buffers with threading densities < 3x10
5
/cm

2
 and threading dislocation pile-up 

< 3 cm/cm
2
 and 20% buffers with threading densities < 5x10

5
/cm

2
 with threading 

dislocation pile-up < 10 cm/cm
2
 both with micro-roughness Ra < 10Å (IQESiltronic 

2005). 
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The focus of the current work is to further improve the quality of the virtual 

substrate, in terms of relaxation, surface roughness, surface threading density and 

threading dislocation pile-up.  Whilst the work of Capewell (2002) considered layer 

structures with graded and terraced regions each of no more than 200 nm, the work 

presented herein investigates the advantages of terrace grading at thicknesses between 

200 nm and 1 m.  The greater spatial separation of misfit dislocations and the lower 

rate of strain increase should result in fewer dislocation interactions, lower threading 

density and smoother surfaces. 

Although the aim of optimised thin virtual substrate structures may still have 

important applications, improvements in layer transfer technology and its growing 

mainstream acceptance mean that total layer thickness is of lesser importance than the 

final layer quality, providing they can be economically produced with sufficient 

smoothness (< 1 nm RMS) and appropriate defect density.  Ideally the defect level 

will be as close as possible to zero for highly reliable device structures (LeGoues 

1996) though < 10
4
/cm

2
 is stated as an acceptable level for majority carrier devices 

(Tezuka et al. 2002). 

 

4.1 Growth Parameters 

 

4.1.1 15% Linear Graded Virtual Substrates 

To investigate the effect of layer thickness and growth temperature on 

relaxation and surface morphology at low germanium concentration, a matrix of layer 

recipes was explored, Table 4.1.  The lower limit for thickness investigated was 

chosen at 200 nm, as thinner layers are known to result in poor material quality 

(Capewell 2002) whilst the upper limit was chosen to be 1 m which results in a near 
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optimum grading rate (Dutartre et al. 1994).  An initially high upper growth 

temperature (for SS-MBE) of 850ºC was selected to ensure a high level of relaxation 

for all layers under investigation.  A lower temperature limit of 700ºC will provide 

some kinetic suppression of surface roughening (Kasper 1995).  The relaxation of 

thinner layers is known to be incomplete when grown at lower temperature (700ºC) 

and so for consistency, anneal steps were provided to all layers irrespective of 

thickness. 

 

 700ºC 775ºC 850ºC 

1 m 75027 75034 75028 

600nm 75032 75033 75031 

200nm 75022 - 75030 

Table 4.1 – A summary of parameter variations explored within the 15% virtual substrate 

structures, showing growth temperature and layer thickness, with the resulting sample labels 

shown for reference (grown in numerical order). 

 

All substrates were given an in-situ high temperature anneal at 890ºC to 

desorb native oxide from the growth surface (Kasper et al. 1998).  Growth of a 50 nm 

silicon layer followed, at a temperature ramping from 890ºC to that of the initial SiGe 

layer providing a clean high quality growth platform.  A silicon-germanium layer 

linearly grading in composition from 0.1% to 15% germanium was deposited with a 

thickness of 200 nm, 600 nm or 1 m.  Virtual substrate growth was completed by a 

silicon-germanium layer of uniform germanium composition and of equal thickness to 

the preceding graded layer.  Each virtual substrate was grown at a constant 

temperature of 700ºC, 775ºC or 850ºC throughout, at a total growth rate of 0.6 Å/s 

(Grasby 2002) and annealed at 890ºC for 25 minutes (ramped up over 20 minutes) 

after growth had been completed.  A graphical representation of this structure is given 
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in Figure 4.2.  Although it is recognised that a graded temperature profile would most 

likely yield further improvements, for clarity at this stage this was not utilised. 

 

 

Figure 4.2 – Schematic representation of linear graded 15% virtual substrate specifications 

showing all possible growth parameter variations explored. 

 

4.1.2 25% Terrace Graded Virtual Substrates 

Two 25% terrace graded structures, 75037 (25%, 700-650ºC, 1 m) and 75029 

(25%, 850-800ºC, 1 m), were grown as a continuation of the sample structures 

75027 (15%, 700ºC, 1 m) and 75028 (15%, 850ºC, 1 m) described previously.  

After annealing of the first terrace grade the substrate was allowed to fall to a 

temperature 50ºC lower than that at which the preceding layer had been grown.  

Additional layers were grown with a graded germanium composition from 15% to 

25% and capped with a layer of 25% constant composition.  A final anneal was then 

given, 50ºC lower than that given to the first terrace.  An additional structure 75036 

(25%, 850-800ºC, 200 nm) with 200 nm thick layers was grown as a continuation of 

the sample structure 75030 (15%, 850ºC, 200 nm).  A graphical representation of 

these structures is given in Figure 4.3. 
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Silicon Substrate 

Si1-xGex x = 0 → 0.15 

890ºC Clean 
50 nm Silicon (890ºC to growth T) 
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200 nm 
each layer 

850ºC, 775ºC 

or 700ºC 
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Figure 4.3 – Schematic representation of terrace graded 25% virtual substrate specifications 
showing the growth parameter variations explored. 

 

The growth temperature is reduced with increasing composition in order to 

suppress surface roughening (Mooney et al. 1995) in line with the difference between 

the melting points of silicon and germanium.  The difference in melting point is 

approximately 500ºC and so a reduction at around 50ºC per 10% is approximately 

equivalent.  The wafer identification numbers for the 25% samples are given in Table 

4.2. 

 

 700-650ºC 850-800ºC 

1 m 75037 75029 

200nm - 75036 

Table 4.2 – A summary of parameter variations explored within the 25% virtual substrate 
structures, with the resulting sample labels shown for reference. 
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Silicon Substrate 
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890ºC Clean 
50 nm Silicon (890ºC to growth T) 

890ºC Anneal 

1 m, 

or 200 nm 

each layer 

Si1-xGex x = 0.25 

Si1-xGex x = 0.15 → 0.25 

840ºC Anneal 

800ºC or 650ºC 

850ºC or 700ºC 
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4.2 Nomarski Interference Imaging 

Visual inspection provided a quick and simple analysis for the large number of 

grown layers and with the aid of a microscope equipped with interference capabilities 

tiny surface features have been imaged. 

 

4.2.1 15% Virtual Substrate 

A trend of increasing cross-hatch coarseness at greater thickness is apparent 

between the samples grown at 850ºC, but less distinct between the lower temperature 

samples where adatom mobility is kinetically suppressed to a greater degree.  A 

selection of optical interference images taken at x100 magnification is presented in 

Figure 4.4. 

The difference in cross-hatch spacing between samples of different thickness 

almost certainly results from the different grading rates.  Similar qualitative trends 

have been observed both by Fitzgerald et al. (1992) and Dutartre et al. (1994) when 

investigating 30% virtual substrate structures by means of SEM and AFM 

respectively, grown with grading rates between 10-80%/ m comparable to the work 

herein.  Both found the surface RMS roughness to increase with increased grading 

rate, with Dutartre et al. (1994) finding it to rapidly increase at grading rates in excess 

of those currently investigated.  Fitzgerald et al. (1997) attributed the variation in 

cross-hatch spacing to unequal adatom incorporation across the surface, as a 

consequence of inhomogeneous strain fields emanating from dislocations below, with 

the roughness linked to the critical thickness at which dislocations were introduced.  

Although the effect of inhomogeneous strain fields may play a role in determining 

surface morphology, I believe that in this instance this effect may simply shape 

existing features generated from the underlying dislocation network. 
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(a)      (b) 
 

   
(c)      (d) 
 

   
(e)      (f) 

Figure 4.4 – Nomarski interference images taken at x100 magnification of the 15% linearly 

graded samples (a) 75027, (b) 75028, (c) 75032, (d) 75031, (e) 75022 and (f) 75030. 

 

The work of Shiryaev et al. (1995) on ex-situ relaxed metastable linearly 

graded virtual substrate structures clearly shows a “pronounced shear-band pattern” 

composed of a collection of similarly sized rectangular blocks (<110> orientated) that 

are displaced in height relative to one another, though no indication is given to origin 

of the widely spaced arrangement.  A structure with a grading rate of 15%/ m 

(15%, 700ºC, 1 m) (15%, 850ºC, 1 m) 

(15%, 700ºC, 600 nm) (15%, 850ºC, 600 nm) 

(15%, 700ºC, 200 nm) (15%, 850ºC, 200 nm) 
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(similar to 75027 (15%, 700ºC, 1 m) and 75028 (15%, 850ºC, 1 m)) and 

terminating composition of 22% is revealed by AFM to have surface features of a 

similar order in size to those seen on 75028 (15%, 850ºC, 1 m) at around 

2 m x 2 m, Figure 4.5. 

 

 

Figure 4.5 – An AFM (21x21 m
2
) image of the slip-band pattern on the surface of a graded layer 

with a thickness of 1.5 m and a Germanium gradient of 15%/ m, grown at 530ºC, after 

annealing at 620ºC for 1 hour.  Full height scale is 47 nm.  Reproduced from a paper by Shiryaev 

et al. (1995). 

 

Cross-sectional TEM and X-ray evidence (sections 4.3 and 4.4) would suggest 

that the grading achieved did not match that which had been intended, instead 

consisting of a sharp initial jump in concentration followed by a gentle increase 

composition.  Features such as those observed by Shiryaev et al. (1995) may have 

formed abruptly during growth, subsequently forming the basis for evolution of the 

surfaces seen in Figure 4.4, resulting in their unusual appearance. 

The areas immediately surrounding the hatching in Figure 4.4 (b) appear to 

have formed round edged hillocks with flat tops that often appear to blend into one 
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another.  It should be noted that without knowledge of feature direction gained from 

AFM it would be difficult to discount interpretation of the inverse image where raised 

hatches enclose round edged trenches with flat bottoms, highlighting one of the 

limitations of this particular technique if used in isolation. 

Instances of individual large hatches are likely to be the result of a large 

number of misfits locally piling up on the same or closely separated glide planes, 

probably as a result of a nucleation mechanism like the modified Frank-Read; the 

increased stress field associated with misfit pile-ups are believed to result in larger 

surface disturbances (Fitzgerald et al. 1992). 

In the thinner layer structures stress will build more quickly and the closer 

spatial separation of the misfit dislocations will have led to a higher probability of 

interaction and blocking.  The requirement for mobile threading dislocations able to 

continue relaxation of the layer results in further misfit introduction and a more 

closely spaced network of misfit dislocations hence a finer cross hatch pattern.  

Additionally strain fields emanating from underlying misfit dislocations as modelled 

by Fitzgerald (1992) are much closer to the growth surface and may play an 

increasingly important role. 

The surface of 75027 (15%, 700ºC, 1 m) Figure 4.4 (a) and 75028 (15%, 

850ºC, 1 m) Figure 4.4 (b) show the greatest difference in surface morphology 

between samples of equal thickness.  The distinct cross-hatch pattern displayed by the 

high temperature sample is almost absent on the surface of 75027 (15%, 700ºC, 1 m) 

in the image shown in Figure 4.4 (a) and closer examination reveals the presence of 

many smaller features.  Jernigan and Thompson (2001) found at a temperature of 

around 650ºC that silicon growth moved from a clearly defined step flow regime, 

progressing toward growth by 2-D island formation found at 500ºC whilst still 
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exhibiting characteristics of step flow.  This can be understood in terms of the 

reduction of adatom mobility with reducing temperature as adatoms are less likely to 

reach existing surface steps before island formation.  The layers studied here are far 

thicker than any considered by Jernigan and Thompson (2001), with increasingly 

large numbers of surface terraces forming, growth may well shift further toward a 2-D 

island like mode of growth forming many new islands resulting in the observed 

surface. 

The reduced visible contrast displayed by layers grown at lower temperature 

indicates for all thicknesses investigated, samples grown at higher temperatures have 

a greater surface undulation.  This is supported by AFM measurements of surface 

RMS roughness presented in section 4.5  At higher temperatures adatom mobility will 

be greater than at lower temperatures and will enable to some extent the incorporation 

of adatom species so as to locally reduce stress at the surface elastically (Cullis 1996), 

possibly accompanied by a greater sensitivity to strain fields, exaggerating the cross-

hatch features. 

 

4.2.2 25% Virtual Substrates 

A marked growth temperature dependence of surface morphology persists 

with the 25% terrace graded virtual substrates.  The unusual surface features of 75029 

(25%, 850-800ºC, 1 m) observed at x100 optical magnification (compare Figure 4.6 

(b) with Figure 4.4 (b)) endure and appear to show the development of an even more 

detailed surface structure, the origin of which is unclear. 
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(a)      (b) 
 

   
      (c) 

Figure 4.6 – Nomarski interference images taken at x100 magnification of the terrace graded 

25% samples (a) 75037, (b) 75029, and (c) 75036. 

 

Similarly the lower temperature sample 75037 (25%, 700-650ºC, 1 m), whilst 

resembling the comparable lower composition layer 75027 (15%, 700ºC, 1 m), 

appears to have evolved wider surface features.  The evolution toward larger surface 

features is unexpected and would appear to indicate an increased adatom diffusion 

length despite the reduction in growth and anneal temperature.  Compositional 

measurements performed using energy dispersive X-ray spectroscopy (EDS) show the 

upper terrace to contain only 20% germanium (section 4.3.3) rather than the intended 

25%, with the deposition of 2 m of material having occurred at a much reduced 

grading rate and misfit strain.  The reduced strain in the over-layer may well explain 

the increased feature size, highlighting the important effect layer strain has on surface 

morphology. 

 

(25%, 700-650ºC, 1 m) (25%, 850-800ºC, 1 m) 

(25%, 850-800ºC, 200 nm) 
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The surface of the 200 nm terrace graded sample 75036 (25%, 850-800ºC, 

200 nm) grown at high temperature appears significantly different to all of the 

previously grown layers.  Most striking is the definition of cross-hatch suggesting the 

surface has undergone a transition to 3-D growth.  Under conditions of great stress 

and high adatom mobility, limited strain relief can be achieved through elastic 

deformation of the surface (Cullis 1996) without requiring the introduction of 

dislocations, with preferential incorporation of germanium adatoms at the peak of 

surface disturbances.  This demonstrates that the growth temperature had not been 

reduced sufficiently in line with composition, for such a high rate of grading, 

promoting strain relaxation by alternate means. 

 

4.3 Cross-Sectional Transmission Electron Microscopy (XTEM) 

This type of analysis provides a large amount of information about lattice 

mismatched materials and is an invaluable tool for these investigations.  The 

additional quantitative analysis provided by EDS on material composition provides a 

helpful comparison with data determined from X-ray analysis. 

 

4.3.1 15% Virtual Substrates 

A collection of representative cross-sectional transmission electron 

micrographs are presented in Figure 4.7.  Dislocation density and distribution appears 

similar between samples of equal thickness grown at the various temperatures, an 

indication that annealing has had the desired effect on the thinner samples.  The lack 

of threading segments visibly intersecting the surface indicates a surface threading 

density of ≤ 10
8
-10

9
 cm

-2
 (Fitzgerald et al. 1992), indicative of a good quality virtual 

substrate buffer layer.  Evidence of the modified Frank-Read multiplication 
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mechanism can be seen in the 1 m layered sample pictured in Figure 4.7 (c), 

characterised by a series of closely separated dislocations sharing a common origin at 

a dislocation line inclined at 55º to the growth plane, usually indicative of clean 

growth conditions, Figure 4.7 (c). 

 

  
(a)      (b) 

 

  
(c)      (d) 

 

  
(e)      (f) 

Figure 4.7 – Cross-sectional transmission electron micrographs (in the (220) two beam diffraction 
condition) of the linear graded 15% samples (a) 75027, (b) 75028, (c) 75034, (d) 75031, (e) 75022 

and (f) 75030.  The surface of the epitaxial layer is near the top of each image (marked with the 

upper arrow) and the initial growth interface below (marked by the lower arrow). 

 

The greater separation of misfit dislocations in the 1 m and 600 nm samples 

show that for all three temperatures investigated, the misfit dislocations present in the 

(15%, 700ºC, 1 m) (15%, 850ºC, 1 m) 

(15%, 775ºC, 1 m) (15%, 850ºC, 600 nm) 

(15%, 700ºC, 200 nm) (15%, 850ºC, 200 nm) 
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graded region appear to share similar lengths.  This is an indication that the rate of 

dislocation nucleation is similar, although cross-sectional images are far from ideal 

for this type of assessment.  A distinct difference in misfit length is evident between 

the 200 nm layers were the dislocations will be more closely packed. 

An increase in dislocation length may exist between 75027 (15%, 700ºC, 

1 m) and 75028 (15%, 850ºC, 1 m) although this interpretation is subject to 

uncertainty given the unknown thickness of each prepared sample.  An increase in 

dislocation length with temperature is not unexpected owing to the exponential 

dependence of glide velocity with temperature and a linear dependence on strain, 

equation (2.3).  This allows existing misfit dislocations to more quickly relax the layer 

reducing the need for additional dislocation nucleation.  Fitzgerald et al. (1999) 

highlight this in their analysis of the rate of change of strain relaxation, 

 

(4.1) 

 

where C is a constant, linearly dependent upon threading density and exponentially dependent upon 

temperature,  is the amount strain relieved by threading dislocation motion and eq is the strain relief 

desired for equilibrium. 

 

At lower temperatures or higher grading rates equation (4.1) illustrates that the 

dislocation glide velocity may be insufficient to maintain the required strain relief 

allowing excess stress to build.  Eventually this would result in the need for further 

dislocation nucleation, possibly elastic deformation of the surface and even 

progression toward a 3-D growth mode. 

Such an effect could have been further exaggerated by the introduction of 

point defects from ion bombardment.  It has been observed that significant electron 

eqC
t
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charging of the growth manipulator and wafer can result if they are not grounded 

adequately.  The electron beam evaporators situated around the base flange of the 

V90S MBE growth chamber are the source of these stray electrons.  At lower growth 

temperatures such defects may persist and could provide a lower energy barrier for 

dislocation nucleation. 

The intended linear compositional grading would be expected to promote a 

uniform distribution of misfit dislocations throughout the graded region.  The 1 m 

thick samples however do not appear to show such a distribution with the cross-

sectional TEM images showing regions devoid of dislocations, Figure 4.7 (a).  Thin 

regions of 1 m structured samples prepared for cross-sectional TEM show a dense 

collection of misfits near the initial growth interface separated from a region of 

closely spaced misfits.  Thicker regions appear to contain a more uniform distribution 

throughout, no doubt as a result of dislocations being superimposed, although a dense 

network remains visible at the initial growth interface.  Both these situations are 

shown together at the extremes of Figure 4.8.  These images indicate that the actual 

graded region is more akin to a layer of near uniform composition, followed by a 

rapid linear grade.  The misfit networks of the 200 nm layer structures are too tightly 

confined to make this observation.  High resolution EDS (or secondary ion mass 

spectroscopy, SIMS) could allow a direct determination of the true grading profiles 

for these samples and provide definitive corroboration. 

A final interesting feature observed in the cross-sectional TEM of sample 

75034 (15%, 775ºC, 1 m) are the extremely long misfit dislocations pushed deep 

within the substrate, Figure 4.7(c).  The modified Frank-Read mechanism is known to 

produce such features but surprisingly, dislocations of similar character were not 

observed in samples grown at either higher or lower temperatures.  Portions of the 
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cross-sectional TEM images of 75034 (15%, 775ºC, 1 m) do not show these misfits 

and look similar to the high and low temperature samples.  It may therefore be 

coincidental that these features were observed in this case alone and such regions 

clearly may exist in the other samples. 

EDS measurements confirm the achieved composition for all of the samples 

grown to be 15% ± 2% as intended. 

 

 

Figure 4.8 – Cross-sectional transmission electron micrographs (in the (220) two beam diffraction 

condition) of the 15% sample 75034.  The surface of the epitaxial layer is near the top of the 

image (marked with the upper arrow) with the initial growth interface below (marked by the 

lower arrow). 

 

4.3.2 25% Virtual Substrates 

A collection of representative cross-sectional transmission electron 

micrographs are presented in Figure 4.9.  The lower terrace of the 1 m samples 

appear very similar to the 15% virtual substrates grown previously and the low levels 

of dislocation interaction visible between the two graded regions provides evidence 

that a high degree of relaxation has been maintained.  Both the high and low 

temperature 1 m samples appear to contain slightly longer misfits in the 15-25% 

graded region than in the 0-15% region, which is again expected for reasons given in 

(15%, 775ºC, 1 m) 
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section 4.3.1.  The pre-existing threading dislocations supplied by the lower layer 

seem to have enabled continuous strain relief with reduced misfit interaction. 

 

   
(a)      (b) 

 
     (c) 

Figure 4.9 – Cross-sectional transmission electron micrographs (in the (220) two beam diffraction 
condition) of the 25% samples (a) 75037, (b) 75029 and (c) 75036.  The surface of the epitaxial 

layer is near the top of the images (marked with the upper arrow) with the initial growth 

interface below (marked by the bottom arrow) and the top of the first constant composition layer 

in between (marked with the middle arrow). 

 

The 200 nm terrace graded sample shows similar features in both dislocation 

network separation and increased misfit length in the top network to the 1 m 

structured layers, Figure 4.9 (c).  The length of misfits in the upper graded region in 

this sample are clearly far longer than in the underlying network, the difference likely 

(25%, 850-800ºC, 200 nm) 

(25%, 700-650ºC, 1 m) (25%, 850-800ºC, 1 m) 
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exaggerated as a result of the tighter lateral confinement of dislocations within the 

thinner graded regions. 

Terrace grading allows most dislocations that had become blocked within a 

graded region to again glide, so that in the second graded region stress is relieved 

immediately and continuously with no urgent need for additional dislocation 

introduction.  Fewer dislocations become blocked, and the misfits formed are far 

longer. 

The surface of 75036 (25%, 850-800ºC, 200 nm) has visible surface 

undulations, Figure 4.9 (c), that have an amplitude of tens of nanometres (indicated in 

the image).  This supports the observations made in section 4.2.2 (Nomarski 

interference images) of a transition toward 3-D growth, the result of elastic 

deformation of the surface to aid strain relief.  The growth temperature of 800ºC is 

clearly too great for a terrace graded virtual substrate on this scale. 

 

4.3.3 EDS Results for 25% Terrace Graded Structures 

Compositional measurements made with EDS confirm that both high 

temperature terrace graded structures 75029 (25%, 850-800ºC, 1 m) and 75036 

(25%, 850-800ºC, 200 nm) have terrace compositions of 16% ± 2% and 26% ± 2%.  

The low temperature terrace graded sample 75037 (25%, 700-650ºC, 1 m) has an 

initial terrace composition of 16% ± 2% but a final terrace composition of only 

20% ± 2%.  The data logged during growth indicates that additional power was 

supplied to maintain what the flux monitoring system recorded as a constant flux.  It 

appears however that shadowing, as the silicon melt moved down into the charge, 

caused overcompensation in power and a dilution of the composition.  It is important 

for this reason to maintain as flat a charge surface as possible. 
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4.4 High Resolution X-ray Diffraction 

High resolution X-ray diffraction is a technique that allows a highly accurate 

determination of an epilayer composition as well as determination of the strain state.  

Both of these parameters are critically important in assessing layer quality and for 

comparison between similar structures.  Two sets of omega (  - omega-2theta 

( 2  scans along a set of planes parallel to the (004) and (224) were obtained with 

90º rotations in phi (Φ).  Calculation of the terrace layer concentrations and relaxation 

for the 15% linear graded samples 75027 (700ºC), 75028 (850ºC) and the 25% terrace 

graded sample 75029 (850ºC) with 1 m layers are given in Table 4.3 and for the 

15% samples 75022 (700ºC) and 75030 (850ºC) with 200 nm layers in Table 4.4. 

 

 

75027 15% 

(700ºC, 1 m) 

75028 15% 

(850ºC, 1 m) 

75029 25%, 

(850ºC, 1 m) 

Comp. 

% 

Relaxation % 
Comp. 

% 

Relaxation % 
Comp. 

% 

Relaxation  

% 

Terrace Φ=0º Φ=90º Φ=0º Φ=90º Φ=0º Φ=90º 

0-15% 9 105 101 9 112 104 9 107 108 

15% 16 93 89 16 94 90 16 100 98 

25% - - - - - - 24 95 94 

Table 4.3 – X-ray compositional and relaxation data for the 15% samples 75027, 75028 and 25% 

sample 75029.  Compositional error ±0.5%, relaxation error ±5%.  An inherently greater error 

exists for the Intermediate layer as no defined peak position exists. 

 

The results in Table 4.3 and Table 4.4 are consistent with the compositional 

analysis provided using EDS and a trend of higher relaxation at greater thickness and 

higher growth temperature is evident.  In addition to the substrate and layer peaks that 

were expected in the omega (  omega-2theta ( 2  scans, an additional feature 

situated between the substrate and first layer peak was present for all of the low 
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composition samples investigated and is labelled 0-15% (Intermediate) in Table 4.3 

(and Table 4.4) as well as Figure 4.10.  The presence of the broad peak corroborates 

the observations made using cross-sectional TEM that appeared to show that the 

initial graded region did not grade linearly as intended.  The presence of a broad peak 

indicates that a region with a very shallow grading profile exists, such that it is almost 

of constant composition; the compositional value obtained is clearly an average. 

 

 

75022 15% 

(700ºC, 200 nm) 

75030 15% 

(850ºC, 200 nm) 

Comp. 

% 

Relaxation % Comp. 

% 

Relaxation % 

Terrace Φ=0º Φ=90º Φ=0º Φ=90º 

0-15% 

Intermediate 
8 88 83 9 109 94 

15% 16 58 53 16 69 62 

Table 4.4 – X-ray compositional and relaxation data for the 15% samples 75022 and 75030.  
Compositional error ±0.5%, relaxation error ±5%.  An inherently greater error exists for the 

Intermediate layer as no defined peak exists. 

 

Comparison between 75027 (15%, 700ºC) and 75028 (15%, 850ºC), the 1 m 

layer structures, show near equal relaxation despite a 150ºC difference in growth 

temperature.  In this instance it would appear that the overlaying constant 

compositional layer is of sufficient thickness to have provided enough strain to relax 

the underlying material fully.  This is not the case however for samples 75022 (15%, 

700ºC) and 75030 (15%, 850ºC), the 200 nm layer structures, with a difference in 

relaxation of around 10% indicating that the growth temperature has had a greater 

impact.  According to Matthews and Blakeslee (1974) the equilibrium critical 

thickness of material required for dislocation propagation at 15% is around  
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200 nm (at 10% this roughly doubles).  As these layers would have only just exceeded 

this equilibrium critical thickness, dislocation propagation is only possible provided 

sufficient thermal energy is available (could be metastable).  These results in 

particular strongly suggest that in the work of Capewell (2002) even with in-situ 

annealing fuller relaxation of lower layers would have occurred only after additional 

layer growth.  The theoretical predictions of People and Bean (1985) (Figure 2.5) for 

lower temperature growth make this result even more surprising as the critical 

thickness for dislocation introduction for a 15% constant compositional layer is stated 

as around 400 nm!  Clearly relaxation has occurred as a result of the growth 

temperatures utilised and perhaps has been enhanced by the presence of 

heterogeneous nucleation sources such as carbon precipitates at the initial growth 

surface.  The presence of carbon precipitates on the surface of wafers that have not 

undergone ex-situ cleaning has been observed previously in pseudomorphic strained 

layers where it leads to so called pagoda defects (Dynna et al. 1992).  Such 

contamination may also be visible in the cross-sectional analysis of medium 

compositional layers (discussed in length in Chapter 5). 

Comparison between samples 75028 (15%, 850ºC, 1 m) and 75029 (25%, 

850-800ºC, 1 m) that share an identical lower terrace highlights the effect of the 

continued compositional increase.  The 15% terrace has been further relaxed by the 

addition of the overlying layers, whilst the new terminating layer is again 95% 

relaxed.  Although further relaxation may be possible simply through raised growth 

temperature or prolonged annealing, the addition of an over-graded layer (higher 

composition than finally required) will ultimately be necessary to achieve 100% 

relaxation.  Finally a point that will be properly discussed later with reference to the 

medium compositional regime is the noticeable difference in relaxation between 
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phi (Φ) orientations.  Although the uncertainty in the determined relaxation is 

comparable to the differences observed, a small but systematic trend in relaxation 

appears present. 

Table 4.5 and Table 4.6 show the angles determined between the (004) planes 

in the constant compositional layer and the (004) planes within the silicon substrate. 

 

 

75027 15% 

(700ºC, 1 m) 

75028 15% 

(850ºC, 1 m) 

75029 25% 

(850ºC, 1 m) 

Angle between 

Substrate and layer 

Angle between 

Substrate and layer 

Angle between 

Substrate and layer 

Terrace 
[004] 

Φ=0º 

[004] 

Φ=90º 

[004] 

Φ=0º 

[004] 

Φ=90º 

[004] 

Φ=0º 

[004] 

Φ=90º 

15% 0.04 -0.10 0.00 0.00 -0.04 0.01 

25% - - - - -0.04 0.01 

Table 4.5 – Data collected of angular separation (in degrees) in omega between (004) planes in the 
silicon substrate and constant compositional layer for the 15% samples 75027, 75028 and 25% 

sample 75029.  The error in determination of the angular separation ± 0.01º. 

 

 

75022 15% 

(700ºC, 200 nm) 

75030 15% 

(850ºC, 200 nm) 

Angle between 

Substrate and layer 

Angle between 

Substrate and layer 

Terrace 
[004] 

Φ=0º 

[004] 

Φ=90º 

[004] 

Φ=0º 

[004] 

Φ=90º 

15% 0.00 0.01 0.06 -0.11 

Table 4.6 – Data collected of angular separation (in degrees) in omega between (004) planes in the 
silicon substrate and constant compositional layer for the 15% samples 75022 and 75030.  The 

error in determination of the angular separation ± 0.01º. 

 

A substantial deviation in omega between some epitaxial layers and the silicon 

substrate on which they were grown is evident.  This is an indication that in some of 

these samples the growth front is re-orientating as observed by LeGoues et al. (1993).  

It must however be kept in mind that these angles have been calculated between the 

marked layer peak positions and the marked silicon peak position, which themselves 

contain uncertainties of the same order. 
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4.5 Atomic Force Microscopy (AFM) 

A selection of six 15% and 25% samples have been investigated using atomic 

force microscopy to obtain quantitative surface roughness data and to further examine 

some of the unusual surface features seen in the optical Nomarski interference images.  

Contact mode atomic force measurements were conducted for the 15% samples 75022 

(700ºC, 200 nm), 75030 (850ºC, 200 nm), 75027 (700ºC, 1 m) and 75028 (850ºC, 

1 m) along with the 25% samples 75037 (700-650ºC, 1 m) and 75029 (850-800ºC, 

1 m).  A summary of surface roughness and height range measurements made from 

40 m
2
 scans are given in Table 4.7 and Table 4.8. 

 

 
75022 15% 

(700ºC, 200 nm) 

75030 15% 
(850ºC, 200 nm) 

75027 15% 
(700ºC, 1 m) 

75028 15% 
(850ºC, 1 m) 

RMS 

Roughness 
2.1 nm ±0.4 nm 4.2 nm ±0.4 nm 1.6 nm ±0.1 nm 5.1 nm ±0.9 nm 

Height Range 15 nm ±2 nm 31 nm ±2 nm 12 nm ±2 nm 32 nm ±4 nm 

Table 4.7 – RMS surface roughness and height range measurements determined from AFM 

images of the 15% samples 75022, 75030, 75027 and 75028. 

 

 
75037 25% 

(700-650ºC, 1 m) 

75029 25% 
(850-800ºC, 1 m) 

Silicon epitaxy 

control 

RMS Roughness 1.4 nm ±0.3 nm 7 nm ±1 nm - 

Height Range 14 nm ±1 nm 44 nm ±6 nm - 

Table 4.8 – RMS surface roughness and height measurements determined from AFM images of 
the 25% samples 75037 and 75029. 

 

Higher growth temperatures appear to result in increased surface roughness 

and overall height range and are most likely a result of the greater adatom mobility 

provided by the additional thermal energy (discussed in more detail in section 4.2.).  It 

also appears however, that surface roughness does not dramatically increase with 

composition in this regime when growing with reducing temperatures and utilising 
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terrace grading, this is important (though for 75037 (25%, 700-650ºC, 1 m) the 

composition is known from EDS to be only 20% in section 4.3.3).  The RMS 

roughness of the 1 m layer structures is far greater than was expected for such a 

grading rate, especially compared to an RMS roughness of only 1.7 nm for a 

comparable fully relaxed Si0.65Ge0.35 virtual substrate reported by Rosenblad et al. 

(2000). 

 

  
            

  
(a)      (b) 

Figure 4.11 – 40 m x 40 m and 10 m x 10 m area atomic force height profile scans for (a) 

75028 and (b) 75029. 

 

(15%, 850ºC, 1 m) (25%, 850-800ºC, 1 m) 

(15%, 850ºC, 1 m) (25%, 850-800ºC, 1 m) 
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Atomic force micrographs of 75028 (15%, 850ºC, 1 m) Figure 4.11 (a) and 

(c) reinforce the Nomarski interference images that appeared to show large, 

apparently flat topped, islands along the hatches with features around 2 m x 2 m in 

size.  These features appear stepped (highlighted in Figure 4.12), overlaying one 

another but in only one direction, with step heights in the region of 5-10 nm over a 

length scale of ~2.5 m, whilst the orthogonal direction appears to show no 

significant net rise. 

 

 

Figure 4.12 – A 3-dimensional presentation of a 10 m x 10 m area atomic force height profile 

scan for sample 75028 (15%, 850ºC, 1 m) highlighting the apparent tilt in only one direction. 

 

Individual atomic steps are far smaller than seen in Figure 4.12, only 2.715 Å (Kim et 

al. 1997), but if imagined bunched together then a 4 inch wafer with 5 nm steps, each 

consisting of around 9 atomic steps, every 2.5 m would give rise to a macroscopic 

tilt of around 0.1º.  The offcut measured from similar wafers detailed in later chapters 

is around this order suggesting this as a possible explanation for the apparent surface 
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asymmetry.  Similar features can be seen on 75029 (25%, 850-800ºC, 1 m) but all of 

the features appear rounded and now overlap, usually over far shorter distances, with 

the features being up to ~5 m in length, Figure 4.11(b) and (d).  The macroscopic 

cross-hatch density appears to have changed little between 75028 (15%, 850ºC, 1 m) 

and 75029 (25%, 850-800ºC, 1 m) (not shown). 

 

  
(a)      (b) 

Figure 4.13 – 10 m x 10 m area atomic force height profile scans for (a) 75027 (b) 75037. 

 

The surface of 75027 (15%, 700ºC, 1 m) shows only faint evidence of cross-

hatch with spacing around 10 m apart and many long thin terrace like features 

observed at higher magnification Figure 4.13(a).  In comparison 75037 (25%, 700-

650ºC, 1 m), the equivalent 25% structure, shows an evolution toward far larger 

terrace structures at higher magnification, Figure 4.13(b), but shows more obvious 

cross-hatch at lower magnifications spaced around 5 m apart (not shown). 

Both 200 nm layer structured samples 75022 (15%, 700ºC) and 75030 (15%, 

850ºC) show a more usual cross-hatched pattern, clearly having an increased trench to 

peak depth and an increased frequency of undulation at higher growth temperature, 

(15%, 700ºC, 1 m) (25%, 700-650ºC, 1 m) 
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Figure 4.14.  The increased undulation depth and frequency are almost certainly the 

result of greater relaxation and X-ray results confirm a difference in relaxation of 10% 

between the pair. 

 

  
(a)      (b) 

Figure 4.14 – 40 m x 40 m area atomic force height profile scans for (a) 75022 (b) 75030 

 

4.6 Schimmel Defect Etching 

Comparison of the surface threading dislocation density is important to gauge 

the structural quality of layers in relation to one another.  The detection of threading 

dislocation pile-up is of particular importance with regards to both surface 

morphology (Fitzgerald et al. 1997) and the detrimental influence on performance 

(Giovane et al. 2001).  Standard Schimmel etching (section 3.4) was employed in 

defect revealing by etch pit formation (an example is given in Figure 4.15) for each of 

the 15% 1 m layer structures (75027, 75034 and 75028) and a compilation of results 

is given in Table 4.9.  A modified Schimmel etch was utilised when etching the 15% 

200 nm layer structures, to provide an enhanced etch pit revealing rate (Table 4.9). 

(15%, 700ºC, 200 nm) (15%, 850ºC, 200 nm) 
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Figure 4.15 – Optical micrograph of defect etched sample 75029.  The image was taken in the 

bright field without interference contrast at x10 magnification.  A surface threading dislocation 

density of approximately 4x10
4
/cm

2
 is revealed by etch pit counting.  A circle highlights an etch 

pit for clarity. 

 

A wide separation of threading dislocation densities is evident between the 

15% 1 m layer structured samples in Table 4.9.  Interestingly the surface threading 

density does not increase sequentially with increasing growth temperature but peaks 

for the sample grown at an intermediate temperature.  The expected trend would be 

for increasing threading dislocation density at lower growth temperatures (Fitzgerald 

et al. 1997) suggesting that perhaps a mechanism for surface threading dislocation 

annihilation is present at lower temperature.  Alternatively an increased threading 

dislocation density at a particular composition could be an indication of a greater level 

of relaxation or an increase of dislocation pinning. 

 

(25%, 850-800ºC, 1 m) 
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75027 15% 

(700ºC, 1 m) 

75034 15% 

(775ºC, 1 m) 

75028 15% 

(850ºC, 1 m) 

75030 15% 

(850ºC, 200 nm) 

Threading 

Density (/cm
2
) 

5.3x10
2
 7.3x10

4
 6.5x10

3
 1.7x10

3
 

Standard 

Deviation (/cm
2
) 

4.2x10
2
 5.2x10

3
 8.3x10

2
 1.3x10

3
 

Table 4.9 – Table containing threading dislocation densities for 15% 1 m layer structured 

samples 75027, 75034 and 75028 and 200 nm layered structure 75030, calculated by counting 

surface etch pits, accompanied by standard deviations.  Standard Schimmel etching was 

employed for the 1 m thick samples whilst the modified Schimmel etch was utilised for the 

200 nm sample. 

 

A number of discrete threading dislocations were observed along a line in one 

of the <110> directions on the surface of 75028 (15%, 850ºC, 1 m) (Figure 4.16), 

presumably halted by the presence of an underlying misfit pile-up due to dislocation 

multiplication as described in section 2.3.7.2.  Such low levels of pinning will have 

little impact on the performance of devices processed on the surface and is debatable 

whether the label of threading dislocation pile-up is even appropriate, hence the new 

label pseudo pile-up. 

It should be clearly noted again at this point that threading defect densities 

quoted below about 2x10
3
/cm

2
 should be treated with caution as this constitutes only 

4 etch pits within an image at x10 magnification.  Confusion at this level with surface 

particulate contamination is possible and is difficult to preclude. 

Table 4.9 shows that 75030 (15%) a 200 nm layer structured sample grown at 

850ºC has a very low threading density when compared to 75028 (15%, 850ºC) the 

comparable 1 m structure.  A reasonable expectation would be to have found a 

higher threading dislocation density containing many clear instances of threading 

dislocation pile-up as a result of the tighter lateral confinement of the dislocation 

network.  The low number of etch pits visible at the surface suggests that a lower level 

of relaxation has been achieved, with X-ray results confirming that the layer remains  
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Figure 4.16 – Optical micrograph of the surface of sample 75028 (15%, 850ºC, 1 m) after 

etching with a standard Schimmel etchant for 2 minutes.  The arrows indicate the pseudo pile-up 

with low threading dislocation density and the circles highlight etch pits for clarity. 

(15%, 850ºC, 1 m) 

Pseudo Pile-up 
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substantially strained with a relaxation of only 70%. 

Standard Schimmel etching was again employed in defect revealing by etch pit 

formation for the 25% 1 m layer structures 75037 (700-650ºC) and 75029 (850-

800ºC) with the results given in Table 4.10. 

 

 
75037 20% 

(700ºC, 1 m) 

75029 25% 

(850ºC, 1 m) 

Threading 

Density (/cm
2
) 

1.5x10
3 

4.1x10
4 

Standard 

Deviation (/cm
2
) 

1.0x10
3 

3.8x10
3 

Table 4.10 – Table containing threading dislocation densities for 25% 1 m layer structured 

samples 75037 (only 20% composition measured) and 75029.  Densities calculated by counting 
surface etch pits, accompanied by standard deviations.  The standard Schimmel etch was 

employed. 

 

Comparison between Table 4.10 and Table 4.9 demonstrates that the 

dislocation density has increased with increasing germanium composition.  The 

increase in surface threading dislocation density by almost an order of magnitude  is 

very significant.  The addition of a second terrace grade with the same or lower misfit 

difference than the first, with respect to the layer immediately below, should not result 

in an increase in threading dislocation density if the first layer had achieved a high 

degree of relaxation and the second layer is grown at an equivalent temperature.  

Clearly this is not the case suggesting either: increasing threading dislocation pinning 

which terrace grading aims to minimise; too large a reduction in growth temperature 

with composition; large amounts of dislocation annihilation has occurred; or 

insufficient relaxation of the lower layer (known to be around 94%).  Interestingly the 

higher surface threading density generally displayed at higher growth temperatures is 
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the opposite of that found by Leitz et al. (2001) albeit for higher composition layers 

and Fitzgerald et al. (1997) mentioned previously in this section. 

No instances of conventional pile-up have been observed at any point when 

etching the low composition samples. 

 

4.7 Summary 

The work in this chapter is distinguished not only for the low compositions 

investigated but also for not having full control of the germanium composition profile.  

Evidence from cross-sectional TEM and X-ray analysis appear to indicate that an 

initially sharp jump in composition was followed subsequently by a slow rise up to 

the desired composition rather than the intended linear grade.  The unusual surface 

morphologies displayed by structures such as 75028 (15%, 850ºC, 1 m) and 75029 

(25%, 850-800ºC, 1 m) in particular, is almost certainly the result of this initial 

grading.  Improper calibration of either the silicon or germanium electron beam 

evaporators is responsible for this unintended profile and in future particular care 

must be taken with regards to calibration of low flux rates (<0.05Å/s) as these have a 

large impact upon the initial grading profiles. 

High levels of relaxation have been achieved within the 1 m layer structures 

starting growth at either 850ºC or 700ºC.  Growth starting at 850ºC and descending to 

800ºC at 25% is however clearly unsuitable for 200 nm layer structures were the build 

up of strain occurs too quickly to be relieved solely by introduction and extension of 

misfit dislocations resulting in 3-D growth.  The surface roughness of the present 

samples is far greater than other leading published examples due again I believe to the 

unconventional grading and subsequent surface morphology.  A trend of increased 
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surface roughness at higher temperature makes lower temperature growth preferable 

if it remains evident that there is no real gain in relaxation. 

The dislocation density present within the higher temperature 15% 1 m 

structure 75028 (15%, 850ºC, 1 m) shows a threading dislocation density of only 

6.5x10
3
/cm

2
 that is lower than the best published linearly graded virtual substrate of 

Olsen et al. (2003) at 2x10
4
/cm

2
 and compares favourably with other more exotic 

approaches.  Significantly defect etching suggests that threading dislocation density is 

reduced at a lower growth temperature of 700ºC in contradiction to findings made 

using CVD growth systems (Fitzgerald et al. 1997; Leitz et al. 2001).  A possible 

explanation could be that ion bombardment from the electron evaporators lead to an 

increased concentration of point defects within the grown material that upon 

annealing allowed a substantial annihilation of the threading dislocations to occur, 

though no work has yet been carried out to validate this claim. 

The rise in threading dislocation density to 4.1x10
4
/cm

2
 in the 25% terrace 

graded substrate 75029 (25%, 850-800ºC, 1 m) is unexpected.  Although a rise in 

surface threading dislocation density has been observed with increasing composition 

by Leitz et al. (2001) such a rise was due to excessive threading dislocation pile-up 

that is not event in this case.  The pseudo pile-up highlighted in sample 75028 (15%, 

850ºC, 1 m) demonstrates that low levels of threading dislocations can become 

trapped within the space of one terrace grade and may indicate that a smaller 

compositional step would be beneficial.  The possibility also remains that the 

reduction of growth temperature accompanying the compositional increase is too 

great and will be discussed in further detail in chapter 6. 
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Chapter 5 
 

5 Medium Composition Regime (30-40%) 
 

Virtual substrates in the medium composition regime (30-40%) are primarily 

of use in gaining a significant enhancement in the hole mobility in strained-silicon 

surface channel MOSFET devices.  Oberhüber et al. (1998) theoretically predicted 

that little additional enhancement in the hole mobility is achieved in a strained silicon 

layer above a germanium concentration of 40% (Figure 4.1).  Virtual substrates in this 

regime offer the potential of a future platform for advanced silicon based devices 

including strained-SOI.  However for a relaxed virtual substrate composition of 40% 

the critical thickness for a strained-silicon channel is reduced to ~6 nm and may be 

too thin to form practical devices (Nicholas 2004).  As was true in the previous 

chapter a key aim of producing high quality terrace graded virtual substrates in the 

medium composition regime is to provide a platform for further compositional 

increase towards pure germanium, discussed in chapter 6. 

With traditional linear grading, threading dislocation densities as low as 

3x10
4
/cm

2
 have been achieved at 35% germanium with a surface RMS roughness of 

only 1.7 nm (Rosenblad et al. 2000), although no information on dislocation pile-up is 

given.  Similarly, Leitz et al. (2001) have shown a 30% linearly graded buffer with a 

field threading density of 9.3x10
4
/cm

2
 and a surface RMS roughness around 10 nm 

but, interestingly, a comparable density of dislocations were said to additionally be 

trapped in dislocation pile-ups.  More exotic approaches such as step grading with 

high and low temperature steps followed by annealing after each layer have been 

published with threading densities in the 10
4
/cm

2
 range at 30% (Gaiduk et al. 2000).  

Finally, of interest is the work of Kissinger et al. (1995) who have demonstrated that 
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high temperature annealing at 1050ºC for a period of 1 hour after step graded layers 

with 5% compositional steps can yield dramatic reductions in threading dislocation 

density, achieving between 10
2
-10

3
/cm

2
 at ≤ 20%, although nothing was reported on 

surface roughness (appeared high in their cross-sectional TEM).  The stepwise nature 

of this structure would likely not suffer the pile-up of traditional graded structures as 

intended for terrace grading and as such the effect of extended periods of high 

temperature ex-situ annealing shall be investigated in this current composition regime. 

Presented in this chapter are a number of 30% and 40% terrace graded virtual 

substrates all with graded and linear regions of 1 m in thickness.  It seems certain 

that the grading profiles in the 15% and 25% layers were not as intended and 

recalibration of the germanium electron beam evaporator was conducted.  This 

resulted in a straight rather than curved flux rate vs. power graph.  A lower grading 

rate of 10%/ m is applied to all of the structures investigated in this medium 

composition range. 

 

5.1 Growth Parameters 

 

5.1.1 30% Terrace Graded Substrates with In-Situ Annealing 

The initial 30% virtual substrates are similar in design to those layers 

previously investigated, utilising a constant growth temperature throughout each 

terrace grade followed by annealing and with a sequential 50ºC reduction for each 

terrace grade, designated 75046 (30%, 850-750ºC, In-situ Anneal) and 75048 (30%, 

700-600ºC, In-situ Anneal), see Figure 5.1.  An intermediate structure, 75049 (30%, 

850-650ºC Ramping, In-situ Anneal), with growth beginning at 850ºC and an initial 

100ºC temperature ramp down over the latter half of the constant compositional layer, 
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is introduced to evaluate the possible benefits of temperature grading.  Growth of the 

next terrace begins at a temperature 50ºC above that at which the previous terrace had 

ended, see Figure 5.2. 

 

 

Figure 5.1 – Schematic representation of 30% virtual substrate specifications for 75046 (30%, 

850-750ºC, In-situ Anneal) high temperature and 75048 (30%, 700-600ºC, In-situ Anneal) low 

temperature. 

 

 

Figure 5.2 – Schematic representation of 30% virtual substrate specifications for 75049 (30%, 

850-650ºC Ramping, In-situ Anneal) intermediate temperature. 
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5.1.2 30% Terrace Graded Substrates without In-Situ Annealing 

A number of layers were grown without the inclusion of any growth 

interruptions or annealing to maintain the highest quality of material.  Sample 75044 

(30%, 800-725ºC Ramping, No Anneal) had the growth temperature held constant 

throughout each graded region.  Initially grown at a temperature of 800ºC and then 

reduced by 25ºC during each constant composition layer, Figure 5.3. 

 

 

Figure 5.3 – Schematic representation of virtual substrate specifications for 75044 (30%, 800-
725ºC Ramping, No Anneal) and 75043 (40%, 800-700ºC Ramping, No Anneal). 

 

A further layer structure 75055 (30%, 825-725ºC Ramping, No Anneal) 

having an initial growth temperature of 825ºC is dropped 50ºC over the second half of 

the first constant composition layer; subsequently this drop is reduced to only 25ºC, 

see Figure 5.4.  Additionally silicon marker layers have been included to gauge the 

impact on layer growth and additionally highlight any layer roughening that might 

occur. 
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Figure 5.4 – Schematic representation of 30% virtual substrate specifications for 75055 (30%, 

825-725ºC Ramping, No Anneal). 

 

5.1.3 40% Terrace Graded Substrates without In-Situ Annealing 

A single 40% virtual substrate 75043 (40%, 800-700ºC Ramping, No Anneal) 

was grown with an underlying structure identical to 75044 (30%, 800-725ºC 

Ramping, No Anneal) with the addition of a 40% terrace grade on top, see Figure 5.3.   

 

5.1.4 30% Linear Graded Substrate with In-Situ Annealing 

For fair comparison with a traditional linear graded structure a single 30% 

structure 76007 (30%, Linearly Graded, 850-750ºC, In-situ Anneal) was grown.  The 

layer thickness, growth temperatures and anneals were chosen to be identical to those 

used for 75046 (30%, 850-750ºC, In-situ Anneal), differing only in the layer order, 

shown schematically in Figure 5.5. 
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Figure 5.5 – Schematic representation of 30% virtual substrate specifications for a linear graded 

comparison 76007 (30%, Linearly Graded, 850-750ºC, In-situ Anneal). 

 

5.2 Nomarski Interference Images 

A selection of representative interference images are presented in Figure 5.6.  

All of the 30% samples appear to share surfaces of similar morphology, with only 
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displays the least visible surface contrast, most likely indicating this to be the 

smoothest surface as was expected.  Despite the sizable reduction of growth 

temperature over the later half of the constant composition layer, the surface of 75049 

(30%, 850-650ºC Ramping, In-situ Anneal) remains very similar in appearance to 

75046 (30%, 850-750ºC, In-situ Anneal).  In examining these samples the quantitative 

limitations of this technique are apparent. 
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(a)      (b) 
 

   
(c)      (d) 
 

   
 (e)      (f) 
 

 
(g) 

Figure 5.6 – Nomarski interference images taken at x50 magnification of samples (a) 75046, (b) 

75048, (c) 75049, (d) 75044, (e) 75055, (f) 75043 and (g) 76007 

(30%, 850-750ºC, In-situ Anneal) (30%, 700-600ºC, In-situ Anneal) 

(30%, 850-650ºC Ramping, In-situ Anneal) (30%, 800-725ºC Ramping, No Anneal) 

(40%, 800-700ºC Ramping, No Anneal) (30%, 825-725ºC Ramping, No Anneal) 

(30%, Linearly Graded, 850-750ºC, In-situ 

Anneal) 
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The 30% linear graded comparison 76007 (850-750ºC, In-situ Anneal) shows 

a very similar contrast level to 75046 (30%, 850-750ºC, In-situ Anneal) its terrace 

graded counterpart.  The smooth appearance of this sample surface is surprising; it 

could be expected that the continuous pile-up of multiplied misfit dislocations would 

produce a surface with greater undulation.  Some smoothing of the surface may result 

from the 3 m capping layer, authors such as Jesson et al. (1993) have commented on 

smoothing of undulating layers, though in such instances layers have undergone some 

degree of elastic deformation that is not expected here.  Further, Fitzgerald et al. 

(1992) working with comparable virtual substrates have found that surfaces do not 

become significantly smoother with continued overgrowth.  Another possibility, 

discussed further in section 5.6, is that the multiplication mechanism expected to be 

dominant in this situation is in competition with other heterogeneous nucleation 

mechanisms. 

A striking difference becomes obvious if comparison is made between any of 

the 1 m layer structures grown previously (chapter 4) and the current batch.  The 

distinctive features that unmistakably covered their surfaces are not evident, 

surprising given that two previous samples had terminating compositions within 5% 

of these currently under investigation.  The only major differences between the 

samples occur in the grading region, highlighting the apparent importance of this 

region in determining surface morphology. 

The absence of in-situ annealing and differing thermal budgets utilised for 

samples 75043 (40%, 800-700ºC Ramping), 75044 (30%, 800-725ºC Ramping) and 

75055 (30%, 825-725ºC Ramping) has had little noticeable impact on the surface 

morphology in comparison to 75046-49 (30%, 850-600ºC, In-situ Anneal).  

Comparison between layers with and without in-situ annealing seems to show 
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annealed samples to have a smoother surface, indicating that the act of in-situ 

annealing has a limited smoothing effect upon a well relaxed layer surface. 

The presence of pile-up is indicated on the surface of 75055 (30%, 825-725ºC 

Ramping, No Anneal) near the centre of the wafer by discontinuous hatching, 

extending approximately 400 m in Figure 5.7.  Objectively this area is not 

representative of the surface in general, with no other instances of such large features 

discovered and few other instances at any size.  Similarly much smaller isolated 

surface disturbances have been found on the surfaces the 30% samples 75044 (800-

725ºC Ramping, No Anneal), 75049 (850-650ºC Ramping, In-situ Anneal) and 75048 

(700-600ºC, In-situ Anneal).  The inclusion of particulate contaminants during growth 

may be responsible although this is by no means certain. 

 

 

Figure 5.7 – Nomarski interference image taken of sample 75049 at x10 magnification.  A 
disturbance (indicated by arrows) to the cross-hatch running vertically across the image is 

believed to be evidence of threading dislocation pile-up.  Circles highlight localised surface 

disturbances due to particulate inclusion. 

 

 

 

 

 

 

(30%, 825-725ºC Ramping, No Anneal) 
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5.2.1 Ex-Situ Annealing 

The effect of ex-situ furnace annealing on the 30% samples 75046 (850-750ºC, 

In-situ Anneal), 75048 (700-600ºC, In-situ Anneal) and 75049 (850-650ºC Ramping, 

In-situ Anneal) was explored with the samples given a 15 hour anneal in flowing 

nitrogen at 900ºC.  Primarily the effect of the anneal was to be investigated by cross-

sectional TEM, defect etching and X-ray analysis, but Nomarski imaging allowed for 

quick observation of any dramatic morphological changes.  No obvious changes in the 

surface morphology or contrast could be observed for any of the samples, Figure 5.8. 

 

  
(a)      (b) 

Figure 5.8 – Nomarski interference image taken at x10 magnification after an ex-situ anneal has 
been performed at 900ºC for 15 hours on samples (a) 75046 and (b) 75048. 

 

5.3 Cross-Sectional Transmission Electron Microscopy (XTEM) 

Few dislocations are seen to propagate between the graded layers in any of the 

as-grown 30% or 40% terrace graded structures investigated.  It appears that the 30% 

as-grown samples which received in-situ anneals share similar levels of relaxation, 

despite a maximum growth temperature difference of 150ºC between 75046 (850-

750ºC) Figure 5.9 and 75048 (700-600ºC) Figure 5.10. 

(30%, 850-750ºC, In-situ and Ex-situ Anneal) (30%, 700-600ºC, In-situ and Ex-situ Anneal) 
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  (a) 

 
  (b) 

Figure 5.9 – Cross-sectional transmission electron micrographs (in the (220) two beam diffraction 
condition) of sample 75046 (a) relatively thick section (b) relatively thin section. 

 

It is difficult to ascertain the relative thickness of the sample in the region that 

individual images are taken, making comparison of features between samples 

difficult.  The aim of multiplication source decoupling between graded regions 
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5.9 (b), unlike those images presented in Chapter 4 that these layers do appear to be 

linearly graded at low composition with no dense network of dislocations obvious at 

or near the initial growth interface and the dislocations appearing uniformly spread. 

 

 

Figure 5.10 – Cross-sectional transmission electron micrograph (in the (220) two beam 

diffraction condition) of sample 75048. 

 

The addition of a 40% terrace grade and the initially higher growth 

temperature (25ºC) of sample 75043 (800-700ºC Ramping, No Anneal) with respect 

to 75055 (30%, 825-725ºC Ramping, No Anneal) appears to have had little effect 

upon dislocation formation or confinement in upper terraces (Figure 5.11).  

Additionally the silicon marker layers placed at the top of each terrace in sample 

75055 (30%) appear to have little effect. 
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(a) 

 
(b) 

Figure 5.11 – Cross-sectional transmission electron micrographs (in the (220) two beam 

diffraction condition) of sample (a) 75055 (b) 75043. 
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Comparison between cross-sectional images of samples 75055 (30%, 825-

725ºC Ramping, No Anneal) and 75043 (40%, 800-700ºC Ramping, No Anneal) 

shown in Figure 5.11, that did not receive in-situ anneals after each terrace, and 

samples 75046 (30%, 850-750ºC, In-situ Anneal) and 75048 (30%, 700-600ºC, In-situ 

Anneal) (Figure 5.9 and Figure 5.10) show no significant effect upon the dislocation 

network observed.  The low level of interaction between terrace graded layers in 

Figure 5.11 indicates that a high level of relaxation is achieved at the completion of 

each linear region, even without in-situ anneals.  Importantly, none of the surfaces 

appear to have macroscopically roughened, indicating as before, that the 1 m thick 

layers are able to relieve the accumulating strain at a fast enough rate to avoid the 

need for elastic deformation of the growth surface.  A clear example of the dislocation 

structure resulting from multiplication by the modified Frank-Read nucleation 

mechanism can be seen in the lower right hand corner of Figure 5.11 (b). 

An interesting detail can be seen in images taken of 75046 (30%, 850-750ºC, 

In-situ Anneal) shown in Figure 5.9 (a), just below the bottom of the initial linear 

grade, at a depth of around 50 nm a fine dark band is perceivable (indicated by lower 

arrows).  This corresponds to the original silicon wafer surface and although not 

definite, is highly likely to be due to the presence of carbon contamination.  Such 

contamination is not removed by the in-situ high temperature oxide desorption utilised 

in these instances (Kasper et al. 1998), and would require an ex-situ chemical clean 

such as an RCA clean detailed in Appendix A.1.  Trace amounts of carbon can form 

precipitates across the wafer surface when taken to higher temperatures (Dynna et al. 

1992).  The presence of such contamination is always a possibility without chemical 

cleaning but had been assumed to be of little consequence for thicker structures.  

Quite clearly in a number of instances, pairs of dislocations emerge from this level 
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into the layer, though this interaction may have occurred during the growth of the 

overlaying layers with multiplying dislocations pushed down.  Leitz et al. (2001) 

noted that the presence of heterogeneous nucleation sources led to an increased field 

and pile-up threading dislocation density.  The number of instances in which 

dislocations interact at this level in the present case could suggest that this 

contamination (whatever it may be) may have a noticeable effect upon the evolution 

of crystal relaxation.  Indeed if dislocations were formed in this region in significant 

numbers earlier than would have otherwise been possible by multiplication, it may 

have greatly limited the level of dislocation multiplication that has actually occurred.  

Such an action could well explain the smaller than expected improvement of terrace 

grading over conventional linear grading in sections 5.2 and 5.6. 

 

5.3.1 Ex-Situ Annealing 

The effect of ex-situ annealing on epitaxially grown layers is of significant 

importance, as most such structures if used in real applications would almost certainly 

be subjected to high temperature processing steps, typically rapid thermal annealing 

(RTA) such as 950ºC for 30 seconds.  The possibility of reducing the surface 

threading density has also been discussed in the introduction as a motivation for such 

experimentation. 

The high temperature layer 75046 (30%, 850-750ºC, In-situ Anneal) shows no 

change in its dislocation structure after annealing, with almost all visible dislocations 

confined within the graded regions, Figure 5.12 (compare with Figure 5.9).  This 

demonstrates that a high level of relaxation was present throughout growth of this 

structure and very little residual strain remains to be relaxed. 
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Figure 5.12 – Cross-sectional transmission electron micrograph (in the (220) two beam 
diffraction condition) of sample 75046 Annealed at 900ºC for 15 hours. 

 

On the contrary the low temperature structure 75048 (30%, 700-600ºC, In-situ 

Anneal) appears to contain many more dislocations within its terraced regions after 

ex-situ annealing, particularly in the region between the upper two graded layers, 

Figure 5.13 (compare with Figure 5.10).  This would suggest that the upper layer had 

retained some degree of residual strain after growth.  Although the presence of 

dislocations in the terraced layers indicates multiplication sites have spawned 

numerous dislocations, it would appear that these multiplication sites have not 

persisted between graded layers, and although this is logical in this case, it is still 

important to note. 
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Figure 5.13 – Cross-sectional transmission electron micrograph (in the (220) two beam 
diffraction condition) of sample 75048 Annealed at 900ºC for 15 hours. 

 

The intermediate structure of 75049 (30%, 850-650ºC Ramping, In-situ 

Anneal) straddles the prior two extremes, with a small amount of dislocation 

penetration into the intervening constant composition layers, displayed in Figure 5.14.  

Dislocations have also been visibly pushed deep into the silicon substrate in this 

instance. 

 

Figure 5.14 – Cross-sectional transmission electron micrograph (in the (220) two beam 

diffraction condition) of sample 75049 Annealed at 900ºC for 15 hours. 
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5.3.2 Energy Dispersive X-ray Spectroscopy (EDS) 

A summary of the composition analysis performed on each terrace visible in 

the prepared cross-sectional TEM samples are presented below. 

 

 10% 20% 30% 40% 

75046 (30%)  9% 21% 32% - 

75048 (30%) 9% 19% 30% - 

75055 (30%) 9% 17% 25% - 

75043 (40%) 10% 20% 30% 38% 

Table 5.1 – EDS composition data for samples 75046 (30%, 850-750ºC, In-situ Anneal), 75048 

(30%, 700-600ºC, In-situ Anneal), 75055 (30%, 825-725ºC Ramping, No Anneal) and 75043 

(40%, 800-700ºC Ramping, No Anneal).  Composition error of ±5%. 

 

The analysis shows that a close similarity between the intended and actual 

compositions has been achieved for most of the 30% and 40% samples.  Examination 

of the cross-sectional TEM images would suggest that the compositional grading in 

each of these samples is close to that expected if it were linear and hence the 

differences in observed structure will be due largely to variations in growth 

temperature and perhaps surface contamination. 

 

5.4 Atomic Force Microscopy (AFM) 

A quantitative measurement of surface roughness is an important structural 

parameter providing insight into layer quality and serving as a useful comparison 

between similar structures for which data has been published.  Contact mode atomic 

force measurements were conducted for the in-situ annealed 30% samples 75046 

(850-750ºC) and 75048 (700-600ºC), representative plots are given in Figure 5.15 

having undergone a 3
rd

 order XY plane fit. 
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(a)      (b) 

Figure 5.15 – 20 m x 20 m area atomic force height profile scans for (a) 75046 (b) 75048.  A 

possible threading dislocation is indicated by an arrow in image (b). 

 

A cross-hatch pattern is clear on the surfaces of both samples indicative of 

substrates that have relaxed through the extension of glissile misfit dislocations.  The 

in-situ anneal conducted at the end of each completed terrace grade layer may be 

responsible for the unusual mottled appearance of the surface.  The dark hole visible 

near the centre of Figure 5.15 (b) is most likely a threading dislocation highlighted by 

reduced adatom incorporation due to locally higher strain (Fitzgerald et al. 1997). 

The RMS surface roughness calculated for samples 75046 (30%, 850-750ºC, 

In-situ Anneal) and 75048 (30%, 700-600ºC, In-situ Anneal) is presented in Table 

5.2.  It is immediately obvious that higher growth temperatures have led to an 

increased surface roughness that is nearly double that of 75048 (700-600ºC), although 

both remain comparable to measurements published at similar compositions.  This 

trend (limited in data points) is the opposite of that found by Leitz et al. (2001) were 

the surface roughness decreased slightly for the higher temperature growth of a 

linearly graded virtual substrate. 

 

(30%, 850-750ºC, In-situ Anneal) (30%, 700-600ºC, In-situ Anneal) 
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75046 (30%) 

(850-750ºC) 

75048 (30%) 
(700-600ºC) 

As-Grown 3.2 nm ± 0.2nm 1.9 nm ± 0.2 nm 

Annealed 3.6 nm ± 0.3nm 2.0 nm ± 0.4 nm 

Table 5.2 – RMS surface roughness measurements determined from AFM images of samples 

75046 (30%, 850-750ºC, In-situ Anneal) and 75048 (30%, 700-600ºC, In-situ Anneal) as-grown 

and annealed at 900ºC for 15 hours. 

 

5.4.1 Ex-Situ Annealing 

Contact mode atomic force measurements were also conducted to examine the 

effect of a high temperature ex-situ anneal upon the surface morphology and 

roughness of 75046 (30%, 850-750ºC, In-situ Anneal) and 75048 (30%, 700-600ºC, 

In-situ Anneal).  Representative plots are given in Figure 5.16 having undergone a 3
rd

 

order XY plane fit. 

 

  
(a)      (b) 

Figure 5.16 – 20 m x 20 m area atomic force height profile scans for (a) 75046 Annealed (b) 

75048 Annealed 

 

The surface morphology of both ex-situ annealed samples has clearly been affected, 

with slightly higher values of RMS roughness (see Table 5.2) and lessening of the 

unusual mottled surface pattern.  Sharp features are visible in Figure 5.16 (a) 

(30%, 850-750ºC, In-situ Anneal) (30%, 700-600ºC, In-situ Anneal) 
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traversing across the image in line with the cross-hatch, with two toward the bottom 

of the image and one near the top.  These features appear to be surface displacements 

like those described by Lutz et al. (1995) arising from motion of 60º dislocations 

within the film.  Single dislocations are calculated to produce a step height of only 

2.8 Å, although this figure increases linearly with the accumulation of additional 

dislocations, consistent with the steps observed here ranging from around 1 nm to 

3 nm.  This indicates the propagation of numerous threading dislocations along the 

same or very closely spaced planes, typical of multiplication sources within the layer, 

as a result of annealing.  The frequency of such features is uncertain as they are only 

visible in one of three scans obtained from 75046 (30%, 850-750ºC, In-situ Anneal) 

and further work would be required to ascertain the abundance of such steps and 

whether similar features exist on the annealed surface of 75048 (30%, 700-600ºC, In-

situ Anneal). 

 

5.5 High Resolution X-ray Diffraction 

The importance of a highly relaxed structure has been highlighted previously.  

The results of X-ray measurements are therefore of significant importance toward a 

fuller understanding of these structures.  Two sets of reciprocal lattice maps along the 

[004] and [224] directions have been obtained with 90º rotations in phi (Φ).  The 

terrace layer concentration and relaxation determined for the 30% samples 75046 

(850-750ºC, In-situ Anneal) and 75048 (700-600ºC, In-situ Anneal) are presented in 

Table 5.3. 
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75046 (30%) 75048 (30%) 

Comp. 

% 

Relaxation % 
Comp. 

% 

Relaxation % 

Terrace Φ=0º Φ=90º Φ=0º Φ=90º 

10% 10 100 97 10 96 99 

20% 20 99 98 21 96 100 

30% 30 97 95 30 95 97 

Table 5.3 – X-ray composition and relaxation data for samples 75046 (30%, 850-750ºC, In-situ 

Anneal) and 75048 (30%, 700-600ºC, In-situ Anneal).  Compositional error no more than ±0.5%, 

relaxation error up to ±5%. 

 

This compositional analysis corroborates the EDS data obtained previously. 

Both 30% terrace graded structures with in-situ anneals are confirmed have achieved 

high levels of relaxation throughout the structure.  A general trend in relaxation is 

evident throughout the structures, with upper layers being in general less relaxed than 

lower layers.  A systematic difference in relaxation levels exist between the two 

phi (Φ) orientations (though these differences fall within the experimentally 

determined error in their value).  Such a difference in strain relaxation may be 

attributable to a misorientated wafer surface (discussed later). 

The [004] lattice maps appear to show that the (004) planes in successive 

terraces are not parallel with one another or the underlying silicon substrate, see Table 

5.4.  In one phi (Φ) orientation the peak intensities corresponding to the terrace layers 

do not deviate significantly from one another in omega, as would be expected for 

parallel layers.  However for a displacement of 90º in phi (Φ) the peak intensities now 

appear to shift from a central omega (ω) value to a maximum of around 0.05º, 

indicating a rotation of successive terraces in this direction.  Interestingly it appears 

that layers in [004] directions that show the largest deviation from the silicon peak in 

omega (ω) correspond to the direction showing the greatest relaxation. 
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75046 (30%) 75048 (30%) 

Angle between 

Substrate and layer 

Angle between 

Substrate and layer 

Terrace 
[004] 

Φ=0º 

[004] 

Φ=90º 

[004] 

Φ=0º 

[004] 

Φ=90º 

10% -0.01 -0.01 -0.01 0.00 

20% -0.02 -0.01 -0.01 0.01 

30% -0.05 -0.01 -0.01 0.02 

Table 5.4 – Data collected of angular separation in omega between (004) planes in the silicon 

substrate and constant composition layers for samples 75046 (30%, 850-750ºC, In-situ Anneal) 

and 75048 (30%, 700-600ºC). 

 

In an attempt to ascertain whether any significant surface offcut existed for 

these nominally (001) silicon wafers, four additional omega (ω) – psi ( ) scans each 

separated by 90º in phi (Φ) were conducted according to Halliwell et al. (1998) for 

sample 75046 (30%, 850-750ºC, In-situ Anneal).  From these measurements the 

surface was calculated to have an offcut of ~0.1º, in a phi (Φ) direction in which the 

[004] lattice maps had shown deviation (deviating by only 2º).  From the previous 

observation of dissimilar strain relief in the two phi (Φ) orientations, the direction of 

highest relaxation corresponds to the direction of surface reorientation.  Caution must 

be taken when putting emphasis on this result given that the experimental error in the 

initial psi ( ) zero setup is of the order of 0.1º.  This result does however verify that 

no significant offcut exists (<0.5º). 

Studies of virtual substrate growth on offcut wafer surfaces (Mooney et al. 

1994) have observed a tilting of the top surface with respect to the underlying silicon 

substrate that has the effect of reducing the angle between the (001) planes and the 

surface (in (001) silicon wafers).  Mooney et al. (1994) highlight that a 60º dislocation 

is composed of a screw component, tilt component and misfit component and that an 
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offcut surface has the effect of altering the magnitude of the misfit relieving 

component of a dislocation, the projection of its Burgers vector onto the growth 

surface, for dislocations on different (111) glide planes.  Since the driving force for 

dislocation introduction is strain relief, those dislocations which relieve most strain 

will be favoured, and it is this unequal introduction of dislocations on different glide 

planes that results in a net tilt of the surface.  A literature search has failed to produce 

any publications that specifically identify dissimilar relaxation in orthogonal 

directions. 

Mooney et al. (1994) specifically treats the case of tilt for offcut toward the 

[101] direction and its effect on the modified Frank-Read relaxation mechanism.  Four 

slip systems are considered and denoted by MFR1-4 (shown schematically in Figure 

5.17).  The nucleation barrier and glide velocity of MFR3 and 4 are not affected by 

the misorientation, whilst it is increased for MFR2 and reduced for MFR1. 

 

 

Figure 5.17 – Schematic representation of the dislocation configurations for the four slip systems 

of the MFR mechanism.  A dislocation loop has two branches, one gliding on each of the two slip 
planes comprising the slip system.  The two branches have the same Burgers vector but different 

line directions.  Reproduced from a paper by Mooney et al. (1994). 
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It is also importantly noted that the two branches in each slip system are in all cases 

affected equally, and both branches of each slip system have glide velocities equal to 

one another.  In this case the imbalance between nucleation from MFR1 and MFR2 

allows the net tilt for reorientation of the surface. 

In the case of an offcut toward the (111) for each of the four slips systems 

each branch is affected differently as detailed by Mooney et al. (1994).  The 

nucleation barrier for the glide planes contributing to MFR1 are increased for (11-1) 

and unchanged for (-111); MFR2 are reduced for (111) and unchanged for (1-11); 

MFR3 are increased for (11-1) and unchanged for (1-11); MFR4 are reduced for (111) 

and unchanged for (-111). 

 

Figure 5.18 – Schematic diagram representing the Burgers vectors corresponding to four 
modified Frank-Read slips systems (MFR1-4), highlighting their relationships to one another and 

the (111) glide plane. 
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Overall MFR2 and 4 have a reduced nucleation barrier whilst MFR1 and 3 have an 

increased nucleation barrier, hence a net imbalance of tilt exists that allows the 

surface to be rotated away from the (111) plane back toward the (001). 

Along the [1-10] direction the nucleation barrier will be made lower and glide 

velocity higher on the (111) and opposite on the (11-1).  Whilst along the [110] 

direction the nucleation barrier and glide velocity remain unchanged and equal for 

(-111) and (1-11).  Strain relief is only provided by the misfit component of the 

dislocation projected on to the growth plane, supplying relaxation perpendicular to 

its line direction.  If MFR2 and 4 are favoured due to an average reduction in their 

nucleation barriers then the dislocation arm created along the [1-10] direction will 

glide more quickly reducing greater amounts of strain than the other perpendicular 

arm.  The opposite will of course be true for MFR1 and 3 but if these sources nucleate 

fewer dislocations then a balance may not be maintained resulting in a greater net 

relaxation along one orthogonal direction. 

 

 

Figure 5.19 – Schematic diagram illustrating the greater misfit lengths along orthogonal 
directions, with strain relief in a direction orthogonal to the misfit line direction represented by 

the hatched area. 
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This demonstrates that the greatest relaxation, assuming an imbalance in nucleation 

exists between MFR2 and 4 and MFR1 and 3, occurs in the direction of layer tilt as 

found in the X-ray analysis.  Nucleation by means other than multiplication would 

also preferably occur on the glide plane with lowest nucleation barrier. 

 

5.5.1 Ex-Situ Annealing 

The data obtained on the composition and relaxation of samples 75046 (850-

750ºC), 75048 (700-600ºC) and 75049 (850-650ºC Ramping) after ex-situ annealing 

is presented in Table 5.5 with orientation data presented in Table 5.6. 

 

 

75046 (30%) 

(850-750ºC) 

Annealed 

75048 (30%) 

(700-600ºC) 

Annealed 

75049 (30%) 

(850-650ºC Ramping) 

Annealed 

Comp. 

% 

Relaxation % 
Comp. 

% 

Relaxation % 
Comp. 

% 

Relaxation % 

Terrace Φ=0º Φ=90º Φ=0º Φ=90º Φ=0º Φ=90º 

10% 10 99 97 10 94 96 10 102 100 

20% 20 99 98 20 98 96 21 102 98 

30% 30 96 96 30 96 95 31 103 97 

Table 5.5 – X-ray composition and relaxation data for samples 75046 (30%, 850-750ºC, In-situ 

Anneal), 75048 (30%, 700-600ºC, In-situ Anneal) and 75049 (30%, 850-650ºC Ramping, In-situ 

Anneal) after annealing ex-situ at 900ºC for 15 hours.  Compositional error no more than ±0.5%, 

relaxation error up to ±5%. 

 

High temperature ex-situ anneal has made no significant difference to the 

overall relaxation of the previously measured structures and still appears to show 

greater relaxation in the direction of greatest omega ( ) separation (see Table 5.6).  

The greater than 100% relaxation displayed even in the uppermost layer by 75049 

(850-650ºC Ramping) highlights the experimental error in this measurement, though 

the data seems to suggest that it is more relaxed than either the higher or lower 
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temperature samples.  Temperature grading during the constant composition layer 

may have a positive impact upon layer relaxation.  The general direction in which 

relaxation is found to be greatest continues to relate to the direction with the greatest 

peak deviation in omega (ω). 

 

 

75046 (30%) 

(850-750ºC) 

Annealed 

75048 (30%) 

(700-600ºC) 

Annealed 

75049 (30%) 

(850-650ºC Ramping) 

Annealed 

Angle between 

Substrate and layer 

Angle between 

Substrate and layer 

Angle between 

Substrate and layer 

Terrace 
[004] 

Φ=0º 

[004] 

Φ=90º 

[004] 

Φ=0º 

[004] 

Φ=90º 

[004]  

Φ=0º 

[004]  

Φ=90º 

10% -0.02 -0.02 0.03 0.01 -0.01 -0.01 

20% -0.03 -0.02 0.04 0.02 -0.03 -0.01 

30% -0.06 -0.03 0.04 0.01 -0.06 -0.02 

Table 5.6 – Data collected of angular separation in omega between (004) planes in the silicon 

substrate and constant composition layers for samples 75046 (30%, 850-750ºC, In-situ Anneal), 

75048 (30%, 700-600ºC, In-situ Anneal) and 75049 (30%, 850-650ºC Ramping, In-situ Anneal) 

after annealing ex-situ at 900ºC for 15 hours. 

 

In an attempt to obtain more accurate values for relaxation and layer tilts a 

series of 12 individual omega ( ) omega-2theta ( 2 ) scans were performed on 

sample 75046 (30%, 850-750ºC, In-situ Anneal) that had been ex-situ annealed.  Each 

scan was performed around a previously identified layer peak, allowing the 

elimination of scanning areas that offer no useful data and scanning at a higher 

angular resolution than previously utilised.  Scanning around individual peaks is only 

possible once lower resolution maps have been completed and requires the sample to 

have not been disturbed.  The results are summarised in Table 5.7. 
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75046 (30%) (850-750ºC) 

Annealed 

Comp. 

% 

Relaxation % 
Angle between 

Substrate and layer 

Terrace Φ=0º Φ=90º 
[004] 

Φ=0º 

[004] 

Φ=90º 

10% 10 98 97 -0.01 -0.02 

20% 20 98 98 -0.03 -0.02 

30% 30 98 96 -0.07 -0.04 

Table 5.7 – X-ray composition, relaxation and angular (omega) separation data for sample 75046 

(30%, 850-750ºC, In-situ Anneal) obtained at higher angular resolution than previous scans.  

Compositional error no more than ±0.5%, relaxation error up to ±5%. 

 

Only marginal improvement in the accurate location of peak centres has been 

obtained resulting from poor peak definition. A reduction in signal noise would be 

beneficial but require far greater scan times.  The calculated values of relaxation and 

tilt compare closely to those in Table 5.5, still displaying a small difference between 

layer relaxations in orthogonal directions. 

The high resolution scans have revealed that the 30% layer peak is in fact 

composed of two peaks, closely spaced in omega ( ), being most clearly identifiable 

in the phi (Φ) = 0º scan and far less distinct for phi (Φ) = 90º.  A representative scan is 

presented in Figure 5.20.  This phenomenon indicates the presence of a mosaic 

structure within this layer (Fewster 1996).  A mosaic block is a discrete diffracting 

body that is connected to the underlying matrix by small angle grain boundaries, with 

the misorientation accommodated by a series of dislocations leaving no voids between 

the block and matrix (Fewster 2000).  Clearly a surface consisting of differently 

orientated domains will have implications on its suitability for device processing. 
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Figure 5.20 – High resolution omega ( ) omega-2theta ( 2 ) scan in the [004] direction from 

sample 75046 (30%, 850-750ºC, In-situ Anneal) ex-situ annealed with phi (Φ)=0º.  Crosses mark 

the central regions of the two distinct peak maxima. 
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5.6 Schimmel Defect Etching 

The surface threading density of a virtual substrate structure is an extremely 

important quantity.  The line threading density of threading dislocation pile-up is 

particularly important as this is far more likely to result in complete device failures.  

Defect etching was performed on all of the 30% and 40% virtual substrate samples 

using a standard Schimmel etchant. 

Samples 75046 (30%, 850-750ºC, In-situ Anneal), 75044 (30%, 800-725ºC 

Ramping, No Anneal), 75055 (30%, 825-725ºC Ramping, No Anneal) and 75043 

(40%, 800-700ºC Ramping, No Anneal) readily revealed a large number of easily 

identifiable and countable etch pits at an optical magnification of x10 after etching in 

the region of 1-5 minutes.  A compilation of the calculated threading densities along 

with the standard deviation derived from variation in threading counts is presented in 

Table 5.8. 

 

 75046 (30%) 75055 (30%) 75044 (30%) 75043 (40%) 

Threading 

Density (/cm
2
) 

2.0x10
5 

2.3x10
5
 1.9x10

5
 4.1x10

5
 

Standard 

Deviation (/cm
2
) 

6x10
3
 1x10

4
 8x10

3
 6x10

3
 

Table 5.8 – Table summarising threading dislocation densities for samples 75046 (30%, 850-

750ºC, In-situ Anneal), 75055 (30%, 825-725ºC Ramping, No Anneal), 75044 (30%, 800-725ºC 

Ramping, No Anneal) and 75043 (40%, 800-700ºC Ramping, No Anneal) calculated by counting 

surface etch pits, accompanied by standard deviations. 

 

The variation in thermal treatments applied between the 30% terrace graded 

virtual substrates shown in Table 5.8 has had little effect on the surface threading 

dislocation density but the addition of a further terrace grade, raising the terminating 

composition to 40%, has had the effect of doubling the threading density .  This large 

and undesirable rise points toward too few mobile threading dislocations, even though 
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the same amount of strain is relieved between the 20%-30% layers as between the 

30%-40% layers. 

Such an increase in threading density with terminating composition has also 

been found by Leitz et al. (2001) even though theoretically such a rise was not 

expected.  It is concluded that the increase with increasing composition is due to the 

presence of impediments to dislocation glide, specifically increasing misfit pile-up, 

and is thus related to threading dislocation pile-up.  For the case of a terrace graded 

structure however any strain fields due to misfit pile-up should be reset after each new 

terrace.  If the source of escalating surface threading density is indeed due to the 

presence of impediments, then perhaps some other source is responsible in this 

instance.  It is possible that the reduction in growth temperature, in line with silicon 

and germanium melting points, is too great and this is resulting in the need for 

additional dislocation nucleation to maintain adequate strain relief.  Alternatively 

perhaps the continual inclusion of particulate contaminants during MBE growth, 

discussed later, is having an effect. 

Comparison with the threading densities found in the low compositional 

regime is limited with regards to the fundamentally different underlying grading 

structure, although a general increasing trend with percentage is apparent, being 

almost exponential, Figure 5.22. 

The most important revelation defect etching has provided is the noticeable 

absence of any observed threading dislocation pile-up in the terrace graded layer 

structures.  After extensive etching only a few isolated instances of pile-up have been 

found, occurring either at the very edge of a wafer or as a result of in-situ particulate 

contamination.  Comparison between two terrace graded samples, an externally 
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sourced virtual substrate (grown by LEPECVD), as well as a linearly graded layer is 

show in Figure 5.21 serving to highlight this difference. 

 

 

Figure 5.21 – Optical micrographs of defect etched samples (a) 75046 30% terrace graded, (b) 

75043 40% terrace graded, (c) 76007 30% linearly graded and (d) 6443 40% linearly graded 

(externally grown by LEPECVD). 
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 6443 (40%) 76007 (30%) 

Threading 

Density (/cm
2
) 

1.7x10
6 

3.5x10
5 

Standard 

Deviation (/cm
2
) 

1x10
5
 8.6x10

3
 

Table 5.9 – Table containing threading dislocation densities for samples 6443 (externally grown 

LEPECVD) and 76007 (30%, Linearly Graded, 850-750ºC, In-situ Anneal) calculated by 
counting surface etch pits, accompanied by standard deviations. 

 

It seems evident that the Schimmel etch reveals the presence of pile-up more 

quickly than individual threading dislocations, demonstrated in Figure 5.21 (d).  The 

reduction and ultimately elimination of threading dislocation pile-up is a key aim of 

the terrace graded approach and these results provide a positive proof of principle at 

1 m layer thickness at least up to a composition of 40%. 

It is clear comparing the etch pit densities of the terrace graded 75046 (30%, 

850-750ºC, In-situ Anneal) and linearly graded 76007 (30%, Linearly Graded, 850-

750ºC, In-situ Anneal) that terrace grading results in a reduction of threading 

dislocation density by almost one half.  The surface of sample 76007 (30%, Linearly 

Graded, 850-750ºC, In-situ Anneal) in Figure 5.21 (c), shows instances of both pile-

up and pseudo pile-up at a level far less than the externally grown 40% virtual 

substrate shown in Figure 5.21 (d).  This is broadly consistent with a structure of 

lower composition although a higher density of pile-up had been anticipated.  A 

possible explanation for the low pile-up density observed may result from the 

heterogeneous nucleation of dislocations.  There is limited evidence to suggest the 

presence of numerous nucleation sources at the initial growth interface of 75046 in the 

cross-sectional TEM image of Figure 5.9 (a) which is likely to be common for 

structures grown during this work.  Operation of modified Frank-Read multiplication 

sources are known to require clean growth conditions to efficiently operate so that 
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dislocation pinning does not occur too closely together, as discussed by 

LeGoues et al. (1992).  In this instance initial defect source separations of around 

1600 nm are observed (Figure 5.9 (a)) but could be far closer owing to the limited 

sample thickness observed (probably less than 300 nm in depth), and are close to the 

minimum distances between pinning locations calculated by LeGoues (1992).  If these 

assumptions are correct then intentional seeding of a wafer surface may provide a 

reduction in pile-up density for both linear and terrace graded structures. 

 

5.6.1 Exceptionally Low Threading Dislocation Densities 

The 30% samples grown at lower temperature, 75048 (700-600ºC, In-situ 

Anneal) and 75049 (850-650ºC Ramping, In-situ Anneal) did not reveal a countable 

number of etch pits at x10 magnification, with or without interference contrast.  This 

was most unusual implying a defect density ≤ 10
3
/cm

2
.  The increasing density of 

threading dislocations between high and low temperature samples is presented 

graphically in Figure 5.22. 

A trend seems to exist between the high growth temperature samples and if a 

similar trend is assumed to exist between the low temperature samples then a 

threading density of ~3x10
3
 cm

-2
 would be expected for sample 75048 (30%, 700-

600ºC, In-situ Anneal).  This translates to the appearance of on average 6 threading 

dislocations per micrograph image at x10 magnification, a level that would be clearly 

identifiable.  Repeated etching confirmed dissolution of the samples surface by 

consistently revealing what is believed to be the first underlying dislocation network 

after 10-12 minutes in solution (see Figure 5.24 for example).  Further more, etching 

of a wafer edge piece revealed evidence of isolated pile-up, shown in Figure 5.23, but 
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did seem to indicate a slower rate of reveal in comparison to structures grown at 

higher temperature. 
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Figure 5.22 – Graph comparing the surface threading dislocation densities of terrace graded 
virtual substrates grown from high temperature (850ºC) and low temperature (700ºC). 

 

Etching was also repeated with a modified Schimmel etch (Werner et al. 

2004), that allows a more rapid defect reveal.  As a control, the modified Schimmel 

etch was tested on sample 75046 (30%, 850-750ºC, In-situ Anneal) revealing the 

same number of etch pits as the conventional etch.  This modified etch made no 

difference to the number of countable etch pits on either 75048 (30%, 700-600ºC, In-

situ Anneal) or 75049 (30%, 850-650ºC Ramping, In-situ Anneal).  All of the 

available evidence suggests that the surface threading densities of the lower growth 

temperature samples are ≤ 103/cm2 and is a significant result. 
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Figure 5.23 – Optical micrograph of defect etched sample 75048.  The image was taken in the 

bright field without interference contrast at x50 magnification.  The oval indicates the threading 

dislocation pile-up. 

 

5.6.2 Ex-Situ Annealing 

Schimmel etching is now utilised to explore the effect of a high temperature 

ex-situ anneal on the surface threading dislocation density of 75046 (850-750ºC), 

75048 (700-600ºC) and 75049 (850-650ºC Ramping) (annealed pieces ~10 mm x 

10 mm in size).  It is reasonable to anticipate two possible outcomes of annealing at a 

temperature in excess of that deployed during growth, resulting in either an increased 

or unchanged surface threading density.  A highly relaxed layer may achieve 

additional relaxation by extension of existing mobile threading dislocations whilst 

layers with greater residual strain are unlikely to contain sufficient numbers of mobile 

threading dislocations to accommodate further relaxation without additional 

dislocation nucleation.  In each case, just as prior to ex-situ annealing a large number 

of closely spaced etch pits were revealed after approximately 12 minutes of etching, 

(30%, 700-600ºC, In-situ Anneal) 
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believed to indicate intersection of the top most misfit dislocation network, indicating 

that the overall etch rate had not been significantly altered.  Just as prior to ex-situ 

annealing the 30% samples 75048 (700-600ºC) and 75049 (850-650ºC Ramping) 

displayed an unchanged threading density ≤ 1x10
3
/cm

2
.  A surprising difference was 

found between annealed and as-grown pieces of 75046 (30%, 850-750ºC), with 

annealed pieces showing a significant reduction in threading dislocation density .  

Time lapse images showing the progression of etch pit formation, highlighting the 

difference between as-grown and annealed pieces of 75046 (30%, 850-750ºC) are 

given in Figure 5.24. 

Careful examination of sequential images in Figure 5.24 (b) appears to 

indicate the persistence of only a small number of objects.  If these objects are taken 

to be threading dislocations then a massive reduction in density to approximately 

5x10
3
/cm

2
 (from 2x10

5
/cm

2
) is indicated (around 10 objects in field of view at x10 

magnification), still with absolutely no observed threading dislocation pile-up.  

Contamination of the sample surface during annealing could be proposed as 

responsible for the absence of etch pit formation, however given that etch pits are 

quickly formed after 12 minutes of etching (repeatedly), this explanation would 

appear flawed. 

Kissinger et al. (1995) demonstrated that high temperature annealing at 

1050ºC under a hydrogen ambient can yield a dramatic reduction in threading 

dislocation density for a step graded layer structure although their proposal that the 

dramatic reduction is due simply to the glide of dislocations across the entire wafer to 

the edge seems unlikely due to the dependence of dislocation glide velocity on 

remaining mismatch strain (equation (2.3)). 
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(a) 75046 (30%, 850-750ºC, In-situ Anneal, Terrace Graded) 

 

(b) 75046 (30%, 850-750ºC, In-situ Anneal, Terrace Graded) with ex-situ anneal 

Figure 5.24 – Time lapse images showing etch pit formation after continued Schimmel etching (a) 
75046 as-grown (b) 75046 ex-situ anneal at 900ºC for 15 hours. 
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Alternatively and intriguingly some form of enhanced dislocation movement 

and annihilation may have occurred.  Such an occurrence has been postulated in other 

material systems and is proposed to occur through the climb of dislocations, 

facilitated by an increased vacancy (or possibly interstitial) concentration (Arias et al. 

1991).  Ahn et al. (1989) have observed vacancy injection due simply to the presence 

of an Si/SiO2 interface when annealed under Argon (inert environment) at 1100ºC.  It 

is believed that the loss of SiO from the oxide surface leads to the movement of Si or 

SiO toward the top of the oxide layer resulting in vacancy injection (Dunham 1992).  

This mechanism is most prolific for thinner oxide layers such as the native oxide 

formed on the surface of the samples studied in this instance.  Unfortunately the 

dependency of this vacancy injection mechanism upon anneal temperature has not 

been studied and so the operation of such a mechanism in the current work is 

uncertain.  Stach et al. (1998) have additionally found that the presence of an oxide 

surface led to a dislocation glide velocity that was 3 times greater than the same bare 

reconstructed silicon surface. 

An ex-situ anneal was provided to the externally grown linearly graded sample 

6443 (40%, Linearly Graded) and the results are again presented as a series of time 

lapse images in Figure 5.25.  The as-grown 6443 (40%, Linearly Graded) clearly 

reveals a high threading dislocation density as well as substantial dislocation pile-up.  

In contrast to Figure 5.24 (b) the images in Figure 5.25 (b) clearly show the continued 

presence of threading dislocations in the main field.  The presence of pile-up is less 

clear although still perceivable, apparently disguised by a rapidly roughening surface.  

This sequence of etching would again appear to support the notion that the role of the 

Schimmel etch has not been dramatically affected, even if the morphological 

evolution of the surface of 6443 (40%, Linearly Graded) has been altered. 
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(a) 6443 (40%, Linearly Graded) Grown Externally 

 

(b) 6443 (40%, Linearly Graded) Grown Externally with ex-situ anneal 

Figure 5.25 – Time lapse images showing etch pit formation after continued Schimmel etching (a) 
6443 as-grown (b) 6443 ex-situ anneal at 900ºC for 15 hours.  An arrow indicates a region of 

threading dislocation pile-up. 
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5.7 Summary 

The production of virtual substrates at compositions of 30% and 40% with no 

measurable pile-up is a most significant breakthrough for terrace grading as is the 

production of 30% virtual substrates with threading dislocation densities ≤ 103/cm2
.  

The significant reduction in threading dislocation density subsequent to high 

temperature annealing for an extended period is also important.  It is clear from X-ray 

analysis that all of the 1 m layer structures undergoing in-situ annealing have 

achieved a significant level of relaxation throughout, and is likely the same for those 

that were not in-situ annealed judging from cross-sectional TEM and etch pit analysis. 

Surface threading dislocation densities for the best as grown 30% structures 

are ≤ 10
3
/cm

2
 which compared to one of the best conventional linearly graded 

comparisons at 35% of 3x10
4
/cm

2
 (Rosenblad et al. 2000) is an order of magnitude 

lower.  Although not mentioned, pile-up in that instance would also most certainly 

have been present as it was grown using the same LEPECVD (low energy plasma 

enhanced chemical vapour deposition) technique as the 40% structure 6443 (40%, 

Linearly Graded) and is considered here to be a greater detriment than individual 

threading dislocations.  It is also worth reiterating that ex-situ annealing has been 

found to result in a measurable drop in threading density of almost two orders of 

magnitude in the case of 75046 (30%, 850-750ºC). 

The surface roughness measured for the high and low temperature 30% in-situ 

annealed samples (~2-3 nm RMS) were comparable with previously published works.  

Ex-situ annealing had little effect on the RMS surface roughness of either 75046 

(30%, 850-750ºC) or 75048 (30%, 700-600ºC).  The surface-cross hatching in this 

compositional regime has a more usual appearance, almost certainly as a result of 

achieving the intended grading. 



Medium Composition Regime (30-40%) 

 

157 

The unexpectedly low threading dislocation pile-up density present on the 

surface of the linearly graded 30% structure (Figure 5.21 (c)) together with the cross-

sectional TEM observations of dislocation formation at the initial growth interface 

(Figure 5.9 (a)) may suggest that surface contamination, believed to be carbon, could 

have a significant effect upon dislocation formation.  Houghton et al. (1995) found a 

linear dependence between surface particulate density and misfit dislocation 

nucleation rate, but did not study the effect of an initially high nucleation source on 

the threading dislocation pile-up density resulting from virtual substrate growth and 

further work appears warranted in this area.  To this end a series of linear or terrace 

graded layers should be grown upon chemically cleaned substrates and comparison 

made between the same structures grown upon substrates where controlled amounts of 

carbon have been purposely deposited (seeded).  I speculate that a seeded layer may 

be beneficial in reducing threading dislocation pile-up in linearly graded samples and 

could even be of benefit in terrace grading and may explain why in this instance the 

terrace graded structure showed only a two fold improvement over the linearly graded 

comparison structure. 

A trend of increasing field threading density with final layer composition is 

apparent from Figure 5.22 but is not expected to occur for terrace graded structures.  

A similar trend of increasing field threading dislocation density has been observed by 

Leitz et al. (2001) between 30% and 40% virtual substrates although it was 

accompanied by an increasing pile-up density to which it was attributed.  In the 

present work the absence of observable surface threading dislocation pile-up indicates 

that few instances of large misfit pile-ups exist, as intended for terrace graded growth.  

The rising field threading dislocation density is thus likely to be a consequence of 
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either too great a reduction in growth temperature, reduced with increasing 

composition to maintain a planar growth surface or contamination. 

A higher threading density at lower temperatures has been observed by the 

authors Leitz et al. (2001) and Bogumilowicz et al. (2005) due to the necessity for a 

greater misfit density to compensate for the reduced threading dislocation glide 

velocity.  However, the current work contradicts these findings showing far lower 

threading dislocation densities at lower growth temperatures.  As discussed in chapter 

4 the presence of point defects formed from ion bombardment, not removed during 

growth, may be responsible for dislocation annihilation upon annealing.  A further 

possible source of point defects highlighted by Fitzgerald et al. (1997) is the 

formation of jogs by the interaction between moving glissile dislocations; once 

formed jogs can only move though (climb) the generation of point defects.  Repeated 

growth of lower temperature structures without the final in-situ anneal step may shed 

light upon this situation and is left as further work. 
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Chapter 6 
 

6 High Composition Regime (60-100%) 
 

The virtual substrate structures fabricated and analysed in this high 

composition regime are ultimately to provide (i) a pure germanium platform upon a 

silicon substrate that could then be utilised for integration of III-V optical devices and 

(ii) to provide a platform for the fabrication of strained or relaxed bulk germanium 

epitaxial layers (e.g. for transistor manufacture).  According to Fitzgerald et al. (1997) 

the production of usable III-V light emitting structures requires a surface threading 

dislocation density between 10
4
 and 10

6
/cm

2
 depending on application and is more 

stringent than that for majority carrier devices such as MOSFET’s.  With the need for 

high-k dielectrics approaching in standard silicon MOSFET devices, it may be 

advantageous to move directly toward germanium channel devices with an exotic 

high-k dielectric. 

Current state of the art virtual substrates with germanium termination have 

been manufactured by Currie et al. (1998) through conventional linear grading at a 

rate of 10%/ m and at descending temperature (750-500ºC).  A CMP (chemical 

mechanical polishing) stage is incorporated midway to reduce surface roughening and 

threading pile-up density.  This yields a 100% germanium virtual substrate with a 

surface threading density of 2.1x10
6
/cm

2
 and a surface roughness of 24 nm.  This 

compares to a more traditional linearly graded structure grown at 900-800ºC without 

interruption having a surface dislocation density ~1x10
7
/cm

2
 and surface roughness of 

210 nm (Fitzgerald et al. 1997). 

Kwon et al. (2005) have already demonstrated the fabrication of a working 

AlGaInP light emitting diode structure upon a germanium virtual substrate (Currie et 
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al. 1998) and even found improvements over structures grown on existing III-V based 

substrates.  GaAs epitaxy has additionally been demonstrated by Andre et al. (2003) 

upon a virtual substrate structure (Currie et al. 1998). 

More exotic structures and methods have been attempted by various authors in 

the production of virtual substrates with a pure germanium termination that also 

achieve threading density of ~10
6
/cm

2
.  A reduction of surface RMS roughness to 

only 3.2 nm (3x10
6
/cm

2
) has been demonstrated by Luo et al. (2003) by combining 

low temperature growth, annealing and large step changes in composition.  An 

intriguing approach has been taken by Li et al. (2004) in the formation of a 

germanium layer upon an ultra thin SiO2 layer through which it can “touch down” 

acting as a nanoscale seed for germanium over-layer growth.  This resulted in a defect 

density of 2x10
6
/cm

2
, though unfortunately no roughness data was included.  

Promising results have been obtained by Nayfeh et al. (2004) through high 

temperature annealing under a hydrogen atmosphere of CVD germanium material, 

grown directly onto a silicon wafer surface.  A surface roughness of only 3 nm has 

been demonstrated for a 200 nm thick germanium layer; no information on surface 

threading density has been published. 

Having established that terrace grading does have a positive impact on the 

structural quality of a virtual substrate, this investigation is extended toward a pure 

germanium terminating composition.  The increasing length of time required in 

growing comparable virtual substrate structures with high compositions, combined 

with a greater likelihood of MBE growth system error at some point during growth, 

result in a limited number of sample structures.  Presented here are three virtual 

substrate structures, two with terminating compositions of 60% and one reaching pure 

germanium. 
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6.1 Growth Parameters 

The initial 60% terrace graded virtual substrate is similar in structure to layers 

grown in the preceding composition regimes, consisting of a 1 m graded layer 

followed by a 1 m layer of constant composition that is repeated every 10%, 75056 

(60%, 1 m/1 m, 825-650ºC), Figure 6.1. 

 

 

Figure 6.1 – Schematic representation of 60% virtual substrate specifications for 75051 (60%, 

500 nm/1 m, 825-650ºC) and 75056 (60%, 1 m/1 m, 825-650ºC). 

 

The growth temperature was held constant throughout the graded region and through 

half of the constant composition region before being linearly ramped down over the 

later half.  The initial temperature drop was chosen to be 50ºC compared to only 25ºC 
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in all subsequent ramps, aiming to achieve a high degree of relaxation in the bottom 

most layers.  Silicon markers layers were included at the top of each buried constant 

composition layer to show any roughening of the surface should this occur. 

An additional 60% virtual substrate was grown, 75051 (60%, 500 nm/1 m, 

825-650ºC), identical in all respects to the previous 60% except that after the initial 

graded layer (0-10%) all subsequent graded layers were reduced in thickness to only 

500 nm, see Figure 6.1.  This was done to investigate both the smoothing effect of the 

overlying layers and to determine whether the graded layer thickness could be 

reduced without too great an impact on structural quality. 

A first attempt was made at a terrace graded virtual substrate with a 100% 

germanium terminating composition using thick 1 m layers, 76009 (100%, 

1 m/1 m, 825-550ºC).  The underlying structure is identical to that of 75056 (60%, 

1 m/1 m, 825-650ºC) with an additional four terrace graded layers, culminating at a 

final terminating composition of 100% germanium at a growth temperature of 550ºC.  

Due to the extremely long growth time (approximately 70 hour’s) the silicon charge 

became heavily depleted at its centre and required melting back, described in chapter 

3 (section 3.2.1.4).  Growth was interrupted during the silicon capping layer at a 

composition of 50%, the electron evaporators ramped down and the wafer transferred 

under UHV conditions to the preparation chamber where it was isolated.  A melt-back 

was performed and the wafer subsequently returned to the growth chamber.  Growth 

restarted after the temperature had been raised to 675ºC and the structure completed.  

The structure is shown schematically in Figure 6.2. 
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Figure 6.2 – Schematic representation of 60% virtual substrate specifications for 76009 (100%, 

1 m/1 m, 825-550ºC). 
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6.2 Nomarski Interference Imaging 

A representative selection of images obtained optically using Nomarski 

interference imaging of samples 75056 (60%, 1 m/1 m, 825-650ºC), 75051 (60%, 

500 nm/1 m, 825-650ºC) and 76009 (100%, 1 m/1 m, 825-550ºC) are given in 

Figure 6.3. 

A striking difference in image contrast and cross-hatch density is obvious 

between the two 60% structures.  The reduction in graded layer thickness of sample 

75051 (60%, 500 nm/1 m, 825-650ºC) has clearly resulted in cross-hatch with a 

reduced period of undulation and can be attributed to the greatly reduced spatial 

separation of misfit dislocations within the graded region.  The increased contrast 

additionally indicates the onset of surface roughening, confirmed by cross-sectional 

TEM analysis (section 6.3) and demonstrates that a grading rate of 20%/ m is too 

great at this growth temperature. 

At lower magnification the cross-hatch displayed by 75056 (60%, 1 m/1 m, 

825-650ºC) appears similar to the 30% and 40% surfaces examined in chapter 5, 

Figure 6.3 (a).  At higher magnifications flat topped features are visible in Figure 6.3 

(b) and appear similar in appearance to features seen in the low composition regime 

attributed to non-linear grading.  Here X-ray analysis indicates that the change in 

composition between subsequent terraces is less than intended, deviating most greatly 

for higher compositions, though the grading appears to be linear.  It would appear that 

adatom incorporation has begun to occur preferentially outward from raised surface 

features, primarily at the intersection between prominent hatches.  It is unclear why 

such structures have not been reported in published literature in this area, though it is 

possible that these features may be unique to terrace grading. 
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(a)      (b) 
 

   
(c)      (d) 
 

   
(e)      (f) 

Figure 6.3 – Nomarski interference images taken at x50 and x100 magnification.  (a) and (b) 
sample 75056, (b) and (c) sample 75051, (e) and (f) sample 76009. 

 

An important observation evident on the surface of both 60% virtual substrates 

at low magnification is the high level of particulate debris, especially on sample 

75056 (60%, 1 m/1 m, 825-650ºC) and may have an appreciable affect on the 

means and level of layer relaxation.  The source of this particulate debris is clearly 

within the SS-MBE growth chamber.  Material not epitaxially deposited upon a 

(60%, 1 m/1 m, 825-650ºC) (60%, 1 m/1 m, 825-650ºC) 

(60%, 500nm/1 m, 825-650ºC) (60%, 500nm/1 m, 825-650ºC) 

(100%, 1 m/1 m, 825-550ºC) (100%, 1 m/1 m, 825-550ºC) 



High Composition Regime (60-100%) 

 

166 

wafers surface coats the inside of the growth chamber, in some cases forming fine 

whiskers of material that may be electrostatically attracted to the wafer surface.  At 

over 9-12 m of growth, particulate contamination is almost inevitable, especially 

toward the end of a growth series after deposition of many hundreds of microns of 

material, see Figure 6.4. 

 

 

Figure 6.4 – Nomarski interference image of sample 75056 taken at x10 magnification.  

Particulate contamination is highlighted with white rings. 

 

The surface of 76009 (100%, 1 m/1 m, 825-550ºC), Figure 6.3 (e and f), is 

very unusual in comparison to the cross-hatched surface on virtual substrates of lower 

terminating surface concentrations, showing a weak cross-hatch pattern consisting of 

many large flat interconnected island regions.  The greater contrast of these surface 

features indicate that the surface may have roughened to form islands which is 

supported by cross-sectional TEM and AFM.  The origin of this surface morphology 

(60%, 1 m/1 m, 825-650ºC) 
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may be the result of a large jump in composition experienced by the capping 

germanium layer as revealed by X-ray analysis (section 6.5).  The apparent 

coalescence of islands to form a continuous film surface has been reported by Sheldon 

et al. (1985) and may explain the merging appearance.  The density of particulate 

contamination on the surface of 76009 (100%, 1 m/1 m, 825-550ºC) appears lower 

than for 75056 (60%, 1 m/1 m, 825-650ºC) and is likely the result of growth in a 

system in a cleaner state. 

 

6.3 Cross-Sectional Transmission Electron Microscopy (XTEM) 

The dislocation network within 75051 (60%, 500 nm/1 m, 825-650ºC) is 

highlighted using the (220) diffraction condition and presented in Figure 6.5 (a).  

Whilst the initially thick graded region contains a well separated dislocation network, 

dislocations within subsequent regions are more closely spaced as intended.  The lack 

of visible dislocations spanning between graded regions demonstrates that a high 

degree of relaxation has been maintained throughout growth.  It is clear from the 

upper surface that macroscopic surface roughening has taken place, reinforcing the 

optical surface observations made previously. 

Examination of 75051 (60%, 500 nm/1 m, 825-650ºC) in the (004) two beam 

diffraction condition proves enlightening, with the 5 nm silicon spacer layers serving 

there purpose in this instance, Figure 6.5 (b).  The silicon layer placed at the top of 

each buried constant composition layer reveals the morphology of the surface at the 

instance it was buried, here roughening of the surface layers commences around the 

30% region becoming progressively roughened.  As suspected a graded layer 

thickness of only 500 nm results in elastic deformation of the surface and a reduction 

in growth temperature would be required in order to suppress this surface roughening. 
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EDS measurements of layer composition along with thickness measurements 

of each terrace graded layer are presented in Table 6.1.  The layer compositions are 

close to that intended as are the layer thicknesses. 

 

 10% 20% 30% 40% 50% 60% 

Composition 9% 20% 32% 42% 50% 56% 

Thickness  1.9 m 1.5 m 1.5 m 1.5 m 1.6 m 1.6 m 

Table 6.1 – EDS composition data for 75051 (60%, 500 nm/1 m, 825-650ºC) as well as thickness 

measurements made from cross-sectional TEM images.  Compositional error of ±10% due to 

thickness of sample.  Combined layer thickness ± 5%. 

 

In contrast to the above, cross-sectional TEM images of sample 75056 (60%, 

1 m/1 m, 825-650ºC) show no signs of macroscopic surface roughening as evident 

in Figure 6.6 and Figure 6.7.  The lack of obvious roughening is a good indication that 

grading at 10%/ m at the chosen growth temperature allows a high degree of 

relaxation at a rate great enough to prevent strain build-up.  It should be noted that 

signs of large scale dislocation multiplication are much less evident than in 

comparable published structures (LeGoues et al. 1993;  Hartmann et al. 2000; 

Rosenblad et al. 2000).  The upper two graded regions (40-50% and 50-60%) appear 

to contain fewer dislocations than preceding layers (Figure 6.6), indicating either a 

lower level of relaxation or a reduced compositional difference between the bounding 

constant composition layers.  EDS analysis of this sample proves enlightening, 

supporting the latter case, Table 6.2. 
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 10% 20% 30% 40% 50% 60% 

Composition 9% 18% 27% 37% 44% 48% 

Thickness  2.0 m 2.0 m 2.0 m 2.1 m 2.2 m 2.4 m 

Calculated 

Composition 
10% 20% 30% 40% 45% 50% 

Table 6.2 – EDS composition data for 75056 (60%, 1 m/1 m, 825-650ºC) as well as thickness 

measurement made from cross-sectional TEM images.  A calculated composition based upon 

additional layer thickness being solely attributed to excess silicon deposition is also presented.  

Compositional error of ±10% due to thickness of sample.  Combined layer thickness ± 5%. 

 

There is an increasing discrepancy between the intended composition and that 

achieved throughout the structure.  This discrepancy can almost certainly be attributed 

to the flux monitoring system utilised in the V90S growth system.  Growth of 75056 

(60%, 1 m/1 m, 825-650ºC) required a total deposition of more than 12 m of 

material, far in excess of the limit envisioned for such a system.  The thickness of 

each terrace graded layer has been determined through measurement of the distance 

between silicon spacer layers (Figure 6.7) and for lower layers by measurement 

between the bottoms of dislocation networks (Figure 6.6) with the results presented in 

Table 6.2. 

Calculations of layer composition assuming the observed increase in layer 

thickness is solely attributable to excess silicon deposition are also presented in Table 

6.2 and the trend observed closely matches these calculated values.  The sharp 

deviation visible in the top two layers illustrates how the flux monitoring system is 

increasingly vulnerable to over compensation as the charge is depleted.  Separate 

work has been undertaken by the author to correct the geometric problems that appear 

to be the route cause of such situations by resituating the internal flux monitoring 

heads directly above the electron evaporators.  An overview of this work was given in 

chapter 3 (section 3.2). 
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The cross-sectional TEM image of 76009 (100%, 1 m/1 m, 825-550ºC), 

presented in Figure 6.8 shows a variety of unique and interesting features.  Quite 

clearly a dramatic event has occurred after completion of the 50% constant 

composition layer and corresponds to the interruption in growth necessary to perform 

a melt-back of the silicon electron beam evaporator charge.  The re-growth surface 

has produced a cascading increase in threading dislocation density that is clearly 

visible in the cross-sectional TEM image (Figure 6.9).  It is not clear why the location 

of the dislocation cascade remains fixed through successive layers (Figure 6.9) or why 

the dislocation density continues to rise with continued growth.  The source of 

contamination on the re-growth surface was accrued presumably during transfer 

between chambers.  An oxide layer may have formed, had this been anticipated a high 

temperature clean could have been performed before growth recommenced at 50%.  

EDS analysis of 76009 (100%, 1 m/1 m, 825-550ºC) is presented in Table 6.3. 

 

 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

76009 

(100%) 
10% 20% 30% 41% 49% 62% 68% 76% 81% 97% 

Table 6.3 – EDS compositional data for 76009 (100%, 1 m/1 m, 825 550ºC).  Compositional 

error of ±10% due to thickness of the sample. 

 

The presence of a large number of threading dislocations highlights an 

interesting event occurring across the final constant composition layer.  The number 

of threading dislocations penetrating through the final layer to the surface has been 

dramatically reduced in comparison to the underlying layers, Figure 6.8, Figure 6.9 

and Figure 6.10. 
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Figure 6.8 – Cross-sectional TEM image of sample 76009 in the (220) two beam diffraction 
condition highlighting dislocations within the structure.  Arrows indicate the structures surface. 

 

No structural difference had been intended for this later layer but EDS composition 

measurements (Table 6.3) show that a large change in composition did occur between 

the final two constant composition layers.  More informative is the X-ray analysis that 

indicates a large compositional jump between the final graded and constant 

(100%, 1 m/1 m, 825-550ºC) 
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composition layer.  A detailed explanation of the compositional deviation is given in 

section 6.5. 

 

 

Figure 6.9 – Cross-sectional TEM image of upper structure of sample 76009 in the (220) two 

beam diffraction condition, highlighting dislocations within the layers.  A cascade of dislocations 

is initiated at the upper interface of the 50% constant composition layer.  The upper arrows 

indicate the structures surface and the lower arrows the re-growth interface (50%). 

 

Yang et al. (2004) have found an almost identical filtering effect when 

incorporating a step change in a virtual substrate structure.  It was found that a critical 

compositional change was required for this effect to occur.  The reduction or blocking 

of dislocations was considered to be the result of dislocation bending due to the stress 

field at the interface.  Dislocation blocking could be of enormous benefit if such an 

(100%, 1 m/1 m, 825-550ºC) 
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effect were to exist at a lower threading density; it is possible that such a reduction 

may only occur for the confinement of a very large number of dislocations at a single 

interface.  The case of lower threading dislocation densities, not observable in cross-

sectional TEM, is not considered by Yang et al. (2004) with further investigation 

warranted for this regime. 

 

 

Figure 6.10 – Cross-sectional TEM image of upper structure of sample 76009 in the (220) two 

beam diffraction condition highlighting dislocations within the layers.  A substantial reduction in 

dislocation density is evident between the upper interface of the final graded region and the 

overlaying germanium cap. 

 

 

 

 

 

 

(100%, 1 m/1 m, 825-550ºC) 
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6.4 Atomic Force Microscopy (AFM) 

Contact mode atomic force measurements were conducted on all of the high 

composition samples.  All of the height profiles presented in this section have 

undergone 3
rd

 order XY plane fit post processing. 

The soft rounded appearance of the hatches on the surface of 75051, revealed 

by AFM in Figure 6.11, suggest that the grading rate of 20%/ m at the growth 

temperatures utilised has resulted in a 3-dimensional roughening of the surface and 

that the presence of 1 m constant composition layers has had little or no planarising 

effect. 

 

 (a)  (b) 

Figure 6.11 – Atomic force height profile scans of 75051 over an area of (a) 20 m x 20 m (b) 

10 m x 10 m. 

 

Optical imaging of 75056 (60%, 1 m/1 m, 825-650ºC) suggested that an 

unusual surface morphology had developed and is corroborated by the AFM images 

presented in Figure 6.12 that reveal a highly detailed and unusual cross-hatch 

structure.  Flat topped islands are arranged following a cross-hatch pattern each 

bounded by multiple steps, larger than that of a single atomic step, ranging from 

(60%, 500 nm/1 m, 825-650ºC) (60%, 500nm/1 m, 825-650ºC) 
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around 2-5 nm and diminishing in size away from the upper surface.  X-ray and EDS 

analysis reveal that above the 40% region the grading rate effectively drops reaching a 

final terminating composition of only 50% with no other significant anomalies 

evident.  There are no reports of comparable surface topology in the literature. 

 

 (a)  (b) 

Figure 6.12 – Atomic force height profile scans of 75056 over an area of (a) 20 m x 20 m (b) 

10 m x 10 m. 

 

The surface of the 100% sample appears to consist of numerous multi-level 

islands loosely arranged in a cross-hatch pattern, see Figure 6.13.  The large height 

variation between surface features could indicate that the structure has undergone a 

transition from layer-by-layer growth toward 3-D islanding or it may simply represent 

an evolution of the 60% surface structure.  Interestingly each of the apparent islands 

remains flat topped.  X-ray analysis (section 6.5) shows that the final constant 

composition layer experienced a large jump in composition (~18%) a result of 

incomplete compositional grading in the final graded region and could have had a 

significant effect upon the surface morphology.  The high defect density seen in cross-

sectional TEM could also have played a role. 

(60%, 1 m/1 m, 825-650ºC) (60%, 1 m/1 m, 825-650ºC) 
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 (a)  (b) 

Figure 6.13 – Atomic force height profile scans of sample 76009 over an area of (a) 40 m x 

40 m and (b) 20 m x 20 m. 

 

Tiny features are visible on the surface of each plateau in Figure 6.13 (b), are 

perhaps silicon clusters sourced from the germanium flux that has been identified as 

containing around 1% silicon.  The formation of silicon clusters on a bulk germanium 

surface is theoretically explicable because of the lower free energy of the germanium 

surface; silicon growth upon bulk germanium would be expected to follow the 

Volmer-Weber growth mode (chapter 2).  Wang et al. (2004) have observed the 

formation of pyramidal 3D silicon clusters upon bare Ge (001) surfaces after 

deposition of several monolayers of silicon.  More unusual is evidence of a raised 

perimeter around the edge of each of the plateaus, perhaps formed from silicon that 

has migrated out toward the edge becoming trapped at this location.  Far greater study 

of this sample will be required to obtain a clearer understanding of these surface 

features, though such features would likely not be present if the layer had grown as 

intended. 

Surface roughness measurements obtained from the AFM images are 

presented in Table 6.4.  Caution should taken when making comparisons with the 

(100%, 1 m/1 m, 825-550ºC) (100%, 1 m/1 m, 825-550ºC) 
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RMS roughness measurements obtained for these samples as the AFM tip may have 

been unable to follow these abrupt changes precisely.  These surfaces all share 

comparatively high levels of roughness and would require CMP before they could be 

used as suitable platforms for device processing. 

 

 
75051 (60%) 
500 nm/1 m, 

825-650ºC 

75056 (60%) 
1 m/1 m, 

825-650ºC 

76009 (100%) 
1 m/1 m, 

825-550ºC 

RMS Roughness 14 nm ± 2 nm 8 nm ± 2 nm 13 nm ± 2 nm 

Height Range 90 nm ± 15 nm 50 nm ± 15 nm 105 nm ± 15 nm 

Table 6.4 – RMS surface roughness and height range measurements determined from AFM 

images of samples 75051 (60%, 500 nm/1 m, 825-650ºC), 75056 (60%, 1 m/1 m, 825-650ºC) 

and 76009 (100%, 1 m/1 m, 825-550ºC). 

 

 

6.5 High Resolution X-ray Diffraction 

Two sets of reciprocal lattice maps along the [004] and [224] directions have 

been taken with 90º rotations in phi (Φ).  The determinations of terrace layer 

concentration and relaxation for samples 75056 (60%, 1 m/1 m, 825-650ºC) and 

76009 (100%, 1 m/1 m, 825-550ºC) made from these measurements are presented 

in Table 6.5.  The determination of layer composition for the 60% sample 75056 

(1 m/1 m) agrees well with EDS measurements presented previously, showing that 

at 40% close agreement with the intended structure has been achieved.  It is clear that 

the uppermost constant composition layer is less relaxed than the layer beneath which 

corroborates cross-sectional TEM observations of fewer dislocations in the top graded 

layer.  An increase of only 5% in composition from the previously well relaxed layer 

results in a greater critical thickness and ultimately in less relaxation, this can be seen 

in Figure 6.14 (b). 
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The apparent trend of gradual increase in relaxation seen in Table 6.5 is unexpected, 

with the addition of overlying layers unrelaxed strain should preferentially be relieved 

in lower layers leaving them more relaxed. 

 

 

75056 (60%), 

1 m/1 m, 825-650ºC 

76009 (100%) 

1 m/1 m, 825-550ºC 

Comp. 

% 

Relaxation % 
Comp. 

% 

Relaxation % 

Terrace Φ=0º Φ=90º Φ=0º Φ=90º 

10% 10 94 95 10 99 94 

20% 20 95 96 20 96 95 

30% 28 96 97 30 98 96 

40% 37 97 98 39 100 97 

50% 44 99 99 46 102 98 

60% 49 96 96 60 100 97 

70% - - - 66 100 98 

80% - - - 76 101 99 

90% - - - 83 102 100 

100% - - - 99 103 101 

Table 6.5 – X-ray composition and relaxation data for samples 75056 (60%, 1 m/1 m, 

825-650ºC) and 76009 (100%, 1 m/1 m, 825-550ºC).  Compositional error no more than ±0.5%, 

relaxation error ±5%. 

 

The angles between substrate and subsequent epitaxial layers in 75056 (60%, 

1 m/1 m, 825-650ºC) are found to be equal in magnitude but opposite in sign 

following a 90º rotation in phi (Φ) and reach a maximum deviation of 0.04º in omega 

( ).  This differs from previous results in the medium composition regime in which 

one direction generally exhibited a greater deviation.  A possible explanation could be 
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that the wafer on which 75056 was grown had been offcut in a different direction to 

those previously investigated, perhaps toward [101] (at a surface angle of 45º to offcut 

in the [111] direction).  This would help reinforce the idea that layer relaxation can 

differ in orthogonal directions due to offcut in a specific direction as the layers in this 

case share almost identical relaxation in both directions. 

 

 

(a) 

 

(b) 

Figure 6.14 – Omega ( ) omega-2theta ( 2 ) scans of sample 75056 (60%, 1 m/1 m, 

825-650ºC) with phi (Φ) =0º along the (a) [004] direction (b) [224] direction.  Peaks moving right 

to left correspond to increasing layer composition, with each peak resulting from a layer of 

constant composition. 
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The X-ray data obtained from the 100% sample 76009 had a number of 

interesting and noteworthy features.  Taking the compositional variation throughout 

the structure in sections (Table 6.5), deviation from the intended profile can be better 

explained.  The gradual deviation in composition of the constant composition layers 

up to 50% is attributable to the depletion of the silicon charge, as highlighted in 

section 6.3 and chapter 3 (section 3.2).  The deviation in this instance is less than seen 

before, as expected for a newer charge the initially higher melt results in a smaller 

over compensation in power.  It is clear the melt-back was successful, as the 

subsequent constant composition layer is almost exactly 60% as intended.  The 

increasing compositional deviation moving to 90% terrace graded layers is unlikely to 

be the result of further silicon depletion, due to an ever decreasing silicon flux rate, 

nor does it seem likely to be the result of a depleting germanium charge as this would 

most certainly result in compositions greater than intended.  This deviation is 

doubtless the result of a miss-calibration of the silicon power lookup curve, with the 

data suggesting that the power programmed for low silicon flux rates is too great.  

Elimination of such issues is entirely possible but will require greater diligence in the 

initial calibration of the systems electron evaporators. 

It is clear from Figure 6.15 that the angle between the underlying silicon 

substrate and subsequent epitaxially grown constant composition layers varies 

differently in orthogonal phi (Φ) orientations in a manner similar that that previously 

seen in chapters 4 and 5.  The departure in omega ( ) from that of the substrate 

suggests a reorientation of the layers in question, clearly the direction in which 

phi (Φ) = 0º shows a steady departure in omega up to a maximum value of -0.11º at 

50% with the following layers all sharing this same deviation, see Table 6.6.  This 

behaviour can be explained (described in chapter 5) by the unequal the projection of 
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equivalent Burgers vector onto the growth surface that cause a net tilt of the layer 

toward in this instance the (001), and once reached the imbalance between equivalent 

dislocations cesses to exist and the layer stops rotating, as witnessed past 50% in the 

present structure. 

The distinct visible separation between the layer peak corresponding to the top 

surface and preceding linear layer in Figure 6.15 would suggest, that the final graded 

layer did not grade up to the intended terminating composition.  This evidence is 

consistent with the observation of dislocation blocking observed between these layers 

in the cross-sectional TEM analysis, Figure 6.10. 

 

 
(a) 

 

(b) 

Figure 6.15 – Omega ( ) omega-2theta ( 2 ) scans of sample 76009 (100%, 1 m/1 m, 

825-550ºC) along the [004] direction  with (a) Phi (Φ) = 0º (b) Phi (Φ) = 90º.  Peaks moving right 

to left correspond to increasing layer composition. 
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76009 (100%, 1 m/1 m, 825-550ºC) 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Φ = 0º -0.02 -0.04 -0.06 -0.09 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 

Φ = 90º -0.01 -0.01 -0.01 0.00 0.01 0.02 0.02 0.02 0.02 0.02 

Table 6.6 – Data collected for angular separation in omega between (004) planes in the silicon 

substrate and constant compositional layer,  along orthogonal phi (Φ) directions.  The error in 

determination of the angular separation ± 0.01º. 

 

6.6 Schimmel Defect Etching 

Surface threading dislocation density and pile-up have been highlighted as an 

important indicator of structural quality throughout the different compositional ranges 

investigated and this is no less true in the high composition range.  Defect etching was 

performed using a standard Schimmel etchant only on the 60% samples.  Schimmel 

etching was not performed on the 100% sample as it had become clear the surface 

threading dislocation density was extremely high, being visible in cross-section TEM.  

In addition to this Schimmel etching is not appropriate for defect revealing on a 

relaxed germanium surface, rather an Iodine etch should be utilised (Malta et al. 

1992).  A compilation of the calculated threading densities along with the standard 

deviation derived from variation in threading counts between images is presented in 

Table 6.7. 

 

 
75051 (60%) 

500 nm/1 m 

75056 (60%) 

1 m/1 m 

Threading 

Density (/cm
2
) 

1.8x10
6 

2.4x10
6 

Standard 

Deviation (/cm
2
) 

1.6x10
5 

1.1x10
5 

Table 6.7 – Table containing threading dislocation densities for samples 75051 (60%, 

500 nm/1 m, 825-650ºC) and 75056 (60%, 1 m/1 m, 825-650ºC) calculated by counting surface 

etch pits optically at x50 magnification, accompanied by standard deviations.  Standard 

Schimmel etchant employed. 
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The surface threading density of sample 75056 (60%, 1 m/1 m, 825-650ºC), 

a structure comparable with those grown previously at higher temperature, continues 

to increase in an exponential fashion as demonstrated in Figure 6.16. 
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Figure 6.16 – Graph comparing the surface threading dislocation density between terrace graded 

virtual substrates grown at high starting temperature (850ºC).  A distinct exponential trend is 

evident. 

 

The continuing rise in threading dislocation density indicates that the 

introduction of additional misfit dislocations is necessary to maintain strain relaxation.  

In earlier structures the presence of large threading dislocation pile-ups was either 

uncommon or none existent.  However a number can be seen dotted across the surface 

of all the current samples.  The origin of pile-up in 75056 (60%, 1 m/1 m, 

825-650ºC) does not appear to be intrinsically related to the structure but rather to the 

inclusion of many extrinsic particulates that litter the surface.  An example of such 
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inclusions and the resulting pile-up revealed by Schimmel etching are shown in 

Figure 6.17.  The line density of pile-up on the surface of 75056 (60%, 1 m/1 m, 

825-650ºC) is far lower than observed previously in a 40% linear graded structure 

grown externally and examined in Chapter 5, 6443 (40%, Linearly Graded).  That the 

presence of particulates at this high density play some role in the structural evolution 

of the layer cannot be excluded. 

In contrast the surface of 75051 (60%, 500 nm/1 m, 825-650ºC) contains a 

far greater instance of dislocation pile-up (Figure 6.18), expected because of the 

tighter lateral confinement of dislocations within the 500 nm graded region.  The 

majority of the observed misfit pile-ups do not appear to originate at surface 

particulates although such instances are still present.  The entire length of a 

dislocation pile-up is shown in Figure 6.18 (a) and at no point along its length (or 

even scanning some distance away) can any aligned particulates be seen, though the 

particulate at the lower left side of the image shows signs of less developed pile-ups 

forming outward.  Interestingly there does not appear to be a large surface depression 

accompanying the pile-up, even in the higher magnification shown in Figure 6.18 (b), 

where individual threading dislocations within the pile-up can be distinguished. 
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Figure 6.17 – Optical micrograph of the surface of sample 75056 after etching in a standard 

Schimmel etch for 3 minutes.  Circles highlight particulate contamination that has resulted in 

threading dislocation pile-up, the arrows indicate the direction. 

(60%, 1 m/1 m, 825-650ºC) 
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It should be realised that these images do not make use of optical interference that 

would more clearly highlight smaller surface features.  The presence of a surface 

disturbance is evident in other images in the vicinity of pile-up, even without 

interference contrast (as etching tends to exaggerate such surface features).  In a 

number of instances, pile-up can be seen to occur in the vicinity of far larger surface 

undulations (Figure 6.19) probably stopped short by an underlying strain field. 

 

  
(a)      (b) 

Figure 6.18 – Optical micrographs of defect etched sample 75051 without optical interference at 

(a) x10 magnification (b) x50 magnification.  The white arrows indicate the direction of threading 

dislocation pile-up.  A surface particulate contaminant can be seen at the lower left of image (a). 

 

(60%, 500 nm/1 m, 825-650ºC) (60%, 500 nm/1 m, 825-650ºC) 
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Threading dislocations may still become trapped at deep surface undulations 

in the absence of a close accompaniment of misfit pile-up, but the depth must be 

sufficient to reduce the thickness of overlying layer to less than critical thickness 

required for dislocation motion, as stated by Freund (1990) and Fitzgerald et al. 

(1997).  Such a reduction in layer thickness is clearly not present, and here all pinned 

threading dislocations will result from the reduction in excess stress by underlying 

arrays of misfit dislocations. 

I believe that these observations demonstrate that terrace grading at 60% 

(1 m/1 m) has had the effect of releasing pinned threading dislocations between 

graded layers as intended and preventing the development of any deep surface 

trenches. 

 

 

Figure 6.19 – Optical micrographs of defect etched sample 75051 without optical interference at 

x50 magnification.  White arrows indicate large surface undulations that would appear 

favourable for dislocation pile-up yet have little. 

 

(60%, 500 nm/1 m, 825-650ºC) 
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6.7 Summary 

In this high composition regime it has been found possible to eliminate 

threading dislocation pile-up, sample 75056 (60%, 1 m/1 m), originating 

intrinsically within the structure, although the inclusion of particulate contaminants 

had resulted in isolated instances of threading dislocation pile-up.  The as-grown 

threading dislocation density of 2.4x10
6
/cm

2
 and RMS roughness of 8.4 nm at 50% 

compare unfavourably with values of 1x10
6
/cm

2
 and 3.1 nm respectively found by 

Capewell et al. (2002) for terrace graded structures with 200 nm thick graded and 

constant composition regions.  However in the current study dislocation pile-up is 

largely absent and a high level of relaxation was achieved. 

The continued exponential rise in threading dislocation density with 

composition, shown in Figure 6.16, should not occur for a terrace graded structure.  In 

principle, the strain relieved by each terrace graded layer will be identical as long as 

layer relaxation remains high (which it appears to do).  Deviation from this ideal 

situation could occur if (i) the mobile threading dislocations became pinned (or 

annihilated) or (ii) the glide velocity of the threading dislocations reduced with the 

growth of new layers.  Table 6.8 shows the ratio of glide velocity for threading 

dislocations, under an identical level of strain, within different compositions at 

various temperatures utilised in the growth of 75056 (60%, 1 m/1 m, 825-650ºC), 

calculated using equation (2.3).  The velocities have been normalised relative to that 

found for growth of the 10% layer at 850ºC.  The glide velocity shows a similar 

variation for each terrace composition and temperature.  The reductions would not 

appear significant enough to explain the exponential increase observed in threading 

dislocation density found from work in previous chapters.  Since little dislocation 
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pinning is evident in the form of pile-up, a different mechanism would appear to be 

responsible. 

 

 
75056 (60%, 1 m/1 m, 825-650ºC) 

10% 20% 28% 37% 44% 49% 

825 1.0      

775 0.3 0.8     

750  0.4 0.8    

725   0.5 1.0   

700    0.6 1.0  

675     0.6 0.9 

650      0.5 

Table 6.8 – Normalised ratio of dislocation glide velocity at various temperatures and 
compositions relative to that experienced at 10% composition at 825ºC under identical levels of 

strain. 

 

The inclusion of numerous particulates has been a continual problem for 

growth of structures and may provide an explanation for the rising dislocation density.  

If the particulates were to provide a site for dislocation nucleation with a lower 

energy barrier than for continued glide of existing threading dislocations, then a rise 

in threading density could be expected.  Houghton et al. (1995) reported an activation 

energy of only 2.3 eV for thermally activated misfit nucleation close to that for 

dislocation glide (2 eV) and noted a linear relationship of nucleation with the initial 

contaminant level. 

The unintended contamination of the 100% sample during the mid-growth 

interrupt resulted in a cascade of threading dislocations that served to highlight an 

important event at the final layer interface.  The substantial reduction in threading 
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dislocation density, clearly visible in Figure 6.9, was an unexpected result.  

Dislocation filtering had been studied by Hull et al. (1989) by introducing strained 

superlattice structures into a silicon germanium epitaxial layer of uniform 

composition.  Hull et al. (1989) reached the conclusion that the reduction of 

dislocation density occurred at a highly strained interface as a result of a deflection of 

threading dislocations into the interfacial plane, forming misfit dislocations at a 

common interface promoting dislocation annihilation.  A simplistic model was 

proposed to determine the probability of dislocation annihilation that predicts a linear 

dependency on the threading dislocation density.  This implies that the effect upon 

lower threading densities would be negligible, as Hull et al. (1989) had found 

experimentally. 
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Chapter 7 
 

7 Conclusion 
 

A detailed investigation into evaluating the full potential of the novel virtual 

substrate grading technique known as terrace grading has been conducted.  Terrace 

grading describes a compositional profile composed of a series of linearly graded and 

uniform layers.  The inclusion of uniform layers within the structure has been 

postulated to decouple multiplication mechanisms acting between successive terraced 

regions, such that large surface undulations and the pile-up of surface threading 

dislocations common to more conventional linear graded structures, are substantially 

reduced or eliminated.  Whilst the previous work had clearly shown an improvement 

in this regard it had been limited to the investigation of structures with individual 

layer thicknesses of only 200 nm, involving grading rates far in excess of that 

commonly utilised.  In this study the issue of layer thickness has been addressed along 

with the effect of growth temperature - pushing the technology of solid-source 

molecular beam epitaxy (SS-MBE) to its limit. 

It was known at the outset that a high level of relaxation must be maintained 

throughout growth of a structure for the full advantage offered by terrace grading to 

be realised.  High resolution X-ray analysis confirmed that in the 1 m layered 

structures a relaxation of > 95% was achieved for all compositions investigated.  It 

also revealed that in the 200 nm layered structures (with terminating compositions 

≤ 25%), similar to those grown by Capewell (2002), that relaxation was ~70%.  This 

result indicates that even with the application of in-situ annealing, layered structures 

of this dimension retain an unacceptably high level of strain, with further relaxation 

only achieved with additional growth.  This apparent contradiction with earlier work 
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may be a result either from the inaccuracy of the simple X-ray scans employed 

previously to determine relaxation or as a result of the imprecise grading realised in 

the present study in the low composition regime.  It has become clear that precise 

control of the underlying grading is of paramount importance and has a pronounced 

impacted on surface morphology. 

For the various compositional regimes investigated it has been shown that 

lower temperature growth results in smoother surfaces and in lower surface 

threading dislocation densities, even though the latter is contrary to other published 

works.  A highly relaxed 30% silicon-germanium buffer grown at a temperature 

descending from 700ºC has been found to possess a surface threading dislocation 

density ≤ 10
3
/cm

2
 which is an order of magnitude lower than any other published 

works found by this author.  This astounding result is believed to be the result of the 

formation and persistence of point defects within the structure allowing the 

annihilation of threading dislocations after each completed terrace during in-situ 

annealing.  A huge reduction in threading dislocation density has additionally been 

demonstrated through ex-situ annealing of a 30% terrace graded structure, grown at a 

temperature descending from 850ºC and annealed under a nitrogen atmosphere at 

900ºC for 15 hours.  This extreme anneal also re-affirmed the high level of relaxation 

present within this structure, with little morphological change identifiable. 

A complete absence of threading dislocation pile-up is demonstrated for 

terminating compositions up to 40% and is perhaps the most significant result of the 

current study.  The complete elimination of threading dislocation pile-up is a major 

achievement for terrace grading and combined with a low threading dislocation 

density and high relaxation, undoubtedly places these structures among the very best 

achieved to date.  Comparison of a 30% terrace and linear graded structure grown at 
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identical temperatures during this study revealed terrace grading to offer a 50 

percent lower threading dislocation density.  The low density of pile-up observed at 

the surface of the 30% linear graded comparison structure when compared to a 40% 

structure grown externally and along with evidence gained from cross-sectional TEM 

images of a 30% terrace graded sample, indicate that any possible contamination of 

the initial growth surface may play a role in the relaxation of a virtual substrate.  The 

presence of heterogeneous nucleation sources at the start of growth could diminish the 

need for dislocation multiplication and could result in a reduced surface roughness for 

terrace graded layers. 

As a consequence of the chosen grading rate (effectively 5%/ m) the overall 

thickness of virtual substrates with compositions > 30% was significantly greater than 

structures previously attempted within the VG V90S at the University of Warwick.  

An initial attempt at producing a pure germanium virtual substrate resulted in a 

20 m thick structure requiring more than 70 hours of growth time.  The increasing 

density of particulate inclusion at compositions > 40% became a significant problem 

for SS-MBE growth and was found to allow the formation of localised pile-up as well 

as disrupting growth, complicating the analysis of such structures.  The presence of 

pile-up intrinsic to a terrace graded layer structure has only clearly been revealed at 

a composition of 60% in which the graded region had been reduced to 500 nm, 

clearly establishing a lower limit for realising the benefits of terrace grading.   

An undesirable increase in threading dislocation density with composition is 

evident between the terrace graded structures grown at higher temperature; such an 

increase was not expected to occur.  The inclusion of particulate contaminants during 

growth has been suggested as a possible explanation, providing a nucleation source 

with an energy barrier similar to that for the continued glide of an existing dislocation. 
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7.1 Further Work 

A number of intriguing avenues of further research have emerged as a result of 

the current study.  A clear need exists to positively identify the source of increasing 

surface threading dislocation density with composition.  Growth of multiple medium 

composition terrace graded structures at higher temperatures could allow thermally 

limited glide velocity to be eliminated as a cause.  The effect of particulate 

contamination on threading dislocation density is however far more difficult to 

investigate as this is not a directly controllable parameter in SS-MBE.  The 

surprisingly low threading dislocation density present for structures grown at lower 

temperature (700ºC and below) also clearly warrants further investigation and 

removal of in-situ annealing during growth may elucidate the mechanism for 

dislocation reduction.  Further investigation into the effect of ex-situ annealing on 

terrace graded substrates at different temperatures and periods of time may help 

understanding of the dislocation reduction demonstrated in this instance. 

The effect of chemical substrate cleaning and contamination at the initial 

growth interface on dislocation density, surface roughness and morphology deserves 

further investigation.  Growth of a series of identical structures in which varying 

amounts of carbon are purposely deposited onto chemically cleaned substrates present 

a logical starting point.  The presence of contamination below a certain level may 

prove beneficial in forming a smoother terrace graded surface, though possibly at the 

cost of an increased surface threading dislocation density. 

Important lessons have been learned in growing a terrace graded virtual 

substrate with a pure germanium terminating composition and it is clear that regular 

growth interrupts are necessary to maintain accurate composition and thickness 

control by melting back the silicon charge.  Ideally two melt-backs should be 
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performed in reaching pure germanium, at compositions of 30% and 60%; the wafer 

should be removed from the growth chamber during the procedure.  Growth should be 

halted after deposition of a silicon marker layer and a high temperature desorb 

performed before growth is restarted to restore a clean surface.  It is also important to 

ensure proper calibration of the silicon flux at low rates to avoid a large compositional 

jump to the final germanium layer. 

Although solid-source MBE provides an excellent growth environment for 

research, the potential perturbing influences of particulate contamination on the strain 

relaxation process need to be fully understood and controlled before further 

systematic work is undertaken.  In the pursuit of ultimate layer quality, the transfer of 

the terrace graded layer sequence to a chemical vapour deposition (CVD) growth tool 

would seem essential.  Growth in a gas based system offers a number of key 

advantages such as; the elimination of particulate contaminants from flaking material 

within the growth chamber; a far higher growth rate than is typical in MBE, limited 

only by growth temperature; the continual presence of a surfactant (surface active 

agent) at lower temperature; and an almost inexhaustible supply of source material 

allowing growth of thick structures more easily with a far greater level of control.   

Early work conducted in this area at the University of Warwick confirms these 

benefits. 
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Appendix 
 

A.1 Modified RCA Wet Chemical Clean 

The aim of the RCA cleaning procedure (Radio Corporation of America) is to 

remove particulates both organic and inorganic as well as any chemically bonded 

contamination.  The chemicals used in this clean were originally selected due to their 

availability at high purity and the clean empirically derived through experimentation.  

The solutions cause negligible etching of the silicon surface though this is critically 

dependant on temperatures and emersion times employed.  The clean consists of two 

solutions known as SC-1 and SC-2 (SC stands for standard clean). 

SC-1 is composed of deionised water (< 4 ppb), hydrogen peroxide (H2O2) 

and ammonium hydroxide (NH3OH), in the ratio 5:1:1.  The aim of this solution is to 

remove organic contaminants utilising the powerful oxidising properties of hydrogen 

peroxide, with the ammonium hydroxide acting as a complexing agent (keeping 

contaminants in solution).  Ammonium hydroxide is additionally able to act as a 

complexing agent for light metal contaminants.  The solution acts by dissolving the 

native oxide layer on the silicon surface before producing a new oxide layer.  Each 

time this process is repeated any contaminants trapped within the new oxide layer are 

removed and larger particles dislodged. 

SC-2 is composed of deionised water (<4 ppb), hydrogen peroxide and 

hydrogen chloride, in the ratio 6:1:1.  The purpose of this solution is to remove heavy 

metal and ionic contaminants whilst preventing recontamination from solution.   

Unlike SC-1 this solution does not remove the oxide layer, it instead dissolves surface 

contaminants forming soluble complexes. 
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The modified RCA procedure adopted at the University of Warwick begins by 

immersing a carriage containing substrates in a 3 stage de-ionised water cascade rinse 

before transferring to SC-1 held at a temperature of 69ºC for 20 minutes.  The carriage 

is then passed through the cascade rinse again before being given a brief 20 seconds 

3% HF dip to remove the surface oxide.  The procedure is then repeated with SC-2 

but with the substrates individually spun dry after HF exposure, rather than immersing 

in the cascade, to retain hydrogen terminated surfaces.  The passivated hydrogen 

surface can then be desorbed at relatively low temperature (550ºC) in-situ within the 

V90s growth system (Fuse et al. 1999). 

 

A.2 Modified Piranha Wet Chemical Clean 

Due to changing surface chemistry the RCA cleaning procedure is not 

appropriate for cleaning the surface of silicon-germanium virtual substrates (private 

communication T. J. Grasby).  A Piranha clean consisting of sulphuric acid (H2SO4) 

and hydrogen peroxide (H2O2) in the ratio 3:1 is instead utilised on virtual substrates 

up to a composition of 60%.  This clean is effective at removal of heavy organic 

particles by oxidation but does not desorb metallic contaminants.  The mixture is self 

heating reaching about 130°C and must be treated with extreme care; addition of H2O 

initially aggravates the reaction.  Substrates receive a 3 minute immersion in the 

piranha etch before being transferred to the cascade wash, followed shortly after by an 

HF dip for around 15 seconds (or long enough to make the surface hydrophobic).  The 

HF dip strips the native oxide removing any impurities contained within leaving 

surfaces hydrogen terminated. 
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The reader is directed to the Handbook of Semiconductor Wafer Cleaning 

Technology (Kern 1993) for further details on the RCA cleaning procedure, as well as 

for a fuller investigation of the many other cleans available. 
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