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Chapter 1

Introduction

These notes were intended to supplement the Computer Intensive Statistics lectures and laboratory sessions rather
than to replace or directly accompany them. As such, material is presented here in an order which is logical for
reference purposes after the week and not precisely the order in which it was to be discussed during the week. There
is much more information in these notes concerning some topics than would have been covered during the week
itself. One of their main functions is to provide pointers to the relevant literature for anyone wanting to learn more
about these topics.

Acknowledgement. These notes are based on a set developed by Adam Johansen, which can be traced back to
a lecture course given by him and Ludger Evers in Bristol in 2007–08. Many of the better figures were originally
prepared by Ludger Evers, and more recent contributions from previous APTS module leader Paul Jenkins. Any
errors are my own and should be directed to richard.everitt@warwick.ac.uk.

1.1 Three Views of Sample Approximation
Many of the techniques described in these notes are simulation-based or otherwise make use of sample approximations
of quantities. In the preliminary notes there is some discussion of the approximation of π, for example, by representing
it in terms of an expectation that can be approximated using a sample average.

In general there are three increasingly abstract ways of viewing the justification of this type of approach. Thinking
in these terms can be very helpful when trying to understand what these techniques are aiming to do and why we
might expect them to work, and so it’s worth thinking about this even before getting in to the details of particular
algorithms.

1.1.1 Direct Approximation
This is a definition of Monte Carlo methods due to Halton (1970):

Representing the solution of a problem as a parameter of a hypothetical population, and using a random
sequence of numbers to construct a sample of the population, from which statistical estimates of the
parameter can be obtained.

Recalling the approximation of π in the preliminary material, we constructed a simple random sample from a
population described by a Bernoulli distribution with parameter π/4 and then used a simple estimate of the
population parameter as an estimate of π/4.

Although in one sense this is the simplest view of a simulation-based approach to inference, it requires a specific
construction for each problem we want to address.

1.1.2 Approximation of Integrals
The next level of indirection is to view Monte Carlo methods as algorithms for approximation of integrals. The
quantity we wish to estimate is written as an expectation with respect to a probability distribution and a large
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CHAPTER 1. INTRODUCTION 3

sample from that population is then used to approximate that expectation; we can easily justify this via the (strong)
law of large numbers and the central limit theorem.

That is, given I =
∫
ϕ(x)f(x)dx, we sample a collection, X1, . . . , Xn, of n independent random variables with

distribution f and use the sample mean of ϕ(Xi) as an approximation of I:

În = 1
n

n∑
i=1

ϕ(Xi).

The strong law of large numbers tells us that În
a.s.→ I, and the central limit theorem (CLT) tells us that, provided

that ϕ(X) has finite variance,
√
n/Var [ϕ(X)][În − I] D→ Z, where X ∼ f and Z is a standard normal random

variable. The CLT tells us something about the rate at which the estimate converges. Notice that this rate is
independent of the space in which the Xi live: this is the basis of the (slightly misleading) claim that the Monte
Carlo method beats the curse of dimensionality. Although the rate is independent of dimension (Z is scaled by a
quantity which decreases at a rate of

√
n, independent of dimension), the associated constants typically do depend

on the dimension of the sampling space (in this simple case, this is because Var [ϕ(X)] is typically larger when X
takes values in a larger space). . .

In the case of the estimation of π, we can let Xi = (Xx
i , X

y
i ) with Xx

i
iid∼ U[−1,+1], Xy

i
iid∼ U[−1,+1], and Xx

i , X
y
i

independent of one another. So we have f(x, y) = 1
4 I[−1,+1](x)I[−1,+1](y), where IA(x) denotes the indicator function

on a set A evaluated at the point x, i.e. it takes the value 1 if x ∈ A and 0 otherwise.

We consider the points which land within a disc of unit radius centred at the origin, S1 = {(x, y) : x2 + y2 ≤ 1}, and
the proportion of points drawn from f which lie within S1. The population value of this quantity (i.e. the probability
that a particular point lies within the circle) is clearly the expectation of a function taking the value 1 within S1
and 0 outside it: π/4 =

∫
IS1(x, y)f(x, y)dx.

Note that this is just a particular case of the useful fact that the probability of any event A is equal to the expectation
of an indicator function on that set.

1.1.3 Approximation of Distributions
The most abstract view of the Monte Carlo method, and indeed other approaches to simulation-based inference,
is through the lens of distributional approximation. Rather than constructing an approximation of the quantity
of interest directly, or of an integral representation of that quantity of interest, we could consider the method as
providing an approximation of the distribution of interest itself.

If we are interested in some property of a probability distribution—a probability, an expectation, a quantile,. . . , then
a natural approach would be to obtain an approximation of that distribution and to use the corresponding property
of that approximation as an approximation of the quantity of interest. The natural simulation-based approach is to
use the empirical distribution associated with a (large) sample from the distribution of interest. That is, we consider
a discrete distribution which places mass 1/n on each of n points obtained by sampling from f , and then use this
distribution as an approximation to f itself.

The (measure-theoretic) way of writing such an approximation is:

f̂n = 1
n

n∑
i=1

δxi ,

where x1, . . . , xn are realisations of X1, . . . , Xn
iid∼ π and δx denotes the probability distribution (i.e. measure) which

places mass 1 at x. In the case in which π is a distribution over the real numbers we can think in terms of its
distribution function and write

F̂n(x) =
n∑
i=1

1
n
I(−∞,x](xi),

which just tells us that we approximate P(X ≤ x) with the proportion of the sampled values which lie below x.

In the case of the estimation of π, we saw in the previous section that we can represent π as an expectation
with respect to f(x, y) = 1

4 I[−1,+1](x)I[−1,+1](y). We immediately recover our approximation of π by taking the
expectation under f̂n rather than f .
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This may seem like an unnecessarily complicated or abstract view of the approach, but it is very general and
encompasses many ostensibly different approaches to Monte Carlo estimation.

1.2 The Usefulness of Sample Approximation
It may seem surprising at first, but it is often possible to obtain samples from distributions with respect to which it
is not possible to compute expectations explicitly. Sampling is a different problem from integrating, and one may
be soluble while the other is not. We can use the approximation provided by artificial samples in these cases to
approximate quantities of interest that we might not be able to approximate adequately by other means.

In some other situations we will see, we may have to deal with settings in which we have access to a sample whose
distribution we don’t know; in such settings we can still use the approximation of the distribution provided by the
sample itself.

1.3 Further Reading
A great many books have been written on the material discussed here, but it might be useful to identify some
examples with particular strengths:

• An elementary self-contained introduction written from a similar perspective to these notes is provided by
Voss (2013).

• A more in-depth study of Monte Carlo methods, particularly Markov chain Monte Carlo, is provided by Robert
and Casella (2004).

• A slightly more recent collection of MCMC topics, including chapters on Hamiltonian Monte Carlo, is given by
Brooks et al. (2011).

• A book with many examples from the natural sciences, which might be more approachable to those with a
background in those sciences, is given by Liu (2001).

Where appropriate, references to both primary literature and good tutorials are provided throughout these notes.



Chapter 2

Simulation-Based Inference

2.1 Simulation
Much of what we will consider in this module involves sampling from distributions; simulating some generative
process to obtain realisations of random variables. A natural question to ask is: how can we actually do this? What
does it mean to sample from a distribution, and how can we actually implement such a procedure using a computer?

2.1.1 Pseudorandom Number Generation
Actually, strictly speaking, we can’t generally obtain realisations of random variables of a specified distribution
using standard hardware. We settle for sequences of numbers which have the same relevant statistical properties as
random numbers and, more particularly, we will see that given a sequence of standard uniform (i.e. U[0, 1]) random
variables, we can use some simple techniques to transform them to obtain random variables with other distributions
of interest1.

A pseudorandom number generator is a deterministic procedure which, when applied to some internal state, produces
a value that can be used as a proxy for a realisation of a U[0, 1] random variable and a new internal state. Such
a procedure is initialised by the supply of some seed value and then applied iteratively to produce a sequence of
realisations. Of course, these numbers are not in any meaningful sense random, indeed, to quote von Neumann:

Anyone who considers artithmetical methods of reproducing random digits is, of course, in a state of sin.
. . . there is no such thing as a random number—there are only methods of producing random numbers,
and a strict arithmetic procedure is of course not such a method.

There are some very bad pseudorandom number generators in which there are very obvious patterns in the output
and their use could seriously bias the conclusions of any statistical method based around simulation. So-called linear
congruential generators were very popular for a time—but thankfully that time has largely passed, and unless you’re
involved with legacy code or hardware you’re unlikely to encounter such things.

We don’t have time to go into the details and intricacies of the PRNG in this module and as long as we’re confident
that we’re using a PRNG which is good enough for our purposes then we needn’t worry too much about its precise
inner workings. Thankfully, a great deal of time and energy has gone into developing and testing PRNGs, including
the Mersenne-twister-19937 (Matsumoto and Nishimura 1998) used by default in the current implementation of R
(R Core Team 2013).

Parallel Computing and PRNGs

Parallel implementation of Monte Carlo algorithms requires access to parallel sources of random numbers. Of course,
we really need to avoid simulating streams of random numbers in parallel with unintended relationships between
the variables in the different streams. This is not at all trivial. Thankfully, some good solutions to the problem do
exist—see Salmon et al. (2011) for an example.

1This material is included for completeness, but isn’t actually covered in this module; a good summary was provided in the Statistical
Computing module.

5



CHAPTER 2. SIMULATION-BASED INFERENCE 6

Quasi-Random Numbers

Quasi-random numbers, like pseudo-random numbers, are deterministic sequences of numbers which are intended to
have, in an appropriate sense, similar statistical properties to pseudorandom numbers, but that is the limit of the
similarities between these two things. Quasi-random number sequences (QRNS) are intended to have a particular
maximum discrepancy property. See Morokoff and Caflisch (1995) for an introduction to the Quasi Monte Carlo
technique based around such numbers; or Niederreiter (1992) for a book-length introduction.

Real Random Numbers

Although standard computers don’t have direct access to any mechanism for generating truly random numbers;
dedicated hardware devices that provide such a generator do exist. There exist sequences of numbers obtained by
transformations of physical noise sources; see https://www.random.org/ for example. Surprisingly, the benefits of
using such numbers—rather than those obtained from a good PRNG—do not necessarily outweigh the disadvantages
(greater difficulty in replicating the results; difficulties associated with characterising the distribution of the input
noise and hence the output random variables. . . ). We won’t discuss these sources any further in these notes.

Finite Precision

Although the focus of this section has been noting that the real random numbers employed in computational
algorithms are usually not random, it is also worthwhile noting that they are also, typically, not really real numbers
either. Most computations are performed using finite precision arithmetic. There is some discussion of simulation
from the perspective of finite precision arithmetic as far back as Devroye (1986, chap. 15). Again, we won’t generally
concern ourself with this detail here; some of this was covered in the Statistical Computing module.

2.1.2 Transformation Methods
Having established that sources (of numbers which have similar properties to those of) random numbers uniformly
distributed over the unit interval are available, we now turn our attention to turning random variables with such a
distribution into random variables with other distributions. In principle, applying such transformations to realisations
of U[0, 1] random variables will provide us with realisations of random variables of interest.

F�(u) x

1

u

F (x)

Figure 2.1: Illustration of the definition of the generalised inverse F− of a CDF F .

One of the simplest methods of generating random samples from a distribution with some cumulative distribution
function (CDF) F (x) = P(X ≤ x) is based on the inverse of that CDF. Although the CDF is, by definition, an
increasing function, it is not necessarily strictly increasing or continuous and so may not be invertible. To address
this we define the generalised inverse F−(u) := inf{x : F (x) ≥ u}. (In some fields this is also called the quantile
function.) Figure 2.1 illustrates its definition. If F is continuous and strictly increasing, then F−(u) = F−1(u).
That is, the generalised inverse of a distribution function is a genuine generalisation of the inverse in that when F is
invertible, F− coincides with its inverse and when F is not invertible F− is well defined nonetheless.

Theorem 2.1. (Inversion Method). Let U ∼ U[0, 1] and F be a CDF. Then F−(U) has the CDF F .

Proof. It is easy to see (e.g. in Figure 2.1) that F−(u) ≤ x is equivalent to u ≤ F (x). Thus for U ∼ U[0, 1],

P(F−(U) ≤ x) = P(U ≤ F (x)) = F (x),

https://www.random.org/
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thus F is the CDF of X = F−(U).

Example 2.1. (Exponential Distribution). The exponential distribution with rate λ > 0 has the CDF Fλ(x) =
1− exp(−λx) for x ≥ 0. Thus F−λ (u) = F−1

λ (u) = − log(1−u)/λ, and we can generate random samples from Exp (λ)
by applying the transformation − log(1− U)/λ to a uniform U[0, 1] random variable U .

As U and 1−U , of course, have the same distribution we can instead use − log(U)/λ to save a subtraction operation.

When the generalised inverse of the CDF of a distribution of interest is available in closed form, the Inversion
Method can be a very efficient tool for generating random numbers. However very few distributions possess a CDF
whose (generalised) inverse can be evaluated efficiently. Take, for example, the Normal distribution, whose CDF is
not even available in closed form.

The generalised inverse of the CDF is just one possible transformation. Might there be other transformations
that yield samples from the desired distribution? An example of such a method is the Box–Muller method for
generating Normal random variables. Such specialised methods can be very efficient, but typically come at the cost
of considerable case-specific implementation effort (aside from the difficulties associated with devising such methods
in the first place).

Example 2.2. (Box–Muller Method for Normal Simulation). Using the transformation-of-density formula, one can
show that X1, X2

iid∼ N (0, 1) iff their polar coordinates (R, θ) with

X1 = R · cos(θ), X2 = R · sin(θ),

are independent, θ ∼ U[0, 2π], and R2 ∼ Exp (1/2) (Box and Muller 1958). Using U1, U2
iid∼ U[0, 1] and Example 2.1

we can generate R and θ by
R =

√
−2 log(U1), θ = 2πU2,

and thus
X1 =

√
−2 log(U1) · cos(2πU2), X2 =

√
−2 log(U1) · sin(2πU2)

are two independent realisations from a N (0, 1) distribution.

The idea of transformation methods like the Inversion Method was to generate random samples from a distribution
other than the target distribution and to transform them such that they come from the desired target distribution.
Transformation methods such as those described here are typically extremely efficient but it can be difficult to find
simple transformations to produce samples from complicated distributions, especially in multivariate settings.

Many ingenious transformation schemes have been devised for specific classes of distributions (see Devroye (1986)
for a good summary of these), but there are many interesting distributions for which no such transformation scheme
has been devised. In these cases we have to proceed differently. One option is to sample from a distribution other
than that of interest, in which case we have to find other ways of correcting for the fact that we sample from the
“wrong” distribution. One method for doing exactly this is described in the next section; at the end of this chapter
we see an alternative way of using samples from ‘proposal’ distributions to approximate integrals with respect to
another distribution (Section 2.4.2).

2.1.3 Rejection Sampling
The basic idea of rejection sampling is to sample from a proposal distribution (sometimes referred to as an instrumental
distribution) and to reject samples that are “unlikely” under the target distribution in a principled way. Assume that
we want to sample from a target distribution whose density f is known to us. The simple idea underlying rejection
sampling (and several other Monte Carlo algorithms) is the following rather trivial identity:

f(x) =
∫ f(x)

0
1 du =

∫ ∞
0

I[0,f(x)](u)︸ ︷︷ ︸
f(x,u):=

du.

Thus f(x) =
∫∞

0 f(x, u)du can be interpreted as the marginal density of a uniform distribution on the area under
the density f(x), {(x, u) : 0 ≤ u ≤ f(x)}. This equivalence is very important in simulation, and has been referred to
as the fundamental theorem of simulation. Figure 2.2 illustrates this idea.
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2.4

u

x

Figure 2.2: Sampling from the area under the curve (dark grey) corresponds to sampling from the Beta (3, 5) density.
We use a uniform distribution over the light grey rectangle as as proposal distribution. Empty circles denote rejected
values, filled circles denote accepted values.

This suggests that we can generate a sample from f by sampling from the area under the curve—but it doesn’t tell
us how to sample uniformly from this area, which may be quite complicated (especially if we try to extend the idea
to sampling from the distribution of a multivariate random variable).

Example 2.3. (Sampling from a Beta distribution). The Beta (a, b) distribution (a, b > 0) has the density

f(x) = Γ(a+ b)
Γ(a)Γ(b)x

a−1(1− x)b−1, for 0 < x < 1,

where Γ(a) =
∫∞

0 ta−1 exp(−t) dt is the Gamma function. For a, b > 1 the Beta (a, b) density is unimodal with
mode (a − 1)/(a + b − 2). Figure 2.2 shows the density of a Beta (3, 5) distribution. It attains its maximum of
1680/729 ≈ 2.305 at x = 1/3.

Using the above identity we can draw from Beta (3, 5) by drawing from a uniform distribution on the area under
the density {(x, u) : 0 < u < f(x)} (the area shaded in dark gray in Figure 2.2). In order to sample from the area
under the density, we will use a similar trick to that used in the estimation of π in the preliminary material. We will
sample from the light grey rectangle and and keep only the samples that fall in the area under the curve. Figure 2.2
illustrates this idea.

Mathematically speaking, we sample independently X ∼ U[0, 1] and U ∼ U[0, 2.4]. We keep the pair (X,U) if
U < f(X), otherwise we reject it. The conditional probability that a pair (X,U) is kept if X = x is

P(U < f(X)|X = x) = P(U < f(x)) = f(x)
2.4 .

As X and U were drawn independently, we can rewrite our algorithm as: Draw X from U[0, 1] and accept X with
probability f(X)/2.4, otherwise reject X.*

The method proposed in Example 2.3 is based on bounding the density of the Beta distribution by a box. Whilst this
is a powerful idea, it cannot be applied directly to many other distributions, as many probability densities are either
unbounded or have unbounded support (the whole real line, for example). However, we might be able to bound the
density of f(x) by M · g(x), where g(x) is a density from which we can easily sample and M is a finite constant.

Algorithm 2.1 (Rejection sampling). Given two densities f , g, with f(x) ≤M · g(x) for all x, we can generate a
sample from f as follows.

1. Draw X ∼ g.

2. Accept X as a sample from f with probability

f(X)
M · g(X) ,

otherwise go back to step 1.
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Proof. Denote by E the set of all possible values X can take (for our purposes it can be assumed to be some subset
of Rd but can, in principle, be a much more general space and f and g can be densities with respect to essentially
any common reference measure). We have, for any (measurable) X ⊆ E,

P(X ∈ X and is accepted) =
∫
X
g(x) f(x)

M · g(x)︸ ︷︷ ︸
=P(X is accepted|X=x)

dx =
∫
X f(x) dx

M
, (2.1)

and thus
P(X is accepted) = P(X ∈ E and is accepted) = 1

M
, (2.2)

yielding

P(x ∈ X |X is accepted) = P(X ∈ X and is accepted)
P(X is accepted) =

∫
X f(x) dx/M

1/M =
∫
X
f(x) dx. (2.3)

Thus the density of the values accepted by the algorithm is f .

Remark. If we know f only up to a multiplicative constant, i.e. if we only know f̄(x), where f(x) = C · f̄(x), we can
carry out rejection sampling using

f̄(X)
M · g(X)

as the probability of rejecting X, provided f̄(x) ≤M · g(x) for all x. Then by essentially the same argument as was
used in (2.1)–(2.3) we have

P(X ∈ X and is accepted) =
∫
X
g(x) f̄(x)

M · g(x) dx =
∫
X f̄(x) dx

M
=
∫
X f(x) dx
C ·M

,

P(X is accepted) = 1/(C ·M),

and thus
P(x ∈ X |X is accepted) =

∫
X f(x) dx/(C ·M)

1/(C ·M) =
∫
X
f(x) dx.

Example 2.4. (Rejection sampling from the N (0, 1) distribution using a Cauchy proposal). *Assume we want to
sample from the N (0, 1) distribution with density

f(x) = 1√
2π

exp
(
−x

2

2

)
using a Cauchy distribution with density

g(x) = 1
π(1 + x2)

as proposal distribution. Of course, there is not much point is using this method is practice: the Box–Muller method
is more efficient. The smallest M we can choose such that f(x) ≤Mg(x) is M =

√
2π · exp(−1/2).

Figure 2.3 illustrates the results. As before, filled circles correspond to accepted values whereas open circles
correspond to rejected values.*

Note that it is impossible to do rejection sampling the other way round: sampling from a Cauchy distribution using a
N (0, 1) distribution as proposal distribution. There is no M ∈ R such that

1
π(1 + x2) ≤M ·

1√
2πσ2

exp
(
−x

2

2

)
;

the Cauchy distribution has heavier tails than the Normal distribution. This illustrates a general principle that
rejection sampling requires a proposal with heavier tails than the target distribution and the still more general principle
that tail behaviour is often critical to the performance (or even correctness) of Monte Carlo algorithms.



CHAPTER 2. SIMULATION-BASED INFERENCE 10

1 2 3 4 5 6�1�2�3�4�5�6

M · g(x)

f(x)

Figure 2.3: Sampling from the area under the density f(x) (dark grey) corresponds to sampling from the N (0, 1)
density. The proposal g(x) is a Cauchy (0, 1).

2.2 Monte Carlo Testing
One of the simplest forms of simulation-based inference goes under the name of Monte Carlo Testing or, sometimes,
randomized testing. The idea is appealingly simple and rather widely applicable.

Recall the basic idea of testing (or null hypothesis significance testing to be a little more precise). Given a null
hypothesis about the data, compute some test statistic (i.e. a real valued summary function of the observed data)
whose distribution is known under the null hypothesis and would be expected to deviate systematically from this
under the alternative hypothesis. If a value of the test statistic shows a deviation which would be expected no
more than α% of the time when the null hypothesis is true (but which is expected to be more common under the
alternative hypothesis), then one concludes that there is evidence which justifies rejecting the null hypothesis at the
α% level.

In principle this is reasonably straightforward, but there are often practical difficulties with following such a procedure.
In particular, what if we do not know the distribution of the test statistic under the null hypothesis? The classical
solution is to appeal to asymptotic theory for large samples to characterise the distribution of this statistic. This
has two drawbacks: it is only approximately correct for finite samples, and it can be extremely difficult to do.

One simple solution which seems to have been first suggested formally by Barnard (1963) is to use simulation. This
approach has taken a little while to gain popularity, despite some far-sighted early work (Besag and Diggle 1977 for
example), perhaps in part because of limited computational resources and in part because of perceived difficulties
with replication.

If T denotes the test statistic obtained from the actual data and T1, T2, . . . denote those obtained from repeated
sampling under the null hypothesis, then, if the null hypothesis is true, (T1, . . . , Tk, T ) comprises a collection of k+ 1
iid replicates of the test statistic. The probability that T is the largest of (T1, . . . , Tk, T ) is exactly 1/(k + 1) (by
symmetry) and the probability that T is in the largest l of (T1, . . . , Tk, T ) is, similarly, l/(k + 1).

By this reasoning, we can construct a hypothesis test at the 5% significance level by drawing k = 19 realisations of
the test statistic and rejecting the null hypothesis if and only if T is greater than any of those synthetic replicates.
This test is clearly exact: the probability of rejection if the null hypothesis is true is exactly as is specified. However,
there is a loss of power as a result of the randomization, and there is no guarantee that two people presented with
the same data will reach the same conclusion (if they both simulate different artificial replicates then one may reject
and the other may not). However, for a “large enough” value of k these departures from the exact idealised test
which this Monte Carlo procedure mimics are very small.

Although this idea might seem slightly arcane and removed from the other ideas we’ve been discussing in this section,
it really is motivated by the same ideas. The empirical distribution of the artificial sample of test statistics converges
to the true sampling distribution as the sample size becomes large, and we’re then just using the empirical quantiles
as a proxy for the quantiles of the true distribution. With a little bit of care, as seen here, this can be done in such a
way that the false positive (“type I”, if you insist) error probability is exactly that specified by the level of the test.
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2.3 The Bootstrap
The bootstrap is based around a similar idea: if we want to characterise the distribution of an estimator then one
option would be to simulate many replicates of it, and to use the resulting empirical distribution function as a
proxy for the actual distribution function of the estimator. However, we don’t typically know the distribution of the
estimator2.

If we knew that our dataset comprised realisations from some specific, known, distribution then it would be
straightforward to simulate the distribution of a statistic by generating a large number of synthetic data sets and
computing the statistic associated with each synthetic data set. In practice, however, we generally don’t even know
that distribution (after all, if we did there wouldn’t be much statistics left to do. . . ).

The idea behind the bootstrap is that the empirical distribution of a large (simple random) sample from some
distribution is typically very close to the distribution itself (in various senses which we won’t make precise here). In
order to exploit this, we draw many replicates of the entire data set by sampling with replacement from that data set
(i.e. by sampling from the associated empirical distribution) to obtain so-called bootstrap replicates. The statistic is
then calculated for each of these replicates, and the resulting empirical distribution of the resulting statistic values,
which we will term the bootstrap distribution, is used as a proxy for the true sampling distribution of that statistic.

If we’re interested in some particular property of the sampling distribution of the test statistic (such as the variance
of the statistic which might be useful in the construction of an approximate confidence interval), then we can simply:
estimate that property of the estimator under the true sampling distribution with the property of that estimator
under the bootstrap distribution, and use simulation get the latter.

A little more precisely, let T = h(X1, . . . , Xn) denote a quantity calculated as a function of the original simple
random sample of size n, X1, . . . , Xn (i.e. T is a statistic calculated as a function h of some actually observed data).
In order to approximate the sampling distribution of T we do the following:

Obtain
Bootstrap
Samples

For i = 1, . . . , B:
• Sample X?

i,1, . . . , X
?
i,n

iid∼ 1
n

∑n
j=1 δXj

End For
Compute
Summaries

For i = 1, . . . , B:
• Set T ?i = h(X?

i,1, . . . , X
?
i,n).

End For
Compute
Empirical
Distribution

• Set f?T = 1
B

∑B
i=1 δT?i .

• Set F ?T (t) = 1
B

∑B
i=1 I(−∞,t](T ?i ).

Compute Approximations of Interest | e.g. Sampling variance of T is VarfT [T ]; approximate with
Varf?

T
[T ]| = 1

B

∑N
i=1 (T ?i )2 −

[
1
B |
∑B
i=1 T

?
i

]2
, which is none other than the sample variance of the statistic obtained

from the bootstrap sample.

2.3.1 Bootstrap Confidence Intervals
One major use of the bootstrap is in the construction of (approximate) confidence intervals for statistics for which it
might be difficult to construct exact confidence intervals.

2.3.1.1 Asymptotic Approach

We saw in the previous section that we can obtain approximations of the variance of an estimator using bootstrap
techniques. The simplest method for constructing an approximate confidence interval using the bootstrap is to use
such a variance estimate together with an assumption of approximate (or asymptotic) normality in order to arrive at
an approximate (or asymptotic) confidence interval.

Taking this approach, we would arrive at an interval with endpoints of

Tn(X1, . . . , Xn)± zα/2
√
VarfT ? [Tn],

2Actually, an algorithm known as the parametric bootstrap does consider exactly this case, essentially resulting in an importance
sampling estimate.
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where zα denotes the level α critical points of the standard normal distribution.

Although this approach may seem appealing in its simplicity, it can be expected to perform well only when the
sampling distribution of the summary statistic is approximately normal. Imposing this additional assumption rather
defeats the object of using bootstrap methods rather than employing simpler approximations directly.

2.3.1.2 Bootstrap Percentile Intervals

The next level of sophistication is to use the empirical distribution of the bootstrap realisations as a proxy for the
sampling distribution of the statistic of interest. We arrive directly at an approximate confidence interval of the
form [t?1−α/2, t?α/2] where t?α denotes the level α critical value of the bootstrap distribution.

Again this is a nice simple approach, but it does depend rather strongly on the quality of the approximation of
the sampling distribution of T by the bootstrap distribution, and this is determined by the original sample size,
amongst other factors.

2.3.1.3 Approximate Pivotal Quantity Approach

Another common approach to the problem has better asymptotic properties than that of the previous section and
should generally be preferred in practice.

Assume that T is an estimator of some real population parameter, θ, and that the quantity R = T − θ is pivotal.
(Recall that if X is drawn from a distribution parametrised by θ then R = R(X, θ) is pivotal for θ if its distribution
is independent of θ.) As before, assume that we are able to obtain a large number of bootstrap replicates of T ,
denoted T ?1 , . . . , T ?B .

Let FR denote the distribution function of R, so that: FR(r) := P(R ≤ r). It’s a matter of straightforward algebra
to establish that:

P(L ≤ θ ≤ U) = P(L− T ≤ θ − T ≤ U − T ) = P(T − U ≤ R ≤ T − L)
= FR(T − L)− FR(T − U).

If we seek a confidence interval at level α it would be natural, therefore, to insist that T − L = F−1
R (1− α/2) and

that T − U = F−1
R (α/2) (assuming that FR is invertible, of course).

Defining L and U in this way, we arrive at coverage of 1− α for the interval [L,U ] with L = T − F−1
R (1− α/2) and

U = T − F−1
R (α/2). Unfortunately, we can’t use this interval directly because we don’t know FR and we certainly

don’t know F−1
R .

This is where we invoke the usual bootstrap argument. If we are able to assume that the bootstrap replicates are to
T as T is to θ then we can obtain a collection of bootstrap replicates of the pivotal quantity which we may define as:
R?i = T ?i − T . We can then go on to define the associated empirical distribution function and, more importantly, we
can obtain the quantiles of this distribution. Letting r?α denote the level α quantile of our bootstrap distribution, we
obtain a bootstrap pivotal confidence interval of the form [L?, U?] with:

L? = T − r?1−α/2, U? = T + r?α/2.

Such confidence intervals can be shown to be asymptotically correct under fairly weak regularity conditions.

Remark. Although this approach may seem somewhat more complicated and less transparent than the methods
discussed previously, it can be seen that the rate of convergence of bootstrap approximations of pivotal quantities
can be O(1/n), in contrast to the O(1/

√
n) obtained by appeals to asymptotic normality or the use of bootstrap

approximations of non-pivotal quantities. See Young (1994) for a concise argument based around Edgeworth
expansions for an illustration of statistical asymptotics in practice.

A more extensive theoretical consideration of these, and several other, approaches to the construction of bootstrap
confidence intervals is provided by Hall (1986). A readable survey of developments in bootstrap methodology was
provided by Davison, Hinkley, and Young (2003).
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2.4 Monte Carlo Integration
Perhaps the most common application of simulation based inference is to the approximation of (intractable) integrals.
We’ll consider the approximation of expectations of the form Ih = Ef [h] =

∫
h(x)f(x)dx, noting that more general

integrals can always be written in this form by decomposing the integrand as the product of a probability density
and whatever remains.

2.4.1 Simple / Perfect / Naïve Monte Carlo

The canonical approach to Monte Carlo estimation of Ih is to draw X1, . . . , Xn
iid∼ f and to employ the estimator:

Înh = 1
n

n∑
i=1

h(Xi).

The strong law of large numbers tells us (provided that Ih exists) that limn→∞ Înh = Ih. Furthermore, provided that
Varf [h] = σ2 <∞, the Central Limit Theorem can be invoked to tell us that:

√
n[Înh − I] D→ N

(
0, σ2),

as n→∞, providing a rate of convergence.

If this were all there was to say about the topic then this could be a very short module. In fact, there are two
reasons that we must go beyond this perfect Monte Carlo approach:

1. Often, if we wish to evaluate expectations with respect to some distribution π then we can’t just simulate
directly from π. Indeed, this is likely to be the case if we require sophisticated simulation-based methods to
approximate the integral.

2. Even if we can sample from π, in some situations we obtain better estimates of Ih if we instead sample from
another carefully selected distribution and correct for the discrepancy.

In Section 2.1 we saw some algorithms for sampling from some distributions; in Chapter 3 we will see another
technique which will allow us to work with more challenging distributions. But first we turn our attention to a
technique which can be used both to allow us to employ samples from distributions simpler than π to approximate Ih,
and to provide better estimators than the perfect Monte Carlo approach if we are able to sample from a distribution
tuned to both f and h.

2.4.2 Importance Sampling
In rejection sampling we compensated for the fact that we sampled from the proposal distribution g(x) instead of
f(x) by rejecting some of the proposed values. Importance sampling is based on the idea of instead using weights to
correct for the fact that we sample from the proposal distribution g(x) instead of the target distribution f(x).

Indeed, importance sampling is based on the elementary identity

P(X ∈ X ) =
∫
X
f(x) dx =

∫
X
g(x) f(x)

g(x)︸ ︷︷ ︸
=:w(x)

dx =
∫
X
g(x)w(x) dx (2.4)

for all measurable X ⊆ E and g(·), such that g(x) > 0 for (almost) all x with f(x) > 0. We can generalise this
identity by considering the expectation Ef [h(X)] of a measurable function h:

Ef [h(X)] =
∫
f(x)h(x) dx

=
∫
g(x) f(x)

g(x)︸ ︷︷ ︸
=:w(x)

h(x) dx =
∫
g(x)w(x)h(x) dx = Eg [w(X) · h(X)], (2.5)

if g(x) > 0 for (almost) all x with f(x) · h(x) 6= 0.
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Assume we have a sample X1, . . . , Xn ∼ g. Then, provided Eg [|w(X) · h(X)|] exists,

1
n

n∑
i=1

w(Xi)h(Xi)
a.s.
n→∞−→ Eg [w(X) · h(X)],

and thus by (2.5)
1
n

n∑
i=1

w(Xi)h(Xi)
a.s.
n→∞−→ Ef [h(X)].

In other words, we can estimate µ := Ef [h(X)] by using

µ̃ := 1
n

n∑
i=1

w(Xi)h(Xi).

Note that whilst Eg [w(X)] =
∫
E
f(x)
g(x) g(x) dx =

∫
E
f(x) = 1, the weights w1(X), . . . , wn(X) do not necessarily sum

up to n, so one might want to consider the self-normalised version

µ̂ := 1∑n
i=1 w(Xi)

n∑
i=1

w(Xi)h(Xi).

This gives rise to the following algorithm:

Algorithm 2.2 (Importance Sampling). Choose g such that supp(g) ⊇ supp(f · h).

1. For i = 1, . . . , n:

i. Generate Xi ∼ g.

ii. Set w(Xi) = f(Xi)
g(Xi) .

2. Return either
µ̂ =

∑n
i=1 w(Xi)h(Xi)∑n

i=1 w(Xi)
or

µ̃ =
∑n
i=1 w(Wi)h(Xi)

n
.

The following theorem gives the bias and the variance of importance sampling.

Theorem 2.2. (Bias and Variance of Importance Sampling).

(a) Eg [µ̃] = µ,

(b) Varg [µ̃] = Varg [w(X) · h(X)]
n

,

(c) Eg [µ̂] = µ+ µVarg [w(X)]− Covg [[w(X), w(X) · h(X)]]
n

+O(n−2),

(d) Varg [µ̂] = Varg [w(X) · h(X)]− 2µCovg [[w(X), w(X) · h(X)]] + µ2Varg [w(X)]
n

+O(n−2).

Proof.

(a) Eg

[
1
n

n∑
i=1

w(Xi)h(Xi)
]

= 1
n

n∑
i=1

Eg [w(Xi)h(Xi)] = Ef [h(X)].

(b) Varg

[
1
n

n∑
i=1

w(Xi)h(Xi)
]

= 1
n2

n∑
i=1

Varg [w(Xi)h(Xi)] = Varg [w(X)h(X)]
n

.

For (c) and (d) see Liu (2001, p35).
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Note that the theorem implies that, contrary to µ̃, the self-normalised estimator µ̂ is biased. The self-normalised
estimator µ̂, however, might have a lower variance. In addition, it has another advantage: we only need to know
the density up to a multiplicative constant, as is often the case in Bayesian modelling, for example. Assume
f(x) = C · f̄(x), then

µ̂ =
∑n
i=1 w(Xi)h(Xi)∑n

i=1 w(Xi)
=
∑n
i=1

f(Xi)
g(Xi)h(Xi)∑n
i=1

f(Xi)
g(Xi)

=
∑n
i=1

C·f̄(Xi)
g(Xi) h(Xi)∑n

i=1
C·f̄(Xi)
g(Xi)

=
∑n
i=1

f̄(Xi)
g(Xi)h(Xi)∑n
i=1

f̄(Xi)
g(Xi)

,

i.e. the self-normalised estimator µ̂ does not depend on the normalisation constant C. By a closely analogous
argument, one can show that is also enough to know g only up to a multiplicative constant. On the other hand, as
demonstrated by the proof of Theorem 2.2 it is a lot harder to analyse the theoretical properties of the self-normalised
estimator µ̂.

Although the above equations (2.4) and (2.5) hold for every g with supp(g) ⊇ supp(f · h) and the importance
sampling algorithm converges for a large choice of such g, one typically only considers choices of g that lead to finite
variance estimators. The following two conditions are each sufficient (albeit rather restrictive; see Geweke (1989) for
some other possibilities) to ensure that µ̃ has finite variance:

• f(x) ≤M · g(x) and Varf [h(X)] <∞.

• E is compact, f is bounded above on E, and g is bounded below on E.

So far we have only studied whether a g is an appropriate proposal distribution, i.e. whether the variance of the
estimator µ̃ (or µ̂) is finite. This leads to the question which proposal distribution is optimal, i.e. for which choice
Var [µ̃] is minimal. The following theorem, variants of which date back at least to Goertzel (1949), answers this
question:

Theorem 2.3. (Optimal proposal). The proposal distribution g that minimises the variance of µ̃ is

g∗(x) = |h(x)|f(x)∫
E
|h(t)|f(t) dt .

Proof. We have from Theorem 2.2 (b) that

n · Varg [µ̃] = Varg [w(X) · h(X)]

= Varg
[
h(X) · f(X)

g(X)

]
= Eg

[(
h(X) · f(X)

g(X)

)2
]
−

(
Eg
[
h(X) · f(X)

g(X)

]
︸ ︷︷ ︸

=Eg [µ̃]=µ

)2

.

The second term is independent of the choice of proposal distribution, thus we need minimise only Eg
[(

h(X)·f(X)
g(X)

)2
]
.

Substituting g? into this expression we obtain:

Eg?
[(

h(X) · f(X)
g?(X)

)2
]

=
∫
E

h(x)2 · f(x)2

g?(x) dx =
(∫

E

h(x)2 · f(x)2

|h(x)|f(x) dx

)
·
(∫

E

|h(t)|f(t) dt
)

=
(∫

E

|h(x)|f(x) dx
)2

On the other hand, we can apply Jensen’s inequality to Eg
[(

h(X)·f(X)
g(X)

)2
]
, yielding

Eg

[(
h(X) · f(X)

g(X)

)2
]
≥
(
Eg
[
|h(X)| · f(X)

g(X)

])2
=
(∫

E

|h(x)|f(x) dx
)2

i.e. the estimator obtained by using an importance sampler employing proposal distribution g? attains the minimal
possible variance amongst the class of importance sampling estimators.
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An important corollary of Theorem 2.3 is that importance sampling can be super-efficient: when using the optimal
g? from Theorem 2.3 the variance of µ̃ is less than the variance obtained when sampling directly from f :

n · Varf
[
h(X1) + · · ·+ h(Xn)

n

]
= Ef

[
h(X)2]− µ2

≥ (Ef [|h(X)|])2 − µ2

=
(∫

E

|h(x)|f(x) dx
)2
− µ2 = n · Varg? [µ̃]

where the inequality follows from Jensen’s inequality. Unless h is (almost surely) constant, the inequality is strict.
There is an intuitive explanation to the super-efficiency of importance sampling. Using g? instead of f causes us to
focus on regions which balance both high probability density, f , and substantial values of the function, where |h| is
large, which contribute the most to the integral Ef [h(X)].

Theorem 2.3 is, however, a rather formal optimality result. When using µ̃ we need to know the normalisation
constant of g?, which if h is everywhere positive is exactly the integral we are attempting to approximate—and
is likely to be equally difficult to evaluate even when that is not the case! Furthermore, we need to be able to
draw samples from g? efficiently. The practically important implication of Theorem 2.3 is that we should choose an
instrumental distribution g whose shape is close to the one of f · |h|.

Example 2.5. (Computing for X ∼ t3). Assume we want to compute Ef [|X|] for X from a t-distribution with 3
degrees of freedom (t3) using a Monte Carlo method. Consider three different schemes.

• Sampling X1, . . . , Xn directly from t3 and estimating Ef [|X|] by

1
n

n∑
i=1
|Xi|.

• Alternatively we could use importance sampling using a t1 (which is nothing other than a Cauchy distribution)
as proposal distribution. The idea behind this choice is that the density gt1(x) of a t1 distribution is closer to
f(x)|x|, where f(x) is the density of a t3 distribution, as Figure 2.4 shows.

• Third, we will consider importance sampling using a N (0, 1) distribution as proposal distribution.

Note that the third choice yields weights of infinite variance, as the proposal distribution (N (0, 1)) has lighter tails
than the distribution we want to sample from (t3). The right-hand panel of Figure 2.5 illustrates that this choice
yields a very poor estimate of the integral

∫
|x|f(x) dx. Sampling directly from the t3 distribution can be seen as

importance sampling with all weights wi ≡ 1; this choice clearly minimises the variance of the weights. However,
minimizing the variance of the weights does not imply that this yields an estimate of the integral

∫
|x|f(x) dx of

minimal variance. Indeed, after 1500 iterations the empirical standard deviation (over 100 realisations) of the direct
estimate is 0.0345, which is larger than the empirical standard deviation of µ̃ when using a t1 distribution as proposal
distribution, which is 0.0182. This suggests that using a t1 distribution as proposal distribution is super-efficient
(see Figure 2.5, although we should always be careful when assuming that empirical standard deviations are a good
approximation of the true standard deviation).

Figure 2.6 somewhat explains why the t1 distribution is a far better choice than the N (0, 1) distribution. As the
N (0, 1) distribution does not have heavy enough tails, the weight tends to infinity as |x| → +∞. Thus large |x| can
receive very large weights, causing the jumps of the estimate µ̃ shown in Figure 2.5. The t1 distribution has heavy
enough tails, to ensure that the weights are small for large values of |x|, explaining the small variance of the estimate
µ̃ when using a t1 distribution as proposal distribution.
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Chapter 3

Markov chain Monte Carlo

The focus of this chapter is on one class of simulation-based algorithms for approximating complex distributions
without having to sample directly from those distributions. These methods have been tremendously successful in
modern computational statistics.

Discrete time Markov processes on general state spaces, or Markov chains as we shall call such processes here, are
described in some detail in the Applied Stochastic Processes module. Here, we investigate one particular use of these
processes, as a mechanism for obtaining samples suitable for approximating complex distributions of interest.

Some definitions, background and useful results on Markov chains are provided in Appendix A.

3.1 The Basis of Markov chain Monte Carlo (MCMC)
In Chapter 2 we saw various methods for obtaining samples from distributions as well as some uses for such samples.
The range of situations in which we like to make use of samples from distributions is, unfortunately, somewhat wider
than the range of situations in which we can obtain such samples (easily, efficiently, or at all in some cases).

As the earlier Applied Stochastic Processes course will have provided a sound introduction to Markov chains for
anyone able to attend it and not already familiar with them, we don’t repeat that introduction here. Appendix
A may provide a useful reference if these things are new to you (or, indeed, if it’s some time since you’ve thought
about them) and here we confine ourselves to a few essential definitions.

There are various conventions in the literature, but we will use the term Markov chain to refer to any discrete time
Markov process, whatever may be its state space. (Sometimes the state space is also assumed to be discrete.) We’ll
assume here that the target distribution f is a continuous distribution over E ⊆ Rd for definiteness and for compact
notation, but it should be realised that these techniques can be used in much greater generality.

For definiteness, we’ll let K denote the density of the transition kernel of a Markov chain and we’ll look for f -invariant
Markov kernels, i.e. those for which:∫

x∈E

∫
x′∈A

f(x)K(x,x′)dxdx′ =
∫
x∈A

f(x)dx

for every measurable set A. We have assumed here that f admits a density and K(x, ·) admits a density for any
x, and we can of course simplify this slightly and write the invariance condition as

∫
E
f(x)K(x,x′)dx = f(x′).

Intuitively, an f -invariant Markov kernel is one which preserves the distribution f in the sense that if one samples
X ∼ f and then conditional upon X taking the value x, sample X ′ ∼ K(x, ·) then, marginally, X ′ ∼ f .

If X0,X1, . . . is a Markov chain with some initial distribution µ0 and f -invariant transition K then its clear that if
at any time s that Xs ∼ f , then for every t > s we have Xt ∼ f . That is, if the marginal distribution of the state
of the Markov chain is f at any time then the marginal distribution of the state of the Markov chain at any later
time is also f . This encourages us to consider using as an estimator of Ih =

∫
h(x)f(x)dx the sample path average

of the function of interest:

ÎMCMC
h = 1

t

t∑
i=1

h(Xi)

19
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which is of exactly the same form as the simple Monte Carlo estimator—except that it makes use of the trajectory
of a Markov chain with f its invariant distribution instead of a collection of iid realisations from f itself.

However, there are two other issues which we need to consider before we could expect this estimator to have good
properties:

• Is any Xt ∼ f? We know that if this is ever true it remains true for all subsequent times but we don’t know
that this situation is ever achieved.

• How does the dependence between consecutive states influence the estimator? Consider X1 ∼ f and Xi = Xi−1
for all i > 1. This is a Markov chain whose states are all marginally distributed according to f , but we wouldn’t
expect ÎMCMC

h to behave well if we used such a chain.

Next we’ll briefly consider some problems which could arise and what behaviour we might need in order to have
some confidence in an MCMC estimator before seeing some results which formally justify the approach.

3.1.1 Selected Properties and Potential Failure Modes
Not all f -invariant Markov kernels are suitable for use in Monte Carlo simulation. In addition to preserving the
correct distribution, we need some notion of mixing or forgetting: we need the chain to move around the space in
such a way that serial dependencies decay over time. The identity transition which sets Xt = Xt−1 with probability
one is f -invariant for every f , but is of little use for MCMC purposes.

There are certain properties of Markov chains that are important because we can use them to ensure that various
pathological things don’t happen in the course of our simulations. We give a very brief summary here; see Appendix
A for a slightly more formal presentation and some references.

Periodicity A Markov chain is periodic if the state space can be partitioned by a collection of more than one
disjoint sets in such a way that the chain moves cyclically between elements of this partition. If such a partition
exists then the number of elements in it is known as the period of the Markov chain; otherwise, the chain is termed
aperiodic. In Markov chain Monte Carlo algorithms we generally require that the simulated chains are aperiodic
(otherwise it’s clear that the chain cannot ever forget in which element of the partition it started and, if initialised at
some value, x0, will have disjoint support at time t and t+ 1 for all t and hence can never reach distribution f).

Reducibility A discrete space Markov chain is reducible if a chain cannot evolve from (almost) any point in the
state space to any other; otherwise it is irreducible. In the case of chains defined on continuous spaces it is necessary
to introduce a reference distribution, say φ, and to term the chain φ-irreducible if any set of positive probability
under φ can be reached with positive probability from any starting point. In MCMC applications we require that
the chains we use are f -irreducible; otherwise, the parts of the space that would be explored by the evolution of the
chain would depend strongly on the starting value—and this would remain true even if the chain were run for an
infinitely long time.

Transience Another significant type of undesirable behaviour is transience. Loosely speaking, a Markov chain is
transient if it is expected to visit sets of positive probability under its invariant distribution only finitely often, even
if permitted to run for infinite time. This means that in some sense the chain tends to drift off to infinity. In order
for results like the law of large numbers to be adapted to the Markov chain setting, we require that sets of positive
probability would in principle be visited arbitrarily often if the chain were to run for long enough. A φ-irreducible
Markov chain is recurrent if the expected number of returns to any set of positive φ-probability is infinite. We’ll
focus on chains which have a stronger property. A φ-irreducible Markov chain is Harris recurrent if the probability
that any set which has positive probability under φ is visited infinitely often by the chain (over an infinite time
period) is one for all starting values.

3.1.2 A Few Theoretical Results
Formally, we justify Markov chain Monte Carlo by considering the asymptotic properties of the Markov chain
(actually, in some situations it’s possible to deal with finite sample properties but these are rather specialised
settings). The following two results are two (amongst many similar theorems with subtly different conditions) which
are to MCMC as the strong law of large numbers and the central limit theorem are to simple Monte Carlo.
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Theorem 3.1. (An Ergodic Theorem). If (Xi)i∈N is an f -invariant, Harris recurrent Markov chain, then the
following strong law of large numbers holds (convergence is with probability 1) for any integrable function h : E → R:

lim
t→∞

1
t

t∑
i=1

h(Xi)
a.s.=
∫
h(x)f(x)dx.

Theorem 3.2. (A Markov Chain Central Limit Theorem). Under technical regularity conditions (see Jones (2004)
for a summary of various combinations of conditions) it is possible to obtain a central limit theorem for the ergodic
averages of a Harris recurrent, f -invariant Markov chain, and a function h : E → R which has at least two finite
moments (depending upon the combination of regularity conditions assumed, it may be necessary to have a finite
moment of order 2 + δ for some δ > 0):

lim
t→∞

√
t

[
1
t

t∑
i=1

h(Xi)−
∫
h(x)f(x)dx

]
D= N

(
0, σ2(h)

)
,

σ2(h) = E
[
(h(X1)− h̄)2]+ 2

∞∑
k=2

E
[
(h(X1)− h̄)(h(Xk)− h̄)

]
,

where h̄ =
∫
h(x)µ(x)dx.

Although the variance is not a straightforward thing to calculate in practice (it’s rarely possible) this expression is
informative. It quantifies what we would expect intuitively, that the stronger the (positive1) relationship between
successive elements of the chain the higher the variance of the resulting estimates. If K(x, ·) = f(·) so that we
obtain a sequence of iid samples form the target distribution then we recover the variance of the simple Monte Carlo
estimator.

3.2 Constructing MCMC Algorithms
So, having established that we can in principle employ Markov chains with f -invariant kernels to approximate
expectations with respect to f , a natural question is how can we construct an f -invariant Markov kernel? Fortunately,
there are some general methods which are very widely applicable.

3.2.1 Gibbs Samplers
We begin with a motivating example which shows that for realistic problems it may be possible to characterise
and sample from the full conditional distributions associated with each variable separately; that is, the conditional
distribution of any one variable given any particular value for all of the other variables, even when it is not possible
to sample directly form their joint distribution. We’ll use this to motivate a strategy of sampling iteratively from
these full conditional distributions in order to obtain a realisation of a Markov chain, before going on to demonstrate
that this approach falls within the MCMC framework described above.

Example 3.1. (Poisson change point model). Assume the following Poisson model of two regimes for n random
variables Y1, . . . , Yn.

Yi ∼ Poi(λ1) for i = 1, . . . ,M,

Yi ∼ Poi(λ2) for i = M + 1, . . . , n.

A conjugate prior distribution for λj is the Gamma (αj , βj) distribution with density

f(λj) = 1
Γ(αj)

λ
αj−1
j β

αj
j exp(−βjλj).

The joint distribution of Y1, . . . , Yn, λ1, λ2, and M is

f(Y1, . . . , Yn, λ1, λ2,M) =
(
M∏
i=1

exp(−λ1)λYi1
Yi!

)
·

(
n∏

i=M+1

exp(−λ2)λYi2
Yi!

)

· 1
Γ(α1)λ

α1−1
1 βα1

1 exp(−β1λ1) · 1
Γ(α2)λ

α2−1
2 βα2

2 exp(−β2λ2).

1In principle, if we could arrange for negative correlation we could improve upon the independent case but in practice this isn’t
feasible.
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If M is known, the posterior distribution of λ1 given observations Yi = yi for 1 ≤ i ≤ n has the density

f(λ1 | y1, . . . , yn,M) ∝ λ
α1−1+

∑M

i=1
yi

1 exp(−(β1 +M)λ1),

so

λ1 | y1, . . . yn,M ∼ Gamma
(
α1 +

M∑
i=1

yi, β1 +M

)
, (3.1)

λ2 | y1, . . . yn,M ∼ Gamma
(
α2 +

n∑
i=M+1

yi, β2 + n−M

)
. (3.2)

Now assume that we do not know the change point M and that we assume a uniform prior on the set {1, . . . ,M−1}. It
is easy to compute the distribution of M given the observations y1, . . . yn, and λ1 and λ2. It is a discrete distribution
with probability density function proportional to

p(M | λ1, λ2, y1, . . . yn) ∝ λ
∑M

i=1
yi

1 · λ
∑n

i=M+1
yi

2 · exp((λ2 − λ1) ·M). (3.3)

The conditional distributions in (3.1) to (3.3) are all easy to sample from. It is however rather difficult to sample
from the joint posterior of (λ1, λ2,M).

The example above suggests the strategy of alternately sampling from the (full) conditional distributions ((3.1) to
(3.3) in the example). This tentative strategy however raises some questions.

• Is the joint distribution uniquely specified by the conditional distributions? We know that it is not determined
by the collection of marginal distributions and so this is an important question (an algorithm which makes use
of only these distributions could only be expected to provide information about the joint distribution if these
conditionals do characterise that distribution).

• Sampling alternately from the conditional distributions yields a Markov chain: the newly proposed values only
depend on the present values, not the past values. Will this approach yield a Markov chain with the correct
invariant distribution? Will the Markov chain converge to the invariant distribution?

3.2.1.1 The Hammersley–Clifford Theorem

We begin by addressing the first of these questions via a rather elegant result known as the Hammersley–Clifford
Theorem, although Hammersley and Clifford never actually published the result.

Definition 3.1. (Positivity condition). A distribution with density f(x1, . . . , xp) and marginal densities fXi(xi) is
said to satisfy the positivity condition if f(x1, . . . , xp) > 0 for all x1, . . . , xp with fXi(xi) > 0.

The positivity condition thus implies that the support of the joint density f is the Cartesian product of the support
of the marginals fXi .

Theorem 3.3. (Hammersley–Clifford). Let (X1, . . . , Xp) satisfy the positivity condition and have joint density
f(x1, . . . , xp). Then for all (ξ1, . . . , ξp) ∈ supp(f)

f(x1, . . . , xp) ∝
p∏
j=1

fXj |X−j (xj | x1, . . . , xj−1, ξj+1, . . . , ξp)
fXj |X−j (ξj | x1, . . . , xj−1, ξj+1, . . . , ξp)

.

Proof. We have
f(x1, . . . , xp−1, xp) = fXp|X−p(xp | x1, . . . , xp−1)f(x1, . . . , xp−1) (3.4)

and by exactly the same argument

f(x1, . . . , xp−1, ξp) = fXp|X−p(ξp | x1, . . . , xp−1)f(x1, . . . , xp−1), (3.5)
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thus, using (3.4) and (3.5) in turn,

f(x1, . . . , xp) = f(x1, . . . , xp−1)︸ ︷︷ ︸
=f(x1,...,,xp−1,ξp)/fXp|X−p (ξp|x1,...,xp−1)

fXp|X−p(xp | x1, . . . , xp−1) (3.6)

= f(x1, . . . , xp−1, ξp)
fXp|X−p(xp | x1, . . . , xp−1)
fXp|X−p(ξp | x1, . . . , xp−1) (3.7)

= . . . (3.8)

= f(ξ1, . . . , ξp)
fX1|X−1(x1 | ξ2, . . . , ξp)
fX1|X−1(ξ1 | ξ2, . . . , ξp)

· · ·
fXp|X−p(xp | x1, . . . , xp−1)
fXp|X−p(ξp | x1, . . . , xp−1) . (3.9)

The positivity condition guarantees that the conditional densities are non-zero.

Note that the Hammersley–Clifford theorem does not guarantee the existence of a joint probability distribution for
every choice of conditionals, as the following example shows. In Bayesian modelling such problems arise most often
when using improper prior distributions.

Example 3.2. Consider the following “model”

X1 | X2 ∼ Exp (λX2),
X2 | X1 ∼ Exp (λX1),

for which it would be easy to design a Gibbs sampler. Trying to apply the Hammersley–Clifford theorem, we obtain

f(x1, x2) ∝
fX1|X2(x1 | ξ2) · fX2|X1(x2 | x1)
fX1|X2(ξ1 | ξ2) · fX2|X1(ξ2 | x1) = λξ2 exp(−λx1ξ2) · λx1 exp(−λx1x2)

λξ2 exp(−λξ1ξ2) · λx1 exp(−λx1ξ2) ∝ exp(−λx1x2)

The integral
∫∫

exp(−λx1x2) dx1 dx2, however, is not finite: there is no two-dimensional probability distribution
with f(x1, x2) as its density.

3.2.1.2 Gibbs Sampling Algorithm

The generic Gibbs sampler is widely accepted as being first proposed by Geman and Geman (1984) and popularised
within the general statistical community by Gelfand and Smith (1990). Denote x−i := (x1, . . . , xi−1, xi+1, . . . , xp).

Algorithm 3.1 ((Systematic sweep) Gibbs sampler). Starting with (X(0)
1 , . . . , X

(0)
p ) iterate for t = 1, 2, . . .

• 1. Draw X
(t)
1 ∼ fX1|X−1(· | X(t−1)

2 , . . . , X
(t−1)
p ).

•
...

• j. Draw X
(t)
j ∼ fXj |X−j (· | X

(t)
1 , . . . , X

(t)
j−1, X

(t−1)
j+1 , . . . , X

(t−1)
p ).

•
...

• p. Draw X
(t)
p ∼ fXp|X−p(· | X(t)

1 , . . . , X
(t)
p−1).

Figure 3.1 illustrates the Gibbs sampler. The conditional distributions used in the Gibbs sampler are often referred
to as full conditionals (being conditional upon everything except the variable being sampled at each step). Note
that the Gibbs sampler is not reversible. Liu, Wong, and Kong (1995) proposed the following algorithm that yields
a reversible chain.

Algorithm 3.2 (Random sweep Gibbs sampler). Starting with (X(0)
1 , . . . , X

(0)
p ) iterate or t = 1, 2, . . .

1. Draw an index j from a distribution on {1, . . . , p} (e.g. uniform).

2. Draw X
(t)
j ∼ fXj |X−j (· | X

(t−1)
1 , . . . , X

(t−1)
j−1 , X

(t−1)
j+1 , . . . , X

(t−1)
p ), and set X(t)

ι := X
(t−1)
ι for all ι 6= j.
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Figure 3.1: Illustration of the Gibbs sampler for a two-dimensional distribution.

3.2.1.3 Convergence of Gibbs Samplers

First we must establish whether that joint distribution f(x1, . . . , xp) is indeed the stationary distribution of the
Markov chain generated by the Gibbs sampler. All the results in this section will be derived for the systematic scan
Gibbs sampler (Algorithm 3.1). Very similar results hold for the random scan Gibbs sampler (Algorithm 3.2).

To proceed with such an analysis, we first have to determine the transition kernel corresponding to the Gibbs
sampler.

Lemma 3.1. The transition kernel of the Gibbs sampler is

K(x(t−1),x(t)) = fX1|X−1(x(t)
1 | x

(t−1)
2 , . . . , x(t−1)

p ) · fX2|X−2(x(t)
2 | x

(t)
1 , x

(t−1)
3 , . . . , x(t−1)

p ) · · · · · fXp|X−p(x(t)
p | x

(t)
1 , . . . , x

(t)
p−1)

Proof. We have, for any (measurable X ):

P(x(t) ∈ X | x(t−1) = x(t−1)) =
∫
X
f(xt|x(t−1))(x(t) | x(t−1)) dx(t)

=
∫
X
fX1|X−1(x(t)

1 | x
(t−1)
2 , . . . , x(t−1)

p )︸ ︷︷ ︸
corresponds to step 1. of the algorithm

· fX2|X−2(x(t)
2 | x

(t)
1 , x

(t−1)
3 , . . . , x(t−1)

p )︸ ︷︷ ︸
corresponds to step 2. of the algorithm

· . . .

· fXp|X−p(x(t)
p | x

(t)
1 , . . . , x

(t)
p−1)︸ ︷︷ ︸

corresponds to step p. of the algorithm

dx(t).

Proposition 3.1. The joint distribution f(x1, . . . , xp) is indeed the invariant distribution of the Markov chain
(x(0),x(1), . . . ) generated by the Gibbs sampler.
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Proof. Assume that x(t−1) ∼ f , then

P(x(t) ∈ X ) =
∫
X

∫
f(x(t−1))K(x(t−1),x(t)) dx(t−1) dx(t)

=
∫
X

∫
· · ·
∫
f(x(t−1)

1 , . . . , x(t−1)
p ) dx(t−1)

1︸ ︷︷ ︸
=f(x(t−1)

2 ,...,x
(t−1)
p )

fX1|X−1(x(t)
1 | x

(t−1)
2 , . . . , x(t−1)

p )

︸ ︷︷ ︸
=f(x(t)

1 ,x
(t−1)
2 ,...,x

(t−1)
p )

· · ·

· fXp|X−p(x(t)
p | x

(t)
1 , . . . , x

(t)
p−1)dx(t−1)

2 . . . dx(t−1)
p dx(t)

=
∫
X

∫
· · ·
∫
f(x(t)

1 , x
(t−1)
2 , . . . , x(t−1)

p ) dx(t−1)
2︸ ︷︷ ︸

=f(x(t)
1 ,x

(t−1)
3 ,...,x

(t−1)
p )

fX2|X−2(x(t)
2 | x

(t)
1 , x

(t−1)
3 , . . . , x(t−1)

p )

︸ ︷︷ ︸
=f(x(t)

1 ,x
(t)
2 ,x

(t−1)
3 ,...,x

(t−1)
p )

· · ·

· fXp|X−p(x(t)
p | x

(t)
1 , . . . , x

(t)
p−1)dx(t−1)

3 . . . dx(t−1)
p dx(t)

= . . .

=
∫
X

∫
f(x(t)

1 , . . . , x
(t)
p−1, x

(t−1)
p ) dx(t−1)

p︸ ︷︷ ︸
=f(x(t)

1 ,...,x
(t)
p−1)

fXp|X−p(x(t)
p | x

(t)
1 , . . . , x

(t)
p−1)

︸ ︷︷ ︸
=f(x(t)

1 ,...,x
(t)
p )

dx(t)

=
∫
X
f(x(t)

1 , . . . , x(t)
p ) dx(t)

Thus f is the density of x(t) (if x(t−1) ∼ f).

So far we have established that f is indeed the invariant distribution of the Gibbs sampler. Next, we have to analyse
under which conditions the Markov chain generated by the Gibbs sampler will converge to f .

First of all we have to study under which conditions the resulting Markov chain is irreducible (really, we mean
f -irreducible, of course, here and in the following we mean “irreducibility” with respect to the target distribution f).
The following example shows that such irreducibility does not hold for every possible target distribution.

Example 3.3. (Reducible Gibbs sampler). Consider Gibbs sampling from the uniform distribution on C1 ∪ C2 with
C1 := {(x1, x2) : ‖(x1, x2)− (1, 1)‖ ≤ 1} and C2 := {(x1, x2) : ‖(x1, x2)− (−1,−1)‖ ≤ 1}, i.e.

f(x1, x2) = 1
2π IC1∪C2(x1, x2).

Figure 3.2 shows the density as well the first few samples obtained by starting a Gibbs sampler with X(0)
1 < 0 and

X
(0)
2 < 0.

It is easy to that when the Gibbs sampler is started in C1 it will stay there and never reach C2. The reason for this
is that the conditional distribution X2 | X1 (X1 | X2) is for X1 < 0 (X2 < 0) entirely concentrated on C1.

The following proposition gives a sufficient condition for irreducibility (and thus the recurrence) of the Markov chain
generated by the Gibbs sampler. There are less strict conditions for the irreducibility and aperiodicity of the Markov
chain generated by the Gibbs sampler (see e.g. Robert and Casella 2004 Lemma 10.11).

Proposition 3.2. If the joint distribution f(x1, . . . , xp) satisfies the positivity condition, the Gibbs sampler yields
an f -irreducible, recurrent Markov chain.

Proof. Let X ⊆ supp(f) be a set with
∫
X f(x(t)

1 , . . . , x
(t)
p )d(x(t)

1 , . . . , x
(t)
p ) > 0. Then∫

X
K(x(t−1),x(t))dx(t) =

∫
X
fX1|X−1(x(t)

1 | x
(t−1)
2 , . . . , x(t−1)

p )︸ ︷︷ ︸
>0 (on a set of non-zero measure)

· · · fXp|X−p(x(t)
p | x

(t)
1 , . . . , x

(t)
p−1)︸ ︷︷ ︸

>0 (on a set of non-zero measure)

dx(t) > 0.



CHAPTER 3. MARKOV CHAIN MONTE CARLO 26

-2

-2

-1

-1

0

0

1

1

2

2

X
(t)
1

X
(t
)

2

Figure 3.2: Illustration of a Gibbs sampler failing to sample from a distribution with unconnected support (uniform
distribution on {(x1, x2) : ‖(x1, x2)− (1, 1)‖ ≤ 1|} ∪ {(x1, x2) : ‖(x1, x2)− (−1,−1)‖ ≤ 1|}).

Thus the Markov Chain (x(t))t is strongly f -irreducible. As f is the invariant distribution of the Markov chain, it is
recurrent.

If the transition kernel is absolutely continuous with respect to the dominating measure, then recurrence even implies
Harris recurrence (see e.g. Robert and Casella 2004 Lemma 10.9).

Now we have established all the necessary ingredients to state an ergodic theorem for the Gibbs sampler, which is a
direct consequence of Theorems A.1 and A.2.

Theorem 3.4. If the Markov chain generated by the Gibbs sampler is irreducible and recurrent (which is e.g. the
case when the positivity condition holds), then for any integrable function h : E → R:

lim
n→∞

1
n

n∑
t=1

h(x(t))→ Ef [h(X)]

for almost every starting value x(0). If the chain is Harris recurrent, then the above result holds for every starting
value x(0).

Theorem 3.4 guarantees that we can approximate expectations Ef [h(x)] by their empirical counterparts using a
single Markov chain.

Example 3.4. Assume that we want to use a Gibbs sampler to estimate P(X1 ≥ 0, X2 ≥ 0) for a

N
((

µ1
µ2

)
,

(
σ2

1 σ12
σ12 σ2

2

))
distribution. The marginal distributions are

X1 ∼ N
(
µ1, σ

2
1
)

and X2 ∼ N
(
µ2, σ

2
2
)
.

In order to construct a Gibbs sampler, we need the conditional distributions X1 | X2 = x2 and X2 | X1 = x1. We
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have2

f(x1, x2) ∝ exp
(
−1

2

((
x1
x2

)
−
(
µ1
µ2

))′(
σ2

1 σ12
σ12 σ2

2

)−1((
x1
x2

)
−
(
µ1
µ2

)))

∝ exp
(
− (x1 − (µ1 + σ12/σ

2
22(x2 − µ2)))2

2(σ2
1 − (σ12)2/σ2

2)

)
,

i.e.
(X1 | X2 = x2) ∼ N

(
µ1 + σ12/σ

2
2(x2 − µ2), σ2

1 − (σ12)2/σ2
2
)
.

Thus the Gibbs sampler for this problem consists of iterating for t = 1, 2, . . .

1. Draw X
(t)
1 ∼ N

(
µ1 + σ12/σ

2
2(X(t−1)

2 − µ2), σ2
1 − (σ12)2/σ2

2

)
.

2. Draw X
(t)
2 ∼ N

(
µ2 + σ12/σ

2
1(X(t)

1 − µ1), σ2
2 − (σ12)2/σ2

1

)
.

Now consider the special case µ1 = µ2 = 0, σ2
1 = σ2

2 = 1 and σ12 = 0.3. Figures 3.4–3.6 show the sample paths of
this Gibbs sampler.
Using Theorem 3.4 we can estimate P(X1 ≥ 0, X2 ≥ 0) by the proportion of samples (X(t)

1 , X
(t)
2 ) with X(t)

1 ≥ 0 and
X

(t)
2 ≥ 0. Figure 3.3 shows this estimate.
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Figure 3.3: Estimate of the P(X1 ≥ 0, X2 ≥ 0) obtained using a Gibbs sampler. The area shaded in grey corresponds
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A Gibbs sampler is of course not the optimal way to sample from a N (µ,Σ) distribution. A more efficient way is:
draw Z1, . . . , Zp

iid∼ N (0, 1) and set (X1, . . . , Xp)′ = Σ1/2(Z1, . . . , Zp)′ + µ. As we shall see, in some instances the
loss of efficiency arising from Gibbs sampling can be very severe.

Note that the realisations (x(0),x(1), . . . ) form a Markov chain, and are thus not independent, but typically positively
correlated. The correlation between the x(t) is larger if the Markov chain moves only slowly (the chain is then said
to be slowly mixing). For the Gibbs sampler this is typically the case if the variables Xj are strongly (positively or
negatively) correlated, as the following example shows.

Example 3.5. (Sampling from a highly correlated bivariate Gaussian).
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(t)
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Figure 3.4: Gibbs sampler for a bivariate standard normal distribution (correlation ρ(X1, X2) = 0.3): first 50
iterations.

MCMC sample
X

(t)
1

f̂X1
(x1)

Figure 3.5: Gibbs sampler for a bivariate standard normal distribution (correlation ρ(X1, X2) = 0.3): Path of X(t)
1

and estimated density of X after 1,000 iterations.

Figures 3.7–3.9 show the results obtained when sampling from a bivariate Normal distribution as in Example 3.4,
however with σ12 = 0.99. This yields a correlation of ρ(X1, X2) = 0.99. This Gibbs sampler is a lot slower mixing
than the one considered in Example 3.4 (and displayed in Figure 3.4–3.6): due to the strong correlation the Gibbs
sampler can only perform very small movements. This makes subsequent samples X(t−1)

j and X(t)
j highly correlated
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Figure 3.6: Gibbs sampler for a bivariate standard normal distribution (correlation ρ(X1, X2) = 0.3): Path of X(t)
2

and estimated density of X2 after 1,000 iterations.
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Figure 3.7: Gibbs sampler for a bivariate normal distribution with correlation ρ(X1, X2) = 0.99: first 50 iterations.
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Figure 3.8: Gibbs sampler for a bivariate normal distribution with correlation ρ(X1, X2) = 0.99: Path of X(t)
1 and

estimated density of X1 after 1,000 iterations.
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Figure 3.9: Gibbs sampler for a bivariate normal distribution with correlation ρ(X1, X2) = 0.99: Path of X(t)
2 and

estimated density of X2 after 1,000 iterations.
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and this leads to slower convergence, as the plot of the estimated densities show (compare Figures 3.5–3.6 with
3.8–3.9).

3.2.2 Metropolis and Beyond
Although the Gibbs sampler is appealing and appears generally applicable, there are some difficulties with it. In
particular, it requires that the full conditional distributions are known and can be sampled from (and in order to
be efficient these need to be the full conditional distributions of groups of highly-dependent subsets of the random
variables which can further complicate the problem). We turn our attention now to a still more broadly-applicable
class of MCMC algorithms based around an accept/reject mechanism.

The Metropolis–Hastings algorithm dates back to Metropolis et al. (1953) and Hastings (1970). Like rejection
sampling (Algorithm 2.1), the Metropolis–Hastings algorithm is based on proposing values sampled from a proposal
distribution, which are then accepted with a certain probability that reflects how likely it is that they are from the
target distribution f .

The main drawback of the rejection sampling algorithm is that it is often very difficult to come up with a suitable
proposal distribution that leads to an efficient algorithm. One way around this problem is to allow for “local
updates”, i.e. let the proposed value depend on the last accepted value. This makes it easier to come up with a
suitable (conditional) proposal, however at the price of yielding a Markov chain instead of a sequence of independent
realisations.

Algorithm 3.3 (Metropolis–Hastings). Starting with X(0) := (X(0)
1 , . . . , X

(0)
p ) iterate for t = 1, 2, . . .

1. Draw X ∼ q(· |X(t−1)).

2. Compute

α(X |X(t−1)) = min
{

1, f(X) · q(X(t−1) |X)
f(X(t−1)) · q(X |X(t−1))

}
. (3.10)

3. With probability α(X |X(t−1)) set X(t) = X, otherwise set X(t) = X(t−1).

X
(t)
1

X
(t
)

2

x(0)=x(1)=x(2)

x(3)=x(4)=x(5)=x(6)=x(7)

x(8)

x(9)
x(10)

x(11)=x(12)=x(13)=x(14)

x(15)

Figure 3.10: Illustration of the Metropolis–Hastings algorithm. Filled dots denote accepted states, open circles
rejected values.

Figure 3.10 illustrates the Metropolis–Hastings algorithm. Note that if the algorithm rejects the newly proposed value
(open disks joined by dotted lines in Figure 3.10) it accepts its current value X(t−1) instead. (The Metropolis–Hastings
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algorithm never rejects.) The probability that the Metropolis–Hastings algorithm accepts the newly proposed state
X given that it currently is in state X(t−1) is

a(x(t−1)) =
∫
α(x | x(t−1))q(x | x(t−1)) dx.

Just like the Gibbs sampler, the Metropolis–Hastings algorithm generates a Markov chain, whose properties will be
discussed in the next section.

Remark. The probability of acceptance (3.10) does not depend on the normalisation constant: if f(x) = C · π(x),
then

f(x) · q(x(t−1) | x)
f(x(t−1)) · q(x | x(t−1)) = Cπ(x) · q(x(t−1) | x)

Cπ(x(t−1)) · q(x | x(t−1)) = π(x) · q(x(t−1) | x)
π(x(t−1)) · q(x | x(t−1)) .

Thus f only needs to be known up to normalisation constant. Similarly, it is enough to know q(x(t−1) | x) up to a
multiplicative constant independent of x(t−1) and x.

3.2.3 Convergence of Metropolis–Hastings
Lemma 3.2. The transition kernel3 of the Metropolis–Hastings algorithm is

K(x(t−1),x(t)) = α(x(t) | x(t−1))q(x(t) | x(t−1)) + (1− a(x(t−1)))δx(t−1)(x(t)), (3.11)

where δx(t−1)(·) denotes a probability distribution which places a mass of one at x(t−1).

Proof. We have

P(x(t) ∈ X | x(t−1) = x(t−1)) =P(x(t) ∈ X ,new value accepted | x(t−1) = x(t−1))
+ P(x(t) ∈ X ,new value rejected | x(t−1) = x(t−1))

=
∫
X
α(x(t) | x(t−1))q(x(t) | x(t−1)) dx(t)

+ IX (x(t−1))︸ ︷︷ ︸
=
∫
X
δ

x(t−1) (dx(t))

P(new value rejected | x(t−1) = x(t−1))︸ ︷︷ ︸
=1−a(x(t−1))︸ ︷︷ ︸

=
∫
X

(1−a(x(t−1)))δ
x(t−1) (dx(t))

=
∫
X
α(x(t) | x(t−1))q(x(t) | x(t−1)) dx(t)

+
∫
X

(1− a(x(t−1)))δx(t−1)(dx(t)).

Proposition 3.3. The Metropolis–Hastings kernel (3.11) satisfies the detailed balance condition

K(x(t−1),x(t))f(x(t−1)) = K(x(t),x(t−1))f(x(t))

and thus f(x) is the invariant distribution of the Markov chain (x(0),x(1), . . . ) generated by the Metropolis–Hastings
sampler. Furthermore the Markov chain is reversible.

Proof. We have that

α(x(t) | x(t−1))q(x(t) | x(t−1))f(x(t−1)) = min
{

1, f(x(t))q(x(t−1) | x(t))
f(x(t−1))q(x(t) | x(t−1))

}
q(x(t) | x(t−1))f(x(t−1))

= min
{
f(x(t−1))q(x(t) | x(t−1)), f(x(t))q(x(t−1) | x(t))

}
= min

{
f(x(t−1))q(x(t) | x(t−1))
f(x(t))q(x(t−1) | x(t)) , 1

}
q(x(t−1) | x(t))f(x(t))

= α(x(t−1) | x(t))q(x(t−1) | x(t))f(x(t)),
3Note that, despite the slight abuse of notation, the transition kernel (3.11) is not absolutely continuous with respect to the Lebesgue

measure (i.e. it doesn’t have a simple density).
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and thus

K(x(t−1),x(t))f(x(t−1)) = α(x(t) | x(t−1))q(x(t) | x(t−1))f(x(t−1))︸ ︷︷ ︸
=α(x(t−1)|x(t))q(x(t−1)|x(t))f(x(t))

+ (1− a(x(t−1))) δx(t−1)(x(t))︸ ︷︷ ︸
=0 if x(t) 6= x(t−1)

f(x(t−1))

︸ ︷︷ ︸
(1−a(x(t)))δ

x(t) (x(t−1))f(x(t))

= K(x(t),x(t−1))f(x(t)).

The other conclusions follow by Proposition A.2, suitably adapted to the continuous case (i.e. replacing the sums by
integrals).

Next we need to examine whether the Metropolis–Hastings algorithm yields an irreducible chain. As with the Gibbs
sampler, this is not necessarily the case, as the following example shows.

Example 3.6. (Reducible Metropolis–Hastings). Consider using a Metropolis–Hastings algorithm for sampling
from a uniform distribution on [0, 1] ∪ [2, 3] and a U

[
x(t−1) − δ, x(t−1) + δ

]
distribution as proposal distribution

q(· | x(t−1)). Figure 3.11 illustrates this example. It is easy to see that the resulting Markov chain is not irreducible
if δ ≤ 1: in this case the chain either stays in [0, 1] or [2, 3].

x(t�1)

1/(2�) q(· | x(t�1))

��

f(·)

1 2 3

1/2

Figure 3.11: Illustration of Reducible Metropolis–Hastings.

Under mild assumptions on the proposal q(· | x(t−1)) one can however establish the irreducibility of the resulting
Markov chain:

• If q(x(t) | x(t−1)) is positive for all x(t−1),x(t) ∈ supp(f), then it is easy to see that we can reach any set of
non-zero probability under f within a single step. The resulting Markov chain is thus strongly irreducible.
Even though this condition seems rather restrictive, many popular choices of q(· | x(t−1)) like multivariate
Gaussian or t-distributions fulfil this condition.

• G. Roberts and Tweedie (1996, Theorem 2.2) gives a more general condition for the irreducibility of the
resulting Markov chain: they only require that

∃ ε > 0, δ > 0 : q(x(t) | x(t−1)) > ε if ‖x(t−1) − x(t)‖ < δ

together with the boundedness (away from both zero and infinity) of f on any compact set.

The Markov chain (x(0),x(1), . . . ) is further aperiodic if there is positive probability that the chain remains in the
current state, i.e. P(x(t) = x(t−1)) > 0, which is the case if

P
(
f(x(t−1))q(x | x(t−1)) > f(x)q(x(t−1) | x)

)
> 0.

Note that this condition is not met if we use a “perfect” proposal which has f as invariant distribution: in this case
we accept every proposed value with probability 1 (see e.g. remark after Example 3.10).

Proposition 3.4. The Markov chain generated by the Metropolis–Hastings algorithm is Harris-recurrent if it is
irreducible.

Proof. Recurrence follows from the irreducibility and the fact that f is the invariant distribution. For a proof of
Harris recurrence see Tierney (1994, Corollary 2).
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As we have now established (Harris-)recurrence, we are now ready to state an ergodic theorem (using Theorems A.1
and A.2.

Theorem 3.5. If the Markov chain generated by the Metropolis–Hastings algorithm is irreducible, then for any
integrable function h : E → R:

lim
n→∞

1
n

n∑
t=1

h(x(t))→ Ef [h(X)]

for every starting value x(0).

As with the Gibbs sampler, the above ergodic theorem allows for inference using a single Markov chain.

3.2.4 The random walk Metropolis algorithm
In this section we will focus on an important special case of the Metropolis–Hastings algorithm: the random walk
Metropolis–Hastings algorithm. Assume that we generate the newly proposed state X not using the fairly general

X ∼ q(· |X(t−1)), (3.12)

from Algorithm 3.3, but rather
X = X(t−1) + ε, ε ∼ g, (3.13)

with g being a symmetric distribution. It is easy to see that (3.13) is a special case of (3.12) using q(x | x(t−1)) =
g(x− x(t−1)). When using (3.13) the probability of acceptance simplifies to

min
{

1, f(X) · q(X(t−1) |X)
f(X(t−1)) · q(X |X(t−1))

}
= min

{
1, f(X)
f(X(t−1))

}
,

as q(X | X(t−1)) = g(X −X(t−1)) = g(X(t−1) −X) = q(X(t−1) | X) using the symmetry of g. This yields the
following algorithm, a special case of Algorithm 3.3, which is actually the original algorithm proposed by Metropolis
et al. (1953).

Algorithm 3.4 (Random walk Metropolis). Starting with X(0) := (X(0)
1 , . . . , X

(0)
p ) and using a symmetric

distribution g, iterate for t = 1, 2, . . .

1. Draw ε ∼ g and set X = X(t−1) + ε.

2. Compute

α(X |X(t−1)) = min
{

1, f(X)
f(X(t−1))

}
.

3. With probability α(X |X(t−1)) set X(t) = X, otherwise set X(t) = X(t−1).

Example 3.7. (Bayesian probit model). In a medical study on infections resulting from birth by Cæsarean section
(taken from Fahrmeir and Tutz 2001) three influence factors have been studied: an indicator whether the Cæsarian
was planned or not (zi1), an indicator of whether additional risk factors were present at the time of birth (zi2), and
an indicator of whether antibiotics were given as a prophylaxis (zi3). The response Yi is the number of infections that
were observed amongst ni patients having the same influence factors (covariates). The data is given in Table 3.1.

Table 3.1: Data used in Example 3.7.

Number of births planned risk factors antibiotics
with infection total

yi ni zi1 zi2 zi3
11 98 1 1 1
1 18 0 1 1
0 2 0 0 1
23 26 1 1 0
28 58 0 1 0
0 9 1 0 0
8 40 0 0 0
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The data can be modelled by assuming that

Yi ∼ Bin(ni, πi), π = Φ(z′iβ),

where zi = (1, zi1, zi2, zi3) and Φ(·) being the CDF of the N(0, 1) distribution. Note that Φ(t) ∈ [0, 1] for all t ∈ R.

A suitable prior distribution for the parameter of interest β is β ∼ N(0, I/λ). The posterior density of β is

f(β | y1, . . . , yn) ∝
(

N∏
i=1

Φ(z′iβ)yi · (1− Φ(z′iβ))ni−yi
)
· exp

−λ2
3∑
j=0

β2
j

 .

We can sample from the above posterior distribution using the following random walk Metropolis algorithm. Starting
with any β(0) iterate for t = 1, 2, . . .:

1. Draw ε ∼ N(0,Σ) and set β = β(t−1) + ε.

2. Compute

α(β | β(t−1)) = min
{

1, f(β | Y1, . . . , Yn)
f(β(t−1) | Y1, . . . , Yn)

}
.

3. With probability α(β | β(t−1)) set β(t) = β, otherwise set β(t) = β(t−1).

*To keep things simple, we choose the covariance Σ of the proposal to be 0.08 · I.*
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Figure 3.12: Results obtained for the Bayesian probit model: Sample paths of the β(t)
j .

Table 3.2: Parameter estimates obtained for the Bayesian probit
model from Example 3.7.

Posterior mean 95% credible interval
intercept β0 -1.0952 -1.4646 -0.7333
planned β1 0.6201 0.2029 1.0413
risk factors β2 1.2000 0.7783 1.6296
antibiotics β3 -1.8993 -2.3636 -1.471
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Figure 3.12–3.14 and Table 3.2 show the results obtained using 50,000 samples (you might want to consider a
longer chain in practice). Note that the convergence of the β(t)

j is to a distribution, whereas the cumulative averages∑t
τ=1 β

(τ)
j /t converge, as the ergodic theorem implies, to a value. For Figure 3.12–3.14 and Table 3.2 the first 10,000

samples have been discarded (“burn-in”).

3.2.4.1 Choosing the proposal distribution

The efficiency of a Metropolis–Hastings sampler depends on the choice of the proposal distribution q(· | x(t−1)).
An ideal choice of proposal would lead to a small correlation of subsequent realisations X(t−1) and X(t). This
correlation has two sources:

• the correlation between the current state X(t−1) and the newly proposed value X ∼ q(· |X(t−1)), and

• the correlation introduced by retaining a value X(t) = X(t−1) because the newly generated value X has been
rejected.

Thus we would ideally want a proposal distribution that both allows for fast changes in the X(t) and yields a high
probability of acceptance. Unfortunately these are two competing goals. If we choose a proposal distribution with
a small variance, the probability of acceptance will be high, however the resulting Markov chain will be highly
correlated, as the X(t) change only very slowly. If, on the other hand, we choose a proposal distribution with a large
variance, the X(t) can potentially move very fast, however the probability of acceptance will be rather low.

Example 3.8. Assume we want to sample from a N(0, 1) distribution using a random walk Metropolis–Hastings
algorithm with ε ∼ N(0, σ2). At first sight, we might think that setting σ2 = 1 is the optimal choice, this is however
not the case. In this example we examine the choices: σ2 = 0.1, σ2 = 1, σ2 = 2.382, and σ2 = 102. Figure 3.15
shows the sample paths of a single run of the corresponding random walk Metropolis–Hastings algorithm. Rejected
values are drawn as grey open circles. Table 3.3 shows the average correlation ρ(X(t−1), X(t)) as well as the average
probability of acceptance α(X | X(t−1)) averaged over 100 runs of the algorithm. Choosing σ2 too small yields a
very high probability of acceptance, however at the price of a chain that is hardly moving. Choosing σ2 too large
allows the chain to make large jumps; however, most of the proposed values are rejected, so the chain remains for a
long time at each accepted value. The results suggest that σ2 = 2.382 is the optimal choice. This corresponds to the
theoretical results of Gelman, Roberts, and Gilks (1995) and the many papers which have extended the original result.

Table 3.3: Average correlation ρ(X(t−1), X(t)) and average probabil-
ity of acceptance α(X | X(t−1)) found in Example 3.8 for different
choices of the proposal variance σ2.

Autocorrelation Probability of acceptance
ρ(X(t−1), X(t)) α(X,X(t−1))
Mean 95% CI Mean 95% CI

σ2 = 0.12 0.9901 (0.9891,0.9910) 0.9694 (0.9677,0.9710)
σ2 = 1 0.7733 (0.7676,0.7791) 0.7038 (0.7014,0.7061)
σ2 = 2.382 0.6225 (0.6162,0.6289) 0.4426 (0.4401,0.4452)
σ2 = 102 0.8360 (0.8303,0.8418) 0.1255 (0.1237,0.1274)

Finding the ideal proposal distribution q(· | x(t−1)) is an art. The optimal proposal would be sampling directly from
the target distribution. The very reason for using a Metropolis–Hastings algorithm is, however, that we cannot sample
directly from the target! This difficulty is the price we have to pay for the generality of the Metropolis–Hastings
algorithm. Popular choices for random walk proposals are multivariate Gaussian or t-distributions. The latter have
heavier tails, making them a safer choice. The covariance structure of the proposal distribution should ideally reflect
the covariance of the target distribution. G. O. Roberts, Gelman, and Gilks (1997) propose to adjust the proposal
such that the acceptance rate is around 1/2 for one- or two dimensional target distributions, and around 1/4 for
larger dimensions, which is in line with the results we obtained in the above simple example and the guidelines
which motivate them. Remember, however, that these are just rough guidelines and there is little to be gained from
fine-tuning acceptance rates to several decimal places.

Example 3.9. (Bayesian probit model (continued)). In the Bayesian probit model we studied in Example 3.7 we
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Figure 3.15: Sample paths for the Metropolis–Hastings algoritmhm for simulating from a standard normal distribution
using different choices of the proposal variance σ2. Open grey discs represent rejected values.
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drew
ε ∼ N (0,Σ)

with Σ = 0.08 · I, i.e. we modelled the components of ε to be independent. The proportion of accepted values we
obtained was 13.9%. Table 3.4 shows the corresponding autocorrelation. The resulting Markov chain can be made
faster mixing by using a proposal distribution that represents the covariance structure of the posterior distribution of
β. This can be done by resorting to the frequentist theory of generalised linear models (GLM): it suggests that the
asymptotic covariance of the maximum likelihood estimate β̂ is (z′Dz)−1, where z is the matrix of the covariates,
and D is a suitable diagonal matrix. When using Σ = 2 · (z′Dz)−1 in the algorithm presented in Example 3.7 we
can obtain better mixing performance: the autocorrelation is reduced (see Table 3.4), and the proportion of accepted
values obtained increases to 20.0%. Note that the determinant of both choices of Σ was chosen to be the same, so
the improvement of the mixing behaviour is due to a difference in the structure of the covariance.

Table 3.4: Autocorrelation ρ(β(t−1)
j , β

(t)
j ) between subsequent sam-

ples for two choices of the covariance Σ.

β0 β1 β2 β3

Autocorrelation for Σ = 0.08 · I 0.9496 0.9503 0.9562 0.9532
Autocorrelation for Σ = 2 · (z′Dz)−1 0.8726 0.8765 0.8741 0.8792

3.2.5 The (Metropolised) Independence Sampler
The random walk proposals considered thus far are appealing because we can in principle employ them without
detailed knowledge of the structure of the target distribution nor dedicating considerable effort to their design.
However, if we do have information about the target distribution we may wish to use it to design global rather than
local proposals and hence, we might hope, to reduce the autocorrelation of the chain.

This is indeed possible and if we can construct proposal distributions which have a similar form to the target
distribution we can obtain good performance within an MCMC algorithm.

Choosing proposals of the form q(x(t) | x(t−1)) = q(x(t)) (i.e. which are independent of the current state) leads to
what is known as the Metropolised Independence Sampler or, sometimes, just the Independence Sampler. This name
is potentially a little misleading, as this algorithm does not yield independent samples; it simply employs proposals
which are themselves independent of the current state of the chain.

Algorithm 3.5 (Metropolised Independence Sampler). Starting with X(0) := (X(0)
1 , . . . , X

(0)
p ) iterate for t = 1, 2, . . .

1. Draw X ∼ q(·).

2. Compute

α(X |X(t−1)) = min
{

1, f(X) · q(X(t−1))
f(X(t−1)) · q(X)

}

= min
{

1, f(X)/q(X)
f(X(t−1))/q(X(t−1))

}
. (3.14)

3. With probability α(X |X(t−1)) set X(t) = X, otherwise set X(t) = X(t−1).

The form of the acceptance probability given in Equation (3.14) is highly suggestive: the ratio within the minimum
is exactly a ratio of importance weights. If we sampled independently from q and used those samples to approximate
expectations with respect to f by importance sampling, we’d be using exactly the numerator of this ratio as the
importance weight. If we used the same strategy within a rejection sampling setting, assuming this ratio to be
bounded, then we’d need an acceptance probability proportional to this ratio.

Later we will see that under those conditions in which the independence sampler proposal would be a good rejection
sampling proposal it will also be a good proposal within a MCMC setting. First, however, it’s interesting to consider
the relationship between the independence sampler and its rejection-sampling counterpart.
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Proposition 3.5. (Acceptance Rates). If f(x)/q(x) ≤M <∞ the acceptance rate of the independence sampler is
at least as high as that of the corresponding rejection sampler.

Proof. Simply expanding the acceptance probability at any point x we establish that:

a(x) =
∫
q(y)α(x, y)dy =

∫
q(y) min

(
1, f(y)/q(y)
f(x)/q(x)

)
dy =

∫
min

(
q(y), f(y)

f(x)/q(x)

)
dy

≥
∫

min (f(y)/M, f(y)/M) dy ≥ 1/M,

and as this holds for any M which bounds f/q, the acceptance rate of the independence sampler is lower bounded
by the best possible acceptance rate for any rejection sampler.

However, this comes at a cost: with rejection sampling one obtains independent samples from the target; with the
independence sampler this is not the case.

3.2.5.1 Ergodicity and the Independence Sampler

One method of assessing the convergence of Markov chains is to look at how far away from the invariant distribution
it is possible for the marginal distribution of the chain to remain after a certain number of iterations. In order to
make such an assessment it is necessary to define a distance on the space of probability measures.

Definition 3.2. (Total Variation). The total variation distance between two probability distributions, f and g,
may be defined as:

||f − g||TV :=2 sup
A

∣∣∣∣∫
A

f(x)− g(x)dx
∣∣∣∣ .

Actually, in the case of probability densities, this is exactly the L1 distance between those densities and you may
find this formulation easier to interpret:

Proposition 3.6. For any pair of probability densities defined on a common space E:

||f − g||TV =
∫
|f(x)− g(x)|dx.

Proof. Let A? = {x : f(x) > g(x)}. It is clear that for all A:∣∣∣∣∫
A

(f(x)− g(x))dx
∣∣∣∣ ≤ ∣∣∣∣∫

A?
f(x)− g(x)dx

∣∣∣∣ .
Noting further that

∫
A∪Ac(f(x)− g(x))dx = 0, we can establish that for any (measurable) A:∫

A

(f(x)− g(x))dx = −
∫
Ac

(f(x)− g(x))dx

and so
2
∣∣∣∣∫
A

f(x)− g(x)dx
∣∣∣∣ =

∣∣∣∣∫
A

f(x)− g(x)dx
∣∣∣∣+
∣∣∣∣∫
Ac
f(x)− g(x)dx

∣∣∣∣ .
On A?, f(x) > g(x) while on (A?)c the reverse is true, so:∣∣∣∣∫

A?
f(x)− g(x)dx

∣∣∣∣ =
∫
A?
f(x)− g(x)dx =

∫
A?
|f(x)− g(x)|dx

and ∣∣∣∣∣
∫

(A?)c
f(x)− g(x)dx

∣∣∣∣∣ = −
∫

(A?)c
f(x)− g(x)dx =

∫
(A?)c

|f(x)− g(x)|dx.
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Combining everything, we establish that:

||f − g||TV := 2 sup
A

∣∣∣∣∫
A

f(x)− g(x)dx
∣∣∣∣ = 2

∣∣∣∣∫
A?
f(x)− g(x)dx

∣∣∣∣
=
∣∣∣∣∫
A?
f(x)− g(x)dx

∣∣∣∣+
∣∣∣∣∣
∫

(A?)c
f(x)− g(x)dx

∣∣∣∣∣
=
∫
A?
|f(x)− g(x)|dx+

∫
(A?)c

|f(x)− g(x)|dx

=
∫
|f(x)− g(x)|dx.

Having defined total variation, we can define three forms of ergodicity.

Definition 3.3. (Forms of Ergodicity). An f -invariant Markov kernel, K, is said to be ergodic if

lim
n→∞

||Kn(x, ·)− f(·)||TV = 0

where ||Kn(x, ·)− f(·)||TV =
∫
|Kn(x, y)− f(y)|dy.

If this statement can be strengthened to:

||Kn(x, ·)− f(·)||TV ≤M(x)ρn

for some M(x) < ∞ and ρ < 1 then the kernel is said to be geometrically ergodic and if it can be further
strengthened to:

||Kn(x, ·)− f(·)||TV ≤Mρn

for some M <∞ which does not depend upon x then it is said to be uniformly geometrically ergodic or simply
uniformly ergodic.

These are useful because they tell us something about the qualitative rate of convergence of the Markov chain to
stationarity. However, we should bear in mind that if we don’t know the constants M and ρ then even a uniformly
ergodic chain can in practice converge rather slowly (see G. O. Roberts and Rosenthal (2011) for some examples).

We’re now in a position to state and prove one celebrated result about independence samplers.

Proposition 3.7. If an independence sampler uses proposal q and target f and f(y)/q(y) ≤ M < ∞ then the
associated Markov kernel is uniformly ergodic.

Proof. We follow the argument of Robert and Casella (2004, Exercise 7.11). First we show that f(y)/q(y) ≤M ⇒
K(x, y) ≥ f(y)/M :

K(x, y) = q(y)α(x, y) + (1− a(x))δx(y) ≥ q(y)α(x, y)

≥ q(y) min
(
f(y)/q(y)
f(x)/q(x) , 1

)
= min

(
f(y)

f(x)/q(x) , q(y)
)
.

Under the assumptions of the proposition we have that f(x)/q(x) ≤M and q(y) ≥ f(y)/M and so:

K(x, y) ≥ min
(
f(y)
M

,f(y)/M
)

= f(y)/M. (3.15)

Now we establish a preliminary result, defining A?(x) = {y : f(y) > K(x, y)}:

sup
A

∣∣∣∣∫
A

K(x, y)− f(y)dy
∣∣∣∣ =

∣∣∣∣∣
∫
A?(x)

K(x, y)− f(y)dy
∣∣∣∣∣

=
∫
A?(x)

f(y)−K(x, y)dy

≤
∫
A?(x)

f(y)− (1/M)f(y)dy = 1− 1
M
,
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using Equation (3.15) to bound the negative term from below. We use this as a base case for induction. We have (by
substituting this bound into the definition of the total variation norm) for n = 1: ||Kn(x, ·)− f(·)||TV ≤ 2(1−1/M)n.

We now turn to the induction step, and assume that the hypothesis ||Kn(x, ·)− f(·)||TV ≤ 2(1− 1/M)n holds for
some n and write, for any (measurable) A:∫

A

(Kn+1(x, y)− f(y))dy =
∫
A

∫
A

(Kn(u, y)− f(y))dy(K(x, u)− f(u))du

(you can check this by remembering that K is f -invariant and expanding the right hand side explicitly).

The induction hypothesis tells us that the integral over y is bounded by (1− 1/M)n (it’s easy to establish that the
integral over any set of the difference between any pair of probability densities is at most half of the total variation
distance between those densities), and a similar argument to that used to prove the base case establishes that the
integral over u can then be bounded by (1− 1/M):∫

A

(Kn+1(x, y)− f(y))dy =
∫
A

∫
A

(Kn(u, y)− f(y))dy(K(x, u)− f(u))du

≤
∫

(1− 1/M)n(K(x, u)− f(u))du ≤ (1− 1/M)n+1

Writing the total variation as twice the supremum over A of quantities of this form completes the argument.

3.3 Composing kernels: Mixtures and Cycles
It can be advantageous, especially in the case of more complex distributions, to combine different Metropolis–Hastings
updates into a single algorithm. Each of the different Metropolis–Hastings updates corresponds to a transition kernel
K(j). As with the substeps of Gibbs sampler there are two simple and valid ways of combining the transition kernels
K(1), . . . ,K(r):

• As in the systematic scan Gibbs sampler, we can cycle through the kernels in a deterministic order, i.e. first carry
out the Metropolis–Hastings update corresponding the the kernel K(1), then carry out the one corresponding
to K(2), etc. until we start again with K(1). The transition kernel of this composite chain is

K◦(x(t−1),x(t)) =
∫
· · ·
∫
K(1)(x(t−1), ξ(1))K(2)(ξ(1), ξ(2)) · · ·K(r)(ξ(r−1),x(t)) dξ(r−1) · · · dξ(1).

If each of the transition kernels K(j) has the invariant distribution f ; i.e.∫
f(x(t−1))K(x(t−1),x(t)) dx(t−1) = f(x(t)),

then K◦ has f as invariant distribution, too, as∫
f(x(t−1))K◦(x(t−1),x(t)) dx(t−1)

=
∫
· · ·
∫ ∫

K(1)(x(t−1), ξ(1))f(x(t−1))dx(t−1)︸ ︷︷ ︸
=f(ξ(1))

K(2)(ξ(1), ξ(2))dξ(1)

︸ ︷︷ ︸
f(ξ(2))

· · · dξ(r−2)

︸ ︷︷ ︸
=f(ξ(r−1))

K(r)(ξ(r−1),x(t))dξ(r−1)

= f(x(t)).

• Alternatively, we can, as in the random scan Gibbs sampler, choose each time at random which of the kernels
should be used, i.e. use the kernel K(j) with probability wj > 0 (

∑r
ι=1 wι = 1). The corresponding kernel of

the composite chain is the mixture

K+(x(t−1),x(t)) =
r∑
ι=1

wιK
(ι)(x(t−1),x(t)).
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Once again, if each of the transition kernels K(j) has the invariant distribution f , then K+ has f as invariant
distribution:∫

f(x(t−1))K+(x(t−1),x(t)) dx(t−1) =
r∑
ι=1

wι

∫
f(x(t−1))K(ι)(x(t−1),x(t)) dx(t−1)︸ ︷︷ ︸

=f(x(t))

= f(x(t)).

Example 3.10. (One-at-a-time Metropolis–Hastings). One example of a method using composite kernels is the
so-called one-at-a-time Metropolis–Hastings algorithm. Consider the case of a p-dimensional random variable
X = (X1, . . . , Xp). The Metropolis–Hastings Algorithms 3.3 and 3.4 update all components at a time. It can,
however, be difficult to come up with a suitable proposal distribution q(· | x(t−1)) (or g) for all variables. Alternatively,
we could, as in the Gibbs sampler, update each component separately. For this we need p proposal distributions
q1, . . . , qp for updating each of the Xj. The j-th proposal qj (and thus the j-th kernel K(j)) corresponds to updating
the Xj.
As mentioned above we can cycle deterministically through the kernels (corresponding to the kernel K◦), yielding the
following algorithm. Starting with X(0) = (X(0)

1 , . . . , X
(0)
p ) iterate

• 1.

i. Draw X1 ∼ q1(· | X(t−1)
2 , . . . , X

(t−1)
p ).

ii. Compute α1 = min
{

1, f(X1,X
(t−1)
2 ,...,X(t−1)

p )·q1(X(t−1)
1 |X1,X

(t−1)
2 ,...,X(t−1)

p )
f(X(t−1)

1 ,X
(t−1)
2 ,...,X

(t−1)
p )·q1(X1|X(t−1)

1 ,X
(t−1)
2 ,...,X

(t−1)
p )

}
.

iii. With probability α1 set X(t)
1 = X1, otherwise set X(t)

1 = X
(t−1)
1 .

•
...

• j.

i. Draw Xj ∼ qj(· | X(t)
1 , . . . , X

(t)
j−1, X

(t−1)
j , . . . , X

(t−1)
p ).

ii. Compute αj = min
{

1, f(X(t)
1 ,...,X

(t)
j−1,Xj ,X

(t−1)
j+1 ,...,X(t−1)

p )·qj(X(t−1)
j

|X(t)
1 ,...,X

(t)
j−1,Xj ,X

(t−1)
j+1 ,...,X(t−1)

p )

f(X(t)
1 ,...,X

(t)
j−1,X

(t−1)
j

,X
(t−1)
j+1 ,...,X

(t−1)
p )·qj(Xj |X(t)

1 ,...,X
(t)
j−1,X

(t−1)
j

,X
(t−1)
j+1 ,...,X

(t−1)
p )

}
.

iii. With probability αj set X(t)
j = Xj, otherwise set X(t)

j = X
(t−1)
j .

•
...

• p.

i. Draw Xp ∼ qp(· | X(t)
1 , . . . , X

(t)
p−1, X

(t−1)
p ).

ii. Compute αp = min
{

1, f(X(t)
1 ,...,X

(t)
p−1,Xp)·qp(X(t−1)

p |X(t)
1 ,...,X

(t)
p−1,Xp)

f(X(t)
1 ,...,X

(t)
p−1,X

(t−1)
p )·qp(Xp|X(t)

1 ,...,X
(t)
p−1,X

(t−1)
p )

}
.

iii. With probability αp set X(t)
p = Xp, otherwise set X(t)

p = X
(t−1)
p .

The corresponding random sweep algorithm (corresponding to K+) is: Starting with X(0) = (X(0)
1 , . . . , X

(0)
p ) iterate

1. Draw an index j from a distribution on {1, . . . , p} (e.g. uniform)

2. Draw Xj ∼ qj(· | X(t−1)
1 , . . . , X

(t−1)
p ).

3. Compute αj = min
{

1, f(X(t−1)
1 ,...,X

(t−1)
j−1 ,Xj ,X

(t−1)
j+1 ,...,X(t−1)

p )·qj(X(t−1)
j

|X(t−1)
1 ,...,X

(t−1)
j−1 ,Xj ,X

(t−1)
j+1 ,...,X(t−1)

p )

f(X(t−1)
1 ,...,X

(t−1)
j−1 ,X

(t−1)
j

,X
(t−1)
j+1 ,...,X

(t−1)
p )·qj(Xj |X(t−1)

1 ,...,X
(t−1)
j−1 ,X

(t−1)
j

,X
(t−1)
j+1 ,...,X

(t−1)
p )

}
.

4. With probability αj set X(t)
j = Xj, otherwise set X(t)

j = X
(t−1)
j .

5. Set X(t)
ι := X

(t−1)
ι for all ι 6= j.

Note the similarity to the Gibbs sampler. Indeed, the Gibbs sampler is a special case of a one-at-a-time Metropolis–
Hastings algorithm as the following remark shows.
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Remark. The Gibbs sampler for a p-dimensional distribution is a special case of a one-at-a-time Metropolis–Hastings
algorithm: the (systematic scan) Gibbs sampler (Algorithm 3.1 is a cycle of p kernels, whereas the random scan
Gibbs sampler (Algorithm 3.2 is a mixture of these kernels. The proposal qj corresponding to the j-th kernel consists
of drawing X(t)

j ∼ fXj |X−j . The corresponding probability of acceptance is uniformly equal to 1.

Proof. The update of the j-th component of the Gibbs sampler consists of sampling from Xj | X−j , i.e. it has the
proposal

qj(xj | x(t−1)) = fXj |X−j (xj | x
(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j+1 , . . . , x(t−1)

p ).
We obtain for the j-th kernel that

f(x(t)
1 , . . . , x

(t)
j−1, xj , x

(t−1)
j+1 , . . . , x

(t−1)
p )qj(x(t−1)

j | x(t)
1 , . . . , x

(t)
j−1, xj , x

(t−1)
j+1 , . . . , x

(t−1)
p )

f(x(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j , x

(t−1)
j+1 , . . . , x

(t−1)
p )qj(xj | x(t)

1 , . . . , x
(t)
j−1, x

(t−1)
j , x

(t−1)
j+1 , . . . , x

(t−1)
p )

=
f(x(t)

1 , . . . , x
(t)
j−1, xj , x

(t−1)
j+1 , . . . , x

(t−1)
p )fXj |X−j (x

(t−1)
j | x(t)

1 , . . . , x
(t)
j−1, x

(t−1)
j+1 , . . . , x

(t−1)
p )

f(x(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j , x

(t−1)
j+1 , . . . , x

(t−1)
p )fXj |X−j (xj | x

(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j+1 , . . . , x

(t−1)
p )

=
f(x(t)

1 , . . . , x
(t)
j−1, xj , x

(t−1)
j+1 , . . . , x

(t−1)
p ) f(x(t)

1 ,...,x
(t)
j−1,x

(t−1)
j

,x
(t−1)
j+1 ,...,x(t−1)

p )

f(x(t)
1 ,...,x

(t)
j−1,x

(t−1)
j+1 ,...,x

(t−1)
p )

f(x(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j , x

(t−1)
j+1 , . . . , x

(t−1)
p ) f(x(t)

1 ,...,x
(t)
j−1,xj ,x

(t−1)
j+1 ,...,x

(t−1)
p )

f(x(t)
1 ,...,x

(t)
j−1,

(t−1)
j+1 ,...,x

(t−1)
p )

= 1,

thus αj ≡ 1.

As explained above, the composite kernels K+ and K◦ have the invariant distribution f , if all kernels K(j) have f
as invariant distribution. Similarly, it is sufficient for the irreducibility of the kernels K+ and K◦ that all kernels
K(j) are irreducible. This is however not a very useful condition, nor is it a necessary condition. Often, some of
the kernels K(j) focus on certain subspaces, and thus cannot be irreducible for the entire space. The kernels K(j)

corresponding to the Gibbs sampler are not irreducible themselves: the j-th Gibbs kernel K(j) only updates Xj , not
the other Xι (ι 6= j).

3.4 Diagnosing Convergence
3.4.1 Practical considerations
The theory of Markov chains guarantees that a Markov chain that is irreducible and has invariant distribution f
converges to the invariant distribution. The ergodic theorems allow for approximating expectations Ef [h(X)] by
their corresponding empirical means

1
T

T∑
t=1

h(X(t)) −→ Ef [h(X)]

using the entire chain. In practice, however, often only a subset of the chain (X(t))t is used:

Burn-in Depending on how X(0) is chosen, the distribution of (X(t))t for small t might still be far from the
stationary distribution f . Thus it might be beneficial to discard the first iterations X(t), t = 1, . . . , T0. This
early stage of the sampling process is often referred to as burn-in period. How large T0 has to be chosen
depends on how fast mixing the Markov chain (X(t))t is. Figure 3.16 illustrates the idea of a burn-in period.

Thinning Markov chain Monte Carlo methods typically yield a Markov chain with positive autocorrelation,
i.e. ρ(X(t)

k , X
(t+τ)
k ) is positive for small τ . This suggests building a subchain by only keeping every m-th value

(m > 1), i.e. we consider a Markov chain (Y (t))t with Y (t) = X(m·t) instead of (X(t))t. If the correlation
ρ(X(t),X(t+τ)) decreases monotonically in τ , then

ρ(Y (t)
k , Y

(t+τ)
k ) = ρ(X(t)

k , X
(t+m·τ)
k ) < ρ(X(t)

k , X
(t+τ)
k ),

i.e. the thinned chain (Y (t))t exhibits less autocorrelation than the original chain (X(t))t. Thus thinning can be
seen as a technique for reducing the autocorrelation, however at the price of yielding a chain (Y (t))t=1,...bT/mc,
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burn-in period (discarded)

Figure 3.16: Illustration of the idea of a burn-in period.

whose length is reduced to (1/m)-th of the length of the original chain (X(t))t=1,...,T . Even though thinning
is very popular, it cannot be justified when the objective is estimating Ef [h(X)] [excepting special cases in
which one can exploit specific features to save computations when working with the thinned chain; Owen
(2017)] as the following lemma shows.

Lemma 3.3. Let (X(t))t=1,...,T be a the random variables obtained from a Markov chain at stationarity, with
X(t) ∼ f and (Y (t))t=1,...,bT/mc a second sequence defined by Y (t) := X(m·t). If Varf

[
h(X(t))

]
<∞, then

Var
[

1
T

T∑
t=1

h(X(t))
]
≤ Var

 1
bT/mc

bT/mc∑
t=1

h(Y (t))

.
Proof. To simplify the proof we assume that T is divisible by m, i.e. T/m ∈ N. Using

T∑
t=1

h(X(t)) =
m−1∑
τ=0

T/m∑
t=1

h(X(t·m+τ))

and

Var

T/m∑
t=1

h(X(t·m+τ1))

 = Var

T/m∑
t=1

h(X(t·m+τ2))


for τ1, τ2 ∈ {0, . . . ,m− 1}, we obtain that

Var
[
T∑
t=1

h(X(t))
]

= Var

m−1∑
τ=0

T/m∑
t=1

h(X(t·m+τ))


= m · Var

T/m∑
t=1

h(X(t·m))

+
m−1∑
η 6=τ=0

Cov

T/m∑
t=1

h(X(t·m+η)),
T/m∑
t=1

h(X(t·m+τ))


︸ ︷︷ ︸

≤Var
[∑T/m

t=1
h(X(t·m))

]
≤ m2 · Var

T/m∑
t=1

h(X(t·m))

 = m2 · Var

T/m∑
t=1

h(Y (t))

.
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Thus

Var
[

1
T

T∑
t=1

h(X(t))
]

= 1
T 2Var

[
T∑
t=1

h(X(t))
]
≤ m2

T 2 Var

T/m∑
t=1

h(Y (t))

 = Var

 1
T/m

T/m∑
t=1

h(Y (t))

.

The concept of thinning can be useful for other reasons. If storage is limited it may not be possible to store all of an
arbitrarily long chain; in this context, it can be much better to store the thinned skeleton of a long chain than to
consider the entire sample path of a shorter chain. Furthermore, it can be easier to assess the convergence of the
thinned chain (Y (t))t as opposed to entire chain (X(t))t.

3.4.2 Tools for monitoring convergence
Although the theory presented in the preceding chapters guarantees the convergence of the Markov chains to the
required distributions, this does not imply that a finite sample from such a chain yields a good approximation to the
target distribution. As with all approximating methods this must be confirmed in practice.

This section tries to give a brief overview over various approaches to diagnosing convergence. A more detailed review
with many practical examples can be found in (Guihennec-Jouyaux, Mengersen, and Robert 1998) or (Robert and
Casella 2004, chap. 12). There are numerous R packages (CODA is well known; mcmcse provides useful tools for
assessing some aspects of performance) that provides a vast selection of tools for diagnosing convergence.

Diagnosing convergence is an art. The techniques presented in the following are no more than exploratory tools
that help you judge whether the chain has reached its stationary regime. This section contains several cautionary
examples where the different tools for diagnosing convergence fail.

Broadly speaking, convergence assessment can be split into the following three categories, each of which considers
the assessment of a different aspect of convergence:

Convergence to the target distribution. The first, and most important, question is whether (X(t))t yields a
sample from the target distribution? In order to answer this question we need to assess . . .

• whether (X(t))t has reached a stationary regime, and

• whether (X(t))t covers the entire support of the target distribution.

Convergence of the averages. Does
∑T
t=1 h(X(t))/T provide a good approximation to the expectation Ef [h(X)]

under the target distribution?

Comparison to i.i.d. sampling. How much information is contained in the sample from the Markov chain
compared to i.i.d. sampling?

3.4.3 Basic plots
The most basic approach to diagnosing the output of a Markov Chain Monte Carlo algorithm is to plot the sample
path (X(t))t. Note that the convergence of (X(t))t is in distribution, i.e. the sample path is not supposed to converge
to a single value. Ideally, the plot should be oscillating very fast and show very little structure or trend. In general
terms, the smoother such a plot seems, the slower the mixing of the associated chain.

Note however that this plot suffers from the “you’ve only seen where you’ve been” problem. It is impossible to
see from a plot of the sample path whether the chain has explored the entire support of the distribution (without
additional information).

Example 3.11. (A simple mixture of two Gaussians). Consider sampling from a mixture of two well-separated
Gaussians

f(x) = 0.4 · φ(−1,0.22)(x) + 0.6 · φ(2,0.32)(x)

(see Figure 3.17 for a plot of the density) using a random walk Metropolis algorithm with an N (0,Var [ε]) increment
distribution. If we choose the proposal variance Var [ε] too small, we only sample from one component of the mixture,
not from the mixture itself. Figures 3.17–3.19 show the sample paths for two choices of Var [ε]: Var [ε] = 0.42 and
Var [ε] = 1.22. The first choice of Var [ε] is too small: the chain is very likely to remain in one of the two modes of
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the distribution. Note that it is impossible to tell from Figure 3.18 alone that the chain has not explored the entire
support of the target.
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Figure 3.17: Density of a mixture distribution f(x).
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Figure 3.18: Sample path of a random walk Metropolis algorithm with proposal variance 0.42 and mixture distribution
target f(x).

In order to diagnose the convergence of sample averages, one can look at a plot of the cumulative averages
(
∑t
τ=1 h(X(τ))/t)t. Note that the convergence of the cumulative averages is—as the ergodic theorems suggest—to a

value (Ef [h(X)]). Figure 3.13 shows plots of the cumulative averages. An alternative to plotting the cumulative
means is using the so-called CUSUMs

t∑
τ=1

[
h(X(τ)

j )− 1
T

T∑
i=1

h(X(i)
j )
]
,

which is none other than the difference between the cumulative sums and the corresponding (pro-rated) estimate of
the limit Ef [h(X)]. For a fast mixing chain (for which increments might be approximately i.i.d. Normal, say), a
CUSUM plot should roughly resemble a Brownian bridge from 0 to 0, i.e. being highly irregular and centred around
0. Slow mixing chains exhibit long excursions away from 0.

Example 3.12. (A pathological generator for the Beta distribution). The following MCMC algorithm (for details,
see Robert and Casella 2004 Problem 7.5) yields a sample from the Beta(α, 1) distribution. Starting with any X(0)

iterate for t = 1, 2, . . .

1. With probability 1−X(t−1), set X(t) = X(t−1).

2. Otherwise draw X(t) ∼ Beta(α+ 1, 1).
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Figure 3.19: Sample path of a random walk Metropolis algorithm with proposal variance 1.22 and mixture distribution
target.

This algorithm yields a very slowly converging Markov chain, to which no central limit theorem applies. This slow
convergence can be seen in a plot of the cumulative means (Figure 3.20–3.21); α = 1 so E [X] = 1/2).
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Figure 3.20: Sample path X(t) obtained for the pathological Beta generator, α = 1.

Note that it is impossible to tell from a plot of the cumulative means whether the Markov chain has explored the
entire support of the target distribution.

3.4.4 Non-parametric tests of stationarity
A variety of nonparametric tests can be employed to establish whether the samples from a Markov chain behave in
particular ways. This section presents an illustration of the (informal, approximate) use of the Kolmogorov–Smirnov
test to assess whether there is evidence that a Markov chain has not yet reached stationarity.

In its simplest version, it is based on splitting the chain into three parts: (X(t))t=1,...,bT/3c,(X(t))t=bT/3c+1,...,2bT/3c,
and (X(t))t=2bT/3c+1,...,T . The first block is considered to be the burn-in period. If the Markov chain has reached
its stationary regime after bT/3c iterations, the second and third block should be from the same distribution. Thus
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Figure 3.21: Cumulative mean
∑t
τ=1X

(τ)/t obtained for the pathological Beta generator, α = 1.

we should be able to tell whether the chain has converged by comparing the distribution of (X(t))t=bT/3c+1,...,2bT/3c

to the distribution of (X(t))t=2bT/3c+1,...,T using suitable nonparametric two-sample tests. One such test is the
Kolmogorov–Smirnov test.

Definition 3.4. (Kolmogorov–Smirnov Statistic). The two-sample Kolmogorov–Smirnov test for comparing two
i.i.d. samples Z1,1, . . . , Z1,n and Z2,1, . . . , Z2,n is based on comparing their empirical CDFs

F̂k(z) = 1
n

n∑
i=1

I(−∞,z](Zk,i).

The Kolmogorov–Smirnov test statistic is the maximum difference between the two empirical CDFs:

K = sup
z∈R
|F̂1(z)− F̂2(z)|.

For n→∞ the CDF of
√
n ·K converges to the CDF

R(k) = 1−
∞∑
i=1

(−1)i−1 exp(−2i2k2).

As the Kolmogorov–Smirnov test is designed for i.i.d. samples, we do not apply it to the (X(t))t directly, but
to a thinned chain (Y (t))t with Y (t) = X(m·t): the thinned chain is less correlated and thus closer to being an
i.i.d. sample. This, of course, still formally violates the conditions under which the Kolmogorov–Smirnov test is
exact but one can still hope to obtain useful information when the conditions are close to being satisfied.

We can now use the Kolmogorov–Smirnov statistics to compare the distribution of the second block,
(Y (t))t=bT/(3m)c+1,...,2bT/(3m)c, with that of the third, (Y (t))t=2bT/(3m)c+1,...,bT/mc:

K = sup
x∈R

∣∣∣F̂(Y (t))t=bT/(3m)c+1,...,2bT/(3m)c
(x)− F̂(Y (t))t=2bT/(3m)c+1,...,bT/mc

(x)
∣∣∣ .

As the thinned chain is not an i.i.d. sample, we cannot use the Kolmogorov–Smirnov test as a formal statistical
test (besides, we would run into problems of multiple testing). However, we can use it as an informal tool by
monitoring the standardised statistic

√
tKt as a function of t., where Kt denotes the Kolmogorov–Smirnov statistic
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obtained from the sample consisting of the first t observations only. If a significant proportion of the values of this
standardised statistic are above the corresponding quantile of the asymptotic distribution, it is safe to assume that
the chain has not yet reached its stationary regime.

Example 3.13. (Gibbs sampling from a bivariate Gaussian (continued)). In this example we consider sampling
from a bivariate Gaussian distribution, once with ρ(X1, X2) = 0.3 and once with ρ(X1, X2) = 0.99. The former leads
to a fast mixing chain, the latter to a very slowly mixing chain. Figure 3.22–3.23 shows the plots of the standardised
Kolmogorov–Smirnov statistic. It suggests that the sample size of 10,000 is large enough for the low-correlation
setting, but not large enough for the high-correlation setting.
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Figure 3.22: Standardised Kolmogorov–Smirnov statistic for X(5·t)
1 from the Gibbs sampler from the bivariate

Gaussian, ρ(X1, X2) = 0.3.

Note that this use of the Kolmogorov–Smirnov test suffers from the “you’ve only seen where you’ve been” problem, as
it is based on comparing (Y (t))t=bT/(3m)c+1,...,2bT/(3m)c and (Y (t))t=2bT/(3m)c+1,...,bT/mc. A plot of the Kolmogorov–
Smirnov statistic for the chain with Var [ε] = 0.4 from Example 3.11 would not reveal anything unusual.

3.4.5 Riemann sums and control variates
A simple tool for diagnosing convergence of a one-dimensional Markov chain can be based on the fact that∫

E

f(x) dx = 1.

We can estimate this integral using the Riemann sum
T∑
t=2

(X [t] −X [t−1])f(X [t]), (3.16)

where X [1] ≤ · · · ≤ X [T ] is the ordered sample from the Markov chain. If the Markov chain has explored all the
support of f , then (3.16) should be around 1 (as it is an estimate of the integral of a probability density). Note that
this method, often referred to as Riemann sums (Philippe and Robert 2001), requires that the density f is known
inclusive of normalisation constants (and thus to apply this technique to a univariate marginal of a multivariate
problem would require that at least one univariate marginal of the target distributions is known exactly).

Example 3.14. (A simple mixture of two Gaussians (continued)). In Example 3.11 we considered two random-walk
Metropolis algorithms: one (Var [ε] = 0.42) failed to explore the entire support of the target distribution, whereas the
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Figure 3.23: Standardised Kolmogorov–Smirnov statistic for X(5·t)
1 from the Gibbs sampler from the bivariate

Gaussian, ρ(X1, X2) = 0.99.

other one (Var [ε] = 1.22) managed to. The corresponding Riemann sums are 0.598 and 1.001, clearly indicating
that the first algorithm does not explore the entire support.

Riemann sums can be seen as a special case of a technique called control variates. The idea of control variates is
essentially to compare several ways of estimating the same quantity using the same collection of samples. If the
different estimates disagree, the chain has not yet converged. Note that the technique of control variates is only
useful if the different estimators converge about as fast as the quantity of interest—otherwise we would obtain an
overly optimistic, or an overly conservative estimate of whether the chain has converged. In the special case of the
Riemann sum we compare two quantities: the constant 1 and the Riemann sum (3.16).

3.4.6 Comparing multiple chains
A family of convergence diagnostics (see e.g. Gelman and Rubin 1992; Brooks and Gelman 1998) is based on running
L > 1 chains—which we will denote by (X(1,t))t, . . . , (X(L,t))t—with overdispersed starting valuesX(1,0), . . . ,X(L,0)

(in the sense that the variance of the starting values should be larger than the variance of the target distribution).
These starting values should in principle be chosen to give reasonable coverage of the support of the target distribution.

All L chains should converge to the same distribution, so comparing the plots described in Section @ref(#seccdplots)
for the L different chains should not reveal any difference. A more formal approach to diagnosing whether the L
chains are all from the same distribution can be based on comparing the inter-quantile distances.

We can estimate the inter-quantile distances in two ways. The first consists of estimating the inter-quantile distance
for each of the L chains and averaging over these results, i.e. our estimate is

∑L
l=1 δ

(l)
γ /L, where δ(l)

γ is the distance
between the γ and (1− γ) quantile of the l-th chain (X(l,t)

k )t. Alternatively, we can pool the data first, and then
compute the distance, δ̂γ , between the γ and (1− γ) quantile of the pooled data. If all chains are a sample from the
same distribution, both estimates should be roughly the same, so their ratio

Ŝinterval
γ =

∑L
l=1 δ

(l)
γ /L

δ̂γ

can be used as a tool to diagnose whether all chains sampled from the same distribution, in which case the ratio
should be around 1.
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Alternatively, one could compare the variances within the L chains to the pooled estimate of the variance (see Brooks
and Gelman 1998 for more details).

Example 3.15. (A simple mixture of two Gaussians (continued)). In the example of the mixture of two Gaussians
we will consider L = 8 chains initialised with iid samples from a N

(
0, 102) distribution. Figure 3.24–3.25 shows the

sample paths of the 8 chains for both choices of Var [ε]. The corresponding values of Ŝinterval
0.05 are:

Var [ε] = 0.42 : Ŝinterval
0.05 = 0.9789992

3.630008 = 0.2696962

Var [ε] = 1.22 : Ŝinterval
0.05 = 3.634382

3.646463 = 0.996687.
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Figure 3.24: Comparison of the sample paths for L = 8 chains for the mixture of two Gaussians: Var [ε] = 0.42.

Note that this method depends crucially on the choice of initial values X(1,0), . . . ,X(L,0), and thus can easily fail,
as the following example shows.

Example 3.16. (Witch’s hat distribution). Consider a distribution with the following density:

f(x1, x2) ∝
{

(1− δ)φ(µ,σ2·I)(x1, x2) + δ if x1, x2 ∈ (0, 1),
0 otherwise,

which is a mixture of a Gaussian and a uniform distribution, both truncated to (0, 1)× (0, 1). Figure 3.26 illustrates
the density. For very small σ2, the Gaussian component is concentrated in a very small area around µ.

The conditional distribution of X1 | X2 is

f(x1 | x2) =
{

(1− δx2)φ(µ,σ2·I)(x1, x2) + δx2 for x1 ∈ (0, 1)
0 otherwise

with δx2 = δ

δ + (1− δ)φ(µ2,σ2)(x2) .

Assume we want to estimate P (0.49 < X1, X2 ≤ 0.51) for δ = 10−3, µ = (0.5, 0.5)′, and σ = 10−5 using a Gibbs
sampler. Note that 99.9% of the mass of the distribution is concentrated in a very small area around (0.5, 0.5),
i.e. P (0.49 < X1, X2 ≤ 0.51) ≈ 0.999.
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Figure 3.25: Comparison of the sample paths for L = 8 chains for the mixture of two Gaussians: Var [ε] = 1.22.

Nonetheless, it is very unlikely that the Gibbs sampler visits this part of the distribution. This is due to the fact
that unless x2 (or x1) is very close to µ2 (or µ1), δx2 (or δx1) is almost 1, i.e. the Gibbs sampler only samples
from the uniform component of the distribution. Figure 3.27 shows the samples obtained from 15 runs of the
Gibbs sampler (first 100 iterations only) all using different initialisations. On average only 0.04% of the sampled
values lie in (0.49, 0.51) × (0.49, 0.51) yielding an estimate of P̂ (0.49 < X1, X2 ≤ 0.51) = 0.0004 (as opposed to
P (0.49 < X1, X2 ≤ 0.51) = 0.999).

It is however close to impossible to detect this problem with any technique based on multiple initialisations. The
Gibbs sampler shows this behaviour for practically all starting values. In Figure 3.27 all 15 starting values yield a
Gibbs sampler that is stuck in the “brim” of the witch’s hat and thus misses 99.9% of the probability mass of the
target distribution.

3.4.7 Comparison to i.i.d. sampling and the effective sample size
MCMC algorithms typically yield a positively correlated sample (X(t))t=1,...,T , which contains less information than
an i.i.d. sample of size T . If the (X(t))t=1,...,T are positively correlated, then the variance of the average

Var
[

1
T

T∑
t=1

h(X(t))
]

(3.17)

is larger than the variance we would obtain from an i.i.d. sample, which is Var
[
h(X(t))

]
/T .

The effective sample size (ESS) attempts to quantify the loss of information caused by this positive correlation. The
effective sample size is the size an i.i.d. sample would have to have in order to obtain the same variance (3.17) as the
estimate from the Markov chain (X(t))t=1,...,T .

As the exact computation of this quantity is generally impossible, a number of simplifying approximations are often
made in order to obtain a computationally tractable proxy for this quantity. Slightly confusingly, the approximate
equivalent independent sample size arrived at following this chain of approximations is also referred to as the ESS.
More sophisticated approximations are used to obtain better approximations of the ESS in some settings, but we
focus here on one simple and widely-applicable option.

In order to compute the variance (3.17) we make the simplifying assumption that (h(X(t)))t=1,...,T is from a
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Figure 3.26: Witch’s hat distribution: Density for δ = 0.2, µ = (0.5, 0.5)′, and σ = 0.05
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Figure 3.27: Witch’s hat distribution: First 100 values from 15 samples using different starting values. δ = 10−3,
µ = (0.5, 0.5)′, and σ = 10−5.
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second-order stationary time series, i.e. Var
[
h(X(t))

]
= σ2, and ρ(h(X(t)), h(X(t+τ))) = ρ(τ). Then

Var
[

1
T

T∑
t=1

h(X(t))
]

= 1
T 2

 T∑
t=1

Var
[
h(X(t))

]
︸ ︷︷ ︸

=σ2

+2
∑

1≤s<t≤T
Cov

[
h(X(s)), h(X(t))

]
︸ ︷︷ ︸

=σ2·ρ(t−s)


= σ2

T 2

(
T + 2

T−1∑
τ=1

(T − τ)ρ(τ)
)

= σ2

T

(
1 + 2

T−1∑
τ=1

(
1− τ

T

)
ρ(τ)

)
.

If
∑∞
τ=1 |ρ(τ)| <∞, then we can obtain from the dominated convergence theorem (see e.g. Brockwell and Davis

1991 Theorem 7.1.1 for details) that

T · Var
[

1
T

T∑
t=1

h(X(t))
]
−→ σ2

(
1 + 2

∞∑
τ=1

ρ(τ)
)

as T →∞. Note that the variance of the simple Monte Carlo estimate of Ef [h(X)] would be σ2/TESS if we were to
use an i.i.d. sample of size TESS. We can now obtain the effective sample size TESS by equating these two variances
and solving for TESS, yielding

TESS = 1
1 + 2

∑∞
τ=1 ρ(τ) · T.

If we assume that (h(X(t)))t=1,...,T is a first-order autoregressive time series (AR(1)), i.e. ρ(τ) = ρ(h(X(t)), h(X(t+τ))) =
ρ|τ |, then we obtain using 1 + 2

∑∞
τ=1 ρ

τ = (1 + ρ)/(1− ρ) that

TESS = 1− ρ
1 + ρ

· T.

Example 3.17. (Gibbs sampling from a bivariate Gaussian (continued)). In examples 3.4 and 3.5 we obtained for
the low-correlation setting that ρ(X(t−1)

1 , X
(t)
1 ) = 0.078, thus the effective sample size is

TESS = 1− 0.078
1 + 0.078 · 10000 = 8547.

For the high-correlation setting we obtained ρ(X(t−1)
1 , X

(t)
1 ) = 0.979, thus the effective sample size is considerably

smaller:
TESS = 1− 0.979

1 + 0.979 · 10000 = 105.

Note that there are other more sophisticated ways of estimating ESS which do not require this crude autoregressive
approximation. The mcmcse package provides an implementation of the method of Gong and Flegal (2016) which
has somewhat better properties than the method employed by coda.

3.5 Optimisation with MCMC
So far we have studied various methods that allow for approximating expectations E [h(X)] by ergodic averages
1
T

∑T
t=1 h(X(t)

i ). This section presents an algorithm for finding the (global) mode(s) of a distribution. For
definiteness, in this chapter we define the mode(s) of a distribution to be the set of global maxima of the density,
i.e. {ξ : f(ξ) ≥ f(x) ∀x}. In Section 3.5.1 we will extend this idea to finding global extrema of arbitrary functions.

We could estimate the mode of a distribution by the X(t) with maximal density f(X(t)); this is however a not very
efficient strategy. A sample from a Markov chain with invariant distribution f(·) samples from the whole distribution
and not only from the mode(s).

This suggests modifying the distribution such that it is more concentrated around the mode(s). One way of achieving
this is to consider

f(β)(x) ∝ (f(x))β

for very large values of β.
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Example 3.18. (Normal distribution). Consider the N
(
µ, σ2) distribution with density

f(µ,σ2)(x) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
∝ exp

(
− (x− µ)2

2σ2

)
.

It is easy to see that the mode of the N
(
µ, σ2) distribution is µ. We have that

(
f(µ,σ2)(x)

)β ∝ (exp
(
− (x− µ)2

2σ2

))β
= exp

(
− (x− µ)2

2σ2/β

)
∝ f(µ,σ2/β)(x).

In other words, the larger β is chosen, the more concentrated the distribution will be around the mode µ. Figure 3.28
illustrates this idea.
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Figure 3.28: Density of the N (0, 1) raised to increasing powers. The areas shaded in grey represent 90% of the
probability mass.
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Figure 3.29: An arbitrary multimodal density raised to increasing powers. The areas shaded in grey reach from the
5% to the 95% quantiles.

The result we have obtained for the Gaussian distribution in the above example actually holds in general. For
β →∞ the distribution defined by the density f(β)(x) converges to a distribution that has all mass on the mode(s)
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of f (see Figure 3.29 for an example). It is instructive to see informally why this is the case when considering a
discrete random variable with probability density function p(·) and finite support E. Denote with E∗ the set of
modes of p, i.e. p(ξ) ≥ p(x) for all ξ ∈ E∗ and x ∈ E, and with m := p(ξ) with ξ ∈ E∗. Then

p(β)(x) = (p(x))β∑
y∈E∗(p(y))β +

∑
y∈E\E∗(p(y))β

= (p(x)/m)β∑
y∈E∗ 1 +

∑
y∈E\E∗(p(y)/m)β

β→∞−→
{

1/|E∗| if x ∈ E∗
0 if x 6∈ E∗

In general in the continuous case the distribution is not uniform on the modes and depends on the curvature around
each mode (see Hwang 1980 for details). An outline of the argument is (Figure 3.30):
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Figure 3.30: Simulated annealing for a continuous density.

• Take x? ∈ arg maxx f(x) and let:

• E1 = {x : f(x) ≥ f(x?)− ε}.

• E2 = {x : f(x) ≥ f(x?)− 2ε} \ E1.

• D = Rd \ (E1 ∪ E2).

• Consider: lim
β→∞

P(β)(E1 ∪ E2)/P(β)(D).

• Use: P(β)(D)/P(β)(E1)→ 0.

Under slightly stronger regularity conditions one can employ an elementary argument along the same lines as the
one described in the discrete case above.

We can use a random-walk Metropolis algorithm to sample from f(β)(·). The probability of accepting a move from
X(t−1) to X would be

min
{

1,
f(β)(X)

f(β)(X(t−1))

}
= min

1,
(

f(X)
f(X(t−1))

)β .

Note that this probability does not depend on the (generally unknown) normalisation constant of f(β)(·). It is
however difficult to directly sample from f(β) for large values of β: for β →∞ the probability of accepting a newly
proposed X becomes 1 if f(X) > f(X(t−1)) and 0 otherwise. Thus X(t) converges to a local extrema of the density
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f , however not necessarily a mode of f (i.e. a global extremum of the density). Whether X(t) gets caught in a local
extremum or not, depends on whether we can reach the mode from the local extrema of the density within one step.
The following example illustrates this problem.

Example 3.19. Consider the following simple optimisation problem of finding the mode of the distribution defined
on {1, 2, . . . , 5} by

p(x) =

 0.4 for x = 2
0.3 for x = 4
0.1 for x = 1, 3, 5.

Figure 3.31 illustrates this distribution. Clearly, the (global) mode of p(x) is at x = 2. Assume we want to
sample from p(β)(x) ∝ p(x)β using a random walk Metropolis algorithm with proposed value X = X(t−1) + ε with
P (ε = ±1) = 0.5 for X(t−1) ∈ {2, 3, 4}, P (ε = +1) = 1 for X(t−1) = 1, and P (ε = −1) = 1 for X(t−1) = 5. In
other words, we can either move one to the left, stay in the current value (when the proposed value is rejected), or
move one to the right. Note that for β →∞ the probability for accepting a move from 4 to 3 converges to 0, as
p(4) > p(3). As the Markov of chain can only move from 4 to 2 only via 3, it cannot escape the local extremum at 4
for β → +∞.*

1 2 3 4 5

0.1

0.3

0.4

x

p(x)

Figure 3.31: Illustration of a random walk Metropolis algorithm for the optimisation problem.

For large β the distribution f(β)(·) is concentrated around the modes, however at the price of being difficult to
sample from: the resulting Markov chain has very poor mixing properties: for large β the algorithm can hardly
move away from a local extremum surrounded by areas of low probability (the density of such a distribution would
have many local extrema separated by areas where the density is effectively 0).

The key idea of simulated annealing4 (Kirkpatrick, Gelatt, and Vecchi 1983) is to sample from a target distribution
that changes over time: f(βt)(·) with βt →∞. Before we consider different strategies for choosing the sequence (βt),
we generalise the framework developed so far to finding the global extrema of arbitrary functions.

3.5.1 Minimising an arbitrary function
Consider that we want to find the global minimum of a function h : E → R. Finding the global minimum of H(x) is
equivalent to finding the mode of a distribution

f(x) ∝ exp(−H(x)) for x ∈ E,

if such a distribution exists. In this framework, finding the mode of a density f corresponds to finding the minimum
of − log(f(x)). As in the previous section we can raise f to large powers to obtain a distribution

f(βt)(x) = (f(x))βt ∝ exp(−βt ·H(x)) for x ∈ E.

We hope to find the (global) minimum of H(x), which is the (global) mode of the distribution defined by fβt(x),
by sampling from a Metropolis–Hastings algorithm. As suggested above we let βt →∞. This yields the following
algorithm:

4The term annealing comes from metallurgy and refers to the technique of melting a metal before allowing that metal to cool down
slowly in order to reach a lower energy state and consequently produce a tougher metal. Following this analogy, 1/β is typically referred
to as temperature, β as inverse temperature.
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Algorithm 3.6 (Simulated Annealing). Starting with X(0) := (X(0)
1 , . . . , X

(0)
p ) and β(0) > 0 iterate for t = 1, 2, . . .

1. Increase β(t−1) to β(t) (see below for different annealing schedules).

2. Draw X ∼ q(· |X(t−1)).

3. Compute

α(X |X(t−1)) = min
{

1, exp
(
−βt(H(X)−H(X(t−1)))

)
· q(X

(t−1) |X)
q(X |X(t−1))

}
.

4. With probability α(X |X(t−1)) set X(t) = X, otherwise set X(t) = X(t−1).

If a random walk Metropolis update is used (i.e. X = X(t−1) + ε with ε ∼ g(·) for a symmetric g), then the
probability of acceptance becomes

α(X |X(t−1)) = min
{

1, exp
(
−βt(H(X)−H(X(t−1)))

)}
.

Using the same arguments as in the previous section, it is easy to see that the simulated annealing algorithm
converges to a local minimum of H(·). Whether it will be able to find the global minimum depends on how slowly
we let the inverse temperature β go to infinity.

Logarithmic tempering When choosing βt = log(1+t)
β0

, the inverse temperature increases slow enough that global
convergence results can be established for certain special cases. Hajek (1988) established global convergence
when H(·) is optimised over a finite set using a proposal which is uniform over E and logarithmic tempering
with a suitably large β0. Andrieu, Breyer, and Doucet (2001) use Foster–Lyapunov type arguments to establish
convergence on more general spaces (under appropriate conditions).

Assume we choose β0 = ∆H with ∆H := maxx,x′∈E |H(x)−H(x′)|. Then the probability of reaching state x
in the t-th step is

P
(
X(t) = x

)
=
∑
ξ

P
(
X(t) = x | X(t−1) = ξ

)
︸ ︷︷ ︸

≥exp(−βt∆H)/|E|

P
(
X(t−1) = ξ

)
≥ exp(−βt∆H)/|E|

Using the logarithmic tempering schedule we obtain P
(
X(t) = x

)
≥ 1/ ((1 + t)|E|) and thus the expected

number of visits to state x is
∞∑
t=0

P
(
X(t) = x

)
≥
∞∑
t=0

[(1 + t)|E|]−1 =∞.

Thus every state is recurrent. As β increases we however spend an ever increasing amount of time in the global
minima of x.

On the one hand visiting very state x infinitely often implies that we can escape from local minima. On the
other hand, this implies as well that we visit every state x (regardless of how large H(x) is) infinitely often. In
other words, the reason why simulated annealing with logarithmic tempering works, is that it still behaves
very much like an exhaustive search. However the only reason why we consider simulated annealing is that
exhaustive search would be too slow! For this reason, logarithmic tempering has little practical relevance.

Geometric tempering A popular choice is βt = αt · β0 for some α > 1.

Example 3.20. Assume we want to find the maximum of the function

H(x) =
(
(x− 1)2 − 1

)2 + 3 · s(11.56 · x2), with

s(x) =
{
|x| mod 2 for 2k ≤ |x| ≤ 2k + 1
2− |x| mod 2 for 2k + 1 ≤ |x| ≤ 2(k + 1)

for k ∈ N0. Figure 3.32 shows H(x) for x ∈ [−1, 3]. The global minimum of H(x) is at x = 0. We simulated
annealing with a geometric tempering with β0 = 1 and βt = 1.001βt−1 and a random walk Metropolis algorithm
with ε ∼ Cauchy

(
0,
√

0.1
)
. Figure 3.33 shows the first 1,000 iterations of the Markov chain yielded by the simulated

annealing algorithm. Note that when using a Gaussian distribution with small enough a variance the simulated
annealing algorithm is very likely to remain in the local minimum at x ≈ 1.8.
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Figure 3.32: Objective function H(x).

Note that there is no guarantee that the simulated annealing algorithm converges to the global minimum of H(x)
in finite time. In practice, it would be unrealistic to expect simulated annealing to converge to a global minimum,
however in most cases it will find a “good” local minimum.
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Figure 3.33: First 1,000 iterations of the Markov chain yielded by simulated annealing for finding the maximum of
H(x).



Chapter 4

Augmentation: Extending the Space

A very general technique in the field of simulation based inference is to augment the space on which simulation is
done with auxiliary variables whose presence makes the problem easier. It may seem counterintuitive that making
the space on which one must sample larger can make the sampling easier, but as we shall see in this chapter their
are many techniques in the literature which can be seen as particular cases of this general strategy.

4.1 Composition Sampling
Consider the problem of drawing samples from a mixture distribution, i.e. one with a density of the form

fX(x) =
k∑
i=1

wifi(x)

where w = (w1, . . . , wk) is a vector of non-negative real numbers which sum to one. These correspond to component
weights and {fi}ki=1 corresponds to a family of k different probability densities.

In principle one can readily develop techniques for sampling from such densities using the ideas described in Section
2.1. However, it’s convenient to have a simple generic method which can be used whenever we have techniques for
sampling from the fi individually.

Consider introducing an auxiliary variable Z which has a discrete distribution over {1, . . . , k} with associated vector
of probability masses w. The joint distribution

fX,Z(x, z) =
k∑
i=1

wiδi,zfz(x),

admits the marginal over x:
k∑
z=1

fX,Z(x, z) =
k∑
z=1

k∑
i=1

wiδi,zfz(x) =
k∑
i=1

wi

k∑
z=1

δi,zfz(x) =
k∑
i=1

wifi(x) = fX(x),

as required.

The basis of composition sampling is that fX,Z also admits a straightforward marginal distribution over z, by
construction, fZ(z) =

∑k
i=1 wiδi,z and the conditional distribution of X given Z = z is simply fX|Z(x|z) = fz(x).

Combining these ideas, we conclude that we can sample from fX,Z by sampling Z ∼ Cat (w), sampling X from its
conditional distribution given the realized value of Z: X|{Z = z} ∼ fz and then discarding the auxiliary variable z.

4.2 Rejection Revisited
We can also look at rejection sampling through the lens of spatial extension. Consider the following scenario. We
are interested in obtaining samples from fX , know that supx fX(x)/gX(x) ≤ M <∞ for some density gX from

62
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which we can sample and some real constant M . We extend the space by introducing an additional U which takes
its values in R+ and define the joint distributions:

gX,U (x, u) ∝ IGM ((x, u)), fX,U (x, u) ∝ IF((x, u)),

where GM := {(x, u) ∈ X ⊗ R+ : u ≤Mg(x)} and F := {(x, u) ∈ X ⊗ R : u ≤ f(x)} are simply the sets of points
beneath Mg and f , respectively.

If gX is tractable then we can straightforwardly sample from gX,U by samplingX ∼ gx and U |X = x ∼ U[0,Mg(x)].
We could then imagine conducting importance sampling to approximate expectations under fX,U , which would lead
us to an estimator for I =

∫
fX,U (x, u)ϕ(x, u)dxdu of the form

Înϕ =
∑n
i=1

IF((Xi,Ui))
IGM ((Xi,Ui))ϕ(Xi)∑n
i=1

IF((Xi,Ui))
IGM ((Xi,Ui))

noting that F ⊆ GM and that the probability (under the sampling mechanism by which we have just described
for simulating these random variables which amounts to sampling from the uniform distribution over GM ) that
Xi 6∈ GM is 0 allowing us to adopt the convention that 0/0 = 0 here, we obtain:

Înϕ =
∑n
i=1 IF((Xi, Ui))ϕ(Xi, U)∑n

i=1 IF((Xi, Ui))
=
∑
{i:(Xi,Ui)∈F} ϕ(Xi, U)∑

{i:(Xi,Ui)∈F} 1 .

Note that this is simply the sample average of the function ϕ over those points which fell within F. If we restrict our
attention to ϕ(x, u) = ϕ(x) (i.e. we consider functions which depend only upon x) it is clear that we’ve recast the
simple Monte Carlo estimate of the expectation of a function under fX using a sample obtained using n proposals
from g within a rejection sampler as an importance sampling estimate on an extended space.

The relationship between rejection and importance sampling is well known and has been studied by many authors
(Chen 2005; Perron 1999).

4.3 Data Augmentation
Perhaps the most widely known spatial extension technique is that known as data augmentation, introduced by
Tanner and Wong (1987).

Consider a latent variable model: a statistical model in which one has unknown parameters about which one wishes
to performance inference, θ, observations which are known, y, and a collection of hidden (latent) variables, z.
Typically, the joint distribution of all these quantities, say, fY ,Z,θ is known but integrating out the latent variables
is not feasible. Without access to fY ,θ it’s not possible to implement, directly, an MCMC algorithm with the
associated marginal posterior distribution fθ|Y as its target.

The basis of data augmentation is to augment the vector of parameters θ with these latent variables, z and to run
an MCMC algorithm (or other Monte Carlo algorithm of your choice) which instead targets the joint posterior
distribution fθ,Z|Y noting that this distribution admits as its marginal in θ exactly the marginal posterior distribution
which was the original object of inference. A mixture model is the canonical example of a model which can be
susceptible to this approach.

4.4 Multiple Augmentation for Optimisation
A closely related idea used in optimisation is based around “multiple augmentation”, introducing several replicates
of unobserved quantities in order to allow the maximisation of a marginal quantity which it may not be possible
to evaluate. We focus here on the State Augmentation for Maximisation of Expectations algorithm of Doucet,
Godsill, and Robert (2002); similar methods are also described by others including Gaetan and Yao (2003), Jacquier,
Johannes, and Polson (2007). These schemes all employ MCMC; the alternative of employing a population-based
sampling method known as Sequential Monte Carlo was explored by Johansen, Doucet, and Davy (2008).

Two common optimisation problems arise in the evaluation of statistical estimators: Maximum Likelihood Estimation:
Given L(θ;x) = fx(x; θ), compute θ̂ML = arg maxθ∈Θ L(θ;x) and Maximum a Posteriori Estimation: Given
L(θ;x) = fx(x; θ) and prior fprior(θ), compute θ̂MAP = arg maxθ∈Θ f

prior(θ)L(θ;x).
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Both can fit our simple optimisation framework, and we can see a further illustration of the workings of the annealing
method by considering the sequence of distributions obtained for simple problems.

Example 4.1. (Gaussian MAP Estimation).

• If L(µ;x) =
∏n
i=1 φµ,σ2(xi) with σ2 known,

• and π(µ) = φµ0,σ2
0
(µ), then

• the posterior is

fpost(µ) = N
(
µ,
σ2µ+ nσ2

0 x̄

σ2 + nσ2
0
,

σ2σ2
0

σ2 + nσ2
0

)
,

• and we could aim to sample from

fMAP
(β) (µ) ∝ (fpost(µ))β ∝ N

(
µ,
σ2µ+ nσ2

0 x̄

σ2 + nσ2
0
,

σ2σ2
0

β(σ2 + nσ2
0)

)
.

Example 4.2. (Example: Normal ML Estimation).

• If L(µ;x) =
∏n
i=1 φµ,σ2(xi) with σ2 known,

• we could view the likelihood as being proportional to a distribution over µ:

f(µ) = N
(
µ; x̄, σ2/n

)
,

• and we could aim to sample from

fMLE
(β) (µ) ∝ (f(µ))β ∝ N

(
µ; x̄, σ2/βn

)
.

In both of these cases, the sequence of distributions concentrates on the maximiser of the original objective function,
and so any algorithm able to sample from these distributions (for large enough β) will provide good approximations
of the optimiser of the objective function. These methods involve target distributions that resemble the posterior
distribution (either a real posterior, or one obtained using an instrumental prior for the purposes of approximating
the MLE) which would have been obtained if there were many copies of the data, so the approach is sometimes
referred to as “data cloning”.

Two closely related problems often arise when dealing with complicated statistical models. Marginal Maximum
Likelihood Estimation: Given L(θ;x) =

∫
fx,z(x, z; θ)dz, compute θ̂ML = arg maxθ∈Θ L(θ;x); and Marginal

Maximum a Posteriori Estimation: Given L(θ;x) =
∫
fx,z(x, z; θ)dz and prior fprior(θ), compute θ̂MMAP =

arg maxθ∈Θ f
prior(θ)L(θ;x). Such problems often arise when one can write down a complete generative model for

the process by which the data arose in terms of the parameters, but one only observes a subset of the random
quantities generated within that model. For example, consider a mixture model in which we don’t observe the
association of observations with mixture components or a genetic model in which we observe the DNA sequences of
only the current generation of individuals: we don’t observe the sequences of their ancestors or their genealogical
trees (Stephens 2007). If it is possible to integrate out the unobserved random quantities then we can proceed as
usual, but unfortunately we can’t typically evaluate the marginal likelihoods.

Recall the demarginalisation technique for sampling from fx(x) by defining a convenient joint distribution fx,z(x, z)
which admits the distribution of interest as a marginal. In order to do this, we saw that we could introduce a
set of auxiliary random variables Z1, . . . , Zr such that fx is the marginal density of (X1, . . . , Xp) under the joint
distribution of (X1, . . . , Xp, Z1, . . . , Zr), i.e.

f(x1, . . . , xp) =
∫
f(x1, . . . , xn, z1, . . . , zr) d(z1, . . . , zr).

The idea of introducing some auxiliary random variables in such a way that f(β)(x) is the marginal distribution
seems a natural extension of this idea.

In order to do this, we consider

L(x, z|θ) = fX,Z(x, z|θ) = fZ(z|θ)fX(x|z, θ),
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and introduce a whole collection of vectors of auxiliary variables:

fMMAP
β (θ,z1, . . . ,zβ |x) ∝

β∏
i=1

[π(θ)fZ(zi)fX(x|zi, θ)] .

We can easily establish that, by exploiting the conditional independence structure of our augmented likelihood:

fMMAP
β (θ|x) ∝

∫
fMMAP
β (θ,z1, . . . ,zβ |x)dz1, . . . dzβ

∝ π(θ)βfX(x|θ)β = fpost(θ|x)β .

This idea is the basis of the State Augmentation for Maximisation of Expectations (SAME) algorithm (Doucet,
Godsill, and Robert 2002).

In the case of maximising the likelihood rather than the posterior we need to be slightly more careful. The likelihood
is a probability density over the data, but need not even be integrable if viewed as a function of the parameters. We
can address this problem by introducing an instrumental prior distribution (one used exclusively for computational
reasons which is not intended to have any influence on the resulting inference.

Considering
L(θ;x, z) = fX,Z(x, z|θ) = fZ(z|θ)fX(x|z, θ),

we can again consider multiple augmentation—this time for MMLE estimation—by setting

fMMLE
β (θ,z1, . . . ,zβ |x) ∝ π(θ)

β∏
i=1

[fZ(zi)fX(x|zi, θ)] ,

which ensures that
fMMLE
β (θ|x) ∝

∫
fMMLE
β (θ,z1, . . . ,zβ |x)dz1, . . . dzβ

∝
[
π(θ)(1/β)fX(x|θ)

]β
≈ L(θ;x)β

for large enough β under support and regularity conditions on π(·), the instrumental prior.

Both of these augmentation strategies can give rise to a sequence of target distributions if we replace β with βt, a
non-decreasing sequence of numbers of replicates of the augmenting variables. (In the SAME case it can be sensible
to keep βt fixed at a particular value for several iterations to give the chain time to reach equilibrium before further
increasing it.) And given such a sequence of target distributions, we can apply MCMC kernels for which each is
invariant in essentially the same manner as we did when considering simulated annealing. In the particular case in
which we can sample from all of the relevant full conditional distributions, this gives rise to Algorithm 4.1; more
general cases can be dealt with via obvious extensions.

Algorithm 4.1 (The SAME Gibbs Sampler). Starting with θ(0) iterate for t = 1, 2, . . .

1. Increase β(t−1) to β(t) (if necessary).

2. For k = 1, . . . , βt, sample:
z

(t)
k ∼ fZ(z(t)

k |x,θ
(t−1)).

3. Sample:
θ(t) ∼ f ...(βt)(θ|x, z

(t)
1 , . . . ,z

(t)
βt

).

The following toy example shows the SAME Gibbs sampler in action.

Example 4.3. Consider finding the parameters which maximise the likelihood in a setting in which the likelihood
is a student t-distribution of unknown location parameter θ with 0.05 degrees of freedom. Four observations are
available, x = (−20, 1, 2, 3).

In this case, the marginal likelihood is known (and we can use this knowledge to verify that the algorithm works as
expected):

log p(x|θ) = −0.525
4∑
i=1

log
(
0.05 + (xi − θ)2) .
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Figure 4.1: The log marginal likelihood for the location parameter of the student t-distribution.
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Figure 4.2: The target distribution obtained by the annealing approach at β = 5 (right) for the location parameter
of the student t-distribution.
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This marginal likelihood is illustrated in Figure 4.1–4.2.

However, it is also possible to write down an augmented complete likelihood admitting this as a marginal distribution,
by exploiting the fact that the student t-distribution may be written as a scale mixture of normal densities:

log p(x, z|θ) = −
4∑
i=1

[
0.475 log zi + 0.025zi + 0.5zi(xi − θ)2] ,

p(βt)(z1:βt |θ,x) =
βt∏
i=1

4∏
j=1

Gamma
(
zi,j ; 0.525, 0.025 + (xj − θ)2

2

)
,

p(βt)(θ|z1:βt) ∝ N
(
θ;µ(θ)

t ,Σ(θ)
t

)
,

where the parameters are

Σ(θ)
t =

 βt∑
i=1

4∑
j=1

zi,j

−1

, µ
(θ)
t = Σ(θ)

t

βt∑
i=1

yT zi.

We can straightforwardly implement the SAME Gibbs sampler for this problem..

It is perhaps more interesting to return to the familiar mixture model for which we have already considered several
forms of inference. Lets apply the data augmentation approach to the problem of maximising the posterior density.
(Note that one cannot use maximum likelihood estimation, at least directly, in this setting as the likelihood is not
bounded above: if a cluster mean coincides exactly with an observation then making the variance of that component
arbitrarily small leads to an arbitrarily high likelihood!)

Example 4.4. (MAP Estimation for a Gaussian Mixture Model). Consider again the Gaussian mixture model in
which we assume that the density of yi is a mixture of Gaussians

f(yi|π1, . . . , πk, µ1, . . . , µk, τ1, . . . , τk) =
k∑
κ=1

πκφ(µκ,1/τκ)(yi).

Suitable prior distributions are a Dirichlet distribution for (π1, . . . , πk), a Gaussian for µκ, and a Gamma distribution
for τκ. In order to ensure identifiability we assume the µκ are ordered, i.e. µ1 < · · · < µk and make the corresponding
change to the posterior density (in order to compensate for setting the density to zero for all configurations which fail
to satisfy the ordering constraint, the density of all configurations compatible with the constraint must be increased
by a factor of k!). Here we assume that k is known, and have:

• n iid observations, x1, . . . , xn.

• Likelihood fX,Z(xi, zi|ω, µ, σ) = ωziN
(
xi;µzi , σ2

zi

)
.

• Marginal likelihood fX(xi|ω, µ, σ) =
K∑
j=1

ωjN
(
xi;µj , σ2

j

)
.

• Diffuse conjugate priors:
ω ∼ Dirichlet (χ, . . . , χ),

σ2
i ∼ IG

(
λi + 3

2 ,
bi
2

)
,

µi|σ2
i ∼ N

(
ai, σ

2
i /λi

)
.

All full conditional distributions of interest are available, which allows us to use our Gibbs sampling strategy. This
gives rise to an iterative algorithm in which step t comprises the following steps:

• Sample:
ω ← Dirichlet (βt(χ− 1) + 1 + n1(βt), . . . , βt(χ− 1) + 1 + nK(βt)),
σ2
i ← IG (Ai, Bi),

µi|σ2
i ← N

(
βtλiai + x̄βti
βtλi + nβti

,
σ2
i

βtλi + nβti

)
,
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where

nβti =
βt∑
l=1

n∑
p=1

Ii(Z(t−1)
l,p ), x̄βti =

βt∑
l=1

n∑
p=1

Ii(Z(t−1)
l,p )xj , x2βt

i =
βt∑
l=1

n∑
p=1

Ii(Zl,p)x2
j ,

• and

Ai = βt(λi + 1) + nβti
2 + 1,

Bi = 1
2

(
βt(bi + λia

2
i ) + x̄2βt

i −
βt∑
g=1

(x̄gi − x̄
g−1
i + λiai)2

λi + ngi − n
g−1
i

)
.

• Sample, for j = 1, . . . , βt:
z

(t)
j ∼ f

posterior(z|x, π(t), σ(t), µ(t)).

The marginal posterior can be calculated (which means that we don’t need such a complicated algorithm to deal with
this problem, although it does perform well; the advantage of using such an example is that it allows us to assess the
performance of the algorithm).

First we compare the performance of 50 runs of the algorithm with 50 (differently initialised) runs of a deterministic
algorithm (expectation maximisation; EM) which is widely used to deal with problems of this type. Cost gives a
rough indication of the computational cost of running each algorithm once.

Algorithm T Cost Mean Std. Dev. Min Max
EM 500 500 -158.06 3.23 -166.39 -153.85
EM 5000 5000 -157.73 3.83 -165.81 -153.83

SAME(6) 4250 8755 -155.32 0.87 -157.35 -154.03
SAME(50) 4250 112522 -155.05 0.82 -156.11 -153.98

Two different sequences of the annealing parameter were considered:

SAME(6): Set βt = 1 for the first half of the iterations and then increasing linearly to a final maximum value of 6.

SAME(50): Set βt = 1 for the first 250 iterations, and then increasing linearly to 50.

The log posterior density of the generating parameters was -155.87. These parameters were:

π = [0.2, 0.3, 0.5] , µ = [0, 2, 3] , and σ =
[
1, 1

4 ,
1
16

]
.

Although the EM algorithm occasionally produces good results, for this clean simulated data, some runs of the
algorithm totally fail to find anything close to the global mode. The SAME algorithm is computationally more costly,
but does behave more robustly. In real marginal optimisation problems, one typically cannot evaluate the objective
function and so robust methods that can be relied upon to produce good solutions are required.

Next we turn to the much celebrated Galaxy data set of Roeder (1990). This data set consists of the velocities of
82 galaxies, and it has been suggested that it consists of a mixture of between 3 and 7 distinct components—for
example, see Roeder and Wasserman (1997) and Escobar and West (1995). For our purposes we have estimated the
parameters of a 3 component Gaussian mixture model from which we assume the data was drawn. The following
table summarises the marginal posterior of the solutions found by 50 runs of each algorithm, comparing the same
algorithm with the EM algorithm. Cost gives a rough indication of the computational cost of running each algorithm
once.

Algorithm T Cost Mean Std. Dev. Min Max
EM 500 500 -46.54 2.92 -54.12 -44.32
EM 5000 5000 -46.91 3.00 -56.68 -44.34

SAME(6) 4250 8755 -45.18 0.54 -46.61 -44.17
SAME(50) 4250 112522 -44.93 0.21 -45.52 -44.47
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Algorithm T Cost Mean Std. Dev. Min Max

Again, two different sequences of annealing schedule were considered:

SAME(6) set βt = 1 for the first half of the iterations and then increasing linearly to a final maximum value of 6,

SAME(50) set βt = 1 for the first 250 iterations, and then increasing linearly to 50,

and again, good robustness is demonstrated by the same algorithm. A slightly more sophisticated algorithm (Johansen,
Doucet, and Davy 2008) finds solutions broadly consistent with the −43.96± 0.03 found here.

4.5 Approximate Bayesian Computation
The Approximate Bayesian Computation (ABC) approach to inference has become extremely popular for performing
inference for models whose likelihood is not tractable (either in the sense that we can’t evaluate it pointwise or that
such evaluation is prohibitively expensive). Such models abound in some areas, such as ecology and phylogenetics,
and these methods have consequently received a great deal of attention in recent years.

It was Pritchard et al. (1999) who introduced the method, although there are some connections to earlier work such
as Diggle and Gratton (1984) and Tavaré et al. (1997). It is not always viewed as a spatial extension technique, but
it can be quite helpful to think about it in these terms.

Before moving on to consider ABC itself, think about a simple case in which one has a target distribution fX|Y (x|y)
which will typically be a Bayesian posterior distribution (and y the observed data). This distribution is written, via
Bayes rule as:

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y) .

If both fX(x) and fY |X(y|x) can be evaluated pointwise then we can use standard simulation techniques to obtain
samples which we can use to approximate our target distribution, and to approximate expectations with respect to
it.

If we cannot evaluate fY |X even pointwise, then we can’t directly use the techniques which we’ve described previously.
To address this, we can invoke a clever data augmentation trick which requires only that we can sample from fY |X .
First let’s consider the case in which Y is a discrete random variable. We can define the extended distribution, with
Z taking it values in the space space as Y :

fX,Z|Y (x, z|y) ∝ fY |X(z|x)fX(x)δy,z

and note that it has as a marginal distribution, our target:∑
z

fX,Z|Y (x, z|y) ∝
∑
z

fY |X(z|x)fX(x)δy,z = fY |X(y|x)fX(x).

In the simplest case, we can sample (X,Z) ∼ fY |X(z|x)fX(x) using this as a rejection sampling proposal for our
target distribution, keeping samples with probability proportional to

fX,Z|Y (x, z|y)/fY |X(z|x)fX(x).

This probability can easily be seen to be proportional to δy,z. So this rejection sampling algorithm amounts to
sampling X from its prior distribution; sampling an artificial set of data from the model fY |X and keeping the
sample as a sample from the posterior only if the artificial data set exactly matches the observed one.

Thus far, this clever algorithm has made no approximations. However, the probability of a sample being accepted is
exactly the probability that a data set drawn by sampling a parameter value from the prior and a data set from
the data-generating model with that parameter value exactly matches the observed data. In the case of very small
discrete data sets this might be acceptable, but typically it will be vanishingly small. That’s why approximation
becomes necessary.
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The approximate part of ABC arises first of all by relaxing the requirement that the simulated data exactly matches
the observed data and keeping any sample for which the simulated data falls within some tolerance, ε, of the observed
data. This leads to a different target distribution:

fABC
X,Z|Y ∝ fY |X(z|x)fX(x)IB(y,ε)(z),

where B(y, ε) := {x : |x− y| ≤ ε}, for which the marginal is no longer correct but may be approximately so under
regularity conditions:

fABC
x|Y ∝

∫
fY |X(z|x)fX(x)IB(y,ε)(z)dz

∝ fX(x)
∫
fY |X(z|x)IB(y,ε)(z)dz ∝ fX(x)

∫
z∈B(y,ε)

fY |X(z|x)dz.

This approximation amounts to a smoothing of the likelihood function.

Often a further approximation is introduced by considering not the data itself but some low dimensional summary. If
that low dimensional summary does not constitute a sufficient statistic for the inferential task at hand, this induces
an additional approximation error which doesn’t vanish even if the tolerance parameter, ε, is reduced to zero. We
won’t consider this further here, but it is important to be aware of the impact of such approximation if you employ
this type of technique in real inferential situations.

Using simple rejection sampling with such a target distribution leads to the ABC algorithm of Pritchard et al.
(1999), while using this target distribution within a standard MCMC algorithm was proposed by Marjoram et al.
(2003) with various approaches based around other Monte Carlo schemes, especially Sequential Monte Carlo also
being proposed by various authors including Sisson, Fan, and Tanaka (2007), Del Moral, Doucet, and Jasra (2012),
and Peters, Fan, and Sisson (2012).

It is important to be aware that ABC makes use of both finite tolerances and summary statistics. If the latter lack
the sufficiency property this also introduces approximation error which does not go away with increased simulation
effort and which can be extremely difficult to quantify or understand. Although the method is appealing in its
simplicity and broad applicability, as statisticians we should be careful to understand any approximations involved
in our computations.

There is work on the use of ABC within a model selection context. Early algorithms include those of Del Moral,
Doucet, and Jasra (2012). Characterisation of sufficient statistics for model choice by ABC can be found in Grelaud
et al. (2009), Didelot et al. (2011), and Robert et al. (2011), while Marin et al. (2014) characterises the properties
required in order for insufficient summary statistics to provide asymptotically consistent Bayes factor (and hence
model selection).



Chapter 5

Current and Future Directions

Monte Carlo methodology is being actively developed. Indeed it is is likely that many of the students attending this
module will themselves be working on aspects of computer intensive statistics. No module of this sort can hope to
start from the beginning of the discipline and reach all of the frontiers of current research. This chapter contains a
very few words about some current research directions and attempts to provide references so that the interested
reader can easily find out more. It isn’t an exhaustive summary of interesting directions in this area, but we have
attempted to provide a little information about at least the most widespread such topics (and, of course, those in
which we are particularly interested).

5.1 Ensemble-based Methods and Sequential Monte Carlo
Ensemble- (or particle-) based methods use a collection of samples to approximate a distribution within an algorithm.
Operations are performed on the ensemble rather than considering only a single sample at a time as for MCMC
algorithms. Many of these methods come originally from the signal-processing literature, in which a class of
algorithms known as particle filters were introduced by Gordon, Salmond, and Smith (1993) to approximate the
solution of the discrete time filtering problem. Consider the problem of inferring the location of an object using noisy
radar measurements taken at regular times. The filtering problem in this setting asks for the posterior distribution of
the true location of the object (which is treated as a hidden or latent variable) at a time t given the noisy observations
up to time t. A particle filter approximates this distribution by simulating a collection of particles whose weighted
empirical distribution hopefully provides a good approximation to this filtering distribution. Particles are evolved
through time and reweighted in order to update the filtering distribution as new observations arrive. See Doucet
and Johansen (2011) for a survey of these and some related techniques.

Amongst others, R. M. Neal (2001) and Chopin (2001) proposed algoriothms based around this type of methodology
(from quite different perspectives) which are applicable to more general problems. The particle filtering framework
can be generalised to a rather more abstract problem of sampling from a growing collection of measures, in which
case the algorithm is known as Sequential Monte Carlo. See Del Moral, Doucet, and Jasra (2006) for an important
special case known as Sequential Monte Carlo samplers, and Del Moral (2004), Del Moral (2013), for book-length
studies of the theoretical behaviour of this type of algorithm.

5.2 Pseudomarginal Methods and Particle MCMC
One area which has attracted a lot of attention is that in which one has access to a joint distribution but is interested
in inference for only a (relatively low-dimensional) marginal of that distribution. It was demonstrated in Beaumont
(2003) that with a clever spatial-extension scheme one could justify an approximation to the ideal marginal scheme.
Such an approach was further analysed by Andrieu and Roberts (2009) (and there is a trail of more recent work) who
termed them pseudo-marginal methods. The idea is motivated as follows. Suppose you wanted to run an MCMC
algorithm on a model parameter but you could not compute the acceptance probability at each step because the
likelihoods appearing in the numerator and denominator of the Metropolis–Hastings ratio are intractable. However,
at some additional cost you are able to obtain a Monte Carlo estimate for each likelihood. If you were to simply plug
in those estimates into the Metropolis–Hastings ratio, you have no guarantees that the MCMC algorithm still has
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the correct target distribution. The essence of the pseudo-marginal method is to view the act of doing Monte Carlo
estimation as an instance of data augmentation; the augmentation comes from all the extra randomness you need to
do the Monte Carlo step. By writing down this augmentation explicitly and treating the randomness associated
with the Monte Carlo steps carefully, one is able to show that the MCMC algorithm still has the correct target.

A closely related idea is the particle MCMC (PMCMC) approach of Andrieu, Doucet, and Holenstein (2010). Here,
SMC algorithms are used within an MCMC algorithm to integrate out large collections of latent variables. A number
of schemes can be justified based upon a common extended-space view of these algorithms.

5.3 Approximate Approximate Methods
Pseudomarginal and related methods are often referred to as exact approximate methods: they are approximate
in the sense that they emulate an idealised algorithm by invoking additional randomness, but are exact in the
sense that they retain the correct target distribution. In recent years there has been some interest in making still
further approximations and considering approximation schemes which also affect the target distribution. There
is some weak theoretical support that such methods can work under certain circumstances (Alquier et al. 2016;
Medina-Aguayo, Lee, and Roberts 2016; Everitt et al. 2017 for example) but it remains difficult to justify their use
in realistic settings.

5.4 Quasi-Monte Carlo
In Section 2.1.1 the idea of quasi-random number generators was briefly mentioned. The use of quasi-random
numbers within simulation procedures has received a burst of recent attention in large part due to the paper of
Mathieu Gerber and Chopin (2015) which presented an elegant approach to their incorporation within the SMC
framework. See also M. Gerber, Chopin, and Whiteley (2019) for further connections between quasi-Monte Carlo
and SMC.

5.5 Hamiltonian/Hybrid MCMC
Hamiltonian Monte Carlo (HMC) is another approach to constructing MCMC chains which gives the evolution of
those chains a physical interpretation. We augment the state space to incorporate a momentum variable and use
some clever numerical technology borrowed from the physics literature—like the HMC method itself—in order to
produce transitions which can exhibit much better mixing than the small steps allowed by Metropolis–Hastings
type algorithms in high dimensions. Techniques adapted to a statistical setting in order to make use of higher order
spatial structure was developed by Girolami and Calderhead (2011). See R. Neal (2011) for an introduction to these
methods.

5.6 Methods for Big Data
An enormous research effort is currently being dedicated to the development of methods which scale sufficiently well
with the size of a set of data that they allow inference with truly enormous data sets. This is too large, and too
specialised, an area to dedicate much space to here, but Bardenet, Doucet, and Holmes (2017) provide an excellent
comparative summary of the current state of the art.

Standard MCMC algorithms suffer in high-dimensions partly because their reversible nature slows down exploration
of the state space. There has been a flurry of recent work developing non-reversible MCMC algorithms with good
scaling properties. Often they are best expressed as continuous-time algorithms in contrast to the discrete updates of
standard MCMC. This has something of the flavour of HMC but they rely heavily on proposals driven by piecewise
deterministic Markov processes; see Fearnhead et al. (2018) for an introduction.



Appendix A

Some Markov Chain Concepts

This appendix is provided largely to make these notes self contained and to provide a little context and some details
for those who want them. The notion of a stochastic process in general and Markov chains in particular are, of
course, explored in more depth during the Applied Stochastic Processes module. No significant amount of lecture
time will be dedicated to this material, and if this is all unfamiliar to you then you’ll be able to engage with the
lectures and the module without becoming intimately acquainted with the fine details of this material.

I’ve attempted to balance the need for technical rigour with accessibility and have avoided making much explicit
reference to the theory of measure. If you aren’t familiar with measure theory then you should be able to read this
appendix by simply ignoring any reference to measurability but be aware that should you go on to use these concepts
in the wild that we do need to be careful about such things.

A.1 Stochastic Processes
For our purposes we can define an E-valued process as a function ξ : I → E which maps values in some index set I
to some other space E. The evolution of the process is described by considering the variation of ξ(i) with i. An
E-valued stochastic process (or random process) can be viewed as a process in which, for each i ∈ I, ξ(i) is a random
variable taking values in E.

Although a rich literature on more general situations exists, we will consider only the case of discrete time stochastic
processes in which the index set I is N (of course, any index set isomorphic to N can be used in the same framework
by simple relabeling). We will use the notation ξi to indicate the value of the process at time i (note that there need
be no connection between the index set and real time, but this terminology is both convenient and standard).

We will begin with an extremely brief description of a general stochastic process, before moving on to discuss the
particular classes of process in which we will be interested. In order to characterise a stochastic process of the sort
in which we are interested, it is sufficient to know all of its finite-dimensional distributions, the joint distributions of
the process at any collection of finitely many times. For any collection of times i1, i2, . . . , it and any measurable
collection of subsets of E, Ai1 , Ai2 , . . . , Ait we are interested in the probability:

P (ξi1 ∈ Ai1 , ξi2 ∈ Ai2 , . . . , ξit ∈ Ait).

For such a collection of probabilities to define a stochastic process, we require that they meet a certain consistency
criterion. We require the marginal distribution of the values taken by the process at any collection of times to be
the same under any finite-dimensional distribution which includes the process at those time points, so, defining any
second collection of times j1, . . . , js with the property that jk 6= il for any k ≤ t, l ≤ s, we must have that:

P (ξi1 ∈ Ai1 , ξi2 ∈ Ai2 , . . . , ξit ∈ Ait) = P (ξi1 ∈ Ai1 , ξi2 ∈ Ai2 , . . . , ξit ∈ Ait , ξj1 ∈ E, . . . , ξjs ∈ E).

This is just an expression of the intuitive concept that any finite-dimensional distribution which describes the process
at the times of interest should provide the same description if we neglect any information it provides about the
process at other times. Or, to put it another way, they must all be marginal distributions of the same distribution.
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In the case of real-valued stochastic processes, in which E = R, we may express this concept in terms of the
joint distribution functions (the multivariate analogue of the distribution function). Defining the joint distribution
functions according to:

Fi1,...,it(x1, x2, . . . , xt) = P (ξi1 ≤ x1, ξi2 ≤ x2, . . . , ξit ≤ xt),

our consistency requirement may now be expressed as:

Fi1,...,it,j1,...,js(x1, x2, . . . , xt,∞, . . . ,∞) = Fi1,...,it(x1, x2, . . . , xt).

Having established that we can specify a stochastic process if we are able to specify its finite-dimensional distributions,
we might wonder how to specify these distributions. In the next two sections, we proceed to describe a class of
stochastic processes which can be described constructively and whose finite-dimensional distributions may be easily
established. The Markov processes which we are about to introduce represent the most widely used class of stochastic
processes, and the ones which will be of most interest in the context of Monte Carlo methods.

A.2 Discrete State Space Markov Chains
A.2.1 Basic Notions
We begin by turning our attention to the discrete state space case which is somewhat easier to deal with than the
general case which will be of interest later. In the case of discrete state spaces, in which |E| is either finite, or
countably infinite, we can work with the actual probability of the process having a particular value at any time
(you’ll recall that in the case of continuous random variables more subtlety is generally required as the probability of
any continuous random variable defined by a density (with respect to Lebesgue measure, in particular) taking any
particular value is zero). This simplifies things considerably, and we can consider defining the distribution of the
process of interest over the first t time points by employing the following decomposition:

P (ξ1 = x1, ξ2 = x2, . . . , ξt = xt) =P (ξ1 = x1, ξ2 = x2, . . . , ξt−1 = xt−1)
× P (ξt = xt|ξ1 = x1, . . . , ξt−1 = xt−1).

Looking at this decomposition, it’s clear that we could construct all of the distributions of interest from an initial
distribution from which ξ1 is assumed to be drawn and then a sequence of conditional distributions for each t,
leading us to the specification:

P (ξ1 = x1, ξ2 = x2, . . . , ξt = xt) = P (ξ1 = x1)
t∏
i=2

P (ξi = xi|ξ1 = x1, . . . , ξi−1 = xi−1). (A.1)

From this specification we can trivially construct all of the finite-dimensional distributions using no more than the
sum and product rules of probability.

So, we have a method for constructing finite-dimensional distributions for a discrete state space stochastic process,
but it remains a little formal as the conditional distributions seem likely to become increasingly complex as the time
index increases. The conditioning present in decomposition (A.1) is needed to capture any relationship between the
distribution at time t and any previous time. In many situations of interest, we might expect interactions to exist
on only a much shorter time-scale. Indeed, one could envisage a memoryless process in which the distribution of the
state at time t+ 1 depends only upon its state at time t, ξt, regardless of the path by which it reached ξt. Formally,
we could define such a process as:

P (ξ1 = x1, ξ2 = x2, . . . , ξt = xt) = P (ξ1 = x1)
t∏
i=2

P (ξi = xi|ξi−1 = xi−1). (A.2)

It is clear that (A.2) is a particular case of (A.1) in which this lack of memory property is captured explicitly, as:

P (ξt = xt|ξ1 = x1, . . . , ξt−1 = xt−1) = P (ξt = xt|ξt−1 = xt−1).

We will take this as the defining property of a collection of processes which we will refer to as discrete time Markov
processes or, as they are more commonly termed in the Monte Carlo literature, Markov chains. There is some
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debate in the literature as to whether the term “Markov chain” should be reserved for those Markov processes which
take place on a discrete state space, those which have a discrete index set (the only case we will consider here) or
both. As is common in the field of Monte Carlo simulation, we will use the terms Markov chain and Markov process
interchangeably.

When dealing with discrete state spaces, it is convenient to associate a row vector1 with any probability distribution.
We assume, without loss of generality, that the state space, E, is N. Now, given a random variable X on E, we say
that X has distribution µ, often written as X ∼ µ for some vector µ with the property that:

∀x ∈ E : P (X = x) = µx.

A.2.1.1 Homogeneous Markov Chains

The term homogeneous Markov Chain is used to describe a Markov process of the sort just described with the
additional caveat that the conditional probabilities do not depend explicitly on the time index, so:

∀m ∈ N : P (ξt = y|ξt−1 = x) ≡ P (ξt+m = y|ξt+m−1 = x).

In this setting, it is particular convenient to define a function corresponding to the transition probability (as the
probability distribution at time t+ 1 conditional upon the state of the process at time t) or kernel as it is often
known, which may be written as a two argument function or, in the discrete case as a matrix, K(i, j) = Kij =
P (ξt = j|ξt−1 = i).

Having so expressed things, we are able to describe the dynamic structure of a discrete state space, discrete time
Markov chain in a particularly simple form. If we allow µt to describe the distribution of the chain at time t, so that
µt,i = P (ξt = i), then we have by applying the sum and product rules of probability, that:

µt+1,j =
∑
i

µt,iKij .

We may recognise this as standard vector-matrix multiplication and write simply that µt+1 = µtK and, proceeding
inductively it’s straightforward to verify that µt+m = µtK

m where Km denotes the usual mth matrix power of K.
We will make some use of this object, as it characterises the m-step ahead condition distribution:

Km
ij := (Km)ij = P (ξt+m = j|ξt = i).

In fact, the initial distribution µ1, together with K tells us the full distribution of the chain over any finite time
horizon:

P (ξ1 = x1, . . . , ξt = xt) = µ1,x1

t∏
i=2

Kxi−1xi .

A general stochastic processes is said to possess the weak Markov property if, for any deterministic time, t and any
finite integer p, we may write that for any integrable function ϕ : E → R:

E [ϕ(ξt+p)|ξ1 = x1, . . . ξt = xt] = E [ϕ(ξt+p)|ξt = xt].

A.2.1.2 Inhomogeneous Markov Chains

Note that it is perfectly possible to define Markov Chains whose behaviour does depend explicitly upon the time
index. Although such processes are more complex to analyse than their homogeneous counterparts, they do play
a rôle in Monte Carlo methodology—in both established algorithms such as simulated annealing (see Section 3.5
and in more recent developments such as adaptive Markov Chain Monte Carlo and the State Augmentation for
Maximising Expectations (SAME) algorithm of Doucet, Godsill, and Robert (2002). In the interests of simplicity,
what follows is presented for homogeneous Markov Chains.

1Formally, much of the time this will be an infinite-dimensional vector but this need not concern us here.
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A.2.1.3 Examples

Before moving on to introduce some theoretical properties of discrete state space Markov chains we will present a
few simple examples. Whilst there are innumerable examples of homogeneous discrete state space Markov chains,
we confined ourselves here to some particular simple cases which will be used to illustrate some properties below,
and which will probably be familiar to you.

We begin with an example which is apparently simple, and rather well known, but which exhibits some interesting
properties.

Example A.1. (Simple random walk over the integers). Given a process ξt whose value at time t+ 1 is ξt + 1 with
probability p+ and ξt−1 with probability p− = 1− p+, we obtain the familiar random walk. We may write this as a
Markov chain by setting E = Z and noting that the transition kernel may be written as:

Kij =

 p− if j = i− 1
p+ if j = i+ 1
0 otherwise.

p+p+p+p+

p−p−p−p−
t− 2 t− 1 t t+ 1 t+ 2

Figure A.1: A simple random walk on Z.

Example A.2. It will be interesting to look at a slight extension of this random walk, in which there is some
probability p0 of remaining in the present state at the next time step, so p+ + p− < 0 and p0 = 1− (p+ + p−). In
this case we may write the transition kernel as:

Kij =


p− if j = i− 1
p0 if j = i
p+ if j = i+ 1
0 otherwise.

p+p+p+p+

p−p−p−p−

p0p0p0p0p0

t− 2 t− 1 t t+ 1 t+ 2

Figure A.2: A random walk on Z with Ktt > 0.

Example A.3. (Random Walk on a Triangle). A third example which we will consider below could be termed a
“random walk on a triangle”. In this case, we set E = {1, 2, 3} and define a transition kernel of the form:

K =

 0 p+ p−
p− 0 p+
p+ p− 0

 .
Example A.4. (One-sided Random Walk). Finally, we consider the rather one-sided random walk on the positive
integers, illustrated in Figure A.4, and defined by transition kernel:

Kij =

 p0 if j = i
p+ = 1− p0 if j = i+ 1

0 otherwise.
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p+

p+p+

p−p−
p−1

2

3

Figure A.3: A random walk on a triangle.

p+p+p+p+

p0p0p0p0p0

t t+ 1 t+ 2 t+ 3 t+ 4

Figure A.4: A random walk on the positive integers.

A.2.2 Important Properties
In this section we introduce some important properties in the context of discrete state space Markov chains and
attempt to illustrate their importance within the field of Monte Carlo simulation. As is the usual practice when
dealing with this material, we will restrict our study to the homogeneous case. As you will notice, it is the transition
kernel which is most important in characterising a Markov chain.

We begin by considering how the various states that a Markov chain may be reached from one another. In particular,
the notion of states which communicate is at the heart of the study of Markov chains.

Definition A.1. (Accessibility). A state y is accessible from a state x, sometimes written as x → y if, for a
discrete state space Markov chain,

inf {t : P (ξt = y|ξ1 = x) > 0} <∞.
We can alternatively write this condition in terms of the transition matrix as inf

{
t : Kt

xy > 0
}
<∞.

This concept tells us which states one can reach at some finite time in the future, if one starts from a particular
state and then moves, at each time, according to the transition kernel, K. That is, if x→ y, then there is a positive
probability of reaching y at some finite time in the future, if we start from a state x and then “move” according to
the Markov kernel K. It is now useful to consider cases in which one can traverse the entire space, or some subset of
it, starting from any point.

Definition A.2. (Communication). Two states x, y ∈ E are said to communicate (written, by some authors as
x↔ y) if each is accessible from the other, that is:

x↔ y ⇔ x→ y and y → x.

We’re now in a position to describe the relationship, under the action of a Markov kernel, between two states. This
allows us to characterise something known as the communication structure of the associated Markov chain to
some degree, noting which points its possible to travel both to and back from. We now go on to introduce a concept
which will allow us to describe the properties of the full state space, or significant parts of it, rather than individual
states.

Definition A.3. (Irreducibility). A Markov Chain is said to be irreducible if all states communicate, so ∀x, y ∈
E : x→ y. Given a distribution φ on E, the term φ-irreducible is used to describe a Markov chain for which every
state with positive probability under φ communicates with every other such state:

∀x, y ∈ supp(φ) : x→ y
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where the support of the discrete distribution φ is defined as supp(φ) = {x ∈ E : φ(x) > 0}. It is said to be strongly
irreducible if any state can be reached from any point in the space in a single step and strongly φ-irreducible if all
states (except for a collection with probability 0 under φ) may be reached in a single step.

This will prove to be important for the study of Monte Carlo methods based upon Markov chains as a chain with
this property can somehow explore the entire space rather than being confined to some portion of it, perhaps one
which depends upon the initial state.

It is also important to consider the type of routes which it is possible to take between a state, x, and itself as this
will tell us something about the presence of long-range correlation between the states of the chain.

Definition A.4. (Period). A state x in a discrete state space Markov chain has period d(x) defined as:

d(x) = gcd {s ≥ 1 : Ks
xx > 0} ,

where gcd denotes the greatest common denominator. A chain possessing such a state is said to have a cycle of
length d.

Proposition A.1. All states which communicate have the same period and hence, in an irreducible Markov chain,
all states have the same period.

Proof. Assume that x↔ y. Let there exist paths of lengths r, s and t, respectively from x→ y, y → x and y → y,
respectively.

There are paths of length r + s and r + s + t from x to x, hence d(x) must be a divisor of r + s and r + s + t
and consequently of their difference, t. This holds for any t corresponding to a path from y → y and so d(x) is a
divisor of the length of any path from y → y: as d(y) is the greatest common divisor of all such paths, we have that
d(x) ≤ d(y).

By symmetry, we also have that d(y) ≤ d(x), and this completes the proof.

In the context of irreducible Markov chains, the term periodic is used to describe those chains whose states have
some common period great than 1, whilst those chains whose period is 1 are termed aperiodic.

One further quantity needs to be characterised in order to study the Markov chains which will arise later. Some
way of describing how many times a state is visited if a Markov chain is allowed to run for infinite time still seems
required. In order to do this it is useful to define an additional random quantity, the number of times that a state is
visited:

ηx :=
∞∑
k=1

Ix(ξk).

We will also adopt the convention, common in the Markov chain literature that, given any function of the path of
a Markov chain, ϕ, Ex [ϕ] is the expectation of that function under the law of the Markov chain initialised with
ξ1 = x. Similarly, if µ is some distribution over E, then Eµ [ϕ] should be interpreted as the expectation of φ under
the law of the process initialised with ξ1 ∼ µ.

Definition A.5. (Transience and Recurrence). In the context of discrete state space Markov chains, we describe a
state, x, as transient if:

Ex [ηx] <∞,

whilst, if we have that,
Ex [ηx] =∞,

then that state will be termed recurrent.

In the case of irreducible Markov chains, transience and recurrence are properties of the chain itself, rather than its
individual states: if any state is transient (or recurrent) then all states have that property. Indeed, for an irreducible
Markov chain either all states are recurrent or all are transient.

We will be particularly concerned in this course with Markov kernels which admit an invariant distribution.

Definition A.6. (Invariant Distribution). A distribution, µ is said to be invariant or stationary for a Markov
kernel, K, if µK = µ.
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If a Markov chain has any single time marginal distribution which corresponds to its stationary distribution, ξt ∼ µ,
then all of its future time marginals are the same as, ξt+s ∼ µKs = µ. A Markov chain is said to be in its stationary
regime once this has occurred. Note that this tells us nothing about the correlation between the states or their joint
distribution. One can also think of the invariant distribution µ of a Markov kernel, K as the left eigenvector with
unit eigenvalue.

Definition A.7. (Reversibility). A stationary stochastic process is said to be reversible if the statistics of the
time-reversed version of the process match those of the process in the forward distribution, so that reversing time
makes no discernible difference to the sequence of distributions which are obtained, that is the distribution of any
collection of future states given any past history must match the conditional distribution of the past conditional upon
the future being the reversal of that history.

Reversibility is a condition which, if met, simplifies the analysis of Markov chains. It is normally verified by checking
the detailed balance condition, (A.3). If this condition holds for a distribution, then it also tells us that this
distribution is the stationary distribution of the chain, another property which we will be interested in.

Proposition A.2. If a Markov kernel satisfies the detailed balance condition for some distribution µ,

∀x, y ∈ E : µxKxy = µyKyx (A.3)

then:

1. µ is the invariant distribution of the chain.

2. The chain is reversible with respect to µ.

Proof. To demonstrate that K is µ-invariant, consider summing both sides of the detailed balance equation over x:∑
x∈E

µxKxy =
∑
x∈E

µyKyx,

(µK)y = µy,

and as this holds for all y, we have µK = µ.

In order to verify that the chain is reversible we proceed directly:

P (ξt = x|ξt+1 = y) = P (ξt = x, ξt+1 = y)
P (ξt+1 = y) = P (ξt = x)Kxy

P (ξt+1 = y) = µxKxy

µy
= µyKyx

µy
= Kyx

= P (ξt = x|ξt−1 = y),

in the case of a Markov chain it is clear that if the transitions are time-reversible then the process must be time
reversible.

A.3 General State Space Markov Chains
A.3.1 Basic Concepts
The study of general state space Markov chains is a complex and intricate business. To do so entirely rigorously
requires a degree of technical sophistication which lies somewhat outside the scope of this course. Here, we will
content ourselves with explaining how the concepts introduced in the context of discrete state spaces in the previous
section might be extended to continuous domains via the use of probability densities. We will not consider more
complex cases—such as mixed continuous and discrete spaces, or distributions over uncountable spaces which may
not be described by a density. Nor will we provide proofs of results for this case, but will provide suitable references
for the interested reader.

Although the guiding principles are the same, the study of Markov chains with continuous state spaces requires
considerably more subtlety as it is necessary to introduce concepts which correspond to those which we introduced in
the discrete case, describe the same properties and are motivated by the same intuition but which remain meaningful
when we are dealing with densities rather than probabilities. As always, the principal complication is that the
probability of any random variable distributed according to a non-degenerate density on a continuous state space
taking any particular value is formally zero.
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We will begin by considering how to emulate the decomposition we used to define a Markov chain on a discrete
state space, Equation (A.2), when E is a continuous state space. In this case, what we essentially require is that the
probability of any range of possible values, given the entire history of the process depends only upon its most recent
value in the sense that, for any measurable At ⊆ E:

P (ξt ∈ At|ξ1 = x1, . . . , ξt−1 = xt−1) = P (ξt ∈ At|ξt−1 = xt−1).

In the case which we are considering, it is convenient to describe the distribution of a random variable over E in
terms of some probability density, µ : E → R which has the property that, if integrated over any measurable set, it
tells us the probability that the random variable in question lies within that set, i.e. if X ∼ µ, we have that for any
measurable set A that:

P (X ∈ A) =
∫
A

µ(x)dx.

We will consider only the homogeneous case here, although the generalisation to inhomogeneous Markov chains
follows in the continuous setting in precisely the same manner as the discrete one. In this context, we may describe
the conditional probabilities of interest as a function K : E ×E → R which has the property that for all measurable
sets A ⊆ E and all points x ∈ E:

P (ξt ∈ A|Xt−1 = x) =
∫
A

K(x, y)dy.

We note that, as in the discrete case the law of a Markov chain evaluated at any finite number of points may be
completely specified by the initial distribution, call it µ, and a transition kernel, K. We have, for any suitable
collection of sets A1, . . ., that the following holds:

P (ξ1 ∈ A1, . . . , ξt ∈ At) =
∫

A1×···×At

µ(x1)
t∏

k=2
Kk(xk−1, xk)dx1 . . . dxt.

And, again, it is useful to be able to consider the s-step ahead conditional distributions,

P (ξt+s ∈ A|ξt = xt) =
∫

Es−1×A

k=t+s∏
k=t+1

K(xk−1, xk)dxt+1 . . . dxt+s,

and it is useful to define an s-step ahead transition kernel in the same manner as it is in the discrete case, here
matrix multiplication is replaced by a convolution operation but the intuition remains the same. Defining

Ks(xt, xt+s) :=
∫

Es−1

k=t+s∏
k=t+1

K(xk−1, xk)dxt+1 . . . dxt+s−1,

we are able to write
P (ξt+s ∈ A|ξt = xt) =

∫
A

Ks(xt, xt+s)dxt+s.

A.3.2 Important Properties
In this section we will introduce properties which fulfill the same rôle in context of continuous state spaces as those
introduced in Section @ref(#secmcdiscreteproperties) do in the discrete setting.

Whilst it is possible to define concepts similar to communication and accessibility in a continuous state space context,
this isn’t especially productive. We are more interested in the property of irreducibility: we want some way of
determining what class of states are reachable from one another and hence what part of E might be explored, with
positive probability, starting from a point within such a class. We will proceed directly to a continuous state space
definition of this concept.
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Definition A.8. (Irreducibility). Given a distribution, µ, over E, a Markov chain is said to be µ-irreducible if for
all points x ∈ E and all measurable sets A such that µ(A) > 0 there exists some t such that:∫

A

Kt(x, y)dy > 0.

If this condition holds with t = 1, then the chain is said to be strongly µ-irreducible.

This definition has the same character as that employed in the discrete case, previously, but is well defined for more
general state spaces. It still tells us whether a chain is likely to be satisfactory if we are interested in approximation
of some property of a measure µ by using a sample of the evolution of that chain: if it is not µ-irreducible then
there are some points in the space from which we cannot reach all of the support of µ, and this is likely to be a
problem. In the sequel we will be interested more of less exclusively with Markov chains which are irreducible with
respect to some measure of interest.

We need a little more subtlety in extending some of the concepts introduced in the case of discrete Markov chains to
the present context. In order to do this, it will be necessary to introduce the concept of the small set; these function
as a replacement for the individual states of a discrete space Markov chain as we will see shortly.

A first attempt might be to consider the following sets which have the property that the distribution of taken by the
Markov chain at time t+ 1 is the same if it starts at any point in this set—so the conditional distribution function is
constant over this set.

Definition A.9. (Atoms). A Markov chain with transition kernel K is said to have an atom, α ⊆ E, if there is
some probability distribution, ν, such that:

∀x ∈ α,A ⊆ E :
∫
A

K(x, y)dy =
∫
A

ν(y)dy.

If the Markov chain in question is ν-irreducible, then α is termed an accessible atom.

Whilst the concept of atoms starts to allow us to introduce some sort of structure similar to that seen in discrete
chains—it provides us with a set of positive probability which, if the chain ever enters it, we know the distribution
of the subsequent state. Note that this is much stronger than knowledge of the transition kernel, K, as in general
all points in the space have zero probability. Most interesting continuous state spaces do not possess atoms. The
condition that the distribution of the next state is precisely the same, wherever the current state is rather strong.
Another approach would be to require only that the conditional distribution has a common component, and that is
the intuition behind a much more useful concept which underlies much of the analysis of general state space Markov
chains.

Definition A.10. (Small Sets). A set, C ⊆ E, is termed small for a given Markov chain (or, when one is being
precise, (ν, s, ε)-small) if there exists some positive integer s, some ε > 0 and some non-trivial probability distribution,
ν, such that:

∀x ∈ C,A ⊆ E :
∫
A

Ks(x, y)dy ≥ ε
∫
A

ν(y)dy.

This tells us that the distribution s-steps after the chain enters the small set has a component of size at least ε of
the distribution ν, wherever it was within that set. In this sense, small sets are not “too big”: there is potentially
some commonality of all paths emerging from them. Although we have not proved that such sets exist for any
particular class of Markov chains it is, in fact, the case that they do for many interesting Markov chain classes and
their existence allows for a number of sophisticated analytic techniques to be applied.

In order to define cycles (and hence the notion of periodicity) in the general case, we require the existence of a
small set. We need some group of “sufficiently similar” points in the state space which have a finite probability of
being reached. We then treat this collection of points in the same manner as an individual state in the discrete case,
leading to the following definitions.

Definition A.11. (Cycles). A µ-irreducible Markov chain has a cycle of length d if there exists a (ν,M, ε)-small
set C, such that:

d = gcd {s ≥ 1 : C is (ν, s, δsε)-small for some δs > 0} .
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This provides a reasonable concept of periodicity within a general state space Markov chain as it gives us a way of
characterising the existence of regions of the space with the property that, wherever you start within that region
you have positive probability of returning to that set after any multiple of d steps and this does not hold for any
number of steps which is not a multiple of d. We are able to define periodicity and aperiodicity in the same manner
as for discrete chains, but using this definition of a cycle. As in the discrete space, all states within the support of µ
in a µ-irreducible chain must have the same period (see Proposition A.1) although we will not prove this here.

Considering periodicity from a different viewpoint, we are able to characterise it in a manner which is rather easier
to interpret but somewhat difficult to verify in practice. The following definition of period is equivalent to that given
above (Nummelin 1984): a Markov chain has a period d if there exists some partition of the state space, E1, . . . , Ed
with the properties that:

• ∀i 6= j : Ei ∩ Ej = ∅,

•
d⋃
i=1

Ei = E,

• ∀i, j, t, s : P (Xt+s ∈ Ej |Xt ∈ Ei) =
{

1 j = i+ s mod d
0 otherwise.

What this actually tells us is that a Markov chain with a period of d has associated with it a disjoint partition of the
state space, E1, . . . , Ed and that we know that the chain moves with probability 1 from set E1 to E2, E2 to E3,
Ed−1 to Ed and Ed to E1 (assuming that d ≥ 3, of course). Hence the chain will visit a particular element of the
partition with a period of d.

We also require some way of characterising how often a continuous state space Markov chain visits any particular
region of the state space in order to obtain concepts analogous to those of transience and recurrence in the discrete
setting. In order to do this we define a collection of random variables ηA for any subset A of E, which correspond
to the number of times the set A is visited, i.e. ηA :=

∑∞
l=1 IA(ξk) and, once again we use Ex [·] to denote the

expectation under the law of the Markov chain with initial state x. We note that if a chain is not µ-irreducible
for some distribution µ, then there is no guarantee that it is either transient or recurrent, however, the following
definitions do hold:

Definition A.12. (Transience and Recurrence). We begin by defining uniform transience and recurrence for
sets A ⊆ E for µ-irreducible general state space Markov chains. Such a set is recurrent if:

∀x ∈ A : Ex [ηA] =∞.

A set is uniformly transient if there exists some M <∞ such that:

∀x ∈ A : Ex [ηA] ≤M.

The weaker concept of transience of a set may then be introduced. A set, A ⊆ E, is transient if it may be expressed
as a countable union of uniformly transient sets, i.e.:

∃ {Bi ⊆ E}∞i=1 : A ⊆
∞⋃
i=1

Bi

∀i ∈ N, ∀x ∈ Bi : Ex [ηBi ] ≤Mi <∞.

A general state space Markov chain is recurrent if the following two conditions are satisfied:

• The chain is µ-irreducible for some distribution µ,

• For every measurable set A ⊆ E such that
∫
A
µ(y)dy > 0, Ex [ηA] =∞ for every x ∈ A;

whilst it is transient if it is µ-irreducible for some distribution µ and the entire space is transient.

As in the discrete setting, in the case of irreducible chains, transience and recurrence are properties of the chain
rather than individual states: all states within the support of the irreducibility distribution are either transient or
recurrent. It is useful to note that any µ-irreducible Markov chain which has stationary distribution µ is positive
recurrent (Tierney 1994).

A slightly stronger form of recurrence is widely employed in the proof of many theoretical results which underlie
many applications of Markov chains to statistical problems, this form of recurrence is known as Harris recurrence
and may be defined as follows:
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Definition A.13. (Harris Recurrence). A set A ⊆ E is Harris recurrent if Px (ηA =∞) = 1 for every x ∈ A.

A Markov chain is Harris recurrent if there exists some distribution µ with respect to which it is irreducible and
every set A such that

∫
A
µ(x)dx > 0 is Harris recurrent.

The concepts of invariant distribution, reversibility and detailed balance are essentially unchanged from the discrete
setting. It’s necessary to consider integrals with respect to densities rather than sums over probability distributions,
but no fundamental differences arise here.

A.4 Selected Theoretical Results
The probabilistic study of Markov chains dates back more than fifty years and comprises an enormous literature,
much of it rather technically sophisticated. We don’t intend to summarise that literature here, nor to provide proofs
of the results which we present here. This section serves only to motivate the material presented in the subsequent
chapters.

These two theorems fill the rôle which the law of large numbers and the central limit theorem for independent,
identically distributed random variables fill in the case of simple Monte Carlo methods. They tell us, roughly
speaking, that if we take the sample averages of a function at the points of a Markov chain which satisfies suitable
regularity conditions and possesses the correct invariant distribution, then we have convergence of those averages to
the integral of the function of interest under the invariant distribution and, furthermore, under stronger regularity
conditions we can obtain a rate of convergence.

There are two levels of strength of law of large numbers which it is useful to be aware of. The first tells us that for
most starting points of the chain a law of large numbers will hold. Under slightly stronger conditions (which it may
be difficult to verify in practice) it is possible to show the same result holds for all starting points.

Theorem A.1. (A Simple Ergodic Theorem). If (ξi)i∈N is a µ-irreducible, recurrent Rd-valued Markov chain which
admits µ as a stationary distribution, then the following strong law of large numbers holds (convergence is with
probability 1) for any integrable function ϕ : Rd → R:

lim
t→∞

1
t

t∑
i=1

ϕ(ξi)
a.s.=
∫
ϕ(x)µ(x)dx.

for almost every starting value x (i.e. for any x except perhaps for a set of bad starting value, N , which has the
property that

∫
N µ(x)dx = 0).

An outline of the proof of this theorem is provided by G. O. Roberts and Rosenthal (2004, Fact 5).

Theorem A.2. (A Stronger Ergodic Theorem). If (ξi)i∈N is a µ-invariant, Harris recurrent Markov chain, then
the following strong law of large numbers holds (convergence is with probability 1) for any integrable function
ϕ : E → R:

lim
t→∞

1
t

t∑
i=1

ϕ(ξi)
a.s.=
∫
ϕ(x)µ(x)dx.

A proof of this result is beyond the scope of the course. This is a particular case of Robert and Casella (2004, p241,
Theorem 6.63), and a proof of the general theorem is given there. The same theorem is also presented with proof in
Meyn and Tweedie (1993, p433, Theorem 17.3.2).

Theorem A.3. (A Central Limit Theorem). Under technical regularity conditions (see Jones (2004) for a summary
of various combinations of conditions) it is possible to obtain a central limit theorem for the ergodic averages of
a Harris recurrent, µ-invariant Markov chain, and a function ϕ : E → R which has at least two finite moments
(depending upon the combination of regularity conditions assumed, it may be necessary to have a finite moment of
order 2 + δ).

lim
t→∞

√
t

[
1
t

t∑
i=1

ϕ(ξi)−
∫
ϕ(x)µ(x)dx

]
D= N

(
0, σ2(ϕ)

)
,

σ2(ϕ) = E
[
(f(ξ1)− ϕ̄)2]+ 2

∞∑
k=2

E [(ϕ(ξ1)− ϕ̄)(ϕ(ξk)− ϕ̄)],
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where ϕ̄ =
∫
ϕ(x)µ(x)dx.

A.5 Further Reading
We conclude this chapter by noting that innumerable tutorials on the subject of Markov chains have been written,
particularly with reference to their use in the field of Monte Carlo simulation. Some which might be of interest
include the following:

• G. Roberts (1996) provides an elementary introduction to some Markov chain concepts required to understand
their use in Monte Carlo algorithms.

• In the same volume, Tierney (1996) provides a more technical look at the same concepts; a more in-depth, but
similar approach is taken by the earlier paper Tierney (1994).

• An alternative, elementary formulation of some of the material presented here together with some additional
background material, aimed at an engineering audience, can be found in Johansen (2009).

• Robert and Casella (2004, chap. 6). This is a reasonably theoretical treatment intended for those interest in
Markov chain Monte Carlo; it is reasonably technical in content, without dwelling on proofs. Those familiar
with measure theoretic probability might find this a reasonably convenient place to start.

• Those of you interested in technical details might like to consult Meyn and Tweedie (1993). This is the
definitive reference work on stability, convergence and theoretical analysis of Markov chains and it is now
possible to download it, free of charge from the website of one of the authors.

• A less detailed, but more general and equally rigorous, look at Markov chains is provided by the seminal work
of Nummelin (1984). This covers some material outside of the field of probability, but remains a concise work
and presents only a few of the simpler results. It is perhaps a less intimidating starting point than Meyn and
Tweedie (1993), although opinions on this vary.

• A survey of theoretical results relevant to Monte Carlo is provided by G. O. Roberts and Rosenthal (2004).
Again, this is necessarily somewhat technical.
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