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Abstract

In this paper we give a decision-theoretic oriented, objective Bayesian answer to the problems
of point estimating and sharp hypothesis testing about the correlation coefficient of a bivariate
Normal population. Under this view both problems are deemed closely related and thus a co-
herent answer is developed. Comparisons with frequentist results are given and an alternative
interpretation of the maximum likelihood estimator is found.

Keywords: Bayesian reference criterion, intrinsic divergence, intrinsic estimator, log-
arithmic discrepancy, reference prior.

1 Introduction

Since the introduction in the late 19th century of the concept of correlation into the statistical ana-
lysis, a great deal of work has been done in order to estimate the correlation between measure-
ments and to decide whether the estimated correlation is (statistically) significant. Assuming that
the observed vector x = (x1, x2), given five parameters, follows a bivariate Normal distribution, we
address the problems of estimating the correlation,p, between both measurements, and to decide
whether the (null) hypothesis Hy = {p = po} is compatible with the data.

The paper is organised as follows, Section 2 gives a brief account of some classical and ob-
jective Bayesian results on estimation and sharp hypothesis testing. The reference-intrinsic meth-
odology, introduced by Bernardo and Rueda (2002) and Bernardo and Juarez (2003), to derive
a decision rule for sharp hypothesis testing, and to provide a point estimate is presented in Sec-
tion 3. Implementation of the method and comparisons with alternative approaches is carried out in
Section 4, using both simulated and real data. Some final comments are given in Section 5.

2 Preliminaries

2.1 The frequentist view

The now ubiquitous law

=1

Sl p2)=—0

1
exp| -~ (x =) -, (1)
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with

1 A1 —p, 0

1

Elx] =p={u,;m2}, and Var[x]=3""= ,
1-p2 \-pa,/2 0} A

where 4; > 0,i = 1,2, and p € (-1, 1), was first derived empirically in 1885 by Sir Francis Galton
(Pearson and Kendall, 1970, p. 197), bringing the concept of correlation into the realm of stat-
istical inference. Some thirty years later, Fisher (1915) showed that, given a random sample,
z = {(x1;, x2;)}’ , , the sampling correlation coefficient

S12
rz) = —
$182
where
1< _ . 5, 1Y _\2 N T
SlZZ_Z(xli_x])(XZi_XZ)aSj:_Z(xji_xj) andxj=—zxﬁj=1,2;
i i e

is sufficient for p (Jeffreys, 1961, p. 175), and that its sampling distribution is given by

p(r| pui,pu2, A1, 2,p) =p(r| p)

(Tl i (ke BT
oc Fl=. =

(1-pr)=3

where F(a, b, c, 7) is the hypergeometric function.

Moreover, r = r(z) is the maximum likelihood estimator (MLE ) —and thus consistent. Therefore,
report r as a point estimate and calculate numerically its standard error from (2).

If we are interested in testing independence between both measurements, i.e. test
Hy = {p =0}, it can be shown (see e.g. Lehmann, 1986) that the statistic

R=R(r)= 4 (3)

V1= /(n-2)

has, under Hy, a standard f,,—») sampling distribution with n — 2 degrees of freedom, leading to the
decision rule:

Reject Hy, with test size @, whenever |R| > K, where K is the «/2 percentile of the
standard f,—») distribution.

2.2 The objective Bayesian view

In his seminal work, Jeffreys (1961) proposed

71 (os 1 2, A1, A) o< A7 A )
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as an objective prior for this problem, leading to the posterior

(o | z)oc

_
(1-0%) (1 1 ll+pr)’ -

d-prypt (222" 2072

which, omitting the constants, is identical to (2), corroborating Fisher’s results on the sufficiency of
r. Seeking an invariant prior, he also proposed what now we might call the Jeffreys’ prior,

T2 (p,m,uz,ﬂl,ﬂz)ocﬁfl/l;l(l —,02) , (6)

[N1%

so that the posterior is of the same shape as (5) and may be written as

(7)

(=) (11 1 1+pr
ﬂjz(Plz)OC—F( - = —)

d-pryt \222"72° 72
Later, Lindley (1972), while studying the behaviour of posteriors derived from priors of the form,

rr (o, A1, Ao, pi, o) /11_1/151 (1 —pz)c ,

concluded that for the prior to be non-informative we must have -2 < ¢ < —1 and recommended
¢ = —1, ruling out (6).

Finally, Bayarri (1981), following the ideas in Bernardo (1979), derived the reference prior for
the bivariate Normal model when the coefficient of correlation is the parameter of interest as

1. -1

confirming Lindley’s intuition and setting the standard objective prior which leads to the reference
posterior, forn > 3

(1—p2)§ F(l 1

77(,0|z)0c E’Esn

1+pr). )

1
(1= pry=3 272

The posterior contains all the information we have about p, though if we are asked about a
point estimate we must propose a loss function and then minimise the posterior expected loss.
The most commonly used automatic losses are the quadratic, the absolute and the zero-one loss
functions, yielding the posterior mean, median and mode, respectively (if they exist). These can be
numerically calculated from (9).

With regard to the sharp testing problem, the ordinary tool, conventional Bayes factors, implicitly
assume a point mass allocated at the null value, pg, which might lead to unsound results —namely,
the Jeffreys-Lindley-Bartlett (JLB ) paradox—, as pointed out by Lindley (1957) and Bartlett (1957).
Various attempts to overcome this difficulties have been made, including intrinsic Bayes factors
(Berger and Pericchi, 2001), fractional Bayes factors (O’Hagan, 1997) and neutral Bayes factors
(Robert and Caron, 1996). However, they do not necessarily correspond to a Bayesian analysis for
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any prior and are, therefore, open to criticism.

3 Reference-Intrinsic Analysis

In this section the problems of point estimation and hypothesis testing are addressed within a de-
cision framework and from an objective Bayesian approach which overcome these shortcomings.

3.1 The methodology

Suppose we have determined that the probabilistic behaviour of an observable x is adequately
described by the parametric model

M={px|bw),xecX 0c0,wec}

and that we are interested in making inferences about 0, with w a nuisance parameter. Recently,
Bernardo and Rueda (2002) and Bernardo and Juarez (2003) argue that the problems of point
estimation and precise hypothesis testing might be posed as those of deciding which value §* =
6*(x) renders the best proxy, p (x | 8, w), to the assumed model given the data, and whether a
given proxy model, p (x | 8y, w), is consistent with the data, respectively. To this end they propose
as a loss function the intrinsic discrepancy, defined as

6x (6, w;0p) = min{k (6 | 0, w),k(6,w | 6p)}, (10)
where
; px | 0, w)
k(@ | 6, w) = min x| 0,w) log —— 22—
o | ) mmin, /Xp( | ) gp(xl 5o o)
and
7]
k(0w | 6p) = min /P(x | 6o, wo) loglM ,
woeQ [y p(x | 0’ (,())

are the corresponding Kullback-Leibler (KL) divergences.

The intrinsic discrepancy is a measure, in natural information units (nits), of the expected
amount of information needed to discriminate between the full model M and a given proxy. This
measure has a number of appealing properties: it is symmetric, non-negative and vanishes iff
f(x|nA)=f(x] ¢,y),ae. ltisinvariant under one-to-one transformations of the parameter of
interest, under one-to-one transformations of the data and under the choice of the nuisance para-
meter. Further, it is additive for conditionally independent observations. If fi (x | ¥) and > (x | ¢)
have nested supports so that fi (x | ¥) > 0iff x € X1(¥), L (x| ¢) > 0iff x € Xo(P) and either
Xi(¥) € Xp(D) or Xo(D) c X (W), the intrinsic divergence is still well defined and reduces to the
logarithmic discrepancy, viz. §(¢;¥) = k(¢ | ¥) when X{(¥) € Xp(D) and §(d;¥) = k(W | @)
when X,(®) ¢ X;(¥). For a thorough discussion see Bernardo and Rueda (2002) and Juarez
(2004).
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Deriving the minimum of the KL divergencies in models where the dimension of the parametric
space is relatively large may prove tedious and involved. However, in some cases it is possible
to interchange the optimisation and minimisation steps. We will use the following lemma, before
stating the main result. All proofs are deferred to the appendix.

Lemma 1.
Let p; and p, be two probability density functions with convex support. Then, the KL divergencies,
k(pi | p)). i, j = 1,2 are convex.

Theorem 1 (Intrinsic discrepancy in regular models).
Let{p(x] 6,1, x € X, 6 € O, A € A} be a probabilistic model that meets the regularity conditions
stated in the appendix. Then,

6"(6,60, 1) = inf 56,8, 4, o)
ApEA

= min{ inf k(0,4 | 6y, Ay), inf k(6y, Ao | 6, /l)} .
/IOEA /l()EA

In particular, the exponential family meets the conditions of Theorem 1, therefore

Corlary 1 (Intrinsic discrepancy in the exponential family).
Let{p(x | 0,2), x € X, 0 € ©, A € A} belong to the exponential family; i.e. p (x | ¥) = a(¥) exp[¥/'t(x)].
Then,

6°(0, 4; 69) = inf 6(6, 4; 6o, do)
0

= min{inf k(0,1 6y, Ay), inf k(Gy, Ay | O, /l)} R
AoeA AgeA
with

w1 o= [ pee1 g tog 25 o

plxly)

= M() - M@ ) + (¥ - v!) VM)

where Y = {0, 4}, k= 0,1, M(y) = loga(yp) y VM) = M)/ 0.

In our problem, the directed KL divergencies,

o -
log( £op) +log Lo

k(po | p, 1,2, A1, A2) = 3 > |
iy

NSRS

and
’1

[ (1 - pop)? 1-
log( Pop) 1o p

k (o, p1, 2, A1, A2 | po) =
T (1 -p2) 1-pj |
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are symmetric, and hence the intrinsic discrepancy is

(1 - pop)* .
(1-p»)(1-p3)

n

2

0 (pipo) = = log

(11)

It is readily verified that ¢ (o; pg) > 0 with equality iff p = pg, and that it is a convex function of pg.

In a decision problem, the parameter of interest is that which enters the loss function. Making
use of this argument, Bernardo and Rueda (2002) proceed to derive the reference prior (Berger
and Bernardo, 1992; Bernardo, 1979), n5(8; w), when the intrinsic discrepancy is the parameter
of interest. In our case, in order to calculate the reference prior when 6 (po; pg) is the parameter
of interest, note that this is a one-to-one piecewise function of p. Thus, given that the reference
posterior is invariant under this kind of transformations (Bernardo and Smith, 1994, p. 326), we can
use (8) to derive the reference posterior for p and then calculate the expected value of (11) under
it. Obviously, (9) is the corresponding posterior.

3.2 The Bayesian Reference Criterion
The expected value of the intrinsic divergence under the reference posterior, hereafter the intrinsic
1 2
n (1 = pop)
d%up/im[ sl
-1 (l_p)(l_po)

The intrinsic statistic is a measure, in natural information units (nits), of the weight of the evid-

statistic, is

np| r) dp. (12)

ence conveyed by the data against the simplification attained when acting as if p = pg. Given
that (11) is convex in pg, d (pg | r) is also convex. Thus, it induces the decision rule, hereafter the
Bayesian reference criterion (BRC ):

Reject p = po iff d (oo | 1) > d".

In order to calibrate the threshold value, d*, Bernardo and Rueda (2002) argue that the intrinsic
statistic can be interpreted as the expected value of the log likelihood ratio against the simplified
model, given the data. Hence, values of d* around 2.5 would imply a ratio of ¢>> ~ 12, providing mild
evidence against the null; while values around 5 (¢° ~ 150) can be regarded as strong evidence
against Hy; values of d* > 7.5 (¢’ ~ 1800) can be safely used to reject the null.

For this problem, (12) can be numerically integrated. Juarez (2004) shows that when the refer-
ence posterior is asymptotically Normal, as in this case, a good approximation even for moderate
sample sizes is given by,

A0 %) = 50:00) + 3.
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with 9, a consistent estimator of 6, for instance the MLE . In this case we obtain

(1= por)?

1
—(1 ~ r2)(1 _p%) + 5 (13)

n
d (po | r)zi log{

Both (12) and (13), are depicted in Figure 1, calculated from simulated data with p = 3/4 and
for different sample sizes. We can see that for small n, it is not possible to reject almost any value
of the parameter and that the criterion becomes more discriminating as the sample size increases.

n =100
[ 1]

W=

Lo

-1 0.5 0.5 1
Figure 1. The intrinsic statistic for the correlation coefficient and its approximation (dashed)
for simulated values, fixing p = 3/4. According to the BRC , values of d (oy,r) above 2.5

should be considered as mild evidence against p = py, values over 5 can be think of as
providing strong evidence against the null and values over 7.5 may be safely rejected.

An important advantage of the BRC over the classical test is that with the former we are able
to test any value pg € (-1, 1), in contrast with (3) which is derived only for py = 0. In case we want
to use a classical test for a null value different from 0, we must derive its sampling distribution or
use the normal approximation, vn (r — p) 4N (0, (1 —pz)_z), which is known to fail for small to
moderate sample sizes and extreme correlation values.

3.3 The Intrinsic Estimator

A natural consequence of our decision-theoretical approach is that the obvious choice for a point
estimate is the one that minimizes the intrinsic statistic. Hence, we shall say that 8" is the intrinsic
estimator of @ if

0" (x) = argmind (6 | x).
906@

An important feature of the intrinsic estimator is that it inherits the invariance properties of the
intrinsic statistic, a characteristic not shared by the most commonly used objective Bayes estimat-
ors.

In our problem, p* = p*(r) can be found numerically for n > 3. A good analytical approximation
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is (Juarez, 2004)
n
n+1

prar

One way to compare the performance of the intrinsic estimator and the MLE under homogen-
eous repeated sampling is to calculate their respective (intrinsic) risk functions,

1
Rs(p) = /lé(p;ﬁ)p(r | p) dp,

with p (r | p) as in (2). Both functions are depicted in Figure 2 for the minimum sample size and
for a moderate one. We can see that none of them is dominated by the other, although R« < R,
for almost all of the parametric space, and how both functions are close to each other, but at the
boundaries of the sample space, as sample size grows. Indeed, Juarez (2004) shows that when the
(marginal) reference posterior is asymptotically Normal, the intrinsic estimator is admissible and, if
6 is a consistent estimator of 6, then * and @ are asymptotically equivalent in risk, under intrinsic
loss.

n=3 n=25

0.5 :

P P
-1 -0.5 0.5 1 -1 -0.5 0.5 1
Figure 2. Intrinsic risk function of the intrinsic estimator, R, (solid line), and the MLE , R,
(dashed line), for the minimum sample size and a moderate one.

In a number of applications, the instrument used to measure both quantities is usually the same,
and so assuming 4; = Ay = 4, i.e. both measurements share the same precision, may be sensible.
In this case, the logarithmic divergence (10) remains unchanged and it follows that the reference
prior for this model when p is the parameter of interest is

-1
(ot iz, ) o A7 (1= p?) (14)

Combining the likelihood with (14) and integrating out the nuisance parameters {u;, u, 4}, leads
to the reference posterior

r(5)-r)7 (1-p)

m|r)= \/7_71“(%) 1oy
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with mean

n=1
3 nNgm-1 _(n+l nn+2 ,
E[p|r]—r(l—r) n F( ) ’E’ ) A

and mode

n-37%+82(n-1)-(n-3
Mod[p| r] = Y013 +82 (-1 -(n=3)
4r
It is interesting that for this case the posterior median, the maximum likelihood estimator and
the intrinsic estimator coincide,

p*(r)=p(r)=Medlp | r] =r;

this can be checked numerically. Thus suggesting an appealing interpretation of the maximum
likelihood estimator as an approximation to the intrinsic estimator when both precisions are close.

4 Examples

4.1 Simulated data

In order to compare the performance under homogeneous repeated sampling of both the intrinsic
estimator and the BRC with their frequentist counterparts, 5000 simulations were carried for the
minimum sample size and for a moderate one. Table 1 summarises this comparison. The third
and fourth columns (BRC and R) report the relative number of times when the hypothesis p = 0
was rejected under each criterion, using the comparable threshold values of d* = 3 for the BRC ,
and a = 0.05 for the t-test. The last column presents the relative number of times that the intrinsic
estimator was closer than the MLE to the real value.

Table 1. Comparison of the behaviour under repeated sampling of the BRC and the intrinsic
estimator vs. their frequentist counterparts

n| p | BRC R % diff.
- [ 0257 0.169 0.655
3 | 0 |0.200 0.050 1.000
2 10.366 0.099 0.720
-5 | 1.000 1.000 0.512
25| 0 | 0.026 0.046 1.000
2 10.996 0.998 0.519

As we can see from Table 1, the intrinsic estimator outmatches the MLE for the minimum
sample size and their performances get closer as sample size increases. Interesting to note is
the case when p = 0, where the intrinsic estimator is consistently closer to the true value than r.
Further exploration of this behaviour (not shown here for brevity) suggests that this closeness char-
acteristic of p* over the MLE diminishes as the true value of the parameter moves away from 0 and
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the sample size increases. Regarding hypothesis testing, we confirm that the frequentist p-value
remains constant as sample size increases, while the one corresponding to the BRC decreases.
The power of both tests increases with sample size.

4.2 Heights data

Figure 3 depicts the intrinsic statistic calculated from the 1375 mother-daughter heights data re-
corded by Pearson and Lee (1903), with sample correlation of » = 0.4907. There we point out
the intrinsic estimator, p* = 0.49057 and, enclosed within the broken lines, the non-rejection re-
gions, R+, corresponding to the threshold values: d* = 2.5,5 and 7.5. Thus, we may cast some
doubts about the true correlation value between mother-daughter heights being outside the region
Rys = {0.449,0.530}; we can seriously doubt that it is beyond Rs = {0.427,0.549} and we can be
quite sure that it is not outside R7s = {0.410,0.563}. Moreover, it can be safely assumed that the
true value is p = 1/2.

One of the most appealing properties of the intrinsic solutions is their invariance under piece-
wise one-to-one transformations. For instance, if we are interested in the coefficient of determ-
ination, p?, all we have to do is to apply the corresponding transformation to the previous res-
ults. Hence, (02)" = (p*)*> = 0.2407 and R2.5(p(2)) = {0.202,0.281}, R5(p3) = {0.182,0.301} and
R75(03) = {0.168,0.317}.

Apparent from Figure 3 is also the fact that, given the sample size, the asymptotic approxima-
tion, d(pg | ¥) = 6(r; po) + 1/2, is almost indistinguishable form the actual function. Finally, the pro-
posed analytic approximation to the intrinsic estimator proves to be very accurate, p* = Vn/(n+ 1)r =
0.49053.

dpo | 1)
7,51\ /

(€]

(6]

*

1} p

PO

0.4 0. 45 0.5 0.55 0.6
Figure 3. The intrinsic statistic (solid line) and the asymptotic approximation (dotted line)
calculated from Person and Lee’s mother-daughter heights data. Also, the intrinsic estimator,
p* and the rejection regions corresponding to the d* = 2.5, d* = 5 and d* = 7.5 threshold
values are pointed out.
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4.3 Cancer data

Certainly, the large sample size in the previous example is responsible for the almost exact agree-
ment between intrinsic and classical results. In order to explore the extent of this coincidence, we
analyse a data set comprising the smoking ratio and the lung cancer standardized mortality ratio
(SMR), recorded for males in England and Wales during 1970-1972, for each of n = 25 “occupation
orders” or broad groups of jobs, taken from Hand et al. (1994, pp. 66—67). For this data set the
sample correlation is » = 0.7162 and, unlike the heights data example, the (reference) posterior for
the correlation coefficient given this data set is far from Normal, as depicted in Figure 4 (a). Never-
theless, the asymptotic approximation to the intrinsic statistic is still very accurate —Figure 4 (b)—, as
well as the proposed approximation, p* = 0.7023, to the intrinsic estimator, p* = 0.7087. The (non-
symmetric) non-rejection regions can again be determined for this case as R, 5 = {0.442,0.0.860},
Rs = {0.252,0..907}, and R7s5 = {0.089,0.933}. Thus, if the basic assumption of joint normality
holds for this sample, we could safely reject the hypothesis of no association between smoking ratio
and lung cancer SMR. Further, we could state that the correlation is positive.

d(po | 1)
40 T 1)

— Po
-1 -0.5 0.5 1 0.09 0.25 0.44 0.71 0.860.99
(a) The reference posterior. (b) Intrinsic statistic and the proposed approximation.

Figure 4. The reference posterior, n(p | r), for the correlation between smoking ratio and
lung cancer SMR on the left. The right pane shows the intrinsic statistic (solid) and the
asymptotic approximation (dotted), with the intrinsic estimator as well as the non-rejection
regions pointed out.

5 Conclusions

The reference-intrinsic approach described here provides a powerful alternative to point estimation
and sharp hypothesis testing, with a clear interpretation in terms of information units.

The Bayesian Reference Criterion, in contrast of the classical r-test, can be used to test any
feasible point in the parametric space, with no additional effort. Its invariant properties make it
readily available if we are interested in any bijective function of the parameter, as the coefficient
of determination. Given the asymptotic normality of the reference posterior, its behaviour un-
der repeated, homogeneous sampling, measured through the corresponding p-value for a given

11
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threshold, tends to agree with the frequentist test as sample size increases.

Unlike the most commonly utilised Bayes estimators, the intrinsic estimator is invariant under
piecewise one-to-one transformations. Further, it clearly performs better than the traditional MLE ,
particularly in the relevant case when the correlation is near zero. We also showed that the MLE
might be interpreted as an approximation to the intrinsic estimator when both precisions are close,
coinciding exactly with the posterior median when they are equal.

The idea of an intrinsic interval estimate stems almost naturally from the BRC . Future research
about this invariant, not necessarily symmetric regions which contain the intrinsic estimator will be
reported elsewhere.

Appendix A Regularity conditions

Assume that p (x | ) is a probability density function and that the parametric space ® c R*. We
say that the model is regular if

(/) The parametric space, O, is open.

(if) The supportC ={x € X : p(x | 6) > 0} is the same for all 8 € ©.

2

(i) Foreach x € X, mp (x | ) exists and is continuous forall i, j = 1,...,k.
ivj

(iv) [ p(x| @) dx can be differentiated twice w.r.t. the components of @, under the integral.
Appendix B Proofs

B.1 Lemma

The set S'is convex if forall x,y e Sy w € (0, 1) then z = wx + (1 — w)y € S. Further, a functional
f, defined on a convex set S, is convex if for each x e y en S,

Wf+(1-w)fO) < flux+(1-w)y), 0<w<l.
Let {pi(x), gi(x)}, i = 1,2 be four probability density functions. Then,
wpix)+ (1 -—w)gi(x) =0 and /wpi(x)+(1 —w)gi(x)dx =1.

We can write the KL divergence as

p1(x)
p2(x)

= / p2(x) g(x) log g(x) dx ,

dx

K(ps | p1) = / pi(x) log

12
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whith g(x) = p1(x)/pa2(x) > 0, the likelihood ratio. Moreover, ¢(t) = t logt is convex, for all ¢ > 0;
i.e.lett;,r > 0,then, forallw € (0, 1), p(wt; + (1 —w)tr) < wd(t) + (1 — w) (). It follows that

/ p2(x) g(wt + (1 - w) 1) dx < / Ppa(x) (w (1) + (1 — w) $(12)) dx.
If we define t; = t1(x) = p1(x)/p2(x) y tr = t2(x) = q1(x)/q2(x), the result follows.

B.2 Theorem 1

Let{p(x ]| 08,4), x € X, 8 € ©, A € A} be a probability model which meets the regularity conditions
above and let k; = k(0g, Ao | 6,y ko = k(6,2 | 6y, Ay) be the KL divergencies. By Lemma 1, Both
functions are convex and also bounded from below by 0.

There exist two alternatives

(i) ki < kjforall {6,4,8), A} € ® x A% or
(i) ki <k;jinCCO*XA>yk; >k;inC’.
The proof in the first case is trivial. In the second case, and without loss of generality, assume

that k; < k1 en C. Define

A7 = arg min k; and Ag, = arg min k.
AeC AoeC’

On the other hand, define A* = 1*(0, 6y, ) € A as the value for which k; reaches its minimum and
similarly * = 1*(0, 0y, ) € A |, for k.
Given that the divergencies are bounded from below it must happen that if 2* € C then A* = A%

On the contrary, if A* € C’, the assumptions implies that k(6y, A* | 6, ) > k(6,4 | 6y, A™).

B.3 Corollary 1

Let{p(x | ¥), x € X, ¥ € ¥} be a probability model belonging to the exponential family. It is easy
to prove (Gutierrez-Pefa, 1992; Robert, 1996) that

k(¥ | lﬁ1)=/p(x| Y1) 10%% dx

=MW) - M) + (5 —YHVMY),
where M(y) = loga(y) y VM) = OMY)/0y;.
Lety = {0,4}, ¥ = O|JA, be an ordered parameterisation where 8 is the parameter of in-

terest and A the nuisance parameter and let k; = k(6p, g | 0,42) and ky = k(6,4 | 6y, Ap), the KL
divergencies.

13
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Given that a(8) is a convex function and that log z is monotone, then M(8) is convex. Similarly,
as the KL divergencies are linear combinations of M(-), both functions are convex and also bounded
from below by 0. Two alternatives may happen

(i) Either k; < k; for all {6, A, 6, Ao} € ® x A>
(if) ork; <k;inCc @ xA?yk >kjinC.

The proof is thus analogous to that of Theorem 1.
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