
CRiSM Paper No. 07-27, www.warwick.ac.uk/go/crism

Latent diffusion models for event history analysis

Gareth O. Roberts and Laura M. Sangalli

University of Warwick and Politecnico di Milano

Abstract

We consider Bayesian hierarchical models for event history analysis, where the event times

are modeled through an underlying diffusion process, which determines the hazard rate. We

show how these models can be efficiently treated by means of Markov chain Monte Carlo

techniques.
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1 Introduction

Diffusion processes have found many applications in the modelling of continuous-time phenomena,

for problems related to several scientific areas, ranging from economics to biology, from physics

to engineering. Here we use diffusion processes as building blocks for the definition of models for

event history analysis. This idea is not new (see for example the reviews in Aalen and Gjessing

(2001, 2004)). However, in this paper we are able to considerably extend the flexibility of the

diffusion models used, by adopting powerful Markov Chain Monte Carlo techniques.

Diffusion models for survival analysis have been proposed because, as summarized in Aalen

and Gjessing (2004), “when modelling survival data it may be of interest to imagine an underlying

process leading up to the event in question”. Such a process might for example represent the

development of a disease. Two types of models have been considered in the literature. Models

where the event happens when a diffusion process hits some barrier, and models where the hazard

rate is some suitable function of the diffusion. For the former type of models, we refer the reader to

Aalen and Gjessing (2001), and references therein. Here we are interested in the latter. Woodbury

and Manton (1977) proposed a model where the hazard rate is a quadratic function of an Ornstein-

Uhlenbeck diffusion process. This model has been later considered by several authors, including

Myers (1981), Yashin (1985), Yashin and Vaupel (1986), and Aalen and Gjessing (2004). For given

values of the parameters of the Ornstein-Uhlenbeck process, survival distributions and hazards

are studied. Myers (1981) focuses on survival distributions conditioned on initial covariates values;

Yashin (1985) and Yashin and Vaupel (1986) use hazards based on quadratic functions of Ornstein-

Uhlenbeck processes in order to model heterogeneity among groups and among individuals, and

study the relative hazard functions and survival distributions; Aalen and Gjessing (2004) derive

quasi-stationary distributions. Obtaining such analytical results for hazard functions other than

quadratic functions, or for more complex diffusion processes, is not feasible.

In our paper, we adopt a Bayesian approach and we show how these models can be efficiently
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treated by means of Markov chain Monte Carlo techniques, for general choices of diffusion processes

and hazard functions. We also consider the case of multiple groups of observations, typical of

clinical trials. We test our MCMC algorithm both on simulated and on real data.

The paper is organized as follows. In Section 2 we recall the essential of diffusion processes

and introduce the model. In Section 3 we describe the MCMC scheme. In Section 4 we discuss a

straightforward generalization of the framework developed in the previous sections, and deal with

the case of multiple groups of observations. Section 5 is devoted to simulation studies. In Section

6 we illustrate an improved version of the algorithm, based on a reparametrization of the model.

In Section 7 we apply our models to a dataset from a clinical trial, that has been considered in

a number of papers in the context of survival analysis, the famous Cox (1972) paper among the

firsts. Finally, in Section 8 and 9 we discuss possible extensions of the model considered.

2 Latent diffusion models

Let Θ be a random variable with values in Rd. Denote by C([0,∞),R) the space of continuous

functions from [0,∞) to R, and by C its cylinder σ-algebra. Given Θ = θ, consider the scalar

diffusion process X =
{
Xt : t ≥ 0

}
, solution of a stochastic differential equation (SDE, for short)

of the form

dXt = β(Xt, θ) + σdBt t ≥ 0

X0 = x0

(1)

driven by the standard scalar Brownian motion B =
{
Bt : t ≥ 0

}
. The Brownian motion B and

the diffusion process X are random elements of (C([0,∞),R), C). The diffusion coefficient σ is

assumed constant and known, for the moment. The more technically difficult case of unknown σ

is postponed to Section 8. The drift β(x, θ) is assumed to be jointly measurable in x and θ, and to

satisfy the regularity conditions (locally Lipschitz, with linear growth bound) that guarantee the

existence of a, weakly unique, global solution to (1). See, for example, Chapter V.24 in Rogers

and Williams (2000).

Let Wσ be the law of σB, and, for a given θ, denote by Pθ the law of the diffusion X, solution

of (1). By Girsanov’s theorem, the Radon-Nikodym derivative of Pθ, with respect to Wσ, is given

by

dPθ

dWσ
(x) = exp

{∫ ∞

0

β(xt, θ)
σ2

dxt − 1
2

∫ ∞

0

β(xt, θ)2

σ2
dt

}
.

See, for example, Chapter V.27 in Rogers and Williams (2000).

Similarly, for a finite T , denote by C([0, T ],R) the space of continuous functions from [0, T ] to R,

and by CT its cylinder σ-algebra. Then, B[0,T ] :=
{
Bt : 0 ≤ t ≤ T

}
and X[0,T ] =

{
Xt : 0 ≤ t ≤ T

}

are random elements of (C([0, T ],R), CT ). Let WT,σ be the law of σB[0,T ], and, for a given θ,

denote by PT,θ the law of X[0,T ]. Then, by Girsanov’s theorem, the Radon-Nikodym derivative of

PT,θ, with respect to WT,σ, is given by

dPT,θ

dWT,σ
(x[0,T ]) = exp

{∫ T

0

β(xt, θ)
σ2

dxt − 1
2

∫ T

0

β(xt, θ)2

σ2
dt

}
(2)

and, for each T , the measures PT,θ are absolutely continuous.
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Given the diffusion X, let us consider the random distribution function FX,h on [0,∞), defined

as

FX,h(t) := 1− exp
{
−

∫ t

0

h(Xs) ds

}
t ≥ 0 (3)

where h(·) is some suitable nonnegative and continuous function, with
∫∞
0

h(Xs) ds = ∞ almost

surely. The function h(·) plays the role of the hazard function, and h(Xt) is the random hazard

rate, at time t, associated to the random distribution FX,h.

Two features of the random measure FX,h have to be noted. The first is that the hazard inherits

the Markov property of the diffusion process, so that the hazard at a future time t′ just depends

on the hazard at the present time t. The Markov property seems indeed a sensible choice to make

at the level of the hazard. The second is that the cumulative hazard is a process with positively

correlated increments, being the integral of a continuous process. The latter feature is natural

in many contexts, and it translates into the model the concern with the stochastic process that

clearly must lie behind the occurrence of events. In words, an high increment of the cumulative

hazard over the time interval [t, t′] means that the underlying stochastic process has reached a

region of high risk, and this is likely to yield an high increment of the cumulative hazard over a

close (disjoint) time interval. The strength of this positive correlation, and thus the smoothness of

the cumulative hazard, depends on the choice of the hazard function h and of the diffusion process

X: the rougher the diffusion, the weaker is the correlation, and viceversa. See also the comments in

Section 9. Note that the property we have just highlighted differentiates the random distributions

we are considering from another class of random distributions that has been extensively used in

applications to event history analysis, namely the class of neutral to the right random probabilities.

The cumulative hazards of these probabilities are processes with independent increments, and

thus have an erratic behaviour. See Doksum (1974) for definition and properties of these random

measures, and e.g. Kalbfleisch (1978), Hjort (1990) and Damien and Walker (2002) for applications

in survival analysis. In fact, we could say that the random distribution FX,h is positive to the right :

for each k and 0 < t1 < t2 < · · · < tk, the normalised increments

FX,h(t1) ,
FX,h(t2)− FX,h(t1)

1− FX,h(t1)
, . . . ,

FX,h(tk)− FX,h(tk−1)
1− FX,h(tk−1)

are positively correlated, instead of being stochastically independent as in the case of neutral to

the right random probabilities.

Let us now consider a sequence of event times Y1, Y2, . . . which are, conditionally on FX,h,

independent and identically distributed (i.i.d., for short) with common distribution FX,h. From

(3), it follows that the distribution of Y1, . . . , Yn, given X = x, has density, with respect to the

n-dimensional Lebesgue measure Ln, given by

l(y1, . . . , yn|x) :=

[
n∏

j=1

h(xyj )

]
exp

{
−

n∑

j=1

∫ yj

0

h(xt) dt

}
. (4)

Censored observations can be easily dealt with in this setting. Suppose for example that the

observations are censored if they exceed time C, then the likelihood becomes

l(y1, . . . , yn|x) =

[
n∏

j=1

h(xyj )
1(yj<C)

]
exp

{
−

n∑

j=1

∫ yj

0

h(xt) dt

}
.
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We are thus considering a latent diffusion model for event history analysis, where the event

times are modelled through an underlying diffusion process which determines the hazard rate. As

highlighted by Aalen and Gjessing (2004), this model can be also interpreted as a random barrier

hitting model. Indeed, the event happens when the cumulative hazard strike a random barrier R,

which is exponentially distributed with mean 1, and is stochastically independent of X.

3 Markov Chain Monte Carlo methods for latent diffusion

models

Let pΘ(θ) be the prior density, with respect to Ld, of the d-dimensional parameter Θ, which appears

in the drift of the diffusion process X, solution of (1). Fix a finite time horizon T of interest, with

T ≥ y[n], where y[n] := max{y1, . . . , yn}. The choice of T will be discussed in Section 6. Then,

the joint posterior distribution of Θ and X[0,T ] has density, with respect to the product measure

Ld ⊗WT,σ, given by

π(θ, x[0,T ]|y1, . . . , yn) = C pΘ(θ) g(x[0,T ]|θ) l(y1, . . . , yn|x[0,y[n]]) (5)

where C is a normalizing constant, and g(x[0,T ]|θ) := dPT,θ

dWT,σ
(x) is given by Girsanov’s formula (2).

A Gibbs sampling algorithm for sampling from (5) alternates between

1. simulation Θ, conditional on the observations and the current path of X[0,T ];

2. simulation of X[0,T ], conditional on the observations and the current value of Θ.

Note that the parameter Θ and the observations Y1, . . . , Yn are conditionally independent,

given the non-observed process X[0,T ]. In particular, from (5), the conditional distribution of Θ

given X[0,T ], has density, with respect to Ld, proportional to pΘ(θ) g(x[0,T ]|θ). The update of the

parameter is particularly straightforward when a conjugate prior pΘ(θ) is chosen, so that it is pos-

sible to derive analytically the conditional distribution of Θ given X[0,T ] and sample directly from

it. The second step is computationally more demanding. From (5), the conditional distribution

of X[0,T ], given parameter and observations, has density, with respect to WT,σ, proportional to

g(x[0,T ]|θ) l(y1, . . . , yn|x), and cannot be sampled directly. An appropriate Metropolis-Hastings

step is thus required.

Implementation of the algorithm will necessary involve a discretisation of the diffusion sample

path. When the SDE cannot be solved, it is possible to use Euler-Maruyama approximation. See

for example Chapter 9 in Kloeden and Platen (1992). Alternatively, it may be possible to simulate

the diffusion path by means of the exact algorithm described in Beskos, Papaspiliopoulos, Roberts,

and Fearnhead (2006), thus avoiding approximation errors.

3.1 Hastings-within-Gibbs algorithm for a latent diffusion model

We now give the details of the Hastings-within-Gibbs algorithm for latent diffusion models.

Just as an example, consider a latent diffusion model with base diffusion which is solution of

the SDE

dXt = θ Tf(Xt)dt + σdBt , t ≥ 0 , X0 = x0 (6)
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with θ T = (θ1, . . . , θd), and f(x) T = (f1(x), . . . , fd(x)), where fi(x) is some real-valued function,

for i = 1, . . . , d. Let the drift θ Tf(x) be such that the regularity conditions mentioned in Section 2

are satisfied. Let the prior for Θ = (Θ1, . . . , Θd) be multivariate Gaussian, with mean vector and

variance matrix

µ =




µ1

µ2

...

µd




Σ =




λ11 λ12 · · · λ1d

λ12 λ22 · · · λ2d

...
...

. . .
...

λ1d λ2d · · · λdd




−1

Then, the distribution of Θ, given the diffusion X[0,T ] = x[0,T ], is still Gaussian, with mean and

covariance matrix

µx = Σx




S1

S2

...

Sd




Σx =




L11 L12 · · · L1d

L12 L22 · · · L2d

...
...

. . .
...

L1d L2d · · · Ldd




−1

(7)

where, for i = 1, . . . , d and j = 1, . . . , d,

Si :=
1
σ2

∫ T

0

fi(xt)dxt +
d∑

j=1

λijµj Lij :=
1
σ2

∫ T

0

fi(xt)fj(xt)dt + λij .

The update of Θ can thus be performed by sampling directly from this conditional distribution.

The update of the diffusion X[0,T ] is less straightforward and requires an appropriate Metropolis-

Hastings step. It is possible for example to carry out an independence sampler with proposal

distribution given by a Brownian motion starting at x0. To improve the acceptance rate of the

move that update the diffusion path, we apply the following updating strategy. Let 0 = t1 < . . . <

tm = T . Instead of proposing a new diffusion path on the whole interval [0, T ], we propose to

change the trajectory just on a subinterval [ti, ti+2], keeping fixed the rest of the diffusion. To

ensure continuity of the diffusion path, the proposal distribution, for the new trajectory on the

subinterval [ti, ti+2], is a Brownian bridge BB[ti,ti+2](xti
, xti+2) = {BBt(xti

, xti+2) : ti ≤ t ≤ ti+2},
having as starting and ending points, respectively, the values Xti

= xti
and Xti+2 = xti+2 of the

current diffusion. The proposed diffusion path x∗[0,T ] is then given by {x∗t = 1
(
t /∈ [ti, ti+2]

)
xt+1

(
t ∈

[ti, ti+2]
)
bbt(xti

, xti+2) : t ∈ [0, T ]}, where bbt(xti
, xti+2) is the realization of the Brownian bridge

BB[ti,ti+2](xti , xti+2). This move is accepted with probability

1 ∧ g
(
bb[ti,ti+2](xti

, xti+2)|θ
)

g(x[ti,ti+2]|θ)
l(y1, . . . , yn|x∗[0,y[n]]

)

l(y1, . . . , yn|x[0,y[n]])
(8)

where g(x[ti,ti+2]|θ) is given by Girsanov’s formula restricted to the interval [ti, ti+2], i.e.

g(x[ti,ti+2]|θ) = exp

{∫ ti+2

ti

θ Tf(Xt)
σ2

dxt − 1
2

∫ ti+2

ti

(
θ Tf(Xt)

)2

σ2
dt

}
.

The procedure is iterated for i = 1, . . . ,m − 3. Note that the different blocks [ti, ti+2] overlap, so

that there are no time instants where the diffusion is kept fixed. For the same reason, the last

block [tm−2, T ] is updated by means of a Brownian motion B[tm−2,T ](xtm−2) starting at Xtm−2 =

xtm−2 , so that the value of the diffusion at T may vary. The acceptance coefficient of the move
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that update the last block is the same as in (8), with [ti, ti+2] = [tm−2, T ] and b[tm−2,T ](xtm−2)

in place of bb[ti,ti+2](xti , xti+2), where b[tm−2,T ](xtm−2) is the realization of the Brownian motion

B[tm−2,T ](xtm−2).

This idea of updating smaller intervals at a time has been used in Shephard and Pitt (1997) for

the simulation of non-Gaussian time series models, and later applied for the simulation of discretely

observed diffusions, for example by Elerian, Chib, and Shephard (2001).

In Section 5 and 6 we will carry out simulation studies using this latent diffusion model. Note

that the choice of a base diffusion having drift linear in the parameter θ is just due for purposes

of exposition. In Section 7 we will indeed analyse a real dataset by a latent diffusion model whose

base diffusion has drift which is not linear in θ. Also in that case, the update of the diffusion path

will be performed according to the technique described above.

4 Multiple groups of observations

We now discuss a straightforward generalization of the framework developed in the previous sec-

tions, and deal with the case of multiple groups of observations, where the observations within each

group are taken under homogeneous conditions. Consider for example the case in which different

treatments are being administered to different groups of patients in a clinical trial.

Given Θ = θ, let X [1], . . . , X [q] be q stochastically independent diffusion processes satisfying

(1), and FX[1],h, . . . , FX[q],h the relative random distributions as in (3). Now consider q sequences

of observations (Y [1]
n )n, . . . , (Y [q]

n )n such that the random variables in
(
(Y [1]

n )n, . . . , (Y [q]
n )n

)
are

conditionally independent, given FX[1],h, . . . , FX[q],h, and the random variables in (Y [k]
n )n have

common distribution FX[k],h, for k = 1, . . . , q.

The joint distribution of Y
[1]
1 , . . . , Y

[1]
n1 , . . . , Y

[q]
1 , . . . , Y

[q]
nq , given the diffusions X

[1]
[0,T1]

= x
[1]
[0,T1]

, . . . ,

X
[q]
[0,Tq ] = x

[q]
[0,Tq ], has density, with respect to Ln (where n = n1 + · · ·+ nq), given by

l
(
y
[1]
1 , . . . , y[1]

n1
; . . . ; y[q]

1 , . . . , y[q]
nq

∣∣x[1]
[0,T1]

, . . . , x
[q]
[0,Tq]

)
=

q∏

k=1

l
(
y
[k]
1 , . . . , y[k]

nk

∣∣x[k]
[0,y[nk]]

)

where l
(
y
[k]
1 , . . . , y

[k]
nk

∣∣x[k]
[0,y[nk]]

)
is as in (4). The joint posterior distribution of Θ and X

[1]
[0,T1]

, . . . , X
[q]
[0,Tq ]

has density, with respect to the product measure Ld ⊗WT1,σ ⊗ · · · ⊗WTq,σ, given by

π
(
θ, x

[1]
[0,T1]

, . . . , x
[q]
[0,Tq]

∣∣y[1]
1 , . . . , y[1]

n1
; . . . ; y[q]

1 , . . . , y[q]
nq

)

= C pΘ(θ)

[
q∏

k=1

g
(
x

[k]
[0,Tk]

∣∣θ) l
(
y
[k]
1 , . . . , y[k]

nk

∣∣x[k]
[0,Tk]

)
]

(9)

where C is a normalizing constant, and g
(
x

[k]
[0,Tk]

∣∣θ) = dPTk,θ

dWTk,σ

(
x

[k]
[0,Tk]

)
is given by Girsanov’s formula

(2).

The contributions of the q groups of observations factorize in (9), and a simple modification of

the MCMC algorithm presented in Section 3 may be used to deal with this case. The Hastings-

within-Gibbs algorithm for sampling from (9) alternates between

1. simulation of Θ, conditional on the current paths of the q diffusions X
[1]
[0,T1]

, . . . , X
[q]
[0,Tq ];

2. for each k in {1, . . . , q}, simulation of X
[k]
[0,Tk], conditional on the observations Y

[k]
1 , . . . , Y

[k]
nk ,

and the current value of Θ.

6
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Consider, for example, a latent diffusion model with q stochastically independent diffusion

processes, X [1], . . . , X [q], satisfying the SDE (6). Choose the same multivariate Gaussian prior

for Θ that has been used in Section 3.1. Then, the distribution of Θ, given X
[1]
[0,T1]

= x
[1]
[0,T1]

, . . . ,

X
[q]
[0,Tq ] = x

[q]
[0,Tq ], is still Gaussian, with mean vector and covariance matrix as in (7), but with

Si :=
1
σ2

[
q∑

k=1

∫ Tk

0

fi

(
x

[k]
t

)
dx

[k]
t

]
+

d∑

j=1

λijµj Lij :=
1
σ2

[
q∑

k=1

∫ Tk

0

fi

(
x

[k]
t

)
fj

(
x

[k]
t

)
dt

]
+ λij

for i = 1, . . . , d, j = 1, . . . , d. The update of the parameter Θ can thus be performed by sampling

directly from this conditional distribution. The second step may be carried out by q repetitions of

the updating mechanism described in Section 3.1.

In Section 7 we will apply this model for multiple groups of observations to analyse a dataset

from a clinical trial, that has been considered in a number of papers in the context of survival

analysis.

Note that we are here considering a simple hierarchical structure, where inference on the se-

parate groups is linked at the level of the finite dimensional parameter Θ. For some applications

this might allow too little borrowing of strength for inference across groups. It would be then of

interest to consider a more complex hierarchical structure which allows linking the distributions of

the separate groups of observations at an intermediate level. For example, the hazard function of

each group could be taken to depend both on a baseline hazard function, and on a group specific

hazard function which characterise the idiosyncratic behavior in the group. This would of course

call for a more complex MCMC scheme, and care would be needed to insure identifiability of the

model.

5 Simulation studies

We show here the implementation of the algorithm described in Section 3, by means of a toy

example.

Consider the model based on the diffusion process satisfying the SDE

dXt = θ1 sin(Xt)dt + θ2dt + dBt , t ≥ 0 , X0 = 2 (10)

with hazard function h(u) = u2. We simulate observations from this model, for values of the

parameters θ1 = −1.4 and θ2 = −1, and censoring time C = 0.9. In particular, we sample one

realization x of the diffusion process satisfying (10), with θ1 = −1.4 and θ2 = −1. Then we

simulate 200 i.i.d.observations from the corresponding distribution Fx,h = 1− exp
{
− ∫ t

0
(xs)

2
ds

}

and we censor the observations at C = 0.9. The diffusion is sampled at intervals of length 0.01,

using Euler-Maruyama approximation. Figure 1 shows the corresponding hazards (the squared

diffusion) and an histogram of sampled data. The hazard function has a typical shape, first

(mainly) increasing and then (mainly) decreasing.

We choose as time horizon of interest T = 1. We then run the Hastings-within-Gibbs algorithm

under the following specifications. The prior for (θ1, θ2) is Gaussian, as in Section 3.1, with

µ1 = −1.4, µ2 = −1, λ11 = λ22 = 1/5 and λ12 = 0. The starting values of the parameters are

θ1 = θ2 = 0, and the starting diffusion is a Brownian motion, starting at x0 = 2. The diffusion

7
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Figure 1: Left: hazard function x2. Right: histogram of data sampled from Fx,x2 with censoring at C = 0.9.
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Figure 2: Top left: true survival distribution 1− Fx,x2 (solid), together with its posterior mean (dashed) and pointwise

approximate 90% highest posterior bands (dotted). Top right: true density (solid), together with its posterior mean

(dashed) and pointwise approximate 90% highest posterior bands (dotted). Bottom left: true hazard function x2 (solid),

together with its posterior mean (dashed) and pointwise approximate 90% highest posterior bands (dotted). Bottom right:

autocorrelation functions for θ1 series (dotted) and θ2 series (dashed).
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path is updated on subintervals of length 0.2 at a time. The algorithm is run for 200000 iterations

and the first 2000 are discarded as burn in.

Figure 2 shows the estimates of survival distribution, density, and hazard function, based on

the MCMC output, together with pointwise approximate 90% highest posterior bands. The true

survival distribution and hazard function are also displayed to evidence the good fit of the MCMC

estimates. Figure 2 also shows autocorrelation functions for θ1 and θ2 series.

6 Partially non-centered reparametrization of model

It may sometime be of interest to consider a finite time horizon T which is significantly bigger than

the maximum of the data. In this case the MCMC algorithm described in the previous sections

might have poor mixing properties. This problem is evidenced in figure 3. This figure shows the

histogram of 200 i.i.d. observations from the distribution Fx′,h, where x′ is a new realization of

the diffusion process satisfying the same SDE used in Section 5, and also the hazard function h

and the censoring time C are the same. This time we choose a longer time horizon T = 1.8 (the

high number of censored observations, one quarter of the data, suggests that a significant part of

the probability mass falls outside the time window where we observed data). We then run the

algorithm under the same specifications of Section 5. Figure 3 displays autocorrelation functions

for θ1 and θ2 series, which are not exponentially decreasing.
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Figure 3: Right: histogram of data sampled from Fx′,h with censoring at C = 0.9. Right: autocorrelation functions for

θ1 and θ2 series.

To avoid this problem, we propose a modification of the algorithm, based on a reparametrization

of the model. Indeed, the performance of MCMC methods, particularly when using Gibbs samplers,

depends crucially on the parametrization of the unknown quantities in the hierarchical structure.

The issue of reparametrization of the posterior distributions, as to improve convergence properties

of the algorithms, has received much attention. See for example Hills and Smith (1992), Gelfand,

Sahu, and Carlin (1995), Gelfand, Sahu, and Carlin (1996), and Papaspiliopoulos, Roberts, and

Sköld (2003, 2007).

Instead of using the natural parametrization of the model in terms of (Θ, X), the so-called

centered parametrization, we parametrize it in terms of (Θ, X̃), where

X̃t = 1(t ≤ y[n]) Xt + 1(t > y[n])
[
Bt −By[n]

]
t ≥ 0. (11)
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Figure 4: Autocorrelation functions for θ1 series (dotted) and θ2 series (dashed), obtained with the algorithm based on

the centered parametrization (left) and with the algorithm based on the partially non-centered parametrization (right).
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Figure 5: Top: true survival distribution distribution 1 − Fx′,x′2 (solid), together with its posterior mean (dashed)

and pointwise approximate 90% highest posterior bands (dotted), obtained with the algorithm based on the centered

parametrization (left) and with the algorithm based on the partially non-centered parametrization (right). Bottom: true

hazard function x′2 (solid), together with its posterior mean (dashed) and pointwise approximate 90% highest posterior

bands (dotted), obtained with the algorithm based on the centered parametrization (left) and with the algorithm based on

the partially non-centered parametrization (right).
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In the terminology used by Papaspiliopoulos, Roberts, and Sköld (2003), this is called a partially

non-centered parametrization, the fully non-centered parametrization being, in this case, (Θ, B).

Using the parametrization (11) expresses the idea that the data carry no information on the

diffusion after the maximum data point. The diffusion X can then be reconstructed as function of

Θ, X̃ and y1, . . . , yn, by
{

Xt = X̃t 0 ≤ t ≤ y[n]

dXt = β(Xt, Θ)dt + σdX̃t t ≥ y[n].

The joint posterior distribution of Θ and X̃ has density, with respect to the product measure

Ld ⊗Wσ, given by

π
(
θ, x̃

∣∣y1, . . . , yn

)
= C pΘ

(
θ
)

g
(
x[0,y[n]]

∣∣θ) l
(
y1, . . . , yn

∣∣θ, x[0,y[n]]

)
(12)

where C is a normalizing constant, and g
(
x[0,y[n]]

∣∣θ) =
dPy[n],θ

dWy[n],σ
(x[0,y[n]]). Note that (12) charac-

terizes the posterior distribution of X̃, and thus the posterior distribution of the diffusion X, over

the whole positive half-line.

It is possible to simulate from (12) by means of a Gibbs sampler quite similar to the one

described in Section 3.1. In the first step we simulate Θ conditionally on X̃[0,y[n]] ≡ X[0,y[n]]. In the

second step, we simulate X̃ over the time interval of interest [0, T ], conditionally on Θ. In this case

we use a proposal distribution which is a Brownian motion starting at x0, over the time interval

[0, y[n]], and a Brownian motion starting at 0, over the time interval [y[n], T ]. On [0, y[n]] we follow

again the updating strategy, with the overlapping Brownian bridges, described in Section 3.1.

When reconstructing the diffusion X[0,T ], from Θ and X̃[0,T ], we are careful to preserve continuity

of the diffusion path at time y[n]. Details are omitted.

The algorithm based on the reparametrization (11) is completely robust to the choice of T , since

the update of the parameter Θ, conditionally on X̃, only involve X̃[0,y[n]]. Moreover, if the algorithm

has been run with a certain choice of T , and it later becomes of interest a longer time horizon T ′,

with T ′ > T , we can obtain sample paths of X̃[T,T ′] by additional post hoc simulation, using the

values of Θ and XT that have been sampled along the chain. With the centered parametrization

it is instead necessary to run again the algorithm from the beginning, changing the time window

from [0, T ] to [0, T ′].

Figures 4 and 5 compares mixing and MCMC estimates obtained with the algorithms based on

the centered parametrization and on the partially non-centered parametrization, for the data set

corresponding to figure 3. The specifications of the two algorithms are as in Section 5. Note that

the hazard function is bathtub shaped. Hazard functions with such shapes are quite common in

survival analysis (think, for instance, to human mortality).

7 Application to real data

In this section we apply our latent diffusion model for multiple groups of observations to a dataset

from a clinical trial, that has been considered in a number of papers in the context of survival

analysis, among which Gehan (1965), Cox (1972), Wei (1984) and Xu and O’Quigley (2000) in the

non-Bayesian literature, and Kalbfleisch (1978), Laud, Damien, and Smith (1998) and Damien and
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Walker (2002) in the Bayesian one. In the trial, reported by Freireich (1963), 6-mercaptopurine (6-

MP) was compared to a placebo in the maintenance of remission in acute leukemia. The following

lengths of remission in weeks were recorded for 42 patients, half of which treated with the 6-MP

drug and half with the placebo (a + sign indicates a censored observation):

6-MP: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+

placebo: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23.

We consider the model for multiple groups of observations (here 2 groups, 6-MP drug and

placebo), based on the diffusion process satisfying the SDE

dXt = θ1 (sign(Xt)) |Xt|θ2 dt + σ dBt , t ≥ 0 , X0 = x0 (13)

where

sign(u) = 1





1 if u > 0

−1 if u < 0

0 if u = 0

with hazard function h(u) = |u|. Note that when σ = 0, this is equivalent to the Weibull model.

Indeed, for σ = 0, the SDE (13) reduces to the differential equation dXt = θ1X
θ2
t dt, which has

solution Xt =
(
θ1(1 − θ2)

) 1
1−θ2 t

1
1−θ2 , so that the hazard h(Xt) is proportional to a power of t,

as the hazard of Weibull distribution. Thus, the model based on the diffusion process (13), with

hazard function h(u) = |u|, is a stochastic perturbation around a central Weibull model.

We express the data as fractions of one year, and choose as time horizons of interest T1 = T2 =

0.75, corresponding to 9 months (39 weeks). We take Θ1 and Θ2 a priori independent, with a

Gaussian prior distribution for Θ1, with mean µ = 0 and variance 1/λ = 5, and a uniform prior

over [0, 1] for Θ2. We moreover set x0 = 0.8 and σ = 8. We then run the Hastings-within-Gibbs

algorithm based on the partially non centered parametrization. The update of Θ1 is performed by

sampling directly from the conditional distribution Θ1 given Θ2, X̃
[1], X̃ [2], which is still Gaussian

with mean S+λµ
L+λ and variance 1

L+λ , where

S :=
1
σ2




2∑

j=1

∫ y[nj ]

0

(
(sign(x[j]

t )) |x[j]
t |θ2

)
dx

[j]
t


 L :=

1
σ2




2∑

j=1

∫ y[nj ]

0

(|x[j]
t |θ2

)2
dt




For the update of Θ2 we use an independence sampler with a Beta proposal distribution, with

parameters (1/2, 1/2). The update of X̃ [1] and X̃ [2] is carried out as described in the previous

sections. The algorithm is run for 200000 iterations and the first 2000 are discarded as burn in.

Figure 6 displays the MCMC estimates of the survival distributions of the two groups, 6-MP

drug and placebo, together with the relative Kaplan-Meier curves. Note that the MCMC estimates

of the two survival distributions are closer one another than the two Kaplan-Meier curves, thus

showing borrowing of strength for inference among the two groups. Hence, the latent diffusion

model, that gains much flexibility over a fully parametric model by introducing randomness around

it, does not suffer from the opposite problem of being too data-driven. Figure 6 also displays the

MCMC estimates of the hazards of the two groups.

We could now verify the efficacy of 6-MP drug treatment as proposed in Damien and Walker

(2002). In particular, under the hypothesis that 6-MP drug is inefficient, we would regard all

patients as belonging to 1 single group, instead of 2. We could then implement the latent diffusion
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Figure 6: Left: posterior mean survival distributions and pointwise approximate 90% highest posterior bands, for the

group of patients treated with 6-MP drug (solid) and for the group of patients treated with the placebo (dashed), together

with corresponding Kaplan-Meier curves. Right: posterior mean hazards for the group of patients treated with 6-MP drug

(solid) and for the group of patients treated with the placebo (dashed).

model based on (13), but with just 1 diffusion process. Call Model1 the model where all patients

belong to 1 single group (corresponding to the hypothesis H1 of null efficacy of 6-MP drug), and

call Model2 the one considered above (corresponding to the hypothesis H2 of efficacy of 6-MP

drug). If the a priori probabilities of hypothesis H1 and H2 are set equal to 0.5, the Bayes Factor

BF =
probability density of data under model M1

probability density of data under model M2

gives the posterior odds in favor of H1. As expected, the computed Bayes Factor (BF= 9× 10−6)

gives a strong evidence of the efficacy of 6-MP drug.

8 Generalization to the case of unknown diffusion coefficient

An important generalization of the model we have considered so far consist in considering diffu-

sion processes with unknown diffusion coefficient σ, since σ describes a natural measure of prior

uncertainty. We briefly discuss how to deal with this case.

Let Σ be a real random variable. Given Θ = θ and Σ = σ, consider the scalar diffusion process

X solution of the SDE (1), and denote by PT,θ,σ the law of X[0,T ]. Let pΣ(·) be the prior density,

with respect to L, of Σ (for simplicity, we take Θ and Σ be stochastically independent a priori).

Then, the joint posterior distribution of (Θ, Σ, X[0,T ]) has density, with respect to Ld+1 ⊗WT,σ,

given by

π(θ, σ, x[0,T ]|y1, . . . , yn) = C pΘ(θ) pΣ(σ) g(x[0,T ]|θ, σ) l(y1, . . . , yn|x[0,y[n]]) (14)

where C is a normalizing constant, and g(x[0,T ]|θ, σ) := dPT,θ,σ

dWT,σ
(x[0,T ]) is given by Girsanov’s

formula (2).

The quadratic variation of a diffusion processes, having diffusion coefficient σ, satisfies

lim
m→∞

m∑

i=1

(Xti/m −Xt(i−1)/m)2 = tσ2 WT,σ − a.s. for all t.

Therefore, the conditional distribution of Σ, given the diffusion X[0,T ], degenerates to a point mass,

and Σ is completely determined by the diffusion path. In practice, we cannot simulate the diffusion
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path in continuous time, but just at discrete time instants. Anyway, the finer the time discrete

approximation {XiT/m : i = 1, . . . , m} of the diffusion X[0,T ], the stronger becomes the dependence

between {XiT/m : i = 1, . . . ,m} and Σ. Consider the algorithm for the simulation from (14), that

alternates between

1. simulation of Θ, conditional on the current value of Σ and the current path of X[0,T ];

2. simulation of Σ, conditional on the current value of Θ and the current path of X[0,T ];

3. simulation of X[0,T ], conditional on the observations and the current values of Θ and Σ.

The finer the approximation of the diffusion path, the worse the convergence of the algorithm

becomes. In the limiting case m = ∞ (that is, if the diffusion process could be simulated in

continuous time), this scheme would be reducible. See Roberts and Stramer (2001). An alternative

way to see this problem is to note that the collection of measures {WT,σ : σ ∈ R} are mutually

singular, and therefore so are the measures {PT,θ,σ : σ ∈ R}.
In this case, the need for a different parametrization of the model is thus compelling. Following

Roberts and Stramer (2001), we parametrize the model in terms of (Θ, Σ, Ẋ), where Ẋt = (Xt −
X0)/Σ. By Îto’s formula,

dẊt =
β(Ẋt, Θ)

Σ
dt + dBt , t ≥ 0 , Ẋ0 = 0.

The distribution of Ẋ[0,T ] depends on Σ, but any realization of Ẋ[0,T ] contains only finite informa-

tion about Σ. Another possible reparametrization of the model, along the lines of Section 6, could

be in terms of (Θ, Σ, Ẍ), with

Ẍt = 1(t ≤ y[n]) Ẋt + 1(t > y[n])
[
Bt −By[n]

]
t ≥ 0.

MCMC algorithms based on these reparametrizations can be obtained as simple modifications of

the ones previously described.

Consider the toy example described in Section 5, and assume the same model, but let the

diffusion process have an unknown diffusion coefficient. Let the prior for this coefficient be expo-

nential with mean 1. Figure 7 displays the results obtained with the MCMC algorithm based on

the reparametrization (Θ, Σ, Ẋ). Specification of the algorithm are as in Section 5. Note that the

mixing for σ is slow relatively to the very good mixing for θ1 and θ2, but this does not prevent

good estimates of the survival distribution, density and hazard being obtained. Slow mixing for σ

could be probably improved by a further reparametrization of the model.

Alternatively to the case of unknown diffusion coefficient, it would be possible to consider

models based on diffusion processes having σ = 1, but with hazard function h(Γ, X), where Γ is a

random parameter. Also in this case, a reparametrization of the model would be necessary.

9 Discussion

In this paper we have described a latent diffusion model for event history analysis, considering both

the cases of a single group of observations and of multiple groups of observations. We have shown

that the model can be efficiently treated by means of MCMC techniques. All analyses presented

are computationally feasible within R c©.

14



CRiSM Paper No. 07-27, www.warwick.ac.uk/go/crism

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

 d
is

tr
ib

ut
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

time

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

time

ha
za

rd
 fu

nc
tio

n

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

au
to

co
rr

el
at

io
n 

fu
nc

tio
n

Figure 7: As in Figure (2), but for the model with unknown diffusion coeffient. Bottom right plot also displays autocor-

relation function for σ series (dotdash line).

Covariates can be included in this framework in a very natural way, as influencing directly the

underlying diffusion. If Zt is the covariate process, we could for example consider a model based

on the diffusion satisfying the SDE

dXt = β(Xt, Zt, θ) + σdBt t ≥ 0

X0 = x0(Z0).

In particular, we could follow what Aalen and Gjessing (2001) suggest for barrier hitting models.

Namely, those covariates which represent measures of how far the underlying process, that leads

to the event, has advanced (such as staging measures in cancer) may be taken to influence the

starting point of the diffusion; those covariates which instead represent causal influence on the

development of the process may be taken to influence the drift of the diffusion. See Aalen and

Gjessing (2001) for interesting discussions about this choice.

An interesting generalization of the model would be to consider random probabilities based on

jump diffusion processes. As noticed in Section 2, the cumulative hazard functions, associated with

random probabilities based on diffusions, are smooth, being the integrals of continuous processes.

By replacing the diffusion process with a jump diffusion process it would be possible to capture

sudden changes in the behavior of cumulative hazards, that might be due to some kind of shock
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experienced by the population.

Acknowledgments

We would like to thank Robin Henderson and Piercesare Secchi for useful comments, and Omiros

Papaspiliopoulos and Alexandros Beskos for their help with the programming. The second author

acknowledge funding by EC Marie Curie Training Site Human Potential Programme, to visit the

Department of Mathematics and Statistics, Lancaster University, and by the Centre for Research

in Statistical Methodology (CRiSM), Warwick University.

References

Aalen, O. O. and Gjessing, H. K. (2001), “Understanding the shape of the hazard rate: a process point of
view,” Statist. Sci., 16, 1–22, with comments and a rejoinder by the authors.

— (2004), “Survival models based on the Ornstein-Uhlenbeck process,” Lifetime Data Anal., 10, 407–423.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006), “Exact and computationally
efficient likelihood-based estimation for discretely observed diffusion processes,” J. R. Statist. Soc. B, to
appear.

Cox, D. R. (1972), “Regression models and life-tables,” J. Roy. Statist. Soc. Ser. B, 34, 187–220, with
discussion by F. Downton, Richard Peto, D. J. Bartholomew, D. V. Lindley, P. W. Glassborow, D. E.
Barton, Susannah Howard, B. Benjamin, John J. Gart, L. D. Meshalkin, A. R. Kagan, M. Zelen, R. E.
Barlow, Jack Kalbfleisch, R. L. Prentice and Norman Breslow, and a reply by D. R. Cox.

Damien, P. and Walker, S. (2002), “A Bayesian non-parametric comparison of two treatments,” Scand. J.
Statist., 29, 51–56.

Doksum, K. (1974), “Tailfree and neutral random probabilities and their posterior distributions,” Ann.
Probability, 2, 183–201.

Elerian, O., Chib, S., and Shephard, N. (2001), “Likelihood inference for discretely observed nonlinear
diffusions,” Econometrica, 69, 959–993.

Freireich, E. O. (1963), “The effect of 6 mercaptopurine on the duration of steroid induced remission in
acute leukemia,” Blood, 21, 699–716.

Gehan, E. A. (1965), “A generalized Wilcoxon test for comparing arbitrarily singly-censored samples,”
Biometrika, 52, 203–223.

Gelfand, A. E., Sahu, S. K., and Carlin, B. P. (1995), “Efficient parameterisations for normal linear mixed
models,” Biometrika, 82, 479–488.

— (1996), “Efficient parametrizations for generalized linear mixed models,” in Bayesian statistics, 5 (Ali-
cante, 1994), New York: Oxford Univ. Press, Oxford Sci. Publ., pp. 165–180.

Hills, S. E. and Smith, A. F. M. (1992), “Parameterization issues in Bayesian inference,” in Bayesian
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