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Abstract

In this paper we show how a simple parametrization, built from the definition of cubic

splines, can aid in the implementation and interpretation of penalized spline models, whatever

configuration of knots we choose to use. We call this parametrization value-first derivative

parametrization. We perform Bayesian inference by exploring the natural link between quadratic

penalties and Gaussian priors. However, a full Bayesian analysis seems feasible only for some

penalty functionals. Alternatives include empirical Bayes methods involving model selection

type criteria. The proposed methodology is illustrated by an application to survival analysis

where the usual Cox model is extended to allow for time-varying regression coefficients.

Keywords: Penalized splines; Parametrization; Bayesian inference; Empirical Bayes; Survival
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1 Introduction

Spline smoothing methods have become a popular modeling tool in many statistical contexts.

They enable the handling of complex nonlinear relationships, otherwise difficult to estimate with

conventional parametric models. The number of different approaches to spline smoothing is quite

wide, ranging from smoothing spline techniques (Hastie & Tibshirani, 1990a; Wahba, 1990; Green

& Silverman, 1994), where a knot is placed at each observation, to regression splines with adaptive

knot selection (Friedman, 1991). More recently, Eilers & Marx (1996) proposed the use of penalized

splines (or P -splines), a different approach which can be seen as a compromise between smoothing

and regression splines. There, the number of knots defining the spline function is larger than that

justified by the data, but smaller than the number of observations. The level of overfitting is
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controlled by a roughness penalty over the curve. The most common choice is a penalty based on

the integral of a squared derivative of the spline curve.

Several Bayesian inference procedures for spline smoothing have been developed in the literature.

In the framework of regression splines, Denison et al. (1998a,b) use transdimensional Markov chain

Monte Carlo (MCMC) simulation techniques. Hastie & Tibshirani (2000) investigate Bayesian

smoothing splines by exploring the relationship between the backfitting algorithm and the Gibbs

sampler. Bayesian penalized splines have been studied by Biller & Fahrmeir (1997) and by Fahrmeir

& Lang (2001), in the context of generalized additive and generalized additive mixed models re-

spectively, using random walk and Markov random field priors. Lang & Brezger (2004) provide

extensive simulation studies for Bayesian penalized splines in the context of Gaussian regression.

Building on an idea first introduced by Gamerman (1997), Brezger & Lang (2006) propose an

efficient MCMC sampling algorithm based on Fisher scoring type proposals. They develop the

algorithm for generalized additive models but it can be modified so as to be applicable in other

settings.

This paper focuses on Bayesian penalized spline models by exploring the relationship between

penalty functionals and priors over the spline curve. Attention is restricted to cubic spline functions

since we found these to provide the necessary amount of smoothing in the applications we have

considered. Moreover, an intuitive parametrization exists that makes implementation of cubic spline

functions straightforward. We call the parametrization value-first derivative parametrization. It is

built from the definition of cubic polynomials. In the numerical analysis literature, cubic spline

functions represented in this way are known as cubic Hermite splines (de Boor, 1978). We feel that

‘value-first derivative parametrization’ is more appropriate in the penalized likelihood framework

considered here because it makes explicit reference to the components of the spline function being

used. This will become particularly useful when interpreting penalty functionals of the spline as

we shall see below.

In their paper, Eilers & Marx (1996) advocate the use of difference penalties and show that a

difference penalty of order 2 approximates the standard penalty functional defined by the integral

of the square of the 2nd derivative. The value-first derivative parametrization allows explicit use

of integral based penalties. Because the parameters are directly related to properties of the spline

curve, the penalty functionals have simple, interpretable expressions. One immediate consequence

is that other forms of penalization, like double penalties as proposed in Eilers & Marx (2003, 2004),

Eilers & Goeman (2004) or Aldrin (2006), are as easy to implement as single penalty functionals

under the value-first derivative parametrization.

We present an application of the value-first derivative parametrization in the Cox model (Cox,

1972) with time-varying regression coefficients. This is a complex setting that has attracted a

great deal of attention in recent years. See, for example, Gray (1994), Abrahamowicz et al. (1996),

Kauermann (2005) or Tian et al. (2005). A Bayesian approach to inference for time-varying re-
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gression coefficients can be found in Lambert & Eilers (2005). Because of the specific shape of the

partial likelihood function in the Cox model we use a modified version of the algorithm proposed

by Brezger & Lang (2006) to sample from the posterior of interest.

In the real data example we considered, based on the well-known PBC data set as found in

Fleming & Harrington (1991, App. D), the value-first derivative parametrization proved to be a

flexible tool that is simple to use yet able to yield smooth, plausible estimates.

The rest of the paper is organized as follows. Section 2 provides a review of penalized likelihood

methods. The value-first derivative parametrization is characterized in detail in Section 3. We

illustrate the use of the value-first derivative parametrization with an application to the Cox model

with time-varying regression coefficients in Section 4. There we describe the Bayesian inference

procedure we use and present alternatives to the usual full Bayes approach for the particular case

of double penalty models. The analysis of the PBC data set is also included. Finally, we summarize

our findings in Section 5, where we also outline directions for future research.

2 A Review of Penalized Likelihood Methods

For simplicity we introduce penalized likelihood methods in the univariate case. Let g(t) be the

function we wish to estimate. Denote by D the available data and by l(g ;D) the log-likelihood of

the model under study. We assume that g is well approximated by a cubic spline function with knots

{km}Km=1 over the domain of t. Eilers & Marx (1996) proposed the use of a fairly large number of

knots to avoid computationally intensive selection methods. To prevent overfitting they introduced

a penalty on the roughness of g. For cubic splines this is typically of the form P2(g ;λ) = λ
2

∫
g′′2, a

penalty that has proven to yield sensible estimates with good theoretical properties. The estimate

ĝ is found by maximizing the penalized log-likelihood criterion

J (g) = ℓ(g ;D) − P2(g ;λ). (1)

The positive parameter λ in P2(g ;λ) controls the bias-variability trade-off implicit in (1) and is

therefore referred to as a smoothing parameter. As the value of λ increases, so does the ‘weight’

of the penalty P2(g ;λ) when maximizing (1). As a result, the estimate ĝ becomes increasingly

smoother, i.e., ĝ′′ ≈ 0.

The penalty functional P2(g ;λ) has no effect over linear and constant functions of t since, in

this case, g′′(t) ≡ 0. In some applications, however, it may additionally be desirable to penalize

non-zero constants or non-zero slopes. In the latter case the penalty functional becomes

Pd(g ;λ1, λ2) = P1(g ;λ1) + P2(g ;λ2) =
λ1

2

∫
g′2 +

λ2

2

∫
g′′2. (2)

If P2(g ;λ) in (1) is replaced by Pd(g ;λ1, λ2), then as λ1 and λ2 become large, the corresponding

spline fit ĝ converges to a polynomial of degree 0, i.e., a constant function of t.
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The optimization problem defined by the criterion J (g), described in equation (1) for the penalty

P2(g ;λ), can be cast in a Bayesian framework whatever the penalty functional we choose to use.

The penalty term has a natural interpretation as minus the log-prior for g. If P2(g ;λ) is used,

and we write p (g | λ) ∝ exp (−P2(g ;λ)) as the prior for g, then the criterion in (1) becomes the

log-posterior for g and ĝ the MAP estimate.

A comprehensive description of penalized likelihood methods is given by Green & Silverman

(1994). See also Eilers & Marx (2003, 2004), Eilers & Goeman (2004) or Aldrin (2006) for ap-

plications of double penalty models. Wood (2003) describes the general case of multiple penalty

functionals.

3 The Value-First Derivative Parametrization

Spline functions are typically represented as elements in the span of a chosen spline basis. Here we

follow a different approach where the definition of cubic polynomials induces a local parametrization

for cubic splines. The result is an intuitive parametrization whose elements are easy to interpret

and relate naturally to the spline function - in particular, priors are easier to elicit. We call this

the value-first derivative parametrization, denoted hereafter by VFDP.

3.1 VFDP Setup

Let g(t) be the function we wish to estimate using a cubic spline with knots {km}Km=1 which span

the domain of t. By definition of a cubic spline, g agrees with a cubic polynomial within each

knot interval [km, km+1). Such a polynomial can be uniquely defined by four conditions over its

coefficients. For each knot km we define

am = g(km), bm = g′(km). (3)

The parameters am, bm, am+1 and bm+1 define, according to (3), four equations over the coefficients

of the polynomial that agrees with g within the knot interval [km, km+1). This means that, for

km ≤ t < km+1, we can write g(t) in terms of am, bm, am+1 and bm+1. If we define the four cubic

polynomials in t

φ0m(t) =
(um − ∆m)2(2um + ∆m)

∆3
m

, φ1m(t) =
u2

m(3∆m − 2um)

∆3
m

,

ψ0m(t) =
um(um − ∆m)2

∆2
m

, ψ1m(t) =
u2

m(um − ∆m)

∆2
m

,

(4)

where um = t − km and ∆m = km+1 − km, then it is straightforward to show that, for m =

1, . . . ,K − 1,

g(t) = amφ0m(t) + bmψ0m(t) + am+1φ1m(t) + bm+1ψ1m(t), t ∈ [km, km+1). (5)
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Hence, the 4-dimensional vector of parameters αm = (am, bm, am+1, bm+1)
T completely specifies

the spline g(t) within the knot interval [km, km+1), m = 1, . . . ,K − 1, and the 2K-dimensional

vector α = (a1, b1, . . . , aK, bK)T defines g(t) in [k1, kK).

A general expression for g is readily available from (5). Let ηm(t) be the 4-dimensional row

vector with components the four polynomials in (4), i.e.,

ηm(t) = (φ0m(t), ψ0m(t), φ1m(t), ψ1m(t)) .

The value of the spline function g evaluated at some point t ∈ [k1, kK) is

g(t) =
K−1∑

m=1

Im(t)ηm(t)αm, (6)

where Im(t) is an indicator function taking value 1 if km ≤ t < km+1, and zero otherwise.

One of the advantages of spline models when compared to single polynomial ones is local influ-

ence. The VFDP highlights this property since each parameter in α affects the fitted curve in the

span of two consecutive knot intervals only. Any form of correlation among the parameters is thus

likely to be small.

Note that the definition of am and bm in (3) automatically imposes g and g′ to be continuous

everywhere. However, g′′ may be discontinuous across the knots, which brings additional flexibility

to the fitting process. This is not the case in the parametrization used by Green & Silverman (1994),

where the estimated curve is constrained to have continuous curvature throughout its domain.

3.2 Penalty Interpretation and Implementation

The penalty functional P2(g ;λ) can be written as

P2(g ;λ) =
λ

2

K−1∑

m=1

∫ km+1

km

g′′2 =
K−1∑

m=1

P2m(g ;λ) (7)

using the fact that {km}Km=1 constitutes a partition of the domain of g and that within each

knot interval g′′ is squared integrable. The local penalties P2m(g ;λ) have simple, interpretable

expressions as we shall see below.

For m = 1, . . . ,K − 1 we define

dm,m+1 = am+1 − (am + ∆mbm),

dm+1,m = am − (am+1 − ∆mbm+1).
(8)

The value of dm,m+1 is the difference between the value of g at km+1 and the tangent to g at km

evaluated at km+1. Similar reasoning applies to dm+1,m. It turns out that there exists a relationship

between the degree of g within [km, km+1) and the value of dm,m+1 and dm+1,m: the curve g is a

quadratic polynomial between km and km+1 if, and only if, dm,m+1 = dm+1,m; g is linear within

[km, km+1) if, and only if, dm,m+1 = dm+1,m = 0.
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Shaw (1987) showed that we can write each P2m(g ;λ) in (7) in terms of dm,m+1 and dm+1,m,

P2m(g ;λ) =
λ

2

3 (dm,m+1 − dm+1,m)2 + (dm,m+1 + dm+1,m)2

∆3
m

, m = 1, . . . ,K − 1. (9)

The impact of the local penalty P2m(g ;λ) on the portion of the spline curve g between [km, km+1)

is now clear from (9). It penalizes generalizations of linear relationships, the strength of the penal-

ization increasing as these generalizations become more complex. Hence, linear polynomials yield

a value of zero for P2m(g ;λ). Parabolas are penalized only through the term (dm,m+1 + dm+1,m)2.

Cubic polynomials are fully penalized since both terms in the numerator of P2m(g ;λ) are differ-

ent from zero. How much these terms affect the estimated curve is governed by the value of the

smoothing parameter λ as described in Section 2.

The reasoning applied above for the penalty P2(g ;λ) can be extended to the penalty P1(g ;λ).

Again we make use of the local structure of the VFDP and write

P1(g ;λ) =
λ

2

K−1∑

m=1

∫ km+1

km

g′2 =

K−1∑

m=1

P1m(g ;λ). (10)

The local penalty P1m(g ;λ) can be written in terms of dm,m+1 and dm+1,m as follows:

P1m(g ;λ) =
λ

2

(am+1 − am)2 + 1
20 (dm,m+1 − dm+1,m)2 + 1

12 (dm,m+1 + dm+1,m)2

∆m
. (11)

The term (am+1 − am)2 in (11) comes as no surprise in the light of the discussion involving

P2m(g ;λ). It penalizes linear functions of t. Thus, P1m(g ;λ) is increasingly penalizing curves that

grow in complexity compared to a constant function of t, t ∈ [km, km+1), for which P1m(g ;λ) ≡ 0.

Given α, evaluation of the K − 1 penalties P2m(g ;λ) in (7) and P1m(g ;λ) in (10) is straight-

forward using the expressions in (9) and (11) respectively, which are valid for any configuration of

knots. The double penalty Pd(g ;λ1, λ2) in (2) is simply the sum of P1(g ;λ1) and P2(g ;λ2) above.

3.3 Computational Details

Suppose we have observations t1, . . . , tn of the random variable T which defines the domain of g.

Our aim is to find the parameter vector α associated with the spline function g(t) that maximizes

the penalized log-likelihood criterion in (1). In order to characterize the solution we need some

additional notation. We start by building the design matrix T associated with t1, . . . , tn. Denote

by I the n × (K − 1) incidence matrix whose ith row has zeros everywhere except for the column

corresponding to the knot interval containing observation ti, where it takes value 1. For each ti we

define the matrix

Ωi =





φ01(ti) ψ01(ti) φ11(ti) ψ11(ti) 0 0 0 . . .

0 0 φ02(ti) ψ02(ti) φ12(ti) ψ12(ti) 0 . . .
...

...
...

...
...

...
...

. . .



 .
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The ith row of the n×(2K) design matrix T is given by Ii� Ω
i, where the superscript i� represents the

ith row of the matrix. The vector of function evaluations g = (g(t1), . . . , g(tn))T can be expressed

as Tα, i.e., g(ti) = Ti� α.

The penalty P2(g ;λ) in (7) defines a quadratic form in α through the expressions in (9)

P2(g ;λ) =
λ

2
αTP2 α, (12)

where P2 is the (2K) × (2K) penalty matrix





12
∆3

1

6
∆2

1

− 12
∆3

1

6
∆2

1

0 0 . . .

6
∆2

1

4
∆1

− 6
∆2

1

2
∆1

0 0 . . .

− 12
∆3

1

− 6
∆2

1

12
∆3

1

+ 12
∆3

2

− 6
∆2

1

+ 6
∆2

2

− 12
∆3

2

6
∆2

2

. . .

6
∆2

1

2
∆1

− 6
∆2

1

+ 6
∆2

2

4
∆1

+ 4
∆2

− 6
∆2

2

2
∆2

. . .

0 0 − 12
∆3

2

− 6
∆2

2

12
∆3

2

+ 12
∆3

3

− 6
∆2

2

+ 6
∆2

3

. . .

0 0 6
∆2

2

2
∆2

− 6
∆2

2

+ 6
∆2

3

4
∆2

+ 4
∆3

. . .

...
...

...
...

...
...

. . .





. (13)

The matrix P2 is non-negative definite and has rank 2K− 2. The two zero eigenvalues correspond

to linear and constant functions of t.

The matrix P1 associated with the penalty functional P1(g ;λ) can also be easily derived using

the K − 1 expressions in (11). It will be a non-negative definite matrix with rank K − 1. The

unique 0 eigenvalue corresponds to constant functions of t. The penalty matrix for Pd(g ;λ1, λ2) in

(2) follows directly from P1 and P2.

4 Application to the Cox Model with Time-varying Regression

Coefficients

In this section we illustrate the use of the VFDP with an application to the Cox model (Cox, 1972)

with time-varying regression coefficients.

The Cox proportional hazards model assumes that the hazard ratio, which describes the effect

of a predictor on survival, is constant over the follow-up period. In some survival studies, however,

the proportional hazards assumption is not valid as the effect of some or all of the covariates on

survival varies with time. This happens, for example, if an initially significant predictor gradually

becomes non-significant after a certain period of follow-up.

In what follows we assume that the covariate effects are smooth functions of time that can be

well approximated by a cubic spline.
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4.1 Model Specification

The data available is of the form D = (ti, δi,xi)
N
i=1, the survival time ti being complete if δi = 1 and

(right) censored if δi = 0. The vector xi contains the measurements on p selected time-constant

covariates for individual i. The observed failure times are t̃1 < · · · < t̃n. Throughout the rest of

the paper we assume for simplicity that there are no ties present in the data. The Cox model with

time-varying regression coefficients assumes the hazard relation

h (t | x) = h0(t) exp




p∑

j=1

gj(t)xj



, (14)

where h0(t) is an unspecified baseline hazard function, and gj(t) is a smooth function of t which

defines the logarithm of the hazard ratio at time t corresponding to a unit increase in xj . We are

interested in estimating the coefficient functions gj(t), j = 1, . . . , p.

The partial-likelihood for model (14) is given by

Lp(g1, . . . , gp ;D) =

n∏

f=1

exp
(∑

j gj(t̃f ) x̃fj

)

∑
l∈Rf

exp
(∑

j gj(t̃f )xlj

) , (15)

where Rf is the set of individuals at risk just before time t̃f and x̃fj is the value of the jth covariate

for the individual who fails at t̃f . We assume that the censoring mechanism is noninformative with

respect to the coefficient functions gj(t) so that an analysis based on the partial likelihood can be

justified.

We parameterize each gj(t) using the VFDP. Because only information at observed failures

contributes to the partial-likelihood, we place the knots {km}Km=1 in the following way: we fix

k1 = 0, the time origin, and kK = max {ti}. For the remaining K − 2 interior knots we take km,

m = 2, . . . ,K − 1, to be the m/(K − 1) quantile of the observed failures. This ensures roughly

the same amount of information between knots and thus stable estimates. Moreover, because we

do not expect gj(t) to have many local maxima or minima, the number K of knots considered

here is moderate, say 10 or so. The partial-likelihood only depends on gj(t) through gj(t̃f ), f =

1, . . . , n, j = 1, . . . , p. Therefore we build the design matrix T defined in Section 3 using the

knot configuration {km}Km=1 described above and the set of observed failures
{
t̃f

}n

f=1
. Hence,

gj(t̃f ) = Tf �
αj . The partial-likelihood in (15) becomes

Lp(α1, . . . ,αp ;D) =

n∏

f=1

exp
(∑

j Tf �
αj x̃fj

)

∑
l∈Rf

exp
(∑

j Tf �
αj xlj

) . (16)

4.2 Bayesian Inference via MCMC

Bayesian inference relies on the posterior distribution of the model. It is a convenient framework

that allows joint estimation of all the parameters in the model. Here we use MCMC simulation
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techniques to sample from the posterior of interest. Proposals are based on the full conditionals of

blocks of parameters given the rest of the data (Brezger & Lang, 2006). Sections 4.2.1 and 4.2.2 lay

down the tools for Bayesian inference in the Cox model with time-varying regression coefficients

when the single penalty functional P2(g ;λ) is used. Inference for double penalty models will be

addressed separately at a later stage in Section 4.2.3.

4.2.1 Prior Definitions

As we have pointed out in Section 2, there exists a relationship between penalty functionals and

roughness priors for the spline parameters. Given that all the penalties discussed so far can be

written as quadratic forms in αj , an intuitive choice is a Gaussian type prior for αj . For the single

penalty model based on P2(g ;λ) the prior is

p (αj | λj) ∝ λ
rk(P2)/2
j exp

(
−
λj

2
αT

j P2 αj

)
. (17)

Note that the prior in (17) is improper as P2 is rank deficient.

For the hyperparameter λj a gamma prior (the conjugate prior of (17)) is assumed, i.e., λj ∼

G(aj , bj). The constants aj and bj are usually chosen so that the prior is vague, and therefore

expresses our ignorance, while yielding a proper posterior distribution. Typical values include

aj = 1 and bj = 0.0001, bj = 0.00001 or bj = 0.000001.

The joint posterior distribution of the single penalty model is given by

p (θ | D) ∝ Lp(α1, . . . ,αp ;D)
∏

j

λ
rk(P2)/2
j exp

(
−
λj

2
αT

j P2 αj

) ∏

j

λ
aj−1
j exp (−bjλj), (18)

where θ is the vector of all the parameters in the model.

4.2.2 Estimating the Spline Parameters

We explore the high-dimensional posterior distribution in (18) using a hybrid Metropolis-Hastings

sampler. The main idea is to approximate the full conditional of αj by a Gaussian distribution

obtained by accomplishing one Fisher scoring step as proposed in Brezger & Lang (2006). This

process is repeated in every iteration of the sampler. Because of the specific shape of the partial-

likelihood function, direct implementation of the algorithm in Brezger & Lang (2006) is not possible.

The parameters of the proposal density need to be modified to account for the presence of the risk

sets (Hastie & Tibshirani, 1993). Finally, the hyperparameter λj is updated using a Gibbs step.

Denote by αc
j and λc

j the current value of the parameters defining gj(t). A new value α
p
j is

proposed by drawing from the multivariate Gaussian proposal distribution q (αc
j ,α

p
j ) with variance

matrix and mean

Σc
j =

[
T TW c

jj T + λc
j P2

]−1
, mc

j = Σj T TW c
jj



zc
j −

[
W c

jj

]∗
p∑

s=1
s6=j

W c
js Tαc

s



 .
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The matrix W c
js = diag (wc

js1, . . . , w
c
jsn) has elements the weighted covariances of (xj , xs) in the

risk set Rf ,

wc
jsf =

∑

l∈Rf

ζc
fl xljxls −




∑

l∈Rf

ζc
fl xlj








∑

l∈Rf

ζc
fl xls



 .

The weights ζc
fl depend on αc

j and represent the model probabilities

ζc
fl =

exp
(∑

j Tf �
αc

j xlj

)

∑
r∈Rf

exp
(∑

j Tf �
αc

j xrj

) .

The vector zc
j also depends on αc

j and plays the role of the usual working response vector in the

Fisher scoring algorithm

zc
j =

[
W c

jj

]∗ (
x̃j − x̄c

j

)
+

[
W c

jj

]∗
p∑

s=1

W c
js Tαc

s.

The fth component of the n-dimensional vector x̄c
j is the weighted mean of xj in the risk set Rf ,

i.e., x̄c
fj =

∑
l∈Rf

ζc
fl xlj. The matrix

[
W c

jj

]∗
denotes the generalized inverse of W c

jj .

We use Brezger & Lang (2006) modified algorithm which replaces αc
j by the current posterior

mode approximation mc
j . This makes the proposal scheme independent of the current value of αj,

i.e., q (αc
j ,α

p
j ) ≡ q (αp

j ). Convergence to the stationary distribution is fast even with poor starting

values for αj .

Once αj has been updated, a new value for the hyperparameter λj is obtained through a Gibbs

step by sampling from its full conditional, a gamma distribution with parameters

ǎj = aj +
rk(P2)

2
, b̌j = bj +

1

2
αT

j P2 αj .

4.2.3 Double Penalty Models and Empirical Bayes Methods

The coefficient functions gj(t) in (14) generalize constant functions of t corresponding to the pro-

portional hazards model. It therefore seems reasonable to consider penalty functionals that shrink

towards a constant. This can be achieved using the double penalty Pd(gj ;λ1
j , λ

2
j) in (2). The

improper prior for αj becomes

p (αj | λ
1
j , λ

2
j ) ∝ exp

(
−

1

2
αT

j

[
λ1

jP1 + λ2
jP2

]
αj

)
. (19)

The hyperparameters λ1
j and λ2

j deserve special attention here. Since they are associated with

the same spline function, their values are likely to be correlated, making independence a priori an

implausible assumption. However, it is not clear how one should elicit a joint prior for λ1
j and λ2

j .

We therefore resort to empirical Bayes methods as proposed in Ruppert & Carroll (2000). The

main idea is to estimate hyperparameters in a prior using the data at hand and then to plug-in

those estimates in the prior as though they were known.

10
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Let λj =
{
λ1

j , λ
2
j

}
, j = 1, . . . , p. We use Akaikes information criterion (AIC) to select the

smoothing parameters λj ,

AIC (λ1, . . . ,λp) = ℓp(α1(λ1), . . . ,αp(λp) ;D) − tr(R(λ1, . . . ,λp))/n, (20)

where ℓp is the logarithm of the partial-likelihood in (16) and R is the smoother (or hat) matrix of

the additive fit in (14) whose trace provides an estimate of the total number of degrees of freedom

in the model (Hastie & Tibshirani, 1990b). Since computation of R is too cumbersome we use the

approximation in Hastie & Tibshirani (1990b) and write

tr (R(λ1, . . . ,λp)) ≈ 1 +

p∑

j=1

[tr(Sj(λj)) − 1] , (21)

where Sj(λj) = T
[
T TWjj T +

(
λ1

jP1 + λ2
jP2

)]−1
T TWjj is the smoother matrix associated with

the fitted curve gj(λj) = Tαj(λj). We estimate the parameters (λ1, . . . ,λp) by

(λ̂1, . . . , λ̂p) = arg max AIC (λ1, . . . ,λp). (22)

Simultaneous maximization of AIC (λ1, . . . ,λp) is very intensive computationally. We overcome

this by using an adaptive algorithm that estimates each λj individually by maximizing the global

criterion AIC (λ1, . . . ,λp). In practice, the smoothing parameters in λj are varied over a pre-

specified grid. For each pair λj we estimate αj(λj) using the Fisher scoring algorithm with weights

and working response Wjs and zj described in the previous section. We then select λ̂j that

maximizes AIC (λ1, . . . ,λp). Each iteration of the algorithm updates all p smoothing parameter

pairs λj, j = 1, . . . , p. The algorithm stops when AIC (λ1, . . . ,λp) converges.

Given λ̂1, . . . , λ̂p, estimation of α1, . . . ,αp proceeds as in the single penalty case. The joint

posterior distribution of the model is now

p (α1, . . . ,αp | D, λ̂1, . . . , λ̂p) ∝ Lp(α1, . . . ,αp ;D)
∏

j

exp

(
−

1

2
αT

j

[
λ̂1

jP1 + λ̂2
jP2

]
αj

)
, (23)

and the variance matrix of the proposal density in Section 4.2.2 becomes

Σj =
[
T TWjj T + λ̂1

j P1 + λ̂2
j P2

]−1
.

4.3 Predicting Individual Survival

In survival analysis it is usually of interest to predict the survival experience of an individual

with given covariate vector v. More specifically, we would like to know this individual’s survival

probability beyond some time point t. This information is summarized in the survival function

S(t | v) = Pr (T > t | v) = exp
{
−

∫ t
0 h (u | v) du

}
. For the Cox model with time-varying regression

coefficients in (14) S(t | v) becomes

S(t | v) = exp




−

∫ t

0
h0(u) exp




p∑

j=1

gj(u) vj



 du




. (24)

11
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An estimate of S(t | v) can be obtained from estimates of h0(t) and gj(t), j = 1, . . . , p. The pa-

rameter vector αj defining the coefficient function gj(t) is estimated using the Bayesian framework

based on the partial-likelihood described in Section 4.2, where the baseline hazard h0(t) was treated

as a nuisance parameter. The joint posterior distribution of α1, . . . ,αp using the partial-likelihood

function can be seen as the marginal posterior distribution of α1, . . . ,αp when a gamma process

is assigned to the cumulative baseline hazard (Sinha et al., 2000). Here we take a much simpler

approach by using maximum likelihood techniques.

The full likelihood of the model in (14) can be written in terms of the hazard and survival

functions as follows

L(h0(t), g1, . . . , gp ;D) =

n∏

f=0





∏

r∈Ff

h(t̃r | x̃r)S(t̃f | x̃f )
∏

c∈Cf

S(tc | xc)




 , (25)

where Ff is the set of labels associated with individuals who fail at t̃f , and Cf is the set of

labels corresponding to individuals censored in (t̃f , t̃f+1), f = 0, . . . , n, with t̃0 = 0 (or k1) and

t̃n+1 = max {ti} (or kK). Following Breslow (1972), we adopt the convention that all censored

observations were censored at the preceding observed failure time. The set F0 is empty and Ff ,

f = 1, . . . , n, has only one element, t̃f , since we assume that no tied observations exist in the data.

In his discussion of Cox’s paper, Breslow (1972) suggested to take h0(t) to be a left continuous

step function with jumps possibly only at the points in time where failures occurred, i.e.

h0(t) = h0f , t̃f−1 < t ≤ t̃f , f = 1, . . . , n. (26)

Let the last observed failure before time t be t̃L. The integral in (24) can be written as

∫ t

0
h0(u) exp

(∑
j
gj(u) vj

)
du =

∑

f : t̃f≤t̃L

∫ t̃f

t̃f−1

h0f exp
(∑

j
gj(u) vj

)
du. (27)

The integrals in (27) are not analytically tractable and therefore have to be estimated through

numerical integration. We follow Kauermann (2005) and apply the trapezium rule

∫ t̃f

t̃f−1

exp
(∑

j
gj(u) vj

)
du ≈

(
t̃f − t̃f−1

) exp
(∑

j gj(t̃f ) vj

)
+ exp

(∑
j gj(t̃f−1) vj

)

2
. (28)

If α̂j is the Monte Carlo estimate obtained from the MCMC algorithm of Section 4.2, we replace

gj(t̃f−1) and gj(t̃f ) in (28) by their estimates, Tf−1, � α̂j and Tf �
α̂j respectively. Conditional on

α̂1, . . . , α̂p, differentiation of (25) with respect to h0f , f = 1, . . . , n, yields the profile maximum

likelihood estimate

ĥ0f =



(t̃f − t̃f−1)
∑

l∈Rf

exp
(∑

j Tf �
α̂j xlj

)
+ exp

(∑
j Tf−1, � α̂j xlj

)

2




−1

, (29)

12
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resulting in the following estimate for S(t | v)

Ŝ(t | v) =
∏

f : t̃f≤t̃L

exp





−

exp
(∑

j Tf �
α̂j vj

)
+ exp

(∑
j Tf−1, � α̂j vj

)

∑
l∈Rf

[
exp

(∑
j Tf �

α̂j xlj

)
+ exp

(∑
j Tf−1, � α̂j xlj

)]





. (30)

4.4 Analysis of Clinical Data

We now apply the proposed methodology to the PBC data set described in Fleming & Harrington

(1991, App. D). It results from a Mayo Clinic trial in primary biliary cirrhosis (PBC) of the

liver conducted between 1974 and 1984. The data set contains measurements on 418 individuals.

Besides the patient’s survival time and censoring indicator, 17 potential prognostic factors were

recorded. These include clinical, biochemical, serologic, and histologic measurements made at the

time of randomization to one of the two treatments: placebo or D-penicillamine. See Fleming &

Harrington (1991) for a detailed description of the study. We focus here on the five covariates

found to be important by Fleming & Harrington (1991): age (age - in years), edema (edema - 0 if

no edema, 1 if edema is present), log (albumin) (albumin - in gm/dl), log (bilirubin) (bilirubin

- in mg/dl), and log (prothrombin time) (protime - in seconds). The hazard model we consider is

thus

h (t | x) = h0(t) exp (g1(t)x1 + g2(t)x2 + g3(t)x3 + g4(t)x4 + g5(t)x5), (31)

where x = (x1, x2, x3, x4, x5)
T = (age, edema, albumin, bilirubin, protime)T .

In total there were 160 deaths (approximately 60% censoring). We exclude the three individuals

for whom information on one or more of the above selected covariates is missing. We center all

continuous covariates around their means and randomly break the ties at each iteration of the

MCMC sampler.

All five covariate effects are modeled as time-varying regression coefficients using the VFDP with

K = 8 knots. We set aj = 1 and bj = 0.00000001, j = 1, . . . , 5, as parameters in the prior for λj in

the single penalty case. The reasoning behind the choice of bj is as follows: any change in the effect

of a prognostic factor on the patient’s survival is likely to be very mild, yielding αT

j P2 αj ≈ 0; the

parameter b̄j in the full conditional for λj is therefore influenced by its value a priori, bj. Thus,

in order to obtain clinically plausible covariate effect estimates, we choose a smaller bj than what

is usually advocated. The posterior distribution of the model is still proper (Hennerfeind et al.,

2006).

For double penalty models, we have to pre-specify a grid of values for λ1
j and λ2

j . The grid

10−5, 10−4, . . . , 104, 105 provided satisfactory results. We denote by ĝSP

j (t) and ĝDP

j (t) the estimated

time-varying regression coefficient functions obtained using the single and double penalty models

based on the penalty functionals P2(gj ;λj) and Pd(gj ;λ1
j , λ

2
j ) respectively.

The estimated coefficient functions in Figure 1 were obtained using the output of a chain of

length 20,000 for the spline parameters αj , j = 1, . . . , 5 (after an initial burn-in period of length

13
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2,000). Convergence of the chain was determined by examining the plot of its path. The plots
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ĝ
S
P

5
(t

)

protime

0 1000 2000 3000 4000

−8

−4

0

4

8

t

ĝ
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Figure 1: Estimated time-varying regression coefficients as a function of time t (in days) for PBC

data set (solid line) together with 95% pointwise credibility intervals (dashed line) using both the

single and double penalty models.

in Figure 1 suggest that the effects of age, albumin and bilirubin on survival are essentially

constant throughout the study period. Older patients, with lower values of albumin and higher

values of bilirubin, have worst survival prognosis. The regression coefficients associated with

14
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covariates edema and protime seem to vary with time. This variation can be characterized as a

loss of prognosis ability as the follow-up time increases. Initially, the presence of edema and larger

values of prothrombin time have a negative effect on survival, but this eventually vanishes as time

progresses. This is in line with the findings in previous analysis of the PBC data set (Fleming &

Harrington, 1991; Martinussen & Scheike, 2006).

In general, the 95% pointwise credible intervals are narrower at the tails for double penalty esti-

mates when compared to the ones obtained with a single penalty functional. This is not surprising

giving that the uncertainty associated with the estimation of the smoothing parameters λ1
j and λ2

j

is not taken into account if a double penalty is used.

Note that the estimate ĝDP

3 (t) clearly supports the proportional hazards assumption throughout,

whereas ĝSP

3 (t) starts off constant but becomes non-significant at the end of the follow-up. This

may be related to the fact that proportional hazards models arise as the smoothing limit of the

double penalty model in (2). The estimate ĝSP

4 (t) suggests an increased risk for patients with high

values of bilirubin around 1,000 days. This is probably the result from the large number of

deaths between 500 and 1,500 days of follow-up (69, almost 44% of the total number of deaths),

which correspond to patients that tend to have higher values of bilirubin than average. This

is illustrated in Figure 2 (left plot), where the values of bilirubin corresponding to failures are

plotted against time. A ‘lowess’ smooth is also shown. The increase in the values of bilirubin

around day 1,000 is clear from this plot. This apparent increase in risk fades away in ĝDP

4 (t).

The estimates for the effect of age show too much variation, even when a double penalty

functional is used. The fact that the values for covariate age are evenly spread around their mean

might explain the excessive uncertainty when estimating g1(t). This can be seen in Figure 2 (right

plot), which displays the values of age associated with observed failures versus the survival time

together with a ‘lowess’ smooth which is essentially flat. Nevertheless one can still plausibly fit a

constant function of time.
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Figure 2: bilirubin (left plot) and age (right plot) corresponding to observed failures vs time t (in

days) for the PBC data set. The solid lines in both plots correspond to ‘lowess’ smooths.

The added penalty functional in the double penalty model leads to covariate effect estimates

that are, in general, smaller in magnitude. This is particularly true for edema and protime, the
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covariates whose effects vary with time. This is reflected on the survival curve estimates. In Figure 3

we have represented the survival curve estimates for an average patient with and without edema

for the two penalized spline models we studied. The loss of prognosis ability of the covariate edema

is clear, particularly in the single penalty model estimate. Here, the two curves start off apart,

with the presence of edema leading to lower survival probability, but eventually collide later in the

follow up, when edema is no longer a significant predictor. This effect is less visible for the double

penalty estimates as the magnitude of edema’s effect is smaller.
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Figure 3: Survival function for a 51-year-old patient with 3.5 gm/dl albumin, 1.7 mg/dl bilirubin,

10.6 seconds of prothrombin time with edema (solid line), and no edema (dotted line), using the single

penalty (left plot) and double penalty (right plot) models for the PBC data set.

5 Discussion

This paper explores a parametrization for cubic spline functions that is intuitive and allows easy

interpretation and implementation of standard quadratic penalty functionals. This parametriza-

tion, which we call value-first derivative parametrization, is defined locally and its parameters are

directly related to the spline function. It has been used previously in the context of numerical

analysis as an interpolation tool under the name of cubic Hermite interpolation.

We focused here on penalized likelihood methods. We consider not only the standard case,

where a single penalty functional is subtracted to the model’s log-likelihood, but also an extension

where double penalization is applied to the spline function. The latter becomes useful in situations

where single penalty models do not attain the desired limit of smoothness. This is the case of

the application we considered, where the Cox proportional hazards model is extended to allow

time-varying regression coefficients. The model is applied to the well known PBC data set in

Fleming & Harrington (1991). The estimates obtained with double penalization tend to be lower

in magnitude than those obtained with a single penalty. In the cases where proportional hazards

seems to be a plausible assumption, the double penalty estimates tend to behave better than the

single penalty ones. We only considered the model where all effects are modeled as time-varying

but a more flexible approach, including both static and dynamic effects is also possible with no
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additional effort. The VFDP proved to be a flexible parametrization that is easy to implement and

yields satisfactory estimates.

Bayesian inference is particularly useful within penalized likelihood methods because it allows

the simultaneous estimation of the spline and smoothing parameters. However, if a double penalty

is used, setting a prior for pairs of smoothing parameters is not straightforward. For this reason we

turned to empirical Bayes methods. The spline parameters are updated using a Metropolis-Hastings

algorithm with Fisher scoring proposals.

We are currently investigating adaptive and bivariate smoothing with the VFDP, two natural

extensions for any smoothing method. Regarding adaptive smoothing, and in the single penalty

case, this can be accomplished by, for example, taking the smoothing parameter to be, a priori, a

correlated process through time.
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