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Abstract

Fleming-Viot processes are a wide class of probability-measure-valued diffusions

which often arise as large population limits of so-called particle processes.

Here we invert the procedure and show that a countable population process

can be derived directly from the neutral diffusion model, with no arbitrary

assumptions. We study the atomic structure of the neutral diffusion model,

and elicit a finite dimensional particle process from the time-dependent random

measure, for any chosen population size. The static properties are consequences

of the fact that its stationary distribution is the Dirichlet process, and rely on a

new representation for it. The dynamics are derived directly from the transition

function of the neutral diffusion model.
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1. Introduction

Bayesian nonparametric statistics and population genetics have a common interest

in providing suitable countable representations for the law of random probability distri-

butions. The most studied class of random probability measures in Bayesian nonpara-

metrics is the Dirichlet process, whose characterization and properties were presented

by Ferguson (1973) and Ferguson (1974) and further investigated by Blackwell (1973)

and Blackwell and MacQueen (1973). In order to define the Dirichlet process, let X be a

Polish space, endowed with its Borel σ-algebra B(X ), and denote with P(X ) the space

of Borel probability measures on X , endowed with the topology of weak convergence.

Let (Ω, F ,P) be a probability space and let ν be a finite measure on X . A Dirichlet

process on X with parameter ν, denoted by µ ∼ Π(·|ν), is a random probability measure

µ such that, for any finite measurable partition (A1, . . . , Ah) of X with ν(Aj) > 0, for

j = 1, . . . , h, (µ(A1; ω), . . . , µ(Ah; ω)) is a random vector absolutely continuous with

respect to the Lebesgue measure on Rh−1 with
∑h

i=1 µ(Ai, ω) = 1 and with Dirichlet

distribution with parameter (ν(A1), . . . , ν(Ah)), h ≥ 2. As shown by Blackwell and

MacQueen (1973), the Dirichlet process with parameter ν can be alternatively defined

as the random probability measure µ induced by the so-called Blackwell-MacQueen

Pólya-urn sequence, characterized by the following sampling scheme

Pr(Xk+1 ∈ · |X1, . . . , Xk) =
θν0(·) +

∑k
j=1 δXj (·)

θ + k
k ≥ 1 (1)

where ν0 = θ−1ν and ν(X ) = θ. That is a sequence of observations drawn according

to (1) is equivalent to a sequence of i.i.d. observations from µ, where µ ∼ Π( · |ν). See

Blackwell and MacQueen (1973). The sample sequence generated by (1) is exchange-

able and therefore, by de Finetti representation theorem

Lµ,k(A1 × · · · ×Ak) =
k∏

j=1

µ(Aj)

for every collection A1, . . . , Ak of sets of B(X ), where

µ
d= lim

k→∞
η(X(k)) a.s. (2)
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with ηk = 1
k

∑k
j=1 δXj . In this case, (ηn)n≥1 is a random sequence with coordinates in

P(X ).

In Population Genetics, the Ferguson-Dirichlet process arises as the stationary

distribution of a measure-valued diffusion process which describes the evolution of

the allele frequencies of a population of genes under the hypothesis of neutral, non-

recurrent, parent independent mutation (Ethier and Kurtz, 1994). Such a process,

known as neutral diffusion model, has continuous sample paths which are functions

from [0,∞) to P(X ), and is characterized in terms of the infinitesimal generator

Aϕ(µ) =
m∑

i=1

〈Bif, µm〉+
1
2

∑

1≤k 6=i≤m

(〈Φkif, µm−1〉 − 〈f, µm〉) (3)

where the domain D(A) is taken to be the set of all bounded functions on P(X ) of

the form ϕ(µ) = 〈f, µm〉, for f a bounded measurable function on Xm, 〈f, µ〉 denoting
∫

fdµ and µm being an m-fold product measure. Here Bi is the mutation operator

Bf(x) =
1
2
θ

∫ [
f(z)− f(x)

]
ν0(dz) (4)

applied to the i-th argument of f , where θ ∈ R+ and ν0 ∈ P(X ) is a non atomic

probability measure. Also, Φkif(x1, . . . , xm) = f(x1, . . . , xi−1, xk, xi+1, . . . , xm) .

The transition density of the neutral diffusion model is provided by Ethier and

Griffiths (1993) in terms of a mixture of Dirichlet processes, showing an interesting

connection with the Bayesian framework. This is given by

P (t, µ, dν) =
∞∑

m=0

dm(t)
∫

Xn

Π
(

dν
∣∣∣θν0 +

m∑

i=1

δxi

)
µm(dx1, . . . , dxm) (5)

where µm denotes the m-fold product measure µ×· · ·×µ and Π( · |θν0 +
∑m

i=1 δxi
) de-

notes a posterior Dirichlet process, conditional on the observations (X1 = x1, . . . , Xm =

xm) each sampled from µ. That is, the prior process Π( · |θν0) is updated after observing

(X1, . . . , Xm) by means of Bayes’ theorem, yielding Π( · |θν0 +
∑m

i=1 δxi) (see Ferguson,

1973). In (5), dm(t) = Pr(D(t) = m), where {D(t), t ≥ 0} is a death process with rate

λm =
1
2
m(θ + m− 1) (6)

and such that D(0) = ∞ almost surely. Tavaré (1984), for example, computed that

for m ∈ N
dm(t) =

∞∑
n=m

(−1)n−m

(
n

m

)
(θ + m)(n−1)n!−1γn,t,θ (7)
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where

γn,t,θ = (θ + 2n− 1)e−λnt

and

d0(t) = 1−
∞∑

n=1

(−1)n−1(θ)(n−1)n!−1γn,t,θ.

Here, a(n) = a(a + 1) . . . (a + n − 1) for n ∈ N, with a(0) = 1. We will also use

a[n] = a(a− 1) . . . (a− n + 1) for n ∈ N, with a[0] = 1.

Further connections with the Bayesian nonparametric framework are established in

some recent results. Walker, Hatjispyros and Nicoleris (2007) provide a construction

of the neutral diffusion model via its transition function using ideas on Gibbs sampler

based Markov processes. Ruggiero and Walker (2008) propose a construction of the

Fleming-Viot process with selection based on a generalised Blackwell-MacQueen Pólya

urn scheme, obtained from a Bayesian hierarchical mixture model (see Lo, 1984).

Fleming-Viot processes, introduced by Fleming and Viot (1979) and which in-

clude the neutral diffusion model, are generally viewed as limit approximations of

the behavior of finite populations of say k alleles, as k goes to infinity. The model

of reproduction of the k-alleles population is often represented by a k-dimensional

particle processe {(X1(t), . . . , Xk(t)), t ≥ 0} with sample paths on the space DXk [0,∞)

of càdlàg functions from [0,∞) to X k. In this case {(X1(t), . . . , Xk(t)), t ≥ 0} is a

countable representation of the Fleming-Viot process {µ(t), t ≥ 0} in the sense that

the process of allele frequencies {ηk(t), t ≥ 0}, where at every t ≥ 0

ηk(t) =
1
k

k∑

j=1

δXj(t)

converges in distribution (in the Skorohod topology) to {µt, t ≥ 0} as k grows to

infinity. A general theory for a countable representation of Fleming-Viot processes is

provided by Donnelly and Kurtz (1996) and Donnelly and Kurtz (1999).

Here we consider the opposite problem. Given a measure-valued diffusion, and in

particular given the neutral diffusion model, we investigate how a particle process

should be in order to be a suitable representation for a finite-population extract from

the limiting diffusion {η∞(t), t ≥ 0}. The main point is of course what suitable means.

A reasonable criterion seems be that the defining properties of the particle process be

derived only from the intrinsic features of the neutral diffusion model itself, with no
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further arbitrary assumptions. In our case, the static properties of the particle process

will be consequences of the fact that the stationary distribution of the neutral diffusion

model is the Dirichlet process. The dynamic properties will be derived directly from

the transition function (5) and its implications. Here the focus is on the fact that

the Dirichlet process provides random probability measures which are purely atomic.

This suggests that instead of adopting the usual approach by proposing a population

process and show that this converges in distribution to the measure-valued diffusion, we

can invert the procedure and derive the population process directly from the diffusion.

That is, we investigate the properties of the atoms which give the time-dependent

random measure, and show that for any chosen population size k ≥ 1 we can elicit k

atoms from the random measure; then their properties automatically define a particle

process, each atom being a particle, with sample paths in DXk [0,∞). When k grows

to infinity the infinite population process, summarized by its empirical distribution, is

equivalent to the neutral diffusion model. We can thus talk of a population process

underlying the neutral diffusion model, in the sense that all properties of the former are

derived by the latter. Such constructive approach brings new evidence, once again, of

the key role played by Blackwell-MacQueen urn schemes in explaining the fundamental

structure of Ferguson-Dirichlet populations.

The paper is organized as follows. Section 2 states the result in the finite case, which

is the most relevant here, that is for an arbitrary population size, which determines

the size of the finite dimensional particle process. The proof is derived via several

lemmas and propositions. In particular, Lemma 1 below provides a representation for

the Dirichlet process which is used to elicit the particles from the random measure,

and Propositions 1, 2 and 3, with the aid of some technical results, show the dynamics

of the particle process. Section 3 provides some discussion and deals with the infinite

population case.

2. The particle process

Before stating the main result, we give the following lemma, which beside having

a key role in the construction, provides some intuition into the problem. The lemma

provides a representation of a random probability measure which is from a Dirichlet
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process. As recalled in the introduction (see (1)), the Dirichlet process has been

characterised via the Blackwell-MacQueen Pólya urn scheme, the relation between

the sequence of draws and the random measure being (2). Denote with Pk(θ, ν0) the

joint distribution of a sequence (Y1, . . . , Yk) drawn from (1). It is easy to check that

for every k ≥ n, the marginal distribution of n variables of the vector (Y1, . . . , Yk) is

Pn(θ, ν0). The lemma elicits k atoms from the random measure, and these atoms have

joint distribution Pk(θ, ν0).

Lemma 1. For arbitrary k ≥ 1, let (Y1, . . . , Yk) ∼ Pk(θ, ν0), and let w1, . . . , wk be k

independent random varariables distributed according to a Beta distribution function

with parameters (1, θ +k− i). Let µ ∼ Π( · |θν0) independent of the wi’s and define the

random element

µk =
k∑

i=1

piδYi +
(
1−

k∑

i=1

pi

)
µ (8)

where p1 = w1 and pi = wi

∏i−1
j=1(1− wj) for i = 2, . . . , k. Then µk ∼ Π( · |θν0).

Proof. From the definition of Dirichlet process on X it follows that it suffices to prove

the result for an h-dimensional vector (µ(A1), . . . , µ(Ah)), for any finite measurable

partition A1, . . . , Ah of X and any h ≥ 1.

For all k ≥ 1 we have that 1 − ∑k
i=1 pi =

∏k
i=1(1 − wi). Using the constructive

definition of the random variables p1, . . . , pk we have
k∑

i=1

pi

(
δYi(A1), . . . , δYi(Ah)

)
+

(
1−

k∑

i=1

pi

)
(µ(A1), . . . , µ(Ah)) =

=
k−1∑

i=1

pi

(
δYi(A1), . . . , δYi(Ah)

)
+

(
1−

k−1∑

i=1

pi

)
×

×
[
wk

(
δYk

(A1), . . . , δYk
(Ah)

)
+ (1− wk)(µ(A1), . . . , µ(Ah))

]
.

Then, it follows by induction that conditionally on (Y1, . . . , Yk),
k∑

i=1

pi

(
δYi(A1), . . . , δYi(Ah)

)
+

(
1−

k∑

i=1

pi

)
(µ(A1), . . . , µ(Ah)) (9)

is a random variable distributed according to a Dirichlet distribution function with

parameters (θν0(A1)+
∑k

j=1 δYj (A1), . . . , θν0(Ah)+
∑k

j=1 δYj (Ah)). The result follows

integrating out (Y1, . . . , Yk). ¤
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The sample path of the neutral diffusion model {µ(t), t ≥ 0} at stationarity is

such that at each time point the state of the process is a random probability measure

distributed according to a Dirichlet process. From Lemma 1 it follows that a repre-

sentation alternative to (1)-(2) of a Dirichlet process is given by (8), which can thus

be used, once indexed by time, to describe every instant state of the neutral diffusion

model. Given the almost sure discreteness of the Dirichlet process (see Introduction)

the connection between two states of the process at different time points, say without

loss of generality 0 and t > 0, can be expressed according to how many atoms µk(0)

and µk(t) share, for arbitrary k ≥ 1, where for any t ≥ 0

µk(t) =
k∑

i=1

pi(t)δYi(t) +
(
1−

k∑

i=1

pi(t)
)
µ(t)

Thus, the change in time of Y1, . . . , Yk in (8) provides an approximation of the change

undergone by µk. The vector Y1, . . . , Yk, whose joint distribution is Pk(θ, ν0), is then a

natural candidate for a finite-dimensional particle process whose components in every

instant are from the population µk. Since the dynamics of the particle process reflect

to a certain extent those of the measure-valued process, Y1(0), . . . , Yk(0) will remain

fixed at their state during the interval [0, t) so long as Y1, . . . , Yk remain atoms of µk(s)

for 0 ≤ s < t. When one of the atoms drops out, the state of this X k-valued random

process changes, so it is componentwise piecewise constant with jumps. We are then

interested in the distribution of interarrival times between jumps, that is the holding

times between any atom change. We will show that the atoms change one at a time,

and the holding times are exponential with parameter λk given in (6). Once again

we remark that these results on the dynamic properties of the particle process will

rely only on the transition function (5) of the neutral diffusion model, with no further

assumptions.

The next theorem, which is the main result of the paper, formalizes the above

heuristics. It will be proved by means of several lemmas in the remainder of the

section.

Theorem 1. For any arbitrary k ≥ 1, let (µk(t), t ≥ 0) be the neutral diffusion model

with infinitesimal generator (3). Then, ((Y1(t), . . . , Yk(t)), t ≥ 0) is a k-dimensional

particle process with sample paths in DXk [0,∞) and jumps at exponential times of
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parameter λk, given by (6), such that at each jump at most one coordinate at a time

is updated according to (1).

First we state two results that will be needed later. The first can be found in Walker,

Hatjispyros and Nicoleris (2007) (cf. Result [A] and [B], pag. 72-73).

Lemma 2. Let dm(t) be (7). Then

∞∑

m=k

m[k]

(θ + m)(k)
dm(t) = e−λkt (10)

and

∞∑

m=k−1

m[k−1]

(θ + m)(k)
dm(t) =

e−λk−1t − e−λkt

2(λk − λk−1)
. (11)

The following lemma provides a useful result that will be used later.

Lemma 3. Let θ > 0 and m,n ∈ N, with n ≤ m. Then

m∑
n=1

Γ(θ + m− n)
Γ(1 + m− n)

=
Γ(θ + m)
θΓ(m)

.

Proof.

m∑
n=1

Γ(θ + m− n)
Γ(1 + m− n)

=
Γ(θ + m)
Γ(1 + m)

m∑
n=1

m[n]

(θ + m− 1)[n]

=
Γ(θ + m)

Γ(1 + m)(θ + m− 1)[m]

[
m−1∑
n=1

(θ + m− 1− n)[m−n]m[n] + m[m]

]

=
Γ(θ + m)

Γ(1 + m)(θ + m− 1)[m]
m(θ + m− 1)[m−1]

=
Γ(θ + m)
θΓ(m)

.

¤

We have now all the ingredients to show that the interarrival times between succes-

sive jumps, that is single atom updates, are exponential with parameter λk. This will

be proved by means of the following three propositions.

Let {µ(t), t ≥ 0} be a neutral diffusion model, so that the transitions of µ(t) are
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described by (5). The form of the transition function yields that conditionally on

the starting state µ(0), the arrival state dµ(t) after a time interval t is obtained as

follows. An m-sized sample (X1, . . . , Xm) is drawn from µ(0), where the sample size

m is governed by a death process Dt starting from infinity, so that the probability of

sampling m variables from µ(0) for an interval of lag t is dm(t) (see (7)). Then dµ(t) is

sampled from a posterior Dirichlet process, conditionally on the vector (X1, . . . , Xm)

(see Introduction). Hence the m-sized vector sampled from the starting state µ(0)

carries m atoms of information about µ(0), which are taken into account when sampling

µ(t).

We exploit these intrinsic features of the transition function (5) for computing

the probability that respectively none, one or two atoms of µk(0) among those in

(Y1, . . . , Yk) drop in the interval dt. These three cases will be examined separately in

Proposition 1, 2 and 3 below.

Proposition 1. Let {µ(t), t ≥ 0} be a neutral diffusion model with transition function

(5), and suppose the time interval [0, s] is of infinitesimal length. Then the probability

of (Y1(0), . . . , Yk(0)) being atoms of µ(s) is e−λks, where λk is (6).

Proof. Call n1, . . . , nk the multiplicity of Y1(0), . . . , Yk(0) respectively in an m-sized

sample from µ(0), where µ(0) is given by (8). A necessary condition for Y1(0), . . . , Yk(0)

to be in the m-sized sample from µ(0), and hence possibly be atoms of µ(s), is that

m be not smaller than k, and that
∑k

i=1 ni ≤ m. Hence we have to integrate: over

the random weights p1, . . . , pk associated to the atoms Y1, . . . , Yk, whose distribution

is derived by the stick-breaking procedure, also known as residual allocation model, in

Lemma 1; over all possible combinations of multiplicities of atom draws in a sample

of size m, so that n1 ∈ {1, . . . , m}, n2 ∈ {1, . . . ,m − n1}, and so on up to nk ∈
{1, . . . ,m − ∑k

i=1 ni}, so that
∑k

i=1 ni ≤ m; and over the sample size for m ≥ k.

Hence we have that the probability of (Y1(0), . . . , Yk(0)) being atoms in µ(s) is

P ({Y1(0), . . . , Yk(0)} ∈ Y∞(s)) =

=
∞∑

m=k

dm(s)
m∑

n1=1

m−n1∑
n2=1

· · ·
m−n1−...−nk−1∑

nk=1

(
m

n1, n2, . . . , nk

)

×
∫ 1

0

. . .

∫ 1

0

k∏

i=1

(
wni

i

i−1∏

j=1

(1− wj)ni

)
(1− wi)m−Pk

h=1 nh
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×
k∏

`=1

(θ + k − `)(1− w`)θ+k−`−1dw1 . . . dwk

which simplifies to

∞∑

m=k

θ(k)dm(s)
m∑

n1=1

m−n1∑
n2=1

· · ·
m−n1−...−nk−1∑

nk=1

(
m

n1, n2, . . . , nk

)

×
∫ 1

0

. . .

∫ 1

0

k∏

i=1

wni
i (1− wi)θ+m−Pi

h=1 nh+k−i−1dw1 . . . dwk. (12)

By solving the integrals as incomplete Beta densities, the previous equals

∞∑

m=k

θ(k)dm(s)
m∑

n1=1

m−n1∑
n2=1

· · ·
m−n1−...−nk−1∑

nk=1

(
m

n1, n2, . . . , nk

)

×
k∏

i=1

Γ(ni + 1)Γ(θ + m−∑i
h=1 nh + k − i)

Γ(θ + m−∑i−1
h=1 nh + k − i)

and simplifying the product with the multinomial coefficient gives

∞∑

m=k

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

m∑
n1=1

m−n1∑
n2=1

· · ·
m−n1−...−nk−1∑

nk=1

Γ(θ + m−∑k
h=1 nh)

Γ(m−∑k
h=1 nh + 1)

.

Applying Lemma 3 yields

∞∑

m=k

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

m∑
n1=1

· · ·
m−n1−...−nk−2∑

nk−1=1

Γ(θ + m−∑k−1
h=1 nh)

θ Γ(m−∑k−1
h=1 nh)

.

Take now θ′ = θ + 1 and m′ = m− 1, so that the last ratio in the previous is

Γ(θ′ + m′ −∑k−1
h=1 nh)

θΓ(m′ −∑k−1
h=1 nh + 1)

and apply again Lemma 3 to get

∞∑

m=k

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

m∑
n1=1

· · ·
m−n1−...−nk−3∑

nk−2=1

Γ(θ′ + m′ −∑k−2
h=1 nh)

θ θ′ Γ(m′ −∑k−2
h=1 nh)

=
∞∑

m=k

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

m∑
n1=1

· · ·
m−n1−...−nk−3∑

nk−2=1

Γ(θ + m−∑k−2
h=1 nh)

θ(1 + θ)Γ(m−∑k−2
h=1 nh − 1)

.

Repeat the procedure other k − 2 times, taking θ′′ = θ′ + 1, m′′ = m′ + 1 and so on,

yielding

∞∑

m=k

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

m∑
n1=1

· · ·
m−n1−...−nk−4∑

nk−3=1

Γ(θ + m−∑k−3
h=1 nh)

θ(1 + θ)(2 + θ)Γ(m−∑k−3
h=1 nh − 1)
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...

=
∞∑

m=k

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

Γ(θ + m)
θ(θ + 1) . . . (θ + k − 1)Γ(m− k + 1)

=
∞∑

m=k

m[k]

(θ + m)(k)
dm(s)

which by means of (10) gives the result. ¤

The following proposition gives the probability that one atom update occurs in an

infinitesimal lag.

Proposition 2. Let {µ(t), t ≥ 0} be a neutral diffusion model with transition function

(5), and suppose the time interval [0, s] is of infinitesimal length. The probability that

exactly k − 1 particles of the vector (Y1(0), . . . , Yk(0)) are atoms in µ(s) is λks + o(s).

Proof. Consider the setting of the proof of Proposition 1. If the atom that changes

is Yj , 1 ≤ j ≤ k, in order to compute the probability of the statement it suffices to

set nj = 0 in (12), so that there are no values of Yj(0) in the m-sized sample from

µ(0) (hence no piece of information about µ(0) corresponding to the atom Yj(0) pass

to µ(s)). Hence the probability that one atom drops out is

k∑

j=1

P ({Y1(0), . . . , Yj−1(0), Yj+1(0), . . . , Yk(0)} ∈ Y∞(s), Yj /∈ Y∞(s)) =

=
k∑

j=1

∞∑

m=k−1

θ(k)dm(s)

×
m∑

n1=1

m−n1∑
n2=1

· · ·
m−Pj−2

`=1 n`∑
nj−1=1

m−Pj−1
`=1 n`∑

nj+1=1

· · ·
m−Pk−1

6̀=j n`∑
nk=1

(
m

n1, n2, . . . , nj−1, nj+1, . . . , nk

)

×
∫ 1

0

...

∫ 1

0

k∏

i 6=j

wni
i (1− wi)θ+m−Pi

h6=j nh+k−i−1(1− wj)θ+m−Pj−1
h=1 nh+k−j−1dw1 . . . dwk

Proceeding as in Proposition 1, and simplifying with the multinomial coefficient the

Gamma functions resulting from the integrals, yields

k∑

j=1

∞∑

m=k−1

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)
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×
m∑

n1=1

m−n1∑
n2=1

· · ·
m−Pj−2

`=1 n`∑
nj−1=1

m−Pj−1
`=1 n`∑

nj+1=1

· · ·
m−Pk−1

6̀=j n`∑
nk=1

Γ(θ + m−∑k
h6=j nh)

Γ(m−∑k
h6=j nh + 1)

Applying k − 1 times Lemma 3 we obtain

k∑

j=1

∞∑

m=k−1

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

×
m∑

n1=1

m−n1∑
n2=1

· · ·
m−Pj−2

`=1 n`∑
nj−1=1

m−Pj−1
`=1 n`∑

nj+1=1

· · ·
m−Pk−2

6̀=j n`∑
nk−1=1

Γ(θ + m−∑k−1
h6=j nh)

θΓ(m−∑k−1
h 6=j nh)

=
k∑

j=1

∞∑

m=k−1

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

×
m∑

n1=1

m−n1∑
n2=1

· · ·
m−Pj−2

`=1 n`∑
nj−1=1

m−Pj−1
`=1 n`∑

nj+1=1

· · ·
m−Pk−3

6̀=j n`∑
nk−2=1

Γ(θ + m−∑k−2
h6=j nh)

θ(1 + θ)Γ(m−∑k−2
h6=j nh − 1)

...

=
k∑

j=1

∞∑

m=k−1

θ(k)
Γ(m + 1)

Γ(θ + m + k)
dm(s)

Γ(θ + m)
θ(θ + 1) . . . (θ + k − 2)Γ(m− k + 2)

= k(θ + k − 1)
∞∑

m=k−1

m[k−1]

(θ + m)(k)
dm(s),

from which, using (11) and the definition of λk, we get

λk
e−λk−1s − e−λks

λk − λk−1
= λks + o(s)

which gives the result. ¤

Before stating the third proposition, we need one last technical result.

Lemma 4. Let dm(s) be (7). Then

∞∑

m=k−2

m[k−2]

(θ + m)(k)
dm(s) =

=
(λk−1 − λk−2)e−λks − (λk − λk−2)e−λk−1s + (λk − λk−1)e−λk−2s

4(λk − λk−1)(λk − λk−2)(λk−1 − λk−2)

Proof. Denote

G(t) =
∞∑

m=k−2

m[k−2]

(θ + m)(k)
dm(s);
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from a result in Ethier and Griffiths (1993), pag. 1585, it follows that

dG(s)
ds

+ λkG(s) =
1
2

∞∑

m=k−2

m[k−2]

(θ + m)(k−1)
dm(s)

and we know from Walker, Hatjispyros and Nicoleris (2007) (cf. Result B pag. 73)

that ∞∑

m=k−2

m[k−2]

(θ + m)(k−1)
dm(s) =

e−λk−2s − e−λk−1s

2(λk−1 − λk−2)
.

The general solution of the differential equation is

G(s) =
e−λk−2s

4(λk − λk−2)(λk−1 − λk−2)
− e−λk−1s

4(λk − λk−1)(λk−1 − λk−2)
+ Ce−λks

and using the initial condition G(0) = 0 we obtain

C =
1

4(λk − λk−1)(λk − λk−2)

from which the result follows. ¤

The last proposition states that the probability of two atom updates occurring in

an infinitesimal time lag is negligible.

Proposition 3. Let {µ(t), t ≥ 0} be a neutral diffusion model with transition function

(5), and suppose the time interval [0, s] is of infinitesimal length. The probability that

only k − 2 particles of the vector (Y1(0), . . . , Yk(0)) are atoms in µ(s) is o(s).

Proof. The event of two particles changing in [0, s] means that Yj(0), Yh(0), for

1 ≤ j 6= h ≤ k, are not selected in the m-sized sample from µ(0) and thus do not

compare as atoms in µ(s). Similarly to Proposition 2, we set nj = nh = 0, and

integrate out the indices, obtaining

∑

1≤j 6=h≤k

P ({Yi(0), i 6= j, h} ∈ Y∞(s), {Yj(0), Yh(0)} /∈ Y∞(s))

=
k∑

1≤j 6=h≤k

∞∑

m=k−1

θ(k)dm(s)
∑

(∗)

(
m

n1, n2, . . . , nj−1, nj+1, . . . , nh−1, nh+1, . . . , nk

)

×
k∏

i 6=j,h

∫ 1

0

wni
i (1− wi)θ+m−Pi

6̀=j,h n`+k−i−1(1− wj)θ+m−Pj−1
6̀=j,h n`+k−j−1dwi

×
∫ 1

0

(1− wj)θ+m−Pj−1
` 6=h n`+k−j−1dwj

∫ 1

0

(1− wh)θ+m−Ph−1
6̀=j n`+k−h−1dwh
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where (∗) denotes the set of frequencies ni, for 1 ≤ i ≤ k and i 6= h, k, such that each

ni runs from 1 to m−∑i−1
` 6=j,h n`. Proceeding as in Proposition 1 we obtain

k(k − 1)(θ + k − 1)(θ + k − 2)
∞∑

m=k−2

m[k−2]

(θ + m)(k)
dm(s).

By Lemma 4 the previous equals, up to a multiplicative constant,

λk(e−λk−2s − e−λk−1s) + λk−1(e−λks − e−λk−2s) + λk−2(e−λk−1s − e−λks)

=
[
λk(λk−1 − λk−2) + λk−1(λk−2 − λk) + λk−2(λk − λk−1)

]
s + o(s) = o(s)

which gives the result. ¤

Propositions 1, 2 and 3 imply that the interarrival times of the particle process are

governed by a Poisson process with parameter λk, and that one particle at a time drops

out of the k-dimensional time-dependent vector. Say that Yi is such particle. Then,

from Lemma 1 and the exchangeability of a sequence drawn according to (1), it follows

that the incoming particle is a sample from

θ

θ + k − 1
ν0 +

1
θ + k − 1

∑

j 6=i

δYj . (13)

This is due to the fact that conditionally on µ(t), the removed particle will be replaced

by another variable in the infinite sequence from the Blackwell-MacQueen urn that

characterizes µ(t). Integrating out µ(t), the incoming variable will still be from the

Blackwell-MacQueen urn, but conditionally on the other k − 1 particles, and its law

will be the predictive distribution (13). This completes the proof of Theorem 1.

3. Discussion and infinite population limit

We have constructed a particle process which is directly derived by the properties of

neutral diffusion model. The key of the derivation is the representation of a Dirichlet

process as µk in (8), as proved in Lemma 1. Then, given k atoms (Y1(0), . . . , Yk(0))

of the starting state µ(0) of the neutral diffusion model, we can describe a particle

process as follows. The state of the particle process remains constant until the first

time t such that one of the particles is no longer an atom of µ(t). The computation
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of the probabilities that all k particles are still atoms of µ(t) and that one of the k

particles is no longer an atom of µ(t) yields the distribution of the interarrival time of

the particle process until the following renewal. When one of the particles is no longer

an atom of the random measure, not having been sampled from the starting state, it

is substituted with another atom of µ(0) which differs from the other k− 1, and hence

is another observation from the Blackwell-MacQueen urn.

When the population size of the particle process grows to infinity, in Lemma 1 we

have that the sum of weights
∑k

i=1 pi tends to one, and the second term in

µk =
k∑

i=1

piδYi +
(
1−

k∑

i=1

pi

)
µ

vanishes. Then µ∞ = weak-limk→∞ µk is still a Dirichlet process, but unlike for finite

k, the particle process now fully characterises every instant state of the neutral diffusion

model, as we have an infinite sequence of observations from µ(t), conditionally on µ(t),

which provides full information on the distribution. From this setting it is now trivial

to derive all usual infinite population results for the neutral diffusion model, like the

weak convergence in the Skorohod space of the process of empirical measures of the

particles.
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