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Abstract

We consider populations of wild animals that are closely monitored over time,

by being recaptured on multiple occasions, until finally recovered dead or lost

to follow up. We propose a state-space formulation that enables us to estimate,

simultaneously: time-varying size, demographic composition and geographical

dispersal of an open population. Simulations show that our method is robust

to low proportions of monitored individuals. Parameters are estimated with

MCMC methods within a fully Bayesian approach and our model is applied to

a real population for which we are able to provide new results.
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Seasonality; Soay sheep; Spatio-Temporal; State-Space.

1 Introduction

Consider a population of wild animals where some individuals are marked when first

captured and after being released they may be either recaptured or simply resighted

from a distance on multiple occasions, within each year, until finally recovered dead

within the study period or not seen again. Live recaptures and distant resightings

are often carried out at different times, independently of one another, with a different

design, implementation scheme and typically with a different effect on the behaviour of

the monitored individuals. The scientific interest lies in understanding changes in key
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demographic parameters, such as survival and fertility, and in relating these changes

to both individual and environmental factors. Closely monitored populations provide

access to extensive and detailed individual data and we propose a method to use such

information efficiently in order to estimate different aspects of the population dynam-

ics. We consider a discrete time framework which is often appropriate in ecological

applications because important demographic events, such as reproduction and sur-

vival, may be modelled on a seasonal basis rather than on an individual one. This also

influences the study design, as researchers will prefer to capture or observe individuals

during specific time periods. Thus we adopt a seasonal temporal scale, as opposed to

an annual one which is often used for long-term mark-recapture-recovery (MRR) stud-

ies, to allow for heterogeneity in the behaviour of individuals and in the data collection

process, within each year. We propose a novel state-space modelling formulation that

combines the two independent observation processes, live recaptures and distant re-

sightings (RES), with a latent system process describing the demographic structure of

the population. Our model allows us to estimate simultaneously: time-varying size,

demographic composition and geographical dispersal of an open population. In Sec-

tion 2 we first describe the general modelling framework and then develop a specific

model for each of the processes considered. In Section 3 we illustrate the role of the

system process as an informative prior structure for the population size and some pos-

sible uses of the estimated time-varying dispersal. Section 4 provides implementation

details while Section 5 contains a simulation study to asses the robustness of the pop-

ulation size estimation to varying the proportion of individuals resighted. In Section 6

we apply our model to a well-known population that has been studied for over twenty

years and we obtain new interesting results.

2 A State-space modelling framework

State-space models consider the simultaneous evolution over time, (here indexed by

j), of an observable process, Cj , and of a non-observable one, Nj, called the system
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process. The system process represents the underlying mechanism that explains the

temporal dynamics of Cj, while the latter is also the result of a potentially complicated

structure of sampling variability. The aim is to estimate the underlying process Nj ,

given these noisy observations, and one of the main advantages of this formulation

is that sampling variability and changes in the underlying system are modelled sepa-

rately (West & Harrison, 1997). In population ecology state-space models may be used

to model noisy counts of individuals from a population and to explain the temporal

dynamics with an underlying species-specific demographic structure. Within this ap-

plication area, three main approaches have been used to estimate parameters: Kalman

Filtering (Besbeas et al., 2002), Sequential Importance Sampling (SIS) (Thomas et al.,

2005) and MCMC (Brooks et al., 2004). Other applications include estimating the or-

der of density dependence by means of Reversible Jump MCMC (Jamieson & Brooks,

2004), a relationship between the system variance and the amount of smoothing in-

duced on a population index (Mazzetta et al., 2007), and a comparison of the perfor-

mance of SIS and MCMC (Newman et al., 2009). In this article we consider non-linear

and non-normal processes, both for the system and for the observations, and we adopt

a fully Bayesian parameteric approach where the estimation is performed by using

MCMC methods.

2.1 System Process: seasonal demographic structure

The system process is used to model changes over time in the demographic structure of

the population, thus its corresponding parameters are of direct interest because of their

ecological interpretation. Here we assume that individuals become adults, able to give

birth, at the beginning of their second year of life and that births always occur during

Spring, but this may be modified to accommodate different species. Let the index j =

1, . . . , J denote the season, here defined as {Mar-May, Jun-Aug, Sep-Nov, Dec-Feb} =

{Sp, Su, Au, Wi}, and let a = 1, . . . , A+ denote the age group, with a = 1 correspond-

ing to the first year of life and a = A+ to individuals in their Ath year of life or older.

The size of the population aged a at the beginning of season j is denoted by Na
j and
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the number of offspring, N1
Spj

, is modelled with a discrete-valued distribution that

depends on the particular species. In our application we may observe only 0, 1 or 2

offspring per adult female and we decided to describe such a number with a binomial

distribution, Bin(2, ρSpj
). We assumed that individuals reproduce independently of

one another according to a common ρSpj
each Spring, so that the total number of

individuals born each Spring is described with Bin(2N2+
Spj

, ρSpj
). An extension may

account for individual-specific reproduction parameters ρiSpj
. We also use binomial

distributions to describe the number of individuals surviving from one season to the

next. In particular, we denote by φa
j the probability that an individual aged a survives

the interval (j, j + 1); thus for appropriate nonnegative integers x we have that for

individuals in their first year of life:

P (N1
j = x) =

(

2N2+
j
x

)

[ρj ]
x[1 − ρj ]

2N2+
j −x j = Sp

(

N1
j−1
x

)

[φ1
j−1]

x[1 − φ1
j−1]

N1
j−1−x j 6= Sp.

(1)

When modelling adult survival we need to account for all changes in age groups ccurring

each Spring and for 1 < a < A we have that:

P (Na
j = x) =

(

Na−1
j−1
x

)

[φa−1
j−1 ]

x[1 − φa−1
j−1 ]

Na−1
j−1 −x j = Sp

(

Na
j−1
x

)

[φa
j−1]

x[1 − φa
j−1]

Na
j−1−x j 6= Sp.

(2)

The distribution of the number of individuals aged A+ at the beginning of each Spring

requires the convolution of two binomials because NA+
jSp

is equal to the number of

surviving individuals that were aged A − 1 the previous Winter plus the number of

surviving individuals that were already in A+, so that P (NA+
j = x):

∑Uj

kj=Lj

(NA+
j−1

kj

)

[φA+
j−1]

kj [1 − φA+
j−1]

NA+
j−1−kj

(NA−1
j−1

x−kj

)

[φA−1
j−1 ]x−kj [1 − φA−1

j−1 ]N
A−1
j−1 −x+kj j = Sp

(

NA+
j−1
x

)

[φA+
j−1]

x[1 − φA+
j−1]

NA+
j−1−x j 6= Sp

(3)

where the extremes for the summation are defined as Lj = max{0, x − NA−1
j−1 } and

Uj = min{x, NA+
j−1}. The system (1)-(3) is defined by using standard distributions and

its ecological interpretation is clear, but its implementation can be challenging. For

a Bayesian approach, the posteriors for the population parameters are non-standard
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and the series of binomials requires a set of constraints that need to be satisfied when

estimating parameters Na
j for j = 1, . . . , J and a = 1, . . . , A+, for example with an

MCMC algorithm. More details regarding the estimation are provided in Appendix

A.

2.2 Observation process 1: population size and dispersal

The first observation process that we model concerns the resightings (RES) of animals

where we assume that individuals may be seen in a study area partitioned in S locations

that are all easily accessible (no barriers or geographical constraints). The survival

and reproduction of the resighted individuals should not differ from that of the non-

resighted ones and births or deaths may occur during the observation period. The

data should be in the form of individual resighting histories as we assume that, each

season, researchers are able to identify individuals uniquely. From this observation

process we aim to estimate the size of the population accessing the study area and to

understand how its geographical dispersal changes with time. Let N be the unknown

size of a population, S the number of samples taken sequentially and for each sampling

occasion l = 1, . . . , S let πl be the probability of resighting an individual, cl the number

of individuals sampled, ml the number of marked individuals in the sample and Ml the

corresponding number in the population just before the lth sample. Then, assuming

that: (i) the population remains constant throughout the study; (ii) there are initially

no marked animals; and (iii) in a given sample all animals have the same propensity

of being caught, it is possible to show (see for example Casteldine (1981)) that the

likelihood takes the following form:

LRES(c, n | N, π) ∝
N !

(N − n)!

S
∏

l=1

[πl]
cl[1 − πl]

N−cl (4)

where n =
∑

l(cl − ml) is the number of distinct individuals. Now, if we refer to the

sequential resighting of individuals in S locations during a specific season j we may

write:

LRES(cj, nj | Nj , π) ∝
Nj!

(Nj − nj)!

S
∏

l=1

[πlj]
clj [1 − πlj ]

Nj−clj (5)
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but since we are considering observation periods of three months, assumption (i) can-

not be satisfied, and we need to account explicitly for seasonal survival. We do so

by exploiting the autoregressive structure of the system process and by relating the

resightings during the period (j, j + 1) to the population available at the beginning of

the next season, i.e. the Nj+1 that survived with probability φj:

LRES(cj, nj | Nj+1, π) ∝
Nj+1!

(Nj+1 − nj)!

S
∏

l=1

[πlj ]
clj [1 − πlj]

Nj+1−clj . (6)

Assumption (iii) is not compatible with our interest in the long term population dy-

namics, thus here we allow the resighting probabilities to vary with time. We also

wish to incorporate heterogeneity of resighting across different age groups but rather

than allowing for age-specific resighting probabilities, πa
lj, we exploit the information

we already have on the age-specific structure of the population and we construct a

likelihood that is consistent with the system process:

LRES(c,n | N, π) ∝

A+
∏

a=1

J−1
∏

j=1

N∗

j+1!

(N∗

j+1 − n∗

j )!

S
∏

l=1

[πlj]
clj [1 − πlj ]

N∗
j+1−clj (7)

where the number of distinct individuals, n∗

j , and the population size, N∗

j+1, take

values:


















n∗

j = na−1
j N∗

j+1 = Na
j+1, j = Wi and 1 < a < A+

n∗

j = nA−1
j + nA+

j N∗

j+1 = NA+
j+1, j = Wi and a = A+

n∗

j = na
j N∗

j+1 = Na
j+1, j 6= Wi and 1 ≤ a ≤ A+

The introduction of an autoregressive structure to account explicitly for deaths during

the observation period is particularly important for a correct estimation of the popu-

lation size, as the latent survival may act as a censoring mechanism on the resighting

process, inducing an underestimation of the resighting probabilities and a consequent

overestimation of the population size. In order to be able to use this relatively complex

structure, the use of different sources of information to estimate different groups of pa-

rameters becomes very important. In the next section we describe how we estimate the

survival parameters φa
j , for j = 1, . . . , J and a = 1, . . . , A+, appearing in the system

from a second observation process.
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2.3 Observation process 2: survival, recapture and recovery

The estimation of survival parameters appearing in (1)-(3) relies on a second obser-

vation process where we combine live recaptures and dead recoveries, as in Catchpole

et al. (1998), Besbeas et al. (2002) and King et al. (2006). The data consist of in-

dividual histories indicating for each season whether a marked animal was physically

recaptured, found dead or not seen. The main challenge posed by this type of data is

the potential presence of blank periods between the last live recapture and the dead

recovery (or the end of the study) where we need to model all the possible survival

patterns. For an individual i, let Xij be an indicator function taking value 1 if recap-

tured alive at j, fi and li the times of the first and last live recapture, respectively,

and ri the eventual recovery time. As for individual parameters, let φ
′

ij denote the

probability of surviving the time interval (j, j + 1); p
′

ij+1 the probability of recapture

at j + 1; and λ
′

ij the probability of being recovered in (j − 1, j) given death in (li, j).

The contribution of each recaptured individual to the estimation of age- and season-

specific MRR parameters, (φa
j , pa

j and λa
j ), can be obtained from the season of birth,

say bi, by setting θij = θa
j whenever (j − bi)/4 = a, for θij ∈ {φ

′

ij, λ
′

ij , p
′

ij}. From the

individual capture histories it is possible to write down explicitly the MRR likelihood

describing all live captures, all possible survival histories between li and ri, and all

possible survival histories between li and J for individuals who are never seen again.

However, our blank intervals are similar to those we would encounter with delayed

recoveries and, in particular, our likelihood would correspond to the case κ = 1 de-

scribed in Catchpole et al. (2001). Thus we denote by χili the probability of not being

recaptured between li and the end of the study J and by λ∗

iliri
the probability of being

recovered in (ri − 1, ri) given last resighting was li, where ri = li + 1, . . . J . Note that

we need the first index i because two individuals may have the same li (or ri) but be of

different age. The following recursions simplify the explicit likelihood expression and
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speed up the computation:


































λ∗

iliri
= [1 − φ

′

ili
]
∏ri−1

k=li+1[1 − λ
′

ik]λ
′

iri
+ φ

′

ili
[1 − p

′

ili+1]λ
∗

ili+1ri

λ∗

iri−1ri
= [1 − φ

′

iri−1]λ
′

iri

χili = [1 − φ
′

ili
]
∏J

k=li+1[1 − λ
′

ik] + φ
′

ili
[1 − p

′

ili+1]χili+1

χiJ = 1

(8)

so that the MRR likelihood may be written as:

LMRR(X | φ
′

, λ
′

,p
′

) =
n

∏

i=1

[

li−1
∏

j=fi

φ
′

ij(p
′

ij+1)
Xij+1(1−p

′

ij+1)
1−Xij+1

][

λ∗

iliri

]I[li<ri≤J]
[

χili

]I[ri>J]

.

(9)

The probabilities p
′

could be extended to include the effects of covariates (King &

Brooks, 2008), individual random effects (Barry et al., 2003) or a behavioural response

to recapture (Chao et al., 2000), for example by using a logistic link as in Catchpole

et al. (2000). The use of covariates would reduce the number of parameters and

facilitate the implementation, but we preferred to keep results more general when

estimating, for the first time for our species, seasonal patterns of survival, recapture

and recovery.

3 Model interpretation

The following sections further highlight the advantages of our method in terms of

interpretability of the structure and possible uses of the estimates.

3.1 Priors for the population size

In general, when trying to estimate the size N of a population from capture-recapture

data with a Bayesian approach the choice of the prior π(N) is very important. When

there is little information about the population under study a common choice is Jef-

frey’s non-informative prior π(N) ∝ N−1, see for example George & Robert (1992);

when more information is available other priors may be used, for example a Negative

Binomial (Madigan & York, 1997) or a Discrete Uniform (Basu & Ebrahimi, 2001).
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Our problem is to estimate Na
j ∀(a, j) and a single prior common to all these parame-

ters would not be efficient. Another complication would be to decide, in an ecologically

meaningful way, how to choose the large number of parameters in the hyperpriors. We

prefer instead to provide more information on the structure, which is interpretable, and

less on the hyperpriors parameters. We obtain age and seasonal-specific priors, π(Na
j ),

as products of the distributions described in (1)-(3) that are adjacent in time and/or

age, as described in Appendix A. The magnitude of the Na
j s depends on the resight-

ings while the shape of the estimated time series of Na
j (i.e. the population dynamics)

depends on the survival parameters φa
j that are estimated from the recapture/recovery

data.

3.2 Resighting probabilities

The catchability of individuals influences the estimation of the population size and

there are typically three aspects that are studied: time effects, trap response and

heterogeneity across individuals. One of the first papers to discuss these aspects is

Otis et al. (1978) and both classical approaches (Pledger (2000), Dorazio & Royle

(2003), Morgan & Ridout (2008)) and Bayesian approaches (Basu & Ebrahimi (2001),

Tardella (2002), King & Brooks (2008)) have been used to incorporate these effects

when estimating the size of a closed population. In (7) we do not incorporate trap

response because we assume that individuals are observed from a distance; we account

for heterogeneity across different age-groups by considering an age-varying parameter

Na
j+1, and we are interested in how the species uses the study area in different seasons.

We choose a logistic link to regress resighting probabilities on location and time: πlj =

exp[µ+αl +βj ]/(1+exp[µ+αl +βj ]), for l = 1, . . . , S and j = 1, . . . , J −1, where, for

example, we can set α1 and β1 equal to zero to ensure identifiability. We then specify

the following hyperpriors:

π(µ) = exp(µ)/[1 + exp(µ)]2 αl ∼ N(0, σ2
α) βj ∼ N(0, σ2

β)

σ2
α ∼ IG(να, λα) σ2

β ∼ IG(νβ, λβ)
(10)
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where π(µ), already described in King & Brooks (2008), is obtained by starting from a

Uniform[0,1] prior on the overall RES probability, for αl = βj = 0, and by then consid-

ering the transformation µ = logit(πlj). The hyperparameters for the variance terms

should reflect the information available a priori and even with little or no information

their choice should be consistent with the particular application and with the observa-

tion process chosen to model the data. We believe they should not be arbitrarily fixed

to commonly chosen values if these imply unrealistic patterns for the time series.

3.3 Time-varying geographical dispersal

The probabilities, {πlj , l = 1, . . . , S; j = 1, . . . , J − 1}, help us to understand how

the preferences for locations change with time. They may also be used to investigate

whether the geographical dispersal changes with increasing/decreasing demographic

pressure or simply with the behaviour of the two sexes in different seasons. If the

locations differ from one another in terms of vegetation then these probabilities may

be related to the feeding behaviour in different seasons or to changes in the quality of

the environment for long term studies.

4 Implementation

We assign uniform priors on [0, 1] to the probabilities φa
j , λa

j and pa
j and use a Metropolis-

Hastings (M-H) algorithm where new values are proposed with a normal distribution

truncated on the interval [0, 1]. The computations remain slow, with an iteration tak-

ing about half a second with the specifications reported at the end of this section,

despite the recursions introduced in §2.3, but the parameters stabilise rapidly around

their posterior means. Note that posteriors for λa
j and pa

j are built from MRR like-

lihood while those for φa
j are also related to the system process. For parameters Na

j

we use again M-H but with asymmetric discrete uniform proposals over intervals that

change at each iteration to ensure consistency with both the system and the observa-

tion process (details are provided in Appendix B). Parameters (µ, αl, βj) are simply
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proposed with normals centered on the current values and since we are using a logistic

regression the computations required for the RES probabilities are very fast. Finally

we use Gibbs sampling for parameters σ2
α, σ2

β that have standard gamma posteriors and

for the ρjs that have standard beta posteriors. We may need to estimate thousands of

parameters (see §6) so we consider a pilot adaptive phase of m iterations, (before the

burn in), in which we start with a proposal variance equal for all parameters and then

every k iterations we measure the average acceptance rates (AR) over the last m/2

generated values. We require values between 0.25 and 0.45, so if a parameter has an

AR below 0.25 (above 0.45) then the variance of its proposal is increased (decreased)

by 10%. These m iterations are then discarded as the only aim is to find a better

proposal; the method is based on a paper by Gelman et al. (1996). In Section 6 we

ran simultaneously 5 independent chains of length 105 and assessed convergence with

the method proposed by Gelman & Rubin (1992); see also Brooks & Gelman (1998).

We discarded the first 2×104 iterations as a burn-in and then retained the second half

of each chain obtaining a sample of 2× 105 iterations. This procedure took 7 hours to

run on a multiple core 3.4 GHz server.

5 Simulation Study

We conducted a simulation study to investigate the robustness of the population size

estimation with respect to a changing proportion of resighted individuals and we chose

A = 8, S = 30 and J = 79 to match the dimensions we had in the real data set analysed

in Section 6. Algorithm 1 (A1) below describes one way to generate parameters and

Algorithm 2 (A2) may be used either to generate data or to appropriately format

raw data. We considered a few values for µ to have different magnitudes for the

proportions of distinct individuals resighted over the J seasons. For example, if we use

A2 to generate a data set 100 times then, on average when J = 79: for µ = −4.5 the

mean (across seasons) proportion of distinct individuals resighted is 40% (min=12%,

max=83%); for µ = −5.0 the mean proportion is 28% (7%, 66%); for µ = −5.5 it is 19%
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(min=5%, max=49%); and for µ = −6.0 ii is 12% (min=3%, max=33%). Note that for

a given µ these proportions also increase with J . Figure 1 shows the posterior means

with 95% HPDIs, (after one run of the algorithm): despite uncertainty increases as the

percentage if individuals resighted decreases, the estimation of the overall population

size is very good in all four scenarios.

[Figure 1 about here.]

5.1 Algorithm 1: generation of parameters

1. Dimensions: J=79, S=30, A=8; let: j = 1, . . . , J ; l = 1, . . . , S; a = 1, . . . , A

2. Births: ρj ∼ Unif(0.1, 0.6) if j = Sp and ρj = 0 if j 6= Sp

3. Survival: φ1
j ∼ Unif(0.3, 0.7) for (j = Sp); φ1

j ∼ Unif(0.8, 1.0) for (j 6= Sp);

φ2:4
j , φ5:7

j ∼ Unif(0.9, 1.0) ∀j; φ8+
j ∼ Unif(0.7, 1.0) ∀j

4. Beginning of series: set initial values for Na
j

5. Population size: generate Na
j , ∀(a, j) according to the system process

6. Resighting: choose µk ∈ {−2.5,−3,−3.5,−4}; set σ2
α = 2.0 and σ2

β = 0.4;

generate α1, . . . , αS ∼ N(0, σ2
α) and β1, . . . , βJ−1 ∼ N(0, σ2

β); calculate πlj(k) =

exp(µk + αl + βj)/[1 + exp(µk + αl + βj)], ∀(l, j)

5.2 Algorithm 2: generation/format of resighting data

Given a value µk, for a = 1, . . . , A and for j = 1, . . . , J − 1, if (Na
j+1 > 0):

1. Generate Xa
ij l ∼ Bin(1, πlj(k)) for ij = 1, . . . , Na

j+1 and l = 1, . . . , S and store

values in a matrix, say X, of dimension Na
j+1 × S

2. Build a matrix Y , same dimensions as X, for the already marked individuals:

Yij l = 1, if
∑l−1

h=1 Xij ,h] > 0 and Yij l = 0 otherwise

3. Numbers recaptured: (ca
1j , . . . , c

a
Sj) = (

∑

ij
Xa

ij1
, . . . ,

∑

ij
Xa

ijS)
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4. Numbers marked: (ma
1j , . . . , m

a
Sj) = (

∑

ij
Yij1, . . . ,

∑

ij
YijS)

5. Distinct individuals: na
j =

∑

l(c
a
lj − ma

lj)

Note that for Winter resightings na
j and ca

lj will refer to Na+1
j+1 and that in particular

from NA+
Sp we are actually generating (nA−1

Wi +nA+
Wi ) and (cA−1

lW i +cA+
lW i). When using real

data, step 1 is replaced by the calculation of the matrix X from the raw data.

6 Application

We analyse data for the Soay sheep population on the island of Hirta, 200 Km west

of Scotland in the archipelago of St Kilda, a species similar to the neolithic sheep

introduced in Britain around 5000BC (Clutton-Brock & Pemberton, 2004). The total

population has been counted annually since the 1950s and MRR data are available

since 1985. A recent Bayesian analysis for this species is for example in King et al.

(2006). The majority of dead recoveries take place during Winter and the majority

of live recaptures during Summer. The population level has an interesting trend over

time as it periodically increases to a level higher than the island can support and then

it suddenly falls (Coulson et al., 2001). The age structure of this population has been

studied in many papers and, since we specifically consider the female population, we

refer to the extensive work of King et al. (2006) who considered a = 1, . . . , 8+ and then

identified the most probable age class groupings for the MRR parameters by means

of Reversible Jump MCMC. In this article we build for the first time a season-specific

data set, from Spring 1986 to Autumn 2005 (J = 79), where MRR data are available

for 1185 female individuals while RES data are available for 1501 individuals.

6.1 Survival, recapture and recovery

We follow King et al. (2006) and for survival we consider four age groups, a = 1,

1 < a < 5, 4 < a < 8 and 8+ but we consider a seasonal rather than an annual scale.

The estimates are reported in Figure 2 and highlight a higher seasonal variability for
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younger and older individuals. The uncertainty for parameter φ1
Sp in 2001 is due to

the fact that there are no recapture data in that season and such data is the only

source of information that allows us to estimate survival in the first season of life.

Differently from other seasons and ages, the required information cannot be inferred

from adjacent (in time or age) parameters, thus the posterior for φ1
Sp has essentially

the same variability as the prior and this produces a higher uncertainty also on ρSp

and N1
Sp in the same year.

[Figure 2 about here.]

For recovery probabilities we separate recovery of lambs, λ1
j , from that of adults, λ2+

j ,

and obtain results similar to King et al. (2006), with peak recovery corresponding to

the years of population reduction (’88, ’91, ’94, ’98, ’01, ’04) plus some additional

information on seasonality: the peaks are completely determined by winter recoveries;

adult recovery probabilities can be estimated well in each season; lamb recoveries can

only be estimated reliably during Winter. Results are not shown but available on

request. Our probabilities pa
j have a different interpretation from King et al. (2006) as

they specifically refer to physical recaptures, thus we report results for each age group.

Figure 3 shows the posterior means and corresponding 95% HPDIs characterised by a

strong seasonal component which is related to the study design: researchers prefer to

recapture individuals during the Summer when the weather conditions make it easier

to reach the island.

[Figure 3 about here.]

6.2 Geographical dispersal

The study area on Hirta is divided into 30 distinct locations and each individual may

be seen on more than one location within a season. In Figure 4, the estimated πljs for 9

of the 30 locations show the preference for some specific locations and a seasonal trend

in their use, here evident for ’WESF’, ’WESM’ and ’OLDV’. The estimated effect for
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each location and its associated uncertainty is reported in Table 1. Here, apart from a

few locations (ANLA, CEME, GEAR, GYM and HELI) where individuals are rarely

resighted, the estimates are quite precise and highlight a marked preference for some

specific locations, probably attributable to the quality of the vegetation.

[Figure 4 about here.]

[Table 1 about here.]

6.3 Population size

The study area on Hirta represents about one third of the island and is regularly

accessed by a proportion of the island population that varies with season. A formal

estimation of the geographical dispersal through the probabilities πlj has never been

done before and the population has never been estimated specifically by age and sea-

son. Each Summer all individuals on the island are counted, thus we compared our

estimated dynamics with these raw data that we have only for the Summer season.

In Figure 5 we plotted the estimated female population (all age groups) accessing the

study area together with the number of distinct individuals resighted, the raw Summer

counts in the study area and the raw Summer counts in the whole island. Although

this population is very well monitored, counting all the individuals present in the study

area in one specific season would underestimate the size of the population accessing

the study area, if individuals are free to enter and exit the study area and their pres-

ence varies from one season to the next. It appears that our system process, which

describes age and seasonal specific survival and reproduction, models with enough de-

tail the demographic structure to be able to estimate the population dynamics over a

long period of time. Interestingly, the population accessing the study area appears to

have a more stable dynamic, fluctuating less than the population in the whole island.

[Figure 5 about here.]

15



CRiSM Paper No. 10-04, www.warwick.ac.uk/go/crism

7 Conclusions

The state-space formulation that we propose accounts for survival when estimating the

geographical dispersal, and the combination of these two pieces of information is typ-

ically difficult. Thus a common assumption is that the population is demographically

closed during the period of observation as, for example, in Borchers & Efford (2008)

and Dorazio et al. (2008). The use of a seasonal time scale is particularly important as

seasonality characterises survival and reproduction, but may also characterise recap-

tures for logistical reasons and geographical dispersal through changes in behaviour.

Here we preferred to assign a major role to the demographic structure, as opposed

to environmental covariates, as the increased complexity is balanced by a better eco-

logical interpretation of the population dynamics. Moreover we can make better use

of the available information and avoid strong assumptions on the homogeneity of the

data and of their collection, within a year. We showed how by understanding the

seasonality of mortality and reproduction we can estimate the varying size of an open

population over a long period of time. Our method assumes that the population is ho-

mogeneously mixing, thus it is able to estimate only the population that has access to

the study area. The Soay sheep population has been studied extensively so we had the

opportunity to check the consistency of our results with previous work while providing

substantial new information. In our application locations are close to one another

and individuals are able to move quickly between them, but this assumption may not

always be appropriate. Thus, an interesting extension would be the introduction of a

structure of dependency between locations while preserving an easy interpretation of

the corresponding parameters.
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Appendix A

Full conditional distributions for the population size π(Na
j | . . . )

The system process describing the age and seasonal specific demographic structure

requires a number of constraints for the corresponding parameters such that La
j ≤

Na
j ≤ Ua

j . These constraints are reported in the following table where: LA−1
j =

NA+
j+1 − NA+

j , LA+
j = NA+

j+1 − NA−1
j and UA+

j = NA+
j−1 + NA−1

j−1 :

j = Spring j = Summer j = Autumn j = Winter

N1
j+1 ≤ N1

j ≤ 2N2+
j N1

j+1 ≤ N1
j ≤ N1

j−1 N1
j+1 ≤ N1

j ≤ N1
j−1 N2

j+1 ≤ N1
j ≤ N1

j−1

Na
j+1 ≤ Na

j ≤ Na−1
j−1 Na

j+1 ≤ Na
j ≤ Na

j−1 Na
j+1 ≤ Na

j ≤ Na
j−1 Na+1

j+1 ≤ Na
j ≤ Na

j−1

NA−1
j+1 ≤ NA−1

j ≤ NA−2
j−1 NA−1

j+1 ≤ NA−1
j ≤ NA−1

j−1 NA−1
j+1 ≤ NA−1

j ≤ NA−1
j−1 LA−1

j ≤ NA−1
j ≤ NA−1

j−1

NA+
j+1 ≤ NA+

j ≤ UA+
j NA+

j+1 ≤ NA+
j ≤ NA+

j−1 NA+
j+1 ≤ NA+

j ≤ NA+
j−1 LA+

j ≤ NA+
j ≤ NA+

j−1

The posteriors for the population size parameters are obtained by substituting the distribu-

tions used in (1)-(3) in the following equations:

If a = 1 then π(N1
j | . . . ) is obtained from:

π(N1
j | N2+

j , ρj)π(N1
j+1 | N1

j , φ1
j )L(C1

j−1 | N1
j ,πj−1) j=Sp

π(N1
j | N1

j−1, φ
1
j−1)π(N1

j+1 | N1
j , φ1

j )L(C1
j−1 | N1

j ,πj−1) j=Su,Au

π(N1
j | N1

j−1, φ
1
j−1)π(N2

j+1 | N1
j , φ1

j )L(C1
j−1 | N1

j ,πj−1) j=Wi
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If 1 < a < A − 1 then π(Na
j | . . . ) is obtained from:

π(Na
j | Na−1

j−1 , φa−1
j−1)π(Na

j+1 | Na
j , φa

j )L(Ca−1
j−1 | Na

j ,πj−1) j=Sp

π(Na
j | Na

j−1, φ
a
j−1)π(Na

j+1 | Na
j , φa

j )L(Ca
j−1 | Na

j ,πj−1) j=Su,Au

π(Na
j | Na

j−1, φ
a
j−1)π(Na+1

j+1 | Na
j , φa

j )L(Ca
j−1 | Na

j ,πj−1) j=Wi

If a = A − 1 then π(NA−1
j | . . . ) is obtained from:

π(NA−1
j | NA−2

j−1 , φA−2
j−1 )π(NA−1

j+1 | NA−1
j , φA−1

j )L(CA−1
j−1 | NA−1

j ,πj−1) j=Sp

π(NA−1
j | NA−1

j−1 , φA−1
j−1 )π(NA−1

j+1 | NA−1
j , φA−1

j )L(CA−1
j−1 | NA−1

j ,πj−1) j=Su,Au

π(NA−1
j | NA−1

j−1 , φA−1
j−1 )π(NA+

j+1 | NA−1
j ,NA+

j , φA−1
j , φA+

j )L(CA−1
j−1 | NA−1

j ,πj−1) j=Wi

Finally, if a = A+ then π(NA+
j | . . . ) is obtained from:

π(NA+
j | NA−1

j−1 ,NA+
j−1, φ

A−1
j−1 , φA+

j−1)π(NA+
j+1 | NA+

j , φA+
j )L(CA−1

j−1 + CA+
j−1 | NA+

j ,πj−1) j=Sp

π(NA+
j | NA+

j−1, φ
A+
j−1)π(NA+

j+1 | NA+
j , φA+

j )L(CA+
j−1 | NA+

j ,πj−1) j=Su,Au

π(NA+
j | NA+

j−1, φ
A+
j−1)π(NA+

j+1 | NA−1
j ,NA+

j , φA−1
j , φA+

j )L(CA+
j−1 | NA+

j ,πj−1) j=Wi

Appendix B

Discrete Uniform asymmetric proposals used to estimate the

population size with the Metropolis-Hastings algorithm

Let q(.) be a proposal distribution to move from the current value N
a(C)
j to the proposed

value N
a(P )
j . Since the constraints in the system process limit the range of values to be

explored, we use a discrete Uniform proposal because it is simple and provides a good mixing.

Without any constraints such a proposal would be: q(N
a(C)
j ,N

a(P )
j ) = DUnif(aua

j ,bua
j ) where

aua
j = N

a(C)
j − εa

j , bua
j = N

a(C)
j + εa

j and εa
j may be either fixed or (more efficiently) used to

tune the proposal every k iterations (Section 4). However, the binomial coefficients in the

system process and the autoregressive structure in the resightings require that we choose:

aua
j = max{La

j , n
a
j ,N

a
j − εa

j} j 6= Sp

aua
j = max{La

j , n
a−1
j ,Na

j − εa
j} j = Sp

bua
j = min{La

j ,N
a
j + εa

j}

where La
j and Ua

j are defined in Appendix A. Note that since the proposals are not symmetric

their corresponding normalising constants do not cancel out in the acceptance ratio, so that

we also need to calculate values, say auNa
j and buNa

j , for the reverse move q(N
a(P )
j ,N

a(C)
j ).
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Figure 1: Simulation study: estimates from one run of the algorithm with 4 × 106

iterations after an adaptive phase of 105 iterations. The grey line is the true population
size; the black line is the posterior mean with 95% HPDIs, and the stars are the number
of distinct individuals used for the estimation.
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Figure 2: Female Soay sheep: series of posterior means and 95% HPDIs for seasonal
survival probabilities, by age group. The plots highlight the increased sensitivity to
Winter for lamb survival, especially in the years of population decline, and a higher
seasonal variability for the group a = 8+ where mortality is not only confined to
Winter. Note that φ1

61 has the same variability as the prior because there are no
captures in Spring 2001
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Figure 3: Female Soay sheep: series of posterior means and 95% HPDIs for seasonal
recapture probabilities, by age group. The strong seasonal pattern highlights the
preference of researchers for the Summer season to recapture individuals
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Figure 4: Female Soay sheep: posterior means and 95% HPDIs for the probability of
being resighted in 9 of the 30 locations in different seasons. The crosses are for Spring,
circles for Summer and triangles for Autumn. No resightings are available in Winter
due to difficult weather conditions. Each individual may be resighted at more than
one location during a season.
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Figure 5: Female Soay sheep: estimated posterior means and 95% HPDIs for the
population accessing the study area. The stars are the number of distinct individuals
resighted in each season and used for the estimation. The higher uncertainty in Spring
2001 comes from the first age group, N1

61, (see §6.1). The grey crosses are the raw
counts of the population in the study area each Summer. The grey circles are the raw
counts of the population in the whole island each Summer. These raw counts were not
used for the estimation and are reported here in order to compare the overall island
dynamics to that in the study area and to check the consistency of our method.
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Table 1: Female Soay sheep: posterior means (SD) and [95% HDPI] for location
coefficients of the logistic model described in §3.2

Effect Mean(SD) 95%HPDI Effect Mean(SD) 95%HPDI
ABHM 0 HELI -0.07 (0.04) [-0.16, 0.01]
ANLA 0.01 (0.05) [-0.08, 0.09] LAGA -0.36 (0.05) [-0.45, -0.26]
BASE 0.09 (0.04) [ 0.00, 0.17] MIDF 1.28 (0.04) [1.21, 1.35]

CEME -0.05 (0.04) [-0.14 , 0.03] MMOR -2.18 (0.10) [-2.37, -1.99]
CHIM -0.41 (0.05) [-0.50 , -0.31] OISE 0.44 (0.04) [0.36, 0.52]
COLU -0.97 (0.06) [-1.08 , -0.85] OLDV 0.83 (0.04) [0.76, 0.91]

CONA -0.50 (0.05) [-0.60, -0.40] QUAR -0.32 (0.05) [-0.41, -0.22]
FACF 0.35 (0.04) [0.27, 0.43] RUAI -3.26 (0.16) [-3.56,-2.85]
GAP -2.25 (0.10) [-2.45 ,-2.06] SGAR 0.46 (0.04) [0.37,0.54]

GEAL -0.36 (0.05) [-0.45, -0.26] SHOR -1.78 (0.08) [-1.94, -1.62]
GEAR -0.01 (0.04) [0.27, 0.43] SIGM 1.64 (0.04) [1.57, 1.71]
GLAC -0.78 (0.06) [-0.89, -0.67] SINK -0.72 (0.06) [-0.83 , -0.61]

GLEB -0.19 (0.05) [-0.28, -0.10] STBR 0.39 (0.04) [0.31, 0.47]
GUNM -0.32 (0.05) [-0.41, -0.22] WESF 1.13 (0.04) [1.06, 1.21]
GYM -0.01 (0.04) [-0.10, 0.07] WESM 1.86 (0.04) [1.80, 1.93]

2Parameters α1 (Abhainn Mhor) and β1 (Spring ’86) were set to 0 for identifiability.
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