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Università Ca’ Foscari Venezia, Italy

David Firth

Department of Statistics

University of Warwick, UK

Summary

In the course of national sports tournaments, usually lasting several months, it is expected

that the abilities of teams taking part in the tournament change in time. A dynamic extension

of the Bradley-Terry model for paired comparison data is introduced to model the outcomes

of sporting contests allowing for time-varying abilities. It is assumed that teams’ home

and away abilities depend on past results through exponentially weighted moving average

processes. The proposed model is applied to sports data with and without tied contests,

namely the 2009-2010 regular season of the National Basketball Association tournament and

the 2008-2009 Italian Serie A football season.

Keywords: Bradley-Terry model; Cumulative logit model; Exponentially weighted moving

average process; Paired comparisons; Sport tournaments.
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1 Introduction

The analysis of sports data has always aroused great interest among statisticians. Albert et

al. (2005) collect a number of articles that summarise various statistical aspects of interest in

sports data including rating of players or teams, evaluation of sport strategies, enhancement

of sport rules, illustration of statistical methods and forecasting of results.

Sports data have been investigated from different perspectives, often with the aim of

forecasting the results. A first approach consists in modelling the scores of the two teams.

Maher (1982) employs independent Poisson distributions for the score of each team with

means that depend on the attack and defence strength of teams. Dixon and Coles (1997)

propose an ad hoc adjustment of the Poisson distribution introducing a dependence parameter

that modifies the probabilities of the results 0-0, 0-1, 1-0 and 1-1. Dixon and Coles (1997)

introduce also a dynamic element in the model updating the parameter estimates including

the results up to the last observation and down-weighting observations distant in time. Karlis

and Ntzoufras (2003) suggest applying a bivariate Poisson distribution with a dependence

parameter between the number of goals scored by the two teams and then extend the model

to inflate the probabilities of draws.

McHale and Scarf (2007) model the number of shots of the two teams. They propose two

different types of Archimedean copula with either Poisson or negative binomial distributions

for the marginals to account for the negative dependence between shots-for and shots-against.

Extensions allowing dynamic developments of abilities of the teams are proposed by Rue

and Salvesen (2000) and Crowder et al. (2002). Rue and Salvesen (2000) assume that the

attack and defence strength parameters of each team follow a Brownian motion process.

The model is estimated by employing Bayesian inference through Markov chain Monte Carlo

methods. Crowder et al. (2002) suggest an autoregressive model for the attack and defence

abilities of teams. The original model is then replaced by a derived version that is easier to

handle by maximum likelihood.

A second approach to the analysis of sports data consists of modelling the difference in
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scores. Clarke and Norman (1995) perform a linear regression of the difference in scores on

the difference in strength of the two teams. Harville (2003) employs a similar specification,

but eliminates the incentives for running up the score beyond a predetermined number of

points. A dynamic specification of strength in this context is considered in Harville (1980)

who proposes an autoregressive process for the strength of teams in different seasons. Also

Glickman and Stern (1998) assume that the evolution of week-by-week and seasonal strength

follows a first-order autoregressive process; inference is carried out in a Bayesian framework

through Markov chain Monte Carlo algorithms.

Finally, sports data can be analysed by considering only the outcomes of the matches (win-

draw-loss). Goddard and Asimakopoulos (2004) use an ordered probit model to determine

which covariates, e.g. importance of the match, fouls, yellow and red cards, affect the result

of the match. An ordered probit model is adopted also by Koning (2000) who specifies the

probability of the outcome as a function of the difference of abilities of the two teams. Kuk

(1995) introduces two strength parameters for each team, one denoting the strength when

playing at home and the other when playing away.

Barry and Hartigan (1993) propose a dynamic extension for the ability parameters of

teams; they employ a choice model assuming a prior distribution for strength of teams that

changes slowly in time. Fahrmeir and Tutz (1994) consider three possible specifications for

the development of abilities: a first and second order random walk and a local linear trend

model. These models are estimated using empirical Bayes methods. Glickman (1999) specifies

a logit model assuming a prior with normal increments for abilities of teams and proposes

an approximate Bayesian algorithm for ranking purposes. Knorr-Held (2000) employs a logit

model assuming random walk priors for abilities of teams. The variance of the random walk

is estimated through four different predictive criteria while the abilities are estimated by

means of the extended Kalman filter and smoother.

In this paper, we analyse the results of sport tournaments from the last perspective, that

is modelling the outcomes of matches. Since we are interested in studying how the strengths
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of the teams evolve during the season, we develop a dynamic paired comparison model. In

particular, we model the evolution in time of the abilities in home and away matches of each

team through an exponentially weighted moving average process.

The paper is organised as follows. Section 2 presents two motivating data sets regarding

the American National Basketball Association (NBA) league and the Italian major men’s

football league. Section 3 describes the proposed dynamic version of the Bradley-Terry

model, discusses maximum likelihood estimation and considers model validation by Brier

and ranking probability scores. The methodology is applied in Section 4 to the data for the

two sports. Concluding remarks and future research are summarized in Section 5.

The data and R (R Development Core Team, 2011) code written for implementing the

analyses are available from www.blackwellpublishing.com/rss.

2 Description of the data and analyses with non-dynamic

abilities

2.1 National Basketball Association

As first motivating example we consider the 2009-2010 regular season of the NBA league.

There are thirty teams in the league playing 82 games each, 41 at home and 41 away. The

total number of matches is 1,230. The schedule of the tournament includes a greater number

of contests against teams in the same division and in the same conference, while competitions

between teams in different conferences are less numerous. The regular season started at the

end of October 2009 and ended in mid April 2010. Matches were played in 164 different days.

The number of matches per day ranges from 1 to 14, the mean number is 7.5.

The description of the proposed methodology for the analysis of tournaments is simplified

by the assumption of an order for the m = 1,230 matches among the n = 30 teams involved

in the tournament. A convenient choice is to arrange the matches in chronological order,
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with those played at the same time in alphabetic order of the home team. Let Yi be the

binary random variable which denotes the result of the ith match, i = 1, . . . ,m, played by

the home team hi against the visiting team vi; with hi, vi = 1, . . . , n, hi 6= vi. We arbitrarily

code Yi = 1 if the home team wins and Yi = 0 if the visitors win.

Traditional paired comparison models describe the outcome probability as pr(Yi = 1) =

F (ahi − avi), where F is a cumulative distribution function while ahi and avi are the param-

eters representing the abilities of the home and the visiting teams in match i. This simple

choice model is commonly termed the Bradley-Terry model (Bradley and Terry, 1952) or the

Thurstone-Mosteller model (Thurstone, 1927; Mosteller, 1951) depending on whether F is

the cumulative distribution function of a logistic or of a standard normal random variable,

respectively. In the rest of the paper, we will consider the Bradley-Terry specification.

The advantage deriving from playing at home is commonly taken into account by including

a common home effect parameter η for all teams (Fahrmeir and Tutz, 1994; Knorr-Held, 2000;

Harville, 2003), thus leading to the model

pr(Yi = 1) =
exp (η + ahi − avi)

1 + exp (η + ahi − avi)
. (1)

Parameter identifiability requires one constraint in the set of abilities, such as the sum

constraint
∑n

k=1 ak = 0 or the reference team constraint ak = 0 for some k ∈ {1, . . . , n}.

Table 1 shows the estimates of the abilities âk from model (1) with the sum constraint

on team abilities. Teams are ranked on the basis of the number of matches won during the

season out of the total 82 matches played (first column). The second column indicates which

percentage of the won matches was played at home. On average circa 60% of the matches

are won by the home team, therefore the advantage in playing at home seems not negligible.

Columns three and five in Table 1 report the estimated abilities and the ranking according

to the estimated abilities. There is a very close agreement between the ranking obtained by

the estimated abilities and the number of won matches, indeed the Kendall rank correlation

τ is 0.97. The estimated home effect (with standard error in brackets) is η̂ = 0.487 (0.067).
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Table 1: 2009-2010 American National Basketball Association league. The table displays:
(1) number of matches won (won), (2) percentage of won matches played at home (% home),
(3) estimated abilities (ability), (4) quasi-standard errors (qse) and (5) ranks (rank) based
on the static Bradley-Terry model, (6) estimated mean abilities and (7) ranks based on the
dynamic Bradley-Terry model.

static dynamic
won % home ability qse rank ability rank

Cleveland Cavaliers 61 0.57 1.189 0.267 1 0.769 1
Orlando Magic 59 0.58 1.048 0.260 2 0.568 3
Los Angeles Lakers 57 0.60 0.997 0.254 3 0.650 2
Dallas Mavericks 55 0.51 0.835 0.249 4 0.451 5
Phoenix Suns 54 0.59 0.767 0.248 5 0.382 8
Atlanta Hawks 53 0.64 0.692 0.247 8 0.424 7
Denver Nuggets 53 0.64 0.744 0.246 7 0.482 4
Utah Jazz 53 0.60 0.749 0.248 6 0.348 9
Boston Celtics 50 0.48 0.493 0.243 12 0.447 6
Oklahoma City Thunder 50 0.54 0.565 0.242 10 0.268 11
Portland Trail Blazers 50 0.52 0.538 0.242 11 0.253 12
San Antonio Spurs 50 0.58 0.580 0.242 9 0.270 10
Miami Heat 47 0.51 0.307 0.239 13 0.070 14
Milwaukee Bucks 46 0.61 0.241 0.239 14 0.054 15
Charlotte Bobcats 44 0.70 0.155 0.239 15 0.019 16
Houston Rockets 42 0.55 0.140 0.237 16 0.080 13
Chicago Bulls 41 0.59 0.000 0.237 17 -0.065 20
Memphis Grizzlies 40 0.58 -0.011 0.237 18 0.019 17
Toronto Raptors 40 0.63 -0.074 0.240 19 0.017 18
New Orleans Hornets 37 0.65 -0.177 0.240 20 -0.037 19
Indiana Pacers 32 0.72 -0.544 0.246 21 -0.382 22
Los Angeles Clippers 29 0.72 -0.651 0.249 22 -0.300 21
New York Knicks 29 0.62 -0.749 0.250 23 -0.415 23
Detroit Pistons 27 0.63 -0.821 0.252 25 -0.446 25
Philadelphia 76ers 27 0.44 -0.830 0.253 26 -0.457 26
Golden State Warriors 26 0.69 -0.804 0.254 24 -0.586 28
Washington Wizards 26 0.58 -0.904 0.257 28 -0.494 27
Sacramento Kings 25 0.72 -0.888 0.258 27 -0.436 24
Minnesota Timberwolves 15 0.67 -1.616 0.302 29 -0.834 29
New Jersey Nets 12 0.67 -1.972 0.327 30 -1.119 30
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Column four of Table 1 reports the quasi-standard errors (Firth and de Menezes, 2004) of the

abilities. The quasi-standard errors allow one to approximately reconstruct the uncertainty

of pairwise differences âk− âk′ used for comparing teams k and k′ without the need to report

also the covariance between âk and âk′ . For example, if it is of interest to test whether the

ability of Cleveland is significantly higher than the ability of Orlando, the standard error of

the difference between the estimators can be approximated using the quasi-variances simply

as (0.2672 +0.2602)1/2 = 0.373. In this case, the abilities of the best two teams do not appear

statistically different.

2.2 Association football

The second application concerns the 2008-2009 Italian Serie A football league. This tourna-

ment comprises n = 20 teams with matches played between August 2008 and May 2009. The

tournament has a double round-robin structure, so each team competes twice against all the

other teams in the league, once at home and once away. The total number of matches is thus

m = n(n− 1) = 380. These matches were played on 74 different days. As in the NBA, there

are days with just one match and days with up to 10 matches played. The average number

of matches per day is 5.14.

The teams, ranked according to the final points order, are listed in Table 2. In the

football tournament, the winning team gains 3 points while the losing team gets nothing.

If the match is drawn, both teams gain 1 point. On average, 65% of the total points are

gained in home matches, with percentages ranging from 45% to 79% and it is then evident

that home advantage of teams should be included in the model.

In contrast to basketball, football matches can also end in a draw, hence the random

variable Yi has three categories arbitrarily coded as 2 if the home team wins, 1 in case of

draw and 0 in case of victory of the visiting team. Accordingly, model (1) is extended to
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Table 2: 2008-2009 Italian Serie A football league. The table displays: (1) final points (pts),
(2) percentage of points won at home (% home), (3) estimated abilities (ability), (4) quasi-
standard errors (qse) and (5) ranks (rank) based on the static Bradley-Terry model, (6)
estimated mean abilities and (7) ranks based on the dynamic Bradley-Terry model.

static dynamic
pts % home ability qse rank ability rank

1) Internazionale 84 0.56 1.380 0.348 1 0.462 1
2) Juventus 74 0.53 0.928 0.324 2 0.303 2
3) Milan 74 0.61 0.913 0.326 3 0.294 3
4) Fiorentina 68 0.65 0.643 0.327 5 0.205 4
5) Genoa 68 0.60 0.693 0.314 4 0.177 5
6) Roma 63 0.68 0.422 0.310 6 0.108 6
7) Udinese 58 0.66 0.231 0.306 7 -0.007 11
8) Palermo 57 0.75 0.124 0.319 8 0.071 7
9) Cagliari 53 0.70 -0.010 0.315 9 0.004 10
10) Lazio 50 0.56 -0.233 0.329 12 0.028 8
11) Atalanta 47 0.70 -0.224 0.317 11 -0.009 12
12) Napoli 46 0.76 -0.259 0.307 13 0.009 9
13) Sampdoria 46 0.70 -0.177 0.295 10 -0.098 14
14) Siena 44 0.73 -0.425 0.312 15 -0.109 15
15) Catania 43 0.79 -0.409 0.319 14 -0.070 13
16) Chievo 38 0.45 -0.527 0.306 16 -0.243 16
17) Bologna 37 0.57 -0.627 0.315 17 -0.252 17
18) Torino 34 0.74 -0.760 0.316 18 -0.259 18
19) Reggina 31 0.58 -0.850 0.311 20 -0.337 20
20) Lecce 30 0.63 -0.833 0.303 19 -0.276 19
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account for draws with a cumulative link specification (Agresti, 2002)

pr(Yi ≤ yi) =
exp (δyi + η + ahi − avi)

1 + exp (δyi + η + ahi − avi)
, yi ∈ {0, 1, 2}, (2)

where−∞ < δ0 < δ1 < δ2 =∞ are cutpoint parameters. Parameter identifiability is achieved

by imposing the “symmetrical” constraints δ0 = −δ and δ1 = δ, with δ ≥ 0. These constraints

are needed to ensure that two teams with the same ability playing on a neutral field (no home

advantage) have the same probability of winning the match. If Yi assumes only two possible

values, then the cumulative logit model (2) reduces to the standard Bradley-Terry model (1),

and δ becomes 0.

Column three of Table 2 shows the estimates of the abilities âk again with the sum

constraint on team abilities. The estimates of the abilities range from −0.850 for Reggina to

1.380 for Internazionale. The ranking derived from the estimated abilities is very similar to

the final points ranking, as the Kendall τ rank correlation is 0.94. The estimated home effect

parameter is η̂ = 0.661 (0.105) and the estimated cutpoint parameter is δ̂0 = −0.652 (0.061).

Column four in Table 2 reports quasi-standard errors for teams’ abilities. In this case, if,

for example, it is of interest to test whether the ability of Internazionale is significantly

higher than the ability of Juventus, the standard error of the difference can be computed as

(0.3482 + 0.3242)1/2 = 0.475, so there is no evidence in this model that they are statistically

different even though Internazionale ended the tournament ten points ahead of Juventus.

In the above static models, parameters ak measure the overall abilities of the teams over

a complete season. However, team abilities are expected to change during the season because

of injuries to players, tiredness due to participation also in international competitions, team

psychology and other factors. In the next section we develop a dynamic version of the

Bradley-Terry model in which abilities are allowed to change and to depend on the past

performance of the team.
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3 Dynamic Bradley-Terry model

3.1 The model

We model the match results with the following dynamic Bradley-Terry model

pr(Yi ≤ yi|Yi−1 = yi−1, . . . , Y1 = y1) =
exp {δyi + ahi(ti)− avi(ti)}

1 + exp {δyi + ahi(ti)− avi(ti)}
, (3)

where ahi(ti) describes the ability of the home team hi in match i played against the visiting

team vi at time ti. We specify an evolution of the team ability in home matches which

depends only on past matches played at home, while the ability when playing away depends

only on past matches played as visitors. First, consider the ability in home matches and let

t
(−1)
i be the time of the match previous to match i in which hi was the home team. The

ability of the home team ahi(ti) is assumed to evolve in time following the exponentially

weighted moving average (EWMA) process

ahi(ti) = λ1µhi(ti) + (1− λ1)ahi(t
(−1)
i ), (4)

for some home-specific smoothing parameter λ1 ∈ [0, 1]. The term µhi(ti) denotes the mean

home ability of team hi based only on the result of the nearest previous match played at

home by hi

µhi(ti) = β1 rhi(t
(−1)
i ), (5)

with β1 being a home-specific parameter and rhi(t
(−1)
i ) a variable measuring the result of

team hi in the match played at time t
(−1)
i . In the NBA application, we specify rhi(t

(−1)
i ) as

the binary variable equal to 1 if team hi won its previous home match and 0 if it was defeated.

Thus, if j denotes the nearest match previous to match i, which was played by hi at home,

i.e. t
(−1)
i = tj, then rhi(t

(−1)
i ) = yj. Instead, in the Serie A application, we specify rhi(t

(−1)
i )

as the number of points earned by team hi at time t
(−1)
i of its previous home match: 3 points
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in case of victory, 1 for a draw and 0 for a loss.

The ability model (4) must be complemented by an initial condition. We assume that all

teams start with the same home ability equal to β1 r̄h, where r̄h is an average of variables

rhi(t) over the previous season. In the analysis of NBA 2009-2010, r̄h is 0.608, the frequency

of victories at home during the NBA 2008-2009 regular season. In the analysis of the Serie

A 2008-2009 data, r̄h is 1.676 points, the average number of points gained by home teams

during the Serie A 2007-2008 season.

Suppose that the home team hi has played K matches at home before the match played

at time ti. Then, by iterated back-substitution, the model based on the pair of equations

(4)-(5) can be reformulated as

ahi(ti) = β1

{
λ1

K−1∑
k=0

(1− λ1)k rhi(t
(−k−1)
i ) + (1− λ1)K r̄h

}
= β1 xhi(ti;λ1), (6)

with t
(−r)
i denoting the time of the rth previous match played at home by team hi. Thus, the

ability ahi(ti) is a function of the entire past history of home matches, rhi(t
(−1)
i ), rhi(t

(−2)
i ),

. . . , rhi(t
(−K)
i ). The derived covariate xhi(ti;λ1) is a weighted mean of these past results with

weights λ1, λ1(1 − λ1), . . . , λ1(1 − λ1)K , geometrically decreasing to zero. The smoothing

parameter λ1 specifies the persistence of the dependency on previous home matches. In the

limiting case λ1 = 1, the home team’s ability depends only on the previous home match,

ahi(ti) = β1 rhi(t
(−1)
i ). On the contrary, if λ1 = 0 the home ability is constant in time and

equal for all teams, ahi(ti) = β1r̄h = η. Values of λ1 ∈ (0, 1) specify different levels of

smoothing. In particular, home abilities smoothed in time are obtained when λ1 approaches

zero.

Similarly, the ability of the visiting team is modelled by a second EWMA process

avi(ti) = λ2µvi(ti) + (1− λ2)avi(t
(−1)
i ),

where λ2 ∈ [0, 1] is the visitor-specific smoothing parameter and µvi(ti) = β2rvi(t
(−1)
i ) for a
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visitor-specific coefficient β2. The starting values for r are computed similarly to those for the

home abilities. In the NBA 2009-2010 data r̄a is set equal to 0.392, the frequency of visitors’

victories during season 2008-2009, while in the Serie A 2008-2009 data r̄a = 1.029 points, the

average number of points gained by visitors in the Serie A 2007-2008 tournament.

Thus, in the proposed dynamic Bradley-Terry model, the EWMA specification is used

to account for the serial association among match results of the same team, with suitable

differences between home and away matches.

3.2 Likelihood inference

EWMA processes are routinely used in time series forecasting (Holt, 2004) and in statistical

quality control charts (Montgomery, 2005). In these contexts, the smoothing parameter is

often chosen by trials or by using ad hoc methods based on previous experience. However,

many have argued that automatic, data driven choices of the smoothing parameter would be

preferable. For example, in classical time series, the smoothing parameter “is often estimated

by minimizing the sum of squared one-step-ahead forecasts” (Chatfield, 2000, p. 105).

Here, we follow the recommendation to identify the smoothing parameters using avail-

able observations and consider maximum profile likelihood estimation of the two smoothing

parameters λ1 and λ2.

Let γ = (β1, β2, δ)
T be the vector of parameter of interests and let λ = (λ1, λ2)

T be the

vector of nuisance smoothing parameters. Under the chosen order for the match results, the

likelihood function for θ = (γT,λT)T is written as

L (θ;y) = pr(Y1 = y1;θ)
n∏
i=2

pr(Yi = yi|Yi−1 = yi−1, . . . , Y1 = y1;θ).

Given the home smoothing parameter λ1, the home ability can be written as ahi(ti) =

β1 xhi(ti;λ1), where xhi(ti;λ1) is the weighted average of past home results rhi(t
(−k)
i ) with

weights λ1(1−λ1)k−1, see formula (6). In parallel, given the visitors’ smoothing parameter λ2,
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the visitors ability is avi(ti) = β2 xvi(ti;λ2) where xvi(ti;λ2) has a specification analogous to

the home case. Accordingly, the conditional probability for the result of match i is expressed

by the cumulative logit model

pr(Yi ≤ yi|Yi−1 = yi−1, . . . , Y1 = y1;θ) =
exp {δyi + β1xhi(ti;λ1)− β2xvi(ti;λ2)}

1 + exp {δyi + β1xhi(ti;λ1)− β2xvi(ti;λ2)}
.

Thus, if the smoothing parameters are known, the likelihood function for the interest param-

eter γ corresponds to that of a standard logistic regression model if draws are not allowed

(e.g. basketball) or that of a cumulative logistic regression model with constrained cutpoints

in case of draws (e.g. football). The simplicity of computation of γ̂λ, the estimates of γ given

λ, suggests a two-step maximization of the likelihood. First, the smoothing parameter vector

λ is estimated by maximizing the profile likelihood L (γ̂λ,λ;y), then γ is estimated as γ̂ λ̂.

This approach is employed in the applications illustrated in Section 4.

3.3 Model validation

Model validation can be based upon comparison of the fitted probabilites from the proposed

model with fitted probabilites from the unstructured model (2). The proposed model aims to

capture the evolution in time of all teams abilities with only four parameters (five in case of

draws), while the unstructured model has n free parameters (n+ 1 when draws are allowed),

with n being the number of teams. Clearly, the unstructured model is expected to fit the

data better, and thus it may be viewed as a benchmark. The closer the fitted probabilities of

the proposed model are to those of the unstructured model, the better is the fit. In order to

summarize the fitted probabilities we consider the Brier score (Brier, 1950) which is defined

for match i as

BSi =

Q−1∑
q=0

{
pr(Yi = q|Yi−1 = yi−1, . . . , Y1 = y1; θ̂)− 1(yi = q)

}2

, i = 1, . . . ,m,
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where 1(yi = q) is the indicator function of the event {yi = q}, Q = 2 for sports without

draws and Q = 3 when draws are allowed, and θ̂ is the maximum likelihood estimate of θ

based on the results of all the played matches, i.e. y1, . . . , ym. When the fit is perfect, giving

probability 1 to the observed outcome, the Brier score is equal to zero, while a completely

erroneous fit produces a Brier score equal to 2.

Some authors have suggested that in the case of more than two categories it is better to

employ an index which accounts for the whole distribution of probabilities, such as the rank

probability score (Czado et al., 2009)

RPSi =

Q−1∑
q=0

{
pr(Yi ≤ q|Yi−1 = yi−1, . . . , Y1 = y1; θ̂)− 1(yi 6 q)

}2

.

In the analysis of sport tournaments the real interest usually lies in forecasting future

results. Hence, it may be more relevant to evaluate the fitted model from a predictive point

of view. In this case, we quantify the BSi and RPSi using the maximum likelihood estimate

θ̂(i−1) computed only with matches played before the forecasted match i, that is only with

results y1, . . . , yi−1.

4 Applications

4.1 Application to the NBA tournament

We fit the proposed model to the NBA 2009-2010 regular season. Figure 1 shows the profile

log-likelihood for the smoothing parameters λ1 and λ2. This is maximized at λ̂1 = 0.043

and λ̂2 = 0.025. These two values are close to zero thus supporting the effect also of remote

match results on the estimation of the present ability. The limiting model with one common

home advantage parameter and no evolution in time of abilities corresponds to λ1 = λ2 = 0.

This pair of values for the smoothing parameters is strongly not supported by the data.

In fact, the maximized profile log-likelihood is −752.22 while the profile log-likelihood for
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Figure 1: NBA 2009-2010. Contour plot of the profile log-likelihood for the smoothing
parameters λ1 and λ2. Left panel: contour plot of the profile log-likelihood for all the range
of values of λ1 and λ2. Right panel: zoom of the area of highest likelihood. The point marks
the maximum likelihood estimate.

λ1 = λ2 = 0 is much smaller, at −830.56. The maximum likelihood estimates for the home

and away coefficients computed at the estimated smoothing parameters are β̂1 = 5.503 and

β̂2 = 7.379, with estimated standard errors 0.465 and 0.699, respectively. Both estimates

appear strongly significant.

To validate the fitted model, we compute the fitted Brier scores for each of the 1,230

matches both with the proposed model, which includes only 4 parameters, and with the

unstructured model involving 31 parameters. There is a high positive association between

the Brier scores of the two models, in fact their correlation is 0.784. The mean of the Brier

scores for the fitted model is 0.424, while for the unstructured model it is 0.379, thus the latter

is 10.6% smaller in mean. This result was expected given the larger number of parameters

of the unstructured model.

However, it is more interesting to consider the appropriateness of the proposed model

by evaluation of its predictive performance. For this purpose, we fit the model to the data

coming from half of the competition days, i.e. 82 days, then predict the results of the matches

taking place in the following competition day, the 83rd, and compare them with the observed

results by the Brier score. Then, the model is refitted including also the matches in day 83

and used to forecast results in day 84, and so on until the last day of matches (day 164).
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Figure 2: Boxplots of the predictive Brier scores for the NBA data (left panel) and boxplots
of rank probability scores for the football data (right panel) computed for the unstructured
model (unstructured), the EWMA model (EWMA) and the forecasts based on empirical pro-
portions (empirical).

Following this scheme we compute predictions for a total of 638 matches. Predictions from

the unstructured model are similarly computed. These predictions are also compared with

those obtained simply using the empirical proportions of wins and losses of the home team

computed on the first half of the competition days. These fixed empirical proportions are

employed to forecast all the results of the second half of the tournament. The left panel in

Figure 2 shows the boxplots of the Brier scores computed for each forecasted match using

the unstructured model, the EWMA model and the empirical proportions of wins and losses.

Visual inspection of the boxplots shows that the Brier scores of our model are very similar

to those of the unstructured model while the Brier scores of the empirical proportions are

noticeably worse. Specifically, the mean predictive Brier score for the proposed and the

unstructured model are very close: 0.421 and 0.409, respectively. The correlation between

the two sets of Brier scores is 0.879. The overall conclusion is that the proposed model is very

competitive with the unstructured one from a predictive point of view. The mean Brier score

of empirical proportions is 0.497, so it is 15% larger than the one of the proposed model.

Furthermore, both the unstructured and the proposed models present Brier scores which are

lower than the Brier score of empirical proportions in 66% of the forecasts.

Figure 3 shows the smoothed abilities for nine teams during the complete regular season.
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The smoothed abilities are computed with parameters estimated from the complete tourna-

ment. For each team there is a home and a visiting ability that are plotted in the same

graph. The time scale is the sequence of matches; at the end of the regular season each team

has played 41 matches at home and 41 away. Cleveland Cavaliers ended the season with

the highest number of victories, 61, and, as expected, their ability both in home and away

matches increases noticeably from the starting mean ability common to all teams. It seems
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Figure 3: NBA 2009-2010. Smoothed home and visiting abilities for nine different teams.
Each plot displays the time series of smoothed home (solid line) and visiting (dashed line)
estimated abilities.

that Cleveland benefits from an important home-advantage effect, indeed it won 85% of the

matches that it played at home and 63% of the matches played away. Also New Orleans

Hornets show an important home effect especially in the first half of the season. This team
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won 16 matches at home out of the first 20 matches while it succeeded only in 5 matches

away out of the first 20. However, in the second part of the season it showed no particular

advantage in playing at home since it won 8 matches out of the last 21 both at home and

away. New Jersey Nets was the team that performed worst during the season. They won a

total of 12 matches during the whole tournament and performed poorly both at home and

away. The increase in the visiting ability after match 30 is due to their winning three away

matches in a row.

Finally, column six in Table 1 reports the ranking derived from the proposed model based

on the average of the team abilities in each of the 82 days in which the team played. The

reported abilities are computed so as to sum to zero, by analogy with the unstructured model.

The Kendall rank correlation between the rankings of the unstructured and the proposed

model is 0.89. In this case we cannot report quasi-standard errors since the abilities are not

individual parameters as in the static Bradley-Terry model. Suppose we are interested in

testing whether the ability of Cleveland Cavaliers is significantly higher than the ability of

Orlando Magic. The ability of the former team is 0.769 while the ability of the latter is 0.568,

so their difference amounts to 0.201. This difference appears statistically significant since its

standard error is 0.018. This result is different from the result given by the unstructured

model because the proposed model has fewer parameters and thus the ability estimates are

more precise.

4.2 Application to the Serie A tournament

The second data set concerns the 2008-2009 Serie A football tournament which allows also

for ties. The profile log-likelihood is maximized at λ̂1 = 0.108 and λ̂2 = 0.078, again a pair

of values quite close to zero. The support for this model, in contrast to the static model

resulting when λ1 = λ2 = 0, is given by the maximized profile log-likelihood which is equal to

−383.27, while it takes the value −393.68 in the model with smoothing parameters equal to

0. The maximum likelihood estimates for the coefficients computed at the estimated values
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of the smoothing parameters are β̂1 = 0.925, β̂2 = 1.031, with standard error 0.173 and

0.294, respectively, while the estimated cutpoint parameter is δ̂0 = −0.579 with standard

error 0.054.

Since in football data there are three possible results, it is more appropriate to employ the

rank probability score in order to validate the model. The mean rank probability score for the

whole tournament, which comprises m = 380 matches, is 0.416 for the proposed model and

0.369 for the unstructured model, hence the proposed model has a mean rank probability

score 11.2% higher than that of the unstructured model. The correlation between rank

probability scores for the two models is 0.715.

As for the NBA, it is however more interesting to consider the predictive performance of

the model. In order to forecast the results we employ the same scheme used for basketball

data. The model is estimated using the matches in the first half of the competition days

(37 days) and the results of matches occurred in the 38th day of competitions are predicted.

Then we updated the model with the matches performed in day 38 and predict the following

ones. The procedure is repeated until the end of the tournament with a total of 198 matches

predicted. The mean rank probability scores for the unstructured and the EWMA model

are essentially equal: 0.450 and 0.451, respectively. The correlation of the RPSi in the two

models is 0.762. The right panel of Figure 2 shows the boxplots of the rank probability scores

of the two models and the scores computed using the empirical proportions of home wins,

draws and losses computed in the first 37 days. It is evident that the medians of the RPSi

for the unstructured and the EWMA models are equal, however the EWMA model presents

a shorter box, thus with respect to the unstructured model it assigns higher probability to

results actually observed in fewer cases, but also it less often assigns higher probabilities to

results that do not occur. The mean RPSi of empirical proportions is 0.468, which is 4%

larger than the value for the EWMA model. Furthermore, the rank probability scores of the

empirical proportions are higher than the scores computed for the proposed model in 58% of

the forecast matches.
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Figure 4 shows the estimated abilities for nine of the teams which competed in the 2008-

2009 Serie A league. Internazionale won the tournament ending the season with 84 points,

while Juventus and Milan got the second position gaining 74 points each. The plots show

that the home performance of Internazionale is more stable during the season, in particular

they never lost a home match, while Juventus and Milan lost two home matches each. In

general, teams tend to perform better at home than away. This is particularly evident for

Siena which won 9 matches and drew 5 matches out of the 19 home matches, while in the

other 19 away matches they won only 3 times and drew 3 matches.
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Figure 4: Football 2008-2009. Smoothed home and visiting abilities for nine different teams.
Each plot displays the time series of smoothed home (solid line) and visitor (dashed line)
estimated abilities.

Column six in Table 2 reports the mean abilities of football teams resulting from the
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EWMA model. The Kendall rank correlation between the rankings derived from the un-

structured and the proposed models is 0.86. In this case, the standard error needed to test

whether the teams Internazionale and Juventus have the same ability is 0.037. Since the

estimated ability of Internazionale is 0.462 and the estimated ability of Juventus is 0.303,

yielding a difference of 0.159, the two teams appear to have statistically different abilities

whereas the unstructured model led to the opposite conclusion.

5 Conclusions

We have described a dynamic paired comparison model for the results of matches in sport

tournaments. The model specification describes the temporal evolution of teams’ abilities by

separate EWMA processes for the home and away results. The two applications to basketball

and football tournaments show that the proposed model seems to capture the relevant aspects

of the evolution in time of team abilities thus providing sensible forecasts if compared with

the unstructured model that fits one ability parameter for each team.

The proposed model uses only information about the final result of previous matches. It

seems reasonable that using more detailed information about previous matches may result in

more accurate data fitting and improved forecasts. Inclusion of additional information about

previous matches is easily handled under the model framework described in this paper, for

example one could substitute rhi(t
(−1)
i ) and rvi(t

(−1)
i ) with vectors rhi(t

(−1)
i ) and rvi(t

(−1)
i ) and

thus consider vector home and visitor parameters β1 and β2. With a possible large number

of covariates from previous matches, it could be sensible to consider some form of shrinkage

to avoid overfitting, for example by a lasso penalty (Tibshirani, 1996) on parameters β1 and

β2.

The proposed model requires starting values for the covariates. We considered equal

values for all teams, r̄h and r̄a, based on the results in the previous season. It is possible to

consider team-specific starting values, as for example the proportions of wins and losses at
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home for each team in the previous season. The use of team-specific starting values for the

NBA data leads to somewhat different estimates of the model parameters, but the fitting

and predictive qualities of the resulting model, as evaluated by the Brier score, are almost

identical to those of the model with all equal starting values. This exercise seems not possible

for the football data since the teams in the Serie A league change season-by-season: at the end

of the regular season the last three teams in the league are demoted to the lower league and

the three best teams of the lower league are promoted to the Serie A. Hence, the teams in the

league are not the same in different seasons and it seems inappropriate to use team-specific

values computed for teams in different leagues.

The issue of whether team-specific home advantages should be included in paired com-

parison models was considered by many authors with contrasting conclusions. Knorr-Held

(1997) does not find much evidence of home advantage heterogeneity among teams in the

Bundesliga. Neither do the results in Harville and Smith (1994) show much difference in

home field advantages among college basketball teams. Analyses for some other contexts do,

however, support heterogeneity in home advantages, see Clarke and Norman (1995), Kuk

(1995) and Glickman and Stern (1998) for different analyses of the English Premier Football

League. The model proposed in this paper can be seen as a convenient way to induce home

abilities which vary between teams and in time depending on past performances of teams.

We considered sports with matches that may end with two or three different results. There

are other competitions where more than three levels of results are possible. An example is

volleyball where points are assigned as follows: if a match ends 3 − 0 or 3 − 1 the winning

team gains 3 points and the losing team remains empty handed, while if the match ends 3−2,

the winning team gains 2 points and the losing team is awarded 1 point. As suggested by a

referee, the analysis of volleyball matches would require a categorical variable Yi with four

ordered levels. There is no special difficulty in extending our modelling framework to this

case. More generally, assume that Yi is a categorical variable that may assume Q different

categories where Q − 1 denotes the best result achievable for the home team and 0 denotes
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the best result for the visiting team. The cumulative logit model (2) is easily extended to

handle Q levels

pr(Yi ≤ yi) =
exp {δyi + ahi(ti)− avi(ti)}

1 + exp {δyi + ahi(ti)− avi(ti)}
, yi ∈ {0, 1, . . . , Q− 1}, (7)

where −∞ < δ0 < · · · < δQ−1 =∞ are cutpoint parameters. To preserve model identifiabil-

ity, the symmetrical constraint now becomes δq = −δQ−2−q, q = 0, . . . , Q− 1, and δQ/2−1 = 0

when Q is even.
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