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Subgroup selection

We shall be consider in subgroup selection in the regression setting.

The goal is to identify a subset of the covariate domain on which the regression
function satisfies a particular property of interest.

Consider patients with hypertrophic
cardiomyopathy (HC).

Patients at high risk of sudden cardiac death (SCD)
require an implantable cardioverter defibrillator
(O’Mahony et al., 2014).

Hence, we would like to identify the subset of HC
patients which are low risk of sudden cardiac death.
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Subgroup selection

The goal is to identify a subset of the covariate domain on which the regression
function satisfies a particular property of interest.

We would like to identify the subset of hypertrophic cardiomyopathy patients
which are low risk of sudden cardiac death.

Key features:

1. Subset selection is a post-selection inference problem since we seek
inferential guarantees whilst using our data to select the region of interest.

2. Applications typically involve a strong form of asymmetry between the
different types of errors.

3. Our inferential guarantees should hold for all individuals within the
selected subgroup.
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Statistical setting

Suppose we have a distribution P on covariate-response pairs (X,Y ) in Rd ×R.

Let η ≡ ηP : Rd → R be the regression function defined by
η(x) := E(Y |X = x) for x ∈ Rd.

Let µ ≡ µP denote the marginal distribution of the covariate X in Rd.

We would like to select a subgroup A ⊆ Rd such that η is above a user-specified
threshold τ ∈ R on A.

Example: Our selected subgroup of HC patients should contain only those for
whom the conditional probability of SCD is below τ = 1%.

Hence, we are interested in subsets of the τ -super level set

Xτ (η) :=
{
x ∈ Rd : η(x) ≥ τ

}
.
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Statistical setting

We would like to select a subgroup which is contained within

Xτ (η) :=
{
x ∈ Rd : η(x) ≥ τ

}
.

The practitioner has access to a sample D = ((X1, Y1), . . . , (Xn, Yn)),
consisting of n independent copies of (X,Y ) ∼ P .

Our algorithm returns a data-dependent subgroup Â ≡ Â(D), which is a
random subset of Rd.

Our data-dependent subgroup should satisfy Â(D) ⊆ Xτ (η), with
high-probability.
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random subset of Rd.

Our data-dependent subgroup should satisfy Â(D) ⊆ Xτ (η), with
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Type 1 error control for subgroup selection

Given a sample D = ((X1, Y1), . . . , (Xn, Yn))
i.i.d.∼ P , we aim to ensure that

Â(D) ⊆ Xτ (η), with high-probability, where Xτ (η) :=
{
x ∈ Rd : η(x) ≥ τ

}
.

Type 1 error control
Given a nominal level α ∈ (0, 1), we shall say that the data-dependent subgroup
Â controls Type 1 error at the level α, if

P
(
Â(D) ⊆ Xτ (η)

)
≥ 1− α.

Example: Suppose we wish to select a subgroup consisting of low-risk HC
patients for whom the conditional probability of SCD is below τ = 1%.

We aim to control the probability of a Type 1 error in which our selected
subgroup contains high-risk patients.
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Type 1 error and power for subgroup selection

Type 1 error control
Given a nominal level α ∈ (0, 1), we shall say that the data-dependent subgroup
Â controls Type 1 error at the level α, if

P
(
Â(D) ⊆ Xτ (η)

)
≥ 1− α.

Subject to this Type 1 error constraint, we also wish to maximise the proportion
of Xτ (η) contained within selected subgroup Â.

Hence, subject to the Type 1 error constraint, we aim to minimise the regret

Rτ (Â) := EP

{
µ
(
Xτ (η) \ Â

)}
.

Minimising the regret Rτ (Â) corresponds to maximising the power.
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Type 1 error and power for subgroup selection

We seek data-dependent subgroups Â which control Type 1 error at the nominal
level α, i.e. Â(D) ⊆ Xτ (η) holds with probability at least 1− α.

Subject to this Type 1 error constraint, we also aim to minimise the regret

Rτ (Â) := EP

{
µ
(
Xτ (η) \ Â

)}
.

Example:

Suppose we wish to select a subgroup consisting of HC patients for whom the
conditional probability of SCD is below 5%.

On the one hand, we seek to control the probability of a Type 1 error in which
high-risk patients are incorrectly assigned to the low-risk subgroup.

We also wish to minimise the proportion of low-risk patients excluded from the
subgroup and unnecessarily fitted with a cardioverter defibrillator.
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Distributional classes

Subgroup selection has been studied in a variety of distributional regimes.

Ballarini et al. (2018) and Wan et al. (2022) consider subgroup selection in
settings where the regression function η is assumed to be linear.

Previously, we considered a non-parametric setting in which η is assumed to
belong to a Hölder class (Reeve et al. 2021).

Here we shall consider a setting in which η is an isotonic regression function.
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Isotonic regression functions

In many applications, the regression function η is monotonic with respect to
individual covariates.

Example: Age, family history of SCD, maximal left ventricular wall thickness,
fractional shortening, left atrial diameter, maximal LV outflow tract gradient
etc. are risk factors for SCD (O’Mahony et al., 2014).

More formally, we impose a partial order ≼ on Rd by x0 ≼ x1 where
x0 = (x0,j)

d
j=1, x1 = (x1,j)

d
j=1 ∈ Rd if x0,j ≤ x1,j for each j ∈ {1, . . . , d}.

Isotonic regression functions

We say η : Rd → R is isotonic if η(x0) ≤ η(x1) for x0, x1 ∈ Rd with x0 ≼ x1.

Isotonoic subgroup selection 11/64



Isotonic regression functions

In many applications, the regression function η is monotonic with respect to
individual covariates.

Example: Age, family history of SCD, maximal left ventricular wall thickness,
fractional shortening, left atrial diameter, maximal LV outflow tract gradient
etc. are risk factors for SCD (O’Mahony et al., 2014).

More formally, we impose a partial order ≼ on Rd by x0 ≼ x1 where
x0 = (x0,j)

d
j=1, x1 = (x1,j)

d
j=1 ∈ Rd if x0,j ≤ x1,j for each j ∈ {1, . . . , d}.

Isotonic regression functions

We say η : Rd → R is isotonic if η(x0) ≤ η(x1) for x0, x1 ∈ Rd with x0 ≼ x1.

Isotonoic subgroup selection 11/64



Isotonic regression functions

In many applications, the regression function η is monotonic with respect to
individual covariates.

Example: Age, family history of SCD, maximal left ventricular wall thickness,
fractional shortening, left atrial diameter, maximal LV outflow tract gradient
etc. are risk factors for SCD (O’Mahony et al., 2014).

More formally, we impose a partial order ≼ on Rd by x0 ≼ x1 where
x0 = (x0,j)

d
j=1, x1 = (x1,j)

d
j=1 ∈ Rd if x0,j ≤ x1,j for each j ∈ {1, . . . , d}.

Isotonic regression functions

We say η : Rd → R is isotonic if η(x0) ≤ η(x1) for x0, x1 ∈ Rd with x0 ≼ x1.

Isotonoic subgroup selection 11/64



Isotonic regression functions

In many applications, the regression function η is monotonic with respect to
individual covariates.

Example: Age, family history of SCD, maximal left ventricular wall thickness,
fractional shortening, left atrial diameter, maximal LV outflow tract gradient
etc. are risk factors for SCD (O’Mahony et al., 2014).

More formally, we impose a partial order ≼ on Rd by x0 ≼ x1 where
x0 = (x0,j)

d
j=1, x1 = (x1,j)

d
j=1 ∈ Rd if x0,j ≤ x1,j for each j ∈ {1, . . . , d}.

Isotonic regression functions

We say η : Rd → R is isotonic if η(x0) ≤ η(x1) for x0, x1 ∈ Rd with x0 ≼ x1.

Isotonoic subgroup selection 11/64



Isotonic regression functions

Isotonic regression functions

We say η : Rd → R is isotonic if η(x0) ≤ η(x1) for x0, x1 ∈ Rd with x0 ≼ x1.

We write PM(d, σ) for the class of all distributions P on pairs (X,Y ) with
isotonic regression function ηP and σ2-sub-Gaussian noise {Y − ηP (X)}|X .
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Overall strategy

Isotonic regression functions

We say η : Rd → R is isotonic if η(x0) ≤ η(x1) for x0, x1 ∈ Rd with x0 ≼ x1.

We write PM(d, σ) for the class of all distributions P on pairs (X,Y ) with
isotonic regression function ηP and σ2-sub-Gaussian noise {Y − ηP (X)}|X .

Our goal is to construct data-dependent subgroups which:

1. Control type 1 error at the nominal level

PP

(
Â(D) ⊆ Xτ (η)

)
≥ 1− α,

for all P ∈ PM(d, σ).

2. Minimise the regret Rτ (Â) := EP

{
µ
(
Xτ (η) \ Â

)}
, subject to 1.

Isotonoic subgroup selection 13/64



Overall strategy

Isotonic regression functions
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(
Â(D) ⊆ Xτ (η)

)
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To each x ∈ Rd, we associate a null hypothesis
H0(x) := {P ∈ PM(d, σ) : ηP (x0) < τ} = {P ∈ PM(d, σ) : x0 /∈ Xτ (ηP )}.

Logical structure: If x0 ≼ x1 then H0(x1) ⊆ H0(x0).
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Type 1 error guarantee: infP∈PM(d,σ) PP

(
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Overall strategy

Our objective is to choose Â ≡ Â(D) which minimises regret Rτ (Â), subject to

Type 1 error guarantee: infP∈PM(d,σ) PP

(
Â(D) ⊆ Xτ (η)

)
≥ 1− α.

To each x ∈ Rd, we associate a null H0(x) := {P ∈ PM(d, σ) : ηP (x0) < τ}.

High-level strategy: Given a sample D = ((X1, Y1), . . . , (Xn, Yn))
i.i.d.∼ P ,

1. Sub-sample m covariate vectors X1, . . . , Xm with m ≤ n;

2. Construct p̂1, . . . , p̂m so that each p̂ℓ is a p-value for H0(Xℓ) i.e.
P
(
p̂ℓ ≤ α|(Xi)

m
i=1

)
≤ α for all P ∈ H0(Xℓ) and α ∈ (0, 1);

3. Apply a multiple testing procedure to rejectRα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅|(Xi)

m
i=1

)
≤ α;

4. Output Â :=
{
x ∈ Rd : Xℓ ≼ x for some ℓ ∈ Rα}.
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Â(D) ⊆ Xτ (η)

)
≥ 1− α.

To each x ∈ Rd, we associate a null H0(x) := {P ∈ PM(d, σ) : ηP (x0) < τ}.

High-level strategy: Given a sample D = ((X1, Y1), . . . , (Xn, Yn))
i.i.d.∼ P ,

1. Sub-sample m covariate vectors X1, . . . , Xm with m ≤ n;

2. Construct p̂1, . . . , p̂m so that each p̂ℓ is a p-value for H0(Xℓ) i.e.
P
(
p̂ℓ ≤ α|(Xi)

m
i=1

)
≤ α for all P ∈ H0(Xℓ) and α ∈ (0, 1);

3. Apply a multiple testing procedure to reject Rα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅|(Xi)

m
i=1

)
≤ α;

4. Output Â :=
{
x ∈ Rd : Xℓ ≼ x for some ℓ ∈ Rα}.
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Remarks:

• Any Â constructed in this way controls Type 1 error at the level α;

• To implement our strategy we require (2) p-values & (3) an MTP;

• Care must be taken with (2) and (3) to avoid any unnecessary loss of power.
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The uni-variate case

Given x ∈ Rd, we seek a p-value for H0(x0) := {P ∈ PM(d, σ) : ηP (x0) < τ}.

Note that for P ∈ H0(x0) and r ∈ [0,∞) with {X1, . . . , Xn} ∩ [x0 − r, x0] ̸= ∅,

Zx0,r :=

∑n
i=1(Yi − τ) · 1{Xi∈[x0−r,x0]}

σ ·
√∑n

i=1 1{Xi∈[x0−r,x0]}
≤

∑n
i=1(Yi − η(Xi)) · 1{Xi∈[x0−r,x0]}

σ ·
√∑n

i=1 1{Xi∈[x0−r,x0]}
,

a 1 sub-Gaussian random variable.
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Given r ∈ [0,∞) with {X1, . . . , Xn} ∩ [x0 − r, x0] ̸= ∅,

Zx0,r ≥
∑n

i=1(Yi − η(Xi)) · 1{Xi∈[x0−r,x0]}

σ ·
√∑n

i=1 1{Xi∈[x0−r,x0]}
+

η(x0 − r)− τ

σ
·

√√√√ n∑
i=1

1{Xi∈[x0−r,x0]}.

We would like to choose r to maximise power when P /∈ H0(x0).
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The uni-variate case

Given x0 ∈ Rd, we seek a p-value for H0(x0) := {P ∈ PM(d, σ) : ηP (x) < τ}.

For P ∈ H0(x0) and r ∈ [0,∞) with {X1, . . . , Xn} ∩ [x0 − r, x0] ̸= ∅,

Zx0,r :=

∑n
i=1(Yi − τ) · 1{Xi∈[x0−r,x0]}

σ ·
√∑n

i=1 1{Xi∈[x0−r,x0]}
,

is stochastically dominated by a 1 sub-Gaussian random variable.

We obtain our p-value for H0(x0) by inverting the confidence bands for the
process (Zx0,r)r≥0.
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The uni-variate case

Given x0 ∈ Rd, we seek a p-value for H0(x0) := {P ∈ PM(d, σ) : ηP (x0) < τ}.

We obtain our p-value for H0(x0) by inverting the confidence bands for the
process (Zx0,r)r≥0, where

Zx0,r :=

∑n
i=1(Yi − τ) · 1{Xi∈[x0−r,x0]}

σ ·
√∑n

i=1 1{Xi∈[x0−r,x0]}

.

We use the time-uniform confidence sequences of Howard et al. (2021).

For each ℓ = 1, . . . ,m, we let p̂ℓ be the p-value corresponding to H0(Xℓ).
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The uni-variate case

For each ℓ = 1, . . . ,m, we let p̂ℓ be the p-value corresponding to H0(Xℓ),
i.e. P

(
p̂ℓ ≤ α|(Xi)

m
i=1

)
≤ α for all P ∈ H0(Xℓ) and α ∈ (0, 1)

Next, we require a multiple testing procedure to choose Rα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅|(Xi)

m
i=1

)
≤ α.

A simple approach is fixed sequence testing:

1. Order the null hypotheses independently of the data;

2. Test each null hypothesis sequentially at the level α;

3. Terminate the process with the first failed rejection;

4. Return the collection of rejected nulls.

Fixed sequence testing always controls the family-wise-error-rate (FWER).

Indeed, consider the first true null to be tested within the sequence. We will
reject this null (and hence any subsequent null) with probability at most α.
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The uni-variate case

We require a multiple testing procedure to choose Rα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅|(Xi)

m
i=1

)
≤ α.

Fixed sequence testing controls FWER at the nominal level α.

We should select our sequence to maximise power.

Logical structure: If x0 ≼ x1 then H0(x1) ⊆ H0(x0).

Hence, if test our null hypotheses from right to left then we will test all of our
false nulls before we test any true nulls.

We combine our p-values via a fixed sequence testing procedure

Rα := {i ∈ {1, . . . ,m} : p̂ℓ ≤ α whenever Xℓ ≥ Xi} .
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The uni-variate case

High-level strategy: Given a sample D = ((X1, Y1), . . . , (Xn, Yn))
i.i.d.∼ P ,

1. Sub-sample m covariate vectors X1, . . . , Xm with m ≤ n;

2. Construct p̂1, . . . , p̂m so that each p̂ℓ is a p-value for H0(Xℓ) i.e.
P
(
p̂ℓ ≤ α|(Xi)

m
i=1

)
≤ α for all P ∈ H0(Xℓ) and α ∈ (0, 1);

3. Apply a multiple testing procedure to rejectRα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅|(Xi)

m
i=1

)
≤ α;

4. Output Â :=
{
x ∈ Rd : Xℓ ≼ x for some ℓ ∈ Rα}.

Our p-values p̂ℓ leverage the time-uniform sequences of Howard et al. (2021).

We combine our p-values with a fixed sequence testing procedure:

Rα := {i ∈ {1, . . . ,m} : p̂ℓ ≤ α whenever Xℓ ≥ Xi} .

Return ÂISS = [Ximin
,∞) where imin := min {i ∈ [m] : p̂ℓ ≤ α for Xℓ ≥ Xi}.
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The uni-variate case

Our construction ensures that we control type 1 error at the nominal level,

PP

(
ÂISS(D) ⊆ Xτ (η)

)
≥ 1− α,

for all P ∈ PM(d, σ).

We also wish to minimise the regret Rτ (Â) := EP

{
µ
(
Xτ (η) \ Â

)}
.

In order to control the regret Rτ (Â) we must place some restrictions on the
amount of mass µ places in regions where η is just above τ .

For d ∈ N, τ ∈ R, β > 0 and ν > 0, we let PR(d, τ, β, ν) denote the class of
distributions P on Rd × R for which the marginal µ on Rd and the regression
function η : Rd → R satisfy µ

(
η−1([τ, τ + νξβ ])

)
≤ ξ for all ξ ∈ (0, 1].
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Power bounds in the uni-variate setting

We also wish to minimise the regret Rτ (Â) := EP

{
µ
(
Xτ (η) \ Â

)}
.

In order to control the regret Rτ (Â) we must place some restrictions on the
amount of mass µ places in regions where η is just above τ .

For d ∈ N, τ ∈ R, β > 0 and ν > 0, we let PR(d, τ, β, ν) denote the class of
distributions P on Rd × R for which the marginal µ on Rd and the regression
function η : Rd → R satisfy µ

(
η−1([τ, τ + νξβ ])

)
≤ ξ for all ξ ∈ (0, 1].

Example: Let d = 1 and let P ∈ PM (d, σ) have uniform marginal distribution µ

on [0, 1]. We then have P ∈ PM (d, σ) ∩ PR(d, τ, β, ν) if

η(x+ ξ) ≥ τ + νξβ ,

for all ξ ∈ (0, 1] and x ∈ Xτ (η).
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Power bounds in the uni-variate setting

Our construction ensures that we control type 1 error at the nominal level,

PP

(
ÂISS(D) ⊆ Xτ (η)

)
≥ 1− α,

for all P ∈ PM(1, σ).

For d ∈ N, τ ∈ R, β > 0 and ν > 0, we let PR(d, τ, β, ν) denote the class of
distributions P on Rd × R for which the marginal µ on Rd and the regression
function η : Rd → R satisfy µ

(
η−1([τ, τ + νξβ ])

)
≤ ξ for all ξ ∈ (0, 1].

Theorem. Let σ, β, ν > 0 and α ∈ (0, 1). There exists a universal constant
C ≥ 1 such that for any distribution P ∈ PM (1, σ) ∩ PR(1, τ, β, ν) we have

EP

{
µ
(
Xτ (η) \ ÂISS(D)

)}
≤ 1 ∧ C

{(
σ2

nν2
log+

( log+ n

α

))1/(2β+1)

+
1

n

}
.
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The multi-variate case

High-level strategy: Given a sample D = ((X1, Y1), . . . , (Xn, Yn))
i.i.d.∼ P ,

1. Sub-sample m covariate vectors X1, . . . , Xm with m ≤ n;

2. Construct p̂1, . . . , p̂m so that each p̂ℓ is a p-value for H0(Xℓ) i.e.
P
(
p̂ℓ ≤ α|(Xi)

m
i=1

)
≤ α for all P ∈ H0(Xℓ) and α ∈ (0, 1);

3. Apply a multiple testing procedure to rejectRα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅|(Xi)

m
i=1

)
≤ α;

4. Output Â :=
{
x ∈ Rd : Xℓ ≼ x for some ℓ ∈ Rα}.
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The multi-variate case

Given x0 ∈ Rd, we seek a p-value for H0(x0) := {P ∈ PM(d, σ) : ηP (x0) < τ}.

Given x0 = (x0,j)
d
j=1 ∈ Rd and r > 0 with {Xℓ}nℓ=1 ∩

∏d
j=1[x0,j − r, x0,j ] ̸= ∅,

Zx0,r :=

∑n
i=1(Yi − τ) · 1{Xi∈

∏d
j=1[x0,j−r,x0,j ]}

σ ·
√∑n

i=1 1{Xi∈
∏d

j=1[x0,j−r,x0,j ]}
,

is dominated by a 1 sub-Gaussian random variable when P ∈ H0(x0).
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The multi-variate case

Given x0 ∈ Rd, we seek a p-value for H0(x0) := {P ∈ PM(d, σ) : ηP (x0) < τ}.

We obtain our p-values p̂ℓ for H0(Xℓ) by inverting the confidence bands for the
process (Zx0,r)r≥0 with x0 = Xℓ.

Our p-values p̂ℓ leverage the time-uniform sequences of Howard et al. (2021).
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The multi-variate case

High-level strategy: Given a sample D = ((X1, Y1), . . . , (Xn, Yn))
i.i.d.∼ P ,

1. Sub-sample m covariate vectors X1, . . . , Xm with m ≤ n;

2. Construct p̂1, . . . , p̂m so that each p̂ℓ is a p-value for H0(Xℓ) i.e.
P
(
p̂ℓ ≤ α|(Xi)

m
i=1

)
≤ α for all P ∈ H0(Xℓ) and α ∈ (0, 1);

3. Apply a multiple testing procedure to rejectRα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅|(Xi)

m
i=1

)
≤ α;

4. Output Â :=
{
x ∈ Rd : Xℓ ≼ x for some ℓ ∈ Rα}.

To complete our procedure we require a suitable multiple testing procedure.

Our p-values p̂1, . . . , p̂m no longer have a natural sequential structure since
{X1, . . . , Xm} are not totally ordered by ≼.

Logical structure: If x0 ≼ x1 then H0(x1) ⊆ H0(x0).
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Multiple testing procedures for DAGs

Our null hypotheses may be structured within a DAG G = (V,E):

1. V := {1, . . . ,m} with each vertex ℓ ∈ V associated to a null H0(Xℓ);

2. E :=
{
(i0, i1) ∈ [m]2 : i0 ̸= i1 and Xi1 ≼ Xi0 , and if Xi1 ≼ Xi2 ≼ Xi0

then either Xi2 = Xi0 and i0 ≤ i2, or Xi2 = Xi1 and i2 ≤ i1
}
.

Isotonoic subgroup selection 31/64



Multiple testing procedures for DAGs

Our null hypotheses may be structured within a DAG G = (V,E):

1. V := {1, . . . ,m} with each vertex ℓ ∈ V associated to a null H0(Xℓ);

2. E :=
{
(i0, i1) ∈ [m]2 : i0 ̸= i1 and Xi1 ≼ Xi0 , and if Xi1 ≼ Xi2 ≼ Xi0

then either Xi2 = Xi0 and i0 ≤ i2, or Xi2 = Xi1 and i2 ≤ i1
}
.

Isotonoic subgroup selection 31/64



Multiple testing procedures for DAGs

Logical structure: If x0 ≼ x1 then H0(x1) ⊆ H0(x0).

Hence, our null hypotheses have the structure of a DAG G = (V,E):
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(i0, i1) ∈ [m]2 : i0 ̸= i1 and Xi1 ≼ Xi0 , and if Xi1 ≼ Xi2 ≼ Xi0

then either Xi2 = Xi0 and i0 ≤ i2, or Xi2 = Xi1 and i2 ≤ i1
}
.

The logical structure between the null hypotheses is reflected within the
graphical structure:

1. The truth of a null H0(Xℓ) implies the truth of all the nulls H0(Xℓ′) such
that ℓ′ is a G-descendent of ℓ;

2. Equivalently, the falsity of a null H0(Xℓ′) implies the falsity of all of the
nulls H0(Xℓ) such that ℓ is a G-ancestor of ℓ′.

Isotonoic subgroup selection 32/64



Multiple testing procedures for DAGs

Logical structure: If x0 ≼ x1 then H0(x1) ⊆ H0(x0).

Hence, our null hypotheses have the structure of a DAG G = (V,E):

1. V := {1, . . . ,m} with each vertex ℓ ∈ V associated to a null H0(Xℓ);

2. E :=
{
(i0, i1) ∈ [m]2 : i0 ̸= i1 and Xi1 ≼ Xi0 , and if Xi1 ≼ Xi2 ≼ Xi0

then either Xi2 = Xi0 and i0 ≤ i2, or Xi2 = Xi1 and i2 ≤ i1
}
.

The logical structure between the null hypotheses is reflected within the
graphical structure:

1. The truth of a null H0(Xℓ) implies the truth of all the nulls H0(Xℓ′) such
that ℓ′ is a G-descendent of ℓ;

2. Equivalently, the falsity of a null H0(Xℓ′) implies the falsity of all of the
nulls H0(Xℓ) such that ℓ is a G-ancestor of ℓ′.

Isotonoic subgroup selection 32/64



Multiple testing procedures for DAGs

Our null hypotheses have the structure of a DAG G = (V,E):

1. V := {1, . . . ,m} with each vertex ℓ ∈ V associated to a null H0(Xℓ);

2. E :=
{
(i0, i1) ∈ [m]2 : i0 ̸= i1 and Xi1 ≼ Xi0 , and if Xi1 ≼ Xi2 ≼ Xi0

then either Xi2 = Xi0 and i0 ≤ i2, or Xi2 = Xi1 and i2 ≤ i1
}
.

The logical structure between the nulls is reflected within the graphical
structure: The falsity of a null implies the falsity of all of its ancestors.

A variety of DAG based multiple testing procedures (MTP) have been proposed
(Bretz et al. 2009, Meijer and Goeman, 2015, Ramdas et al. 2019).

Meijer and Goeman (2015) propose two MTPs for controlling the family wise
error for logically structured hypotheses within a DAG.

These MTPs follow the sequential rejection principle (Goeman and Solari, 2010).
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Multiple testing procedures for DAGs

The logical structure between the nulls is reflected within the graphical
structure: The falsity of a null implies the falsity of all of its ancestors.

Meijer and Goeman (2015) propose two MTPs (all-parents and any-parent) for
controlling the FWER for logically structured hypotheses within a DAG.

Meijer and Goeman’s all-parent method (2015): In each iteration,

1. The α-budget is split evenly amongst the unrejected leaf nodes;

2. The α-budgets are then propagated from the leaves towards currently
unrejected ancestors. Nodes are visited in reverse topological order, with
each node distributing its entire budget amongst its unrejected parents;

3. Reject all hypotheses whose p-value does not exceed the assigned budget.
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Multiple testing procedures for DAGs

Meijer and Goeman’s all-parent method (2015): In each iteration,

1. The α-budget is split evenly amongst the unrejected leaf nodes;

2. The α-budgets are then propagated from the leaves towards currently
unrejected ancestors. Nodes are visited in reverse topological order, with
each node distributing its entire budget amongst its unrejected parents;

3. Reject all hypotheses whose p-value does not exceed the assigned budget.

Both the all-parent and the any-parent MTP control the FWER (M & G, 2015).

Both MTPs also generalise the fixed sequence testing procedure.

Unfortunately, both MTPs are vulnerable to “bottleneck” effects whereby root
nodes can be left with a very small fraction of the α-budget.
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Multiple testing procedures for DAGs

Both the all-parent and the any-parent MTP control the FWER (M & G, 2015).

Unfortunately, both MTPs are vulnerable to “bottleneck” effects whereby root
nodes can be left with an exponentially small fraction of the α-budget.
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Multiple testing procedures for DAGs

Our null hypotheses have the structure of a DAG G = (V,E):

1. V := {1, . . . ,m} with each vertex ℓ ∈ V associated to a null H0(Xℓ);

2. E :=
{
(i0, i1) ∈ [m]2 : i0 ̸= i1 and Xi1 ≼ Xi0 , and if Xi1 ≼ Xi2 ≼ Xi0

then either Xi2 = Xi0 and i0 ≤ i2, or Xi2 = Xi1 and i2 ≤ i1
}
.

In order to avoid these “bottlenecks” we propose an alternative MTP, based on
Meijer and Goeman (2015), and Goeman and Solari (2010).

We introduce an auxillary graph F = (V,EF ) with nodes V = {1, . . . ,m} and
EF ⊆ E chosen so that if (i0, i1) ∈ E for some i0, i1 ∈ V , then there is exactly
one ĩ0 ∈ V with (̃i0, i1) ∈ EF .

That is, the graph F is a sparsification of G so that each node has at most one
parent (a polyforest).

Isotonoic subgroup selection 37/64



Multiple testing procedures for DAGs

Our null hypotheses have the structure of a DAG G = (V,E):

1. V := {1, . . . ,m} with each vertex ℓ ∈ V associated to a null H0(Xℓ);

2. E :=
{
(i0, i1) ∈ [m]2 : i0 ̸= i1 and Xi1 ≼ Xi0 , and if Xi1 ≼ Xi2 ≼ Xi0

then either Xi2 = Xi0 and i0 ≤ i2, or Xi2 = Xi1 and i2 ≤ i1
}
.

In order to avoid these “bottlenecks” we propose an alternative MTP, based on
Meijer and Goeman (2015), and Goeman and Solari (2010).

We introduce an auxillary graph F = (V,EF ) with nodes V = {1, . . . ,m} and
EF ⊆ E chosen so that if (i0, i1) ∈ E for some i0, i1 ∈ V , then there is exactly
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Multiple testing procedures for DAGs

Our null hypotheses have the structure of a DAG G = (V,E):

1. V := {1, . . . ,m} with each vertex ℓ ∈ V associated to a null H0(Xℓ);

2. E :=
{
(i0, i1) ∈ [m]2 : i0 ̸= i1 and Xi1 ≼ Xi0 , and if Xi1 ≼ Xi2 ≼ Xi0

then either Xi2 = Xi0 and i0 ≤ i2, or Xi2 = Xi1 and i2 ≤ i1
}
.

We let F = (V,EF ) be a polyforest which serves as a sparsification of G.

Sparse DAG MTP: In each iteration,

1. The α-budget is distributed amongst the nodes in proportion to the
number of unrejected F -leaves which are F -descended from the node;

2. Reject all hypotheses whose F parents have already been rejected and
whose p-value does not exceed the assigned budget;

3. Reject also all G-ancestors of currently rejected nodes.
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Multiple testing procedures for DAGs

In the first iteration, no hypothesis has been rejected yet and only root nodes
are assigned positive α-budget.

Here, nodes 1, 6 and 7 are current rejection candidates, and 1 will be rejected, as
p1 = 0.01 ≤ 0.0125.
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Multiple testing procedures for DAGs

After rejection of node 1 in the first step, we reallocate the α-budget, which
allows us to reject node 7.
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Multiple testing procedures for DAGs

Now that node 7 has been rejected, its child 5 receives α-budget sufficiently
large for it to be rejected.

Although p6 is quite large, 6 is an ancestor of 5 in the induced DAG and will
hence also be rejected.
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Multiple testing procedures for DAGs

None of the remaining three nodes, which happen to be the leaf nodes, have a
p-value smaller than their respective α-budgets. Hence, no further rejection is
made and the procedure terminates.

Nodes 1, 5, 6 and 7 have been rejected.
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The multi-variate case

High-level strategy: Given a sample D = ((X1, Y1), . . . , (Xn, Yn))
i.i.d.∼ P ,

1. Sub-sample m covariate vectors X1, . . . , Xm with m ≤ n;

2. Construct p̂1, . . . , p̂m so that each p̂ℓ is a p-value for H0(Xℓ) i.e.
P
(
p̂ℓ ≤ α|(Xi)

m
i=1

)
≤ α for all P ∈ H0(Xℓ) and α ∈ (0, 1);

3. Apply a multiple testing procedure to rejectRα ⊆ {1, . . . ,m} with
PP

(
Rα ∩ {ℓ ∈ {1, . . . ,m} : P ∈ H0(Xℓ)} ≠ ∅|(Xi)

m
i=1

)
≤ α;

4. Output Â :=
{
x ∈ Rd : Xℓ ≼ x for some ℓ ∈ Rα}.

Our p-values p̂ℓ leverage the time-uniform sequences of Howard et al. (2021).

We combine our p-values with multiple testing procedure for DAGs which
leverages an auxillary sparsified polyforest (Sparse DAG MTP).

Finally, we output the upper-hull ÂISS :=
{
x ∈ Rd : Xℓ ≼ x for some ℓ ∈ Rα}.
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Power bounds in the multi-variate setting

By adapting the approach of Goeman and Solari (2010) we see show that

PP

(
ÂISS(D) ⊆ Xτ (η)

)
≥ 1− α,

for all P ∈ PM(d, σ).

We also wish to minimise the regret Rτ (Â) := EP

{
µ
(
Xτ (η) \ Â

)}
.

Recall that in the uni-variate case we can bound regret uniformly over the class
PR(d, τ, β, ν) consisting of all distributions P on Rd × R for which
µ
(
η−1([τ, τ + νξβ ])

)
≤ ξ for all ξ ∈ (0, 1].

We shall see that this condition is insufficient to bound regret in the
multi-variate setting.
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{
µ
(
Xτ (η) \ Â
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Power bounds in the multi-variate setting

Recall that in the uni-variate case we can bound regret uniformly over the class
PR(d, τ, β, ν) consisting of all distributions P on Rd × R for which
µ
(
η−1([τ, τ + νξβ ])

)
≤ ξ for all ξ ∈ (0, 1].

Proposition. Let d ≥ 2, τ ∈ R, σ, β, ν > 0 and α ∈ (0, 1). For all n ∈ N,

sup
P

inf
Â

EP

{
µ
(
Xτ (η) \ Â(D)

)}
≥ 1− α,

where the sup is over P ∈ P ′ = PM (d, σ) ∩ PR(d, τ, β, ν) and the inf is over
procedures Â which control the Type 1 error at the level α over P ′.

In essence, to bound Rτ (Â) := EP

{
µ
(
Xτ (η) \ Â

)}
we must rule out the

possibility that the marginal µ is concentrated on a large antichain.
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Power bounds in the multi-variate setting

Given d ∈ N, τ ∈ R, θ > 1, γ > 0 and λ ∈ (0, 1), we let PReg(d, τ, θ, γ, λ)

denote the class of all distributions P on Rd × R with marginal µ on Rd and
associated regression function η such that

(i) θ−1 · rd ≤ µ
(
Br(x)

)
≤ θ · (2r)d for all x ∈ Xτ (η)∩ supp(µ) and r ∈ (0, 1];

(ii) Br(x) ∩ Xτ+λ·rγ (η) ̸= ∅ for all x ∈ Xτ (η) ∩ supp(µ) and r ∈ (0, 1].

The first condition ensures that µ is genuinely d-dimensional.

The second controls the way in which η grows around the τ -boundary.
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Power bounds in the multi-variate setting

Theorem. Let d ∈ N, τ ∈ R, σ, γ > 0, θ > 1 and λ ∈ (0, 1). There exists
C ≥ 1, depending only on (d, θ), such that for any
P ∈ PM(d, σ) ∩ PReg(d, τ, θ, γ, λ), n ∈ N, α ∈ (0, 1) and
D =

(
(X1, Y1), . . . , (Xn, Yn)

)
∼ Pn, we have for m ∈ [n] that

EP

{
µ
(
Xτ (η) \ ÂISS(D)

)}
≤ 1 ∧ C

{(
σ2

nλ2
log+

(m log+ n

α

))1/(2γ+d)

+

(
log+ m

m

)1/d}
.

Moreover, if we takem0 := n ∧ ⌈nλ2/σ2⌉, then

EP

{
µ
(
Xτ (η) \ ÂISS(D)

)}
≤ 1 ∧ 4C

{(
σ2

nλ2
log+

(nλ2 log+ n

σ2α

))1/(2γ+d)

+

(
log+ n

n

)1/d}
.
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Choice of multiple testing procedure

We chose to combine our p-values with multiple testing procedure for DAGs
which leverages an auxillary sparsified polyforest (Sparse DAG MTP).

We could also control the Type 1 error by combining p-values with any multiple
testing which controls the family wise error.

For example, Meijer and Goeman’s all-parent method, Meijer and Goeman’s
any-parent method, or even the classical Holm procedure.

We conduct a simulation study to compare these various choices of multiple
testing procedure.
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Choice of multiple testing procedure

We chose to combine our p-values with multiple testing procedure for DAGs
which leverages an auxillary sparsified polyforest (Sparse DAG MTP).

We conduct a simulation study to compare with other choices of multiple
testing procedure.

Our regression functions η are obtained by rescaling f .
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Choice of multiple testing procedure

We conduct a simulation study to compare with other choices of multiple
testing procedure.
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Choice of multiple testing procedure

Estimated regret EP

{
µ
(
Xτ (η) \ ÂMG

)}
Isotonoic subgroup selection 51/64



Choice of multiple testing procedure

Recall that for P ∈ PM(d, σ) ∩ PReg(d, τ, θ, γ, λ), the procedure ÂISS achieves

EP

{
µ
(
Xτ (η) \ ÂISS(D)

)}
≤ 1 ∧ 4C

{(
σ2

nλ2
log+

(nλ2 log+ n

σ2α

))1/(2γ+d)

+

(
log+ n

n

)1/d}
.

Proposition. Suppose d ≥ 2, τ ∈ R, σ, γ > 0, λ ∈ (0, 1), θ ∈ [2d,∞),
α ∈ (0, 1/4]. Let ÂMG denote the data-dependent subgroup obtained via either
the all-parent or the any-parent MTP of Meijer and Goeman (2015). There exists
c > 0, depending only on d, α, σ, λ and γ, such that for every n ∈ N,

min
m∈[n]

sup
P∈P′

EP

{
µ
(
Xτ (η) \ ÂMG

)}
≥ c

n1/(2γ+d+1)(log+ n)2/d
,

where the sup is over P ′ := PM(d, σ) ∩ PReg(d, τ, θ, γ, λ).
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c > 0, depending only on d, α, σ, λ and γ, such that for every n ∈ N,

min
m∈[n]

sup
P∈P′

EP

{
µ
(
Xτ (η) \ ÂMG

)}
≥ c

n1/(2γ+d+1)(log+ n)2/d
,

where the sup is over P ′ := PM(d, σ) ∩ PReg(d, τ, θ, γ, λ).
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Choice of multiple testing procedure

min
m∈[n]

sup
P∈P′

EP

{
µ
(
Xτ (η) \ ÂMG

)}
≥ c

n1/(2γ+d+1)(log+ n)2/d
,
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Minimax optimality

Theorem. Let d ∈ N, τ ∈ R, σ, γ > 0, θ > 1 and λ ∈ (0, 1). Then, there exists
c ∈ (0, 1), depending only on (d, γ), such that for any n ∈ N and α ∈ (0, 1/4],

inf
Â

sup
P

EP

{
µ
(
Xτ (η)\Â(D)

)}
≥ c

[
1∧

{(
σ2

nλ2
log+

( 1

5α

))1/(2γ+d)

+
1

n1/d

}]
.

where the sup is over P ∈ P ′ := PM(d, σ) ∩ PReg(d, τ, θ, γ, λ) and the inf is
over procedures Â which control the Type 1 error at the level α over P ′.

Recall that for P ∈ PM(d, σ) ∩ PReg(d, τ, θ, γ, λ), the procedure ÂISS achieves

EP

{
µ
(
Xτ (η) \ ÂISS(D)

)}
≤ 1 ∧ 4C

{(
σ2

nλ2
log+

(nλ2 log+ n

σ2α

))1/(2γ+d)

+

(
log+ n

n

)1/d}
.
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Minimax optimality

The first component of the lower
bound corresponds to the difficulty
of determining whether a given
covariate Xi is within Xτ (η).

Note the dependence upon α.

inf
Â

sup
P

EP

{
µ
(
Xτ (η)η \ Â(D)

)}
≥ c0 ·

{
1 ∧

(
σ2

nλ2
log+

( 1

5α

))1/(2γ+d)}
.
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Minimax optimality

The second component of the lower
bound corresponds to the error
incurred due to missing regions of
the covariate space.

inf
Â

sup
P

EP

{
µ
(
Xτ (η)η \ Â(D)

)}
≥ c1 ·

{
1 ∧

(
log+ n

n

)1/d}
.
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Minimax optimality

Theorem. Let d ∈ N, τ ∈ R, σ, γ > 0, θ > 1 and λ ∈ (0, 1). Then, there exists
c ∈ (0, 1), depending only on (d, γ), such that for any n ∈ N and α ∈ (0, 1/4],

inf
Â

sup
P

EP

{
µ
(
Xτ (η)\Â(D)

)}
≥ c

[
1∧

{(
σ2

nλ2
log+

( 1

5α

))1/(2γ+d)

+
1

n1/d

}]
.

where the sup is over P ∈ P ′ := PM(d, σ) ∩ PReg(d, τ, θ, γ, λ) and the inf is
over procedures Â which control the Type 1 error at the level α over P ′.

Recall that for P ∈ PM(d, σ) ∩ PReg(d, τ, θ, γ, λ), the procedure ÂISS achieves

EP

{
µ
(
Xτ (η) \ ÂISS(D)

)}
≤ 1 ∧ 4C

{(
σ2

nλ2
log+

(nλ2 log+ n

σ2α

))1/(2γ+d)

+

(
log+ n

n

)1/d}
.
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AIDS Clinical Trials Group Study 175
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AIDS Clinical Trials Group Study 175
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Heterogenous treatment effect
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Fuel consumption dataset
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Fuel consumption dataset
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Summary

• We investigated subgroup selection in a non-parametric regime with a
multivariate isotonic regression function.

• Our method controls Type 1 error by combining local p-values combined
with multiple testing procedures.

• The choice of multiple testing procedure plays a crucial role in determining
the power.

• Our regret bounds demonstrate minimax optimality up to poly-logarithmic
factors under natural distributional assumptions.

Isotonoic subgroup selection 63/64



Thank you for listening
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