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Publishing Productivity among Academics
Spirtes, Glymour and Scheines (2000)

DAG: Directed Acyclic
Graph
1. subject’s sex (Sex)
2. score of the subject’s
ability (Ability)
3. measure of the quality of
the graduate program
attended (GPQ)
4. preliminary measure of
productivity (PreProd)
5. quality of the first job
(QFJ)
6. publication rate (Pubs)
7. citation rate (Cites)
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DAG: Directed Acyclic Graph

D = (V ,E) DAG
V = {1, . . . ,q} set of its vertices
E ⊆ V × V set of directed edges.
Total ordering of the vertices.
Vertices of D are well-numbered: i.e.
if ∃ directed path from vertex i to
vertex j , then i < j .

DAG D0
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Probabilistic DAG

Each vertex j corresponds to a random variable uj .
W ⊆ V : uW is the set of all variables uj with j ∈W .

A special subset
W = pa(j): parents of j .
Factorization of the joint density

f (u1, . . . ,uq|θ) =

q∏
j=1

f (uj |upa(j); θj)

uj⊥⊥u{1,...,j−1}\pa(j) |upa(j), θj

Cites ⊥⊥ { Sex , Ability , Grad Progr , Quality First Job |
Prelim Meas Product , Pub Rate }



Gaussian DAG

Gaussian DAG D model
Family of all q-variate normal distributions
satisfying conditional independence implied by D

f (u1, . . . ,uq|β, γ) =

q∏
j=1

f (uj |upa(j);βj , γj).

Each conditional distribution is a univariate normal
βj : regression coefficients; γj : conditional precision



Bayes factor

Usually DAG D is unknown
Need to select one among a list of candidates DAG-models

Two modelsMk , k = 0,1,
Sampling density f (y |θk ), θk ∈ Θk , and prior p(θk ).
Bayes Factor (BF)

BF10(y) = m1(y)/m0(y)

mk (y) is the marginal likelihood ofMk ,

mk (y) =

∫
f (y |θk )p(θk )dθk

Posterior model probability

P{M0 | y} =
P{M0}

P{M0}+ BF10P{M1}
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Improper priors

Objective priors typically improper
(defined up to a multiplicative constant)

Cannot be used to compute BFs
(even when the marginal likelihoods exist)
A few solutions

• intrinsic Bayes factors (Berger and Pericchi, 1996)
• intrinsic priors (Moreno, 1997)
• expected posterior priors (Perez and Berger, 2002)
• fractional Bayes factor (0’Hagan, 1995)

easy to implement
marginal likelihoods available in closed-form
(in exponential family-conjugate prior setup)
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Fractional BF

Mk ; f (y |θk ); p(θk )
Fractional marginal likelihood for modelMk

wk (y ; g) =

∫
f (y |θk )p(θk )dθk∫

(f (y |θk ))gp(θk )dθk

0 < g < 1 (fraction)
Fractional BF in favor ofM1

FBF10(y ; g) = w1(y ; g)/w0(y ; g).

Notice
wk (y ; g) =

∫
(f (y |θk ))(1−g)pF (θk |g, y)dθk

pF (θk |g, y) ∝ (f (y |θk ))gp(θk ) is the implied data-dependent
fractional prior
Consistency of the Fractional BF holds as long as g → 0
(n→∞)
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Objective priors

Recall the recursive structure of the likelihood

f (u1, . . . ,uq|β, γ) =

q∏
j=1

f (uj |upa(j);βj , γj),

Objective prior

pD(β, γ) ∝
q∏

j=1

γ−1
j

it satisfies global parameter independence (Geiger and
Heckerman, 2002)



DAGs D0 and D1

same vertex set
and vertex
ordering
D0 nested in D1
Fix vertex j :
Lj : set of vertices
which are parents
of j under D1, but
not under D0
D0 ⇔ βjl = 0, l ∈
Lj , j = 1, . . . ,q

D1 D0

L4 = {2}
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Objective Product Moment Prior

Product moment prior under D1

pM
1 (β, γ) ∝

q∏
j=1

γ−1
j

∏
l∈Lj

β2h
jl


Fractional marginal likelihood factorizes
Expression for Moment Fractional BF available in closed form
(C and La Rocca, 2011)



Prior on DAG space

A Gaussian DAG model can be viewed as a sequence of
(q − 1) conditional ‘regression’ models.
Dk ⇔Mk2 , . . . ,Mkq

Mj : family of all ‘regression‘ models for node j
(there are 2j−1 such models)
Prior over the space D of all DAG models

P{Dk} =

q∏
j=2

P{Mkj} =

q∏
j=2

1
j

(
j − 1
|pak (j)|

)−1

, Dk ∈ D

This is a product of multiplicity correction priors (Scott and
Berger, 2010)



Finite collection of DAGs {Dk} ∈ D
D0 complete independence DAG
(DAG with no edges)
nested into every other model Dk
encompassing from below

Compute the (Moment) Fractional BF (FBF) of Dk against D0,
namely {FBFk0(y)}
Derive the posterior probability of model Dk

P{Dk |y} =
FBFk0(y ; g)P{Dk}∑

j FBFj0(y ; g)P{Dj}
, Dk ∈ D
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Number of DAGs
Grows exponentially with the
number of variables
Enumeration is not feasible
even for moderately sized
vertex sets
Resort to search algorithm to
identify the most valuable
models.

q number of DAGs
10 3.5 ·1013

15 4.1 ·1031

20 1.6 ·1057

30 8.9 ·10130

40 6.4 ·10234
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The Algorithm (based on Berger and Molina, 2005)

1. Start with a base DAG DB and obtain deterministically m ≡ q(q − 1)/2
distinct new DAGs each one differing from DB by exactly one edge.
Compute (the estimated) graph posterior probabilities and edge
inclusion probabilities by re-normalization.

2. Resampling move
Return to one of the previously visited graphs, according to the
posterior probabilities.

3. Local move
Identify single edges leading to a new DAG.
Randomly choose one and add/delete according to inclusion probability.

4. Usually return directly to step 2
Periodically make a global move to the current Median Probability-DAG
Return to step 3.
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Simulation with high-dimensional sparse DAGs

Three random DAGs of size q = 50,100,200
generated using R-package pcalg (Kalish and Bühlman, 2007)
each DAG has exactly |E | = 100 edges

N.B. As q increases, DAG becomes sparser.

For each of the three DAGs, we simulated n = 100
observations from the linear structural equation model

ui =
∑

j∈pa(i)

ρijuj + εi , i = 1, . . . ,q,

with εj
iid∼ N(0,1), ρij = 0.8 for all i and j , and replicated the

simulation 10 times in order to assess sampling variability
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Evaluation of search algorithm

Comparison of (Moment) Fractional BF with alternative
methods

• Lasso

• Adaptive Lasso
• SIN
• PC-algorithm

(no ordering of variables is assumed)

Receiver Operating Characteristics (ROC) curve
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q = 50 ROC curve
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Then simulated from the estimated
model.

The rationale behind this experiment
is to be faithful both to the actual data
and to the assumed graphical
structure.

Fractional BF now performs much
better.
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Local priors

M0 nested inM1

Θ0 ⊂ Θ1

d0 = dim(Θ0) < d1 = dim(Θ1)

p(θ1), θ1 ∈ Θ1, a local prior
continuous, and strictly positive over Θ0

M0 : N(0, 1);M1 : N(µ, 1), µ 6= 0
p1(µ) = N(µ | 0, (1.5)2)
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Non-local priors

g(θ1), θ1 ∈ Θ1: continuous positive function vanishing on Θ0.
For given local prior p(θ1)
define a new non-local prior as pM(θ1) ∝ g(θ1)p(θ1),

Example
θ1 a scalar parameter in R
Θ0 = {θ0}, with θ0 a fixed value
g(θ1) = (θ1 − θ0)2h h a positive integer
moment prior (Johnson and Rossell, 2010)
IfM0 holds, BF10(y (n)) = Op(n−h−1/2)

For instance if h = 1, the learning rate changes from sub-linear
BF10(y (n)) = Op(n−1/2)
to super-linear
BF10(y (n)) = Op(n−1−1/2)
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Gaussian model: testing a sharp null hypothesis

M0 : N(0,1);M1 : N(µ,1), µ 6= 0
Local prior: p1(µ) = N(µ |0, σ2

µ = (1.5)2)
Nonlocal (moment) prior:
pM

1 (µ) ∝ µ2hN(µ |0, σ2
µ = (1.5)2)

h = 1
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Sensitivity to order mis-specification

Moment Fractional BF requires an ordering of the variables

Can the Fractional BF recover the skeleton of a DAG?
How does it compare with methods not requiring the ordering of
the variables?
(notably the PC-algorithm by Kalish and Bühlman, 2007)

What is the tolerated “distance”, based on the number of
inversions in a permutation, between the true ordering and the
one assumed by our method for a good performance?

0 < d < 1: relative distance of permutation from the true one
Fractional BF search outperforms the PC-algorithm when
d = 0.
It is outperformed when d = 1.

Up to a moderate mis-specification (d = 0.25) it is comparable
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A measure of distance between permutations

Ordered sequence 1,2, . . . ,n
(identity permutation)

Permutation π(1), π(2), . . . , π(n)

A pair (π(i), π(j)) is called an inversion in π
if i > j and π(i) < π(j)

The number of (#) inversions assesses how far the
permutation is from the naturally ordered sequence

πmax: reversed identity sequence

relative distance d ∈ [0,1]

d = #inversions in π/(#inversions in πmax)
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