Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence

Valen E. Johnson Texas A&M University

February 27, 2014

Motivation

Multi-agent, Multi-cohort End-Stage Melanoma trial, Standard-of-care survival times:

Biomarker Group	Tmt 1	Tmt 2	Tmt 3
a	4	4	4
b	4	4	4
С	4	4	4
d	6	6	6
е	6	6	6

Assumptions:

- ► Suppose survival time for patient i in biomarker group b under treatment t is $Y_i \sim Exp(\mu_{bt})$
- ▶ You wish to test a null hypothesis $H_0: \mu_{bt} = \mu_0$ versus $H_1: \mu_{bt} = \mu_1 > \mu_0$

Alternative hypotheses:

Suppose you know the true mean survival time is μ_t .

▶ If you want to maximize expected weight of evidence, you take $H_1: \mu = \mu_t$, because

$$\int_0^1 m_t(y) \log \left[\frac{m_t(y)}{m_0(y)} \right] dy - \int_0^1 m_t(y) \log \left[\frac{m_1(y)}{m_0(y)} \right] dy$$
$$= \int_0^1 m_t(y) \log \left[\frac{m_1(y)}{m_1(y)} \right] dy > 0$$

This choice of $\mu = \mu_t$ makes all posterior inferences exactly correct, even in a repeated sampling sense

Problems for subjective Bayesian analysis

- $\blacktriangleright \mu_t$ is generally not known.
- ► There is not a unique prior density for survival times of patients (i.e., drug sponsors, physicians, medical centers, patients, regulatory agencies)
- Similarly for decision theoretic analysis; there is no unique loss function
- ▶ Decision to proceed to next trial phase not based on Bayes factor, but whether Bayes factor (or significance level) for particular treatment combination exceeds a threshold.

Probability of exceeding threshold

- ▶ In practice, we usually reject H_0 if the Bayes factor exceeds a threshold, say γ . In adaptive trial, we may also reject H_1 if $BF_{10} < 1/\gamma$
- ▶ If we believe null is false, then we really want to maximize

$$\mathbf{P}_{\mu_t}[BF_{10}(y) > \gamma].$$

► For exponential data and a point alternative hypothesis, the log of the Bayes factor is

$$\log[BF_{10}(\mathbf{y})] = -n\left[\log(\mu_1) - \log(\mu_0)\right] - \left(\frac{1}{\mu_1} - \frac{1}{\mu_0}\right) \sum_{i=1}^n y_i$$

Probability of exceeding threshold

▶ Probability that $log(BF_{10})$ exceeds $log(\gamma)$ can be written

$$P_{\mu_t} \left[\sum_{i=1}^n y_i > \frac{\log(\gamma) + n \left[\log(\mu_1) - \log(\mu_0) \right]}{\frac{1}{\mu_0} - \frac{1}{\mu_1}} \right]$$

Probability of exceeding threshold

▶ Probability that $log(BF_{10})$ exceeds $log(\gamma)$ can be written

$$P_{\mu_t} \left[\sum_{i=1}^n y_i > \frac{\log(\gamma) + n \left[\log(\mu_1) - \log(\mu_0) \right]}{\frac{1}{\mu_0} - \frac{1}{\mu_1}} \right]$$

Minimizing the RHS maximizes $\mathbf{P}_{\mu_t}[BF_{10}(y)>\gamma]$, regardless of the value of μ_t

Notation and assumptions

- \blacktriangleright H_0 , H_1 denote models/hypotheses
- $f(\mathbf{y} \mid \boldsymbol{\theta})$ denotes the sampling density under all models
- $ightharpoonup m_i(\mathbf{y})$ denotes the marginal density of data under model i
- ▶ Θ denotes parameter space
- ▶ $\pi_i(\theta)$ denotes the prior density for $\theta \in \Theta$ under model i
- ▶ $BF_{10}(\mathbf{y})$ denotes the Bayes factor between H_1 and H_0

Definition

A uniformly most powerful Bayesian test for a given evidence threshold γ , in favor of an alternative hypothesis H_1 against a fixed null hypothesis H_0 is a Bayesian hypothesis test in which the Bayes factor for the test satisfies the following inequality

$$\mathbf{P}_{\theta_t} \left[BF_{10}(\mathbf{y}) > \gamma \right] \ge \mathbf{P}_{\theta_t} \left[BF_{20}(\mathbf{y}) > \gamma \right] \tag{1}$$

for any $\theta_t \in \Theta$ and for all alternative hypotheses $H_2: \theta \sim \pi_2(\theta)$:

One parameter exponential family models

▶ Suppose $\mathbf{x} = \{x_1, \dots, x_n\}$ are iid with joint density function

$$f(\mathbf{x}) = \exp\left[-\eta(\theta)\sum_{i=1}^{n} T(x_i) - nA(\theta)\right] \prod_{i=1}^{n} h(x_i),$$

where $\eta(\theta)$ is strictly monotonic

► Consider a one-sided test of a point null hypothesis that $H_0: \theta = \theta_0$ against an arbitrary alternative hypothesis.

$\mathsf{UMPBT}(\gamma)$ for one parameter exponential family models

Theorem

Define

$$g_{\gamma}(\theta, \theta_0) = \frac{\log(\gamma) + n[A(\theta) - A(\theta_0)]}{\eta(\theta) - \eta(\theta_0)},$$

and define $u=\pm 1$ according to whether $\eta(\theta)$ is monotonically increasing or decreasing, and define $v=\pm 1$ according to whether the alternative hypothesis requires θ to be greater than or less than θ_0 , respectively.

Then a UMPBT(γ) can be obtained by restricting the support of $\pi_1(\theta)$ to values of θ that belong to the set

$$\underset{\theta}{\operatorname{arg min}} \ uv \ g_{\gamma}(\theta, \theta_0).$$

Implications

- ► Like classical uniformly most powerful tests, UMPBTs exist for all common 1PEFs
- Unique UMPBTs are often defined by simple alternative hypotheses; exceptions occur when several values of parameter define the same rejection region
- ightharpoonup Rejection regions for UMPBTs in exponential family models can generally be matched to rejection regions of UMPTs by appropriate choice of γ and Type I error

Implications

- ► Like classical uniformly most powerful tests, UMPBTs exist for all common 1PEFs
- Unique UMPBTs are often defined by simple alternative hypotheses; exceptions occur when several values of parameter define the same rejection region
- ightharpoonup Rejection regions for UMPBTs in exponential family models can generally be matched to rejection regions of UMPTs by appropriate choice of γ and Type I error
 - ⇒ This property establishes a connection between BFs and p-values

Asymptotic Properties

Theorem

For a one parameter natural exponential family density, suppose that $A(\theta)$ has three bounded derivatives in a neighborhood of θ_0 , and let θ^* denote a value of θ that defines a UMPBT(γ) test and satisfies

$$\frac{dg_{\gamma}(\theta^*,\theta_0)}{d\theta} = 0. {2}$$

Asymptotic Properties

Theorem

Then the following statements are true.

1. For some $t \in (\theta_0, \theta^*)$,

$$|\theta^* - \theta_0| = \sqrt{\frac{2\log(\gamma)}{nA''(t)}}.$$
 (3)

2. Under the null hypothesis,

$$\log(BF_{10}) \to N\left(-\log(\gamma), 2\log(\gamma)\right) \quad as \quad n \to \infty.$$
 (4)

Asymptotics

- ▶ As $n \to \infty$, UMPBT(γ) alternative converges to null hypothesis, for fixed γ .
- In practice, very large samples are collected for hypothesis tests when either
 - 1. A very small effect size is being tested, or
 - 2. Very strong evidence against H_0 is required
- Asymptotic properties of UMPBTs seem consistent with actual statistical practice
- ightharpoonup Evidence in favor of true null is probabilistically bounded by $\log(\gamma)$
- lacktriangle Rates at which to increase γ with n are topic for additional research

Examples

Examples

Binomial data

- ▶ Suppose $y \sim Binom(n, \pi)$
- $H_0: \pi = 0.3, n = 10, \gamma = 3; H_1: \pi > 0.3$
- ▶ UMPBT(γ) value of π_1 satisfies

$$\pi_1 = \underset{\pi}{\arg\min} \frac{\log(\gamma) - n[\log(1-\pi) - \log(1-\pi_0)]}{\log[\pi/(1-\pi)] - \log[\pi_0/(1-\pi_0)]}$$
= 0.525

$P[BF_{10} > 3]$ vs data-generating parameter

Normal data

- ▶ Suppose $x_1, ..., x_n$ iid $N(\mu, \sigma^2)$, σ^2 known
- ▶ UMPBT(γ) test of H_0 : $\mu = \mu_0$ is given by

$$\mu_1 = \mu_0 \pm \sigma \sqrt{\frac{2\log \gamma}{n}},$$

depending on whether $\mu_1 > \mu_0$ or $\mu_1 < \mu_0$.

$\mathbf{P}[BF_{10}>10]$ vs data-generating parameter for $\sigma^2, n=1$

Comparison to classical UMPT of normal mean

► Classical one-sided test's rejection region is

$$\bar{x} \ge \mu_0 \pm z_\alpha \frac{\sigma}{\sqrt{n}}$$

▶ Equating the rejection regions for the UMPBT(γ) test and the UMPT of size α leads to

$$\gamma = \exp\left(z_{\alpha}^2/2\right)$$

 \blacktriangleright UMPBT places μ_1 on boundary of classical UMPT rejection region

Comparison to classical UMPT of normal mean

► Classical one-sided test's rejection region is

$$\bar{x} \ge \mu_0 \pm z_\alpha \frac{\sigma}{\sqrt{n}}$$

▶ Equating the rejection regions for the UMPBT(γ) test and the UMPT of size α leads to

$$\gamma = \exp\left(z_{\alpha}^2/2\right)$$

- \blacktriangleright UMPBT places μ_1 on boundary of classical UMPT rejection region
- ▶ UMPBT the most "subjective" of objective Bayesian hypothesis tests?

Other Exact UMPBTs

UMPBTs exist for

- Simple tests regarding coefficients in linear models with known observational variances
- ▶ Chi-squared tests on one degree of freedom when H_0 : $\lambda = 0$ and H_1 : $\lambda > 0$, λ the non-centrality parameter
- ► Two-sided tests in 1PEF, under constraint of symmetric alternative.

Approximate UMPBTs

- Approximate UMPBTs can be obtained in normal model hypothesis tests with unknown variances (require data dependent alternative hypotheses).
 - 1. T-tests (one-sample, paired, two-sample)
 - 2. Simple tests of linear regression coefficients with unknown observational variance

T-tests

▶ For one-sample t-test, $P(BF_{10} > \gamma)$ can be expressed as

$$P_{\mu_t} [a < \bar{x} < b]$$

▶ For two-sample t-test, $P(BF_{10} > \gamma)$ can be expressed as

$$P_{\mu_1 - \mu_0} [c < \bar{x} < d]$$

- ▶ The parameters (a, b, c, d) depend on n, γ , and s^2 .
- ▶ Upper bounds $b, d \rightarrow \infty$ with n
- ▶ Ignoring upper bound, data-dependent (s^2) approximate UMPBT can be obtained by minimizing a or c.

Bayes evidence thresholds versus test size

Evidence threshold versus size of test

Bayes evidence thresholds versus test size

Under assumption of equipoise (i.e., $P(H_0) = P(H_1)$),

▶
$$p = 0.05 \Rightarrow \gamma \in (3,5) \Rightarrow P(H_0 \mid \mathbf{x}) \in (.17, .25)$$

▶
$$p = 0.01 \Rightarrow \gamma \in (12, 20) \Rightarrow P(H_0 \mid \mathbf{x}) \in (.05, .08)$$

▶
$$p = 0.005 \Rightarrow \gamma \in (25, 50) \Rightarrow P(H_0 \mid \mathbf{x}) \in (.02, .04)$$

▶
$$p = 0.001 \Rightarrow \gamma \in (100, 200) \Rightarrow P(H_0 \mid \mathbf{x}) \in (.005, .001)$$

Bayes evidence thresholds versus test size

- ► Standard definitions of "significant" and "highly significant" results correspond to only weak evidence against null hypotheses.
- ▶ Definition of "significant" or "highly significant" should require evidence of > 25:1 or > 100:1 against the null $\Rightarrow p$ -values of 0.005 or 0.001

Ongoing research:

Scott Goddard, graduate student at Texas A&M, is currently developing "restricted most power Bayesian tests"

Suppose

$$\mathbf{y} \sim \textit{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \textit{I}), \qquad \textit{H}_0: \boldsymbol{\beta} = 0, \qquad \textit{H}_1: \boldsymbol{\beta} \sim \textit{N}\left[0, \textit{g}\,\sigma^2(\mathbf{X}'\mathbf{X})^{-1}\right]$$

▶ With non-informative prior on σ^2 , value of g that maximizes probability that $BF_{10} > \gamma$ is

$$argmin rac{(g+1)}{g} \left[1 - (g+1)^{-p/n} \gamma^{-2/n}
ight]$$

Restricted most powerful Bayesian tests have applications in

- ► ANOVA, where they provide correspondence to *F* tests
- ▶ Bayesian variable selection, where γ can be set according to p and n
- ► Goddard has developed analytic expressions for optimal *g* and found expressions to set *g* to control Type 1 error in ANOVA and Bayesian variable selection contexts.

Summary

- ► UMPBTs provide default objective Bayes factors for the most common of statistical hypothesis tests
- ► Large sample behavior is reasonable
- ▶ Approximately mimic the subjective alternative hypothesis implicit to classical tests (for matched γ and Type I error)
- ► Correspondence between UMPBTs and UMPTs provide guidance on appropriate definition of significant and highly significant findings, and insight into the non-reproducibility of scientific studies
- Restricted most powerful Bayesian tests can provide default settings for hyperparameters for parametric alternative hypotheses

The End

