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Motivation

Multi-agent, Multi-cohort End-Stage Melanoma trial, Standard-of-care
survival times:

Biomarker Group Tmt 1 Tmt 2 Tmt 3

a 4 4 4

b 4 4 4

c 4 4 4

d 6 6 6

e 6 6 6
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Assumptions:

I Suppose survival time for patient i in biomarker group b under
treatment t is Yi ∼ Exp(µbt)

I You wish to test a null hypothesis H0 : µbt = µ0 versus
H1 : µbt = µ1 > µ0
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Alternative hypotheses:

Suppose you know the true mean survival time is µt .

I If you want to maximize expected weight of evidence, you take
H1 : µ = µt , because∫ 1

0
mt(y) log

[
mt(y)

m0(y)

]
dy −

∫ 1

0
mt(y) log

[
m1(y)

m0(y)

]
dy

=

∫ 1

0
mt(y) log

[
m1(y)

m1(y)

]
dy > 0

I This choice of µ = µt makes all posterior inferences exactly correct,
even in a repeated sampling sense
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Problems for subjective Bayesian analysis

I µt is generally not known.

I There is not a unique prior density for survival times of patients (i.e.,
drug sponsors, physicians, medical centers, patients, regulatory
agencies)

I Similarly for decision theoretic analysis; there is no unique loss
function

I Decision to proceed to next trial phase not based on Bayes factor, but
whether Bayes factor (or significance level) for particular treatment
combination exceeds a threshold.
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Probability of exceeding threshold

I In practice, we usually reject H0 if the Bayes factor exceeds a
threshold, say γ. In adaptive trial, we may also reject H1 if
BF10 < 1/γ

I If we believe null is false, then we really want to maximize

Pµt [BF10(y) > γ].

I For exponential data and a point alternative hypothesis, the log of the
Bayes factor is

log[BF10(y)] = −n [log(µ1)− log(µ0)]−
(

1

µ1
− 1

µ0

) n∑
i=1

yi
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Probability of exceeding threshold

I Probability that log(BF10) exceeds log(γ) can be written

Pµt

[
n∑

i=1

yi >
log(γ) + n [log(µ1)− log(µ0)]

1
µ0
− 1

µ1

]

Minimizing the RHS maximizes Pµt [BF10(y) > γ], regardless of the value
of µt
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Notation and assumptions

I H0, H1 denote models/hypotheses

I f (y |θ) denotes the sampling density under all models

I mi (y) denotes the marginal density of data under model i

I Θ denotes parameter space

I πi (θ) denotes the prior density for θ ∈ Θ under model i

I BF10(y) denotes the Bayes factor between H1 and H0
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Definition

A uniformly most powerful Bayesian test for a given evidence threshold
γ, in favor of an alternative hypothesis H1 against a fixed null hypothesis
H0 is a Bayesian hypothesis test in which the Bayes factor for the test
satisfies the following inequality

Pθt [BF10(y) > γ] ≥ Pθt [BF20(y) > γ] (1)

for any θt ∈ Θ and for all alternative hypotheses H2 : θ ∼ π2(θ):
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One parameter exponential family models

One parameter exponential family models

I Suppose x = {x1, . . . , xn} are iid with joint density function

f (x) = exp

[
−η(θ)

n∑
i=1

T (xi )− nA(θ)

]
n∏

i=1

h(xi ),

where η(θ) is strictly monotonic

I Consider a one-sided test of a point null hypothesis that H0 : θ = θ0
against an arbitrary alternative hypothesis.
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One parameter exponential family models

UMPBT(γ) for one parameter exponential family models

Theorem

Define

gγ(θ, θ0) =
log(γ) + n[A(θ)− A(θ0)]

η(θ)− η(θ0)
,

and define u = ±1 according to whether η(θ) is monotonically increasing
or decreasing, and define v = ±1 according to whether the alternative
hypothesis requires θ to be greater than or less than θ0, respectively.

Then a UMPBT(γ) can be obtained by restricting the support of π1(θ) to
values of θ that belong to the set

arg min
θ

uv gγ(θ, θ0).
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One parameter exponential family models

Implications

I Like classical uniformly most powerful tests, UMPBTs exist for all
common 1PEFs

I Unique UMPBTs are often defined by simple alternative hypotheses;
exceptions occur when several values of parameter define the same
rejection region

I Rejection regions for UMPBTs in exponential family models can
generally be matched to rejection regions of UMPTs by appropriate
choice of γ and Type I error

⇒ This property establishes a connection between BFs and p-values
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One parameter exponential family models

Asymptotic Properties

Theorem

For a one parameter natural exponential family density, suppose that A(θ)
has three bounded derivatives in a neighborhood of θ0, and let θ∗ denote a
value of θ that defines a UMPBT(γ) test and satisfies

dgγ(θ∗, θ0)

dθ
= 0. (2)
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One parameter exponential family models

Asymptotic Properties

Theorem

Then the following statements are true.

1. For some t ∈ (θ0, θ
∗),

|θ∗ − θ0| =

√
2 log(γ)

nA′′(t)
. (3)

2. Under the null hypothesis,

log(BF10)→ N (− log(γ), 2 log(γ)) as n→∞. (4)
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One parameter exponential family models

Asymptotics

I As n→∞, UMPBT(γ) alternative converges to null hypothesis, for
fixed γ.

I In practice, very large samples are collected for hypothesis tests when
either

1. A very small effect size is being tested, or
2. Very strong evidence against H0 is required

I Asymptotic properties of UMPBTs seem consistent with actual
statistical practice

I Evidence in favor of true null is probabilistically bounded by log(γ)

I Rates at which to increase γ with n are topic for additional research
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Examples

Examples
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Examples

Binomial data

I Suppose y ∼ Binom(n, π)

I H0 : π = 0.3, n = 10, γ = 3; H1 : π > 0.3

I UMPBT(γ) value of π1 satisfies

π1 = arg min
π

log(γ)− n[log(1− π)− log(1− π0)]

log[π/(1− π)]− log[π0/(1− π0)]

= 0.525
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Examples

P[BF10 > 3] vs data-generating parameter
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Examples

Normal data

I Suppose x1, . . . , xn iid N(µ, σ2), σ2 known

I UMPBT(γ) test of H0 : µ = µ0 is given by

µ1 = µ0 ± σ
√

2 log γ

n
,

depending on whether µ1 > µ0 or µ1 < µ0.
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Examples

P[BF10 > 10] vs data-generating parameter for σ2, n = 1
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Examples

Comparison to classical UMPT of normal mean

I Classical one-sided test’s rejection region is

x̄ ≥ µ0 ± zα
σ√
n

I Equating the rejection regions for the UMPBT(γ) test and the
UMPT of size α leads to

γ = exp
(
z2α/2

)
I UMPBT places µ1 on boundary of classical UMPT rejection region

I UMPBT the most “subjective” of objective Bayesian hypothesis tests?
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Examples

Other Exact UMPBTs

UMPBTs exist for

I Simple tests regarding coefficients in linear models with known
observational variances

I Chi-squared tests on one degree of freedom when H0 : λ = 0 and
H1 : λ > 0, λ the non-centrality parameter

I Two-sided tests in 1PEF, under constraint of symmetric alternative.
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Examples

Approximate UMPBTs

I Approximate UMPBTs can be obtained in normal model hypothesis
tests with unknown variances (require data dependent alternative
hypotheses).

1. T-tests (one-sample, paired, two-sample)
2. Simple tests of linear regression coefficients with unknown

observational variance
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Examples

T-tests

I For one-sample t-test, P(BF10 > γ) can be expressed as

Pµt [a < x̄ < b]

I For two-sample t-test, P(BF10 > γ) can be expressed as

Pµ1−µ0 [c < x̄ < d ]

I The parameters (a, b, c , d) depend on n, γ, and s2.

I Upper bounds b, d →∞ with n

I Ignoring upper bound, data-dependent (s2) approximate UMPBT can
be obtained by minimizing a or c .
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Examples

Bayes evidence thresholds versus test size
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Examples

Bayes evidence thresholds versus test size

Under assumption of equipoise (i.e., P(H0) = P(H1)),

I p = 0.05 ⇒ γ ∈ (3, 5) ⇒ P(H0 | x) ∈ (.17, .25)

I p = 0.01 ⇒ γ ∈ (12, 20) ⇒ P(H0 | x) ∈ (.05, .08)

I p = 0.005 ⇒ γ ∈ (25, 50) ⇒ P(H0 | x) ∈ (.02, .04)

I p = 0.001 ⇒ γ ∈ (100, 200) ⇒ P(H0 | x) ∈ (.005, .001)
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Examples

Bayes evidence thresholds versus test size

I Standard definitions of ”significant” and ”highly significant” results
correspond to only weak evidence against null hypotheses.

I Definition of ”significant” or ”highly significant” should require
evidence of > 25 : 1 or > 100 : 1 against the null ⇒ p-values of 0.005
or 0.001
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Examples

Ongoing research:

Scott Goddard, graduate student at Texas A&M, is currently developing
“restricted most power Bayesian tests”

I Suppose

y ∼ N(Xβ, σ2I ), H0 : β = 0, H1 : β ∼ N
[
0, gσ2(X′X)−1

]
I WIth non-informative prior on σ2, value of g that maximizes

probability that BF10 > γ is

argmin
(g + 1)

g

[
1− (g + 1)−p/nγ−2/n

]
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Examples

Restricted most powerful Bayesian tests have applications in

I ANOVA, where they provide correspondence to F tests

I Bayesian variable selection, where γ can be set according to p and n

I Goddard has developed analytic expressions for optimal g and found
expressions to set g to control Type 1 error in ANOVA and Bayesian
variable selection contexts.
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Examples

Summary

I UMPBTs provide default objective Bayes factors for the most
common of statistical hypothesis tests

I Large sample behavior is reasonable

I Approximately mimic the subjective alternative hypothesis implicit to
classical tests (for matched γ and Type I error)

I Correspondence between UMPBTs and UMPTs provide guidance on
appropriate definition of significant and highly significant findings,
and insight into the non-reproducibility of scientific studies

I Restricted most powerful Bayesian tests can provide default settings
for hyperparameters for parametric alternative hypotheses
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Examples

The End
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