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Ockham’s razor

Bayes factors

Two sampling models for a sequence of discrete observations zn,

Mn
0 = {f n

0 (·|γ0), γ0 ∈ Γ0},
Mn

1 = {f n
1 (·|γ1), γ1 ∈ Γ1},

compared by means of the Bayes factor forMn
1 againstMn

0,

BF10(zn) =

∫
Γ1

f n
1 (zn|γ1)p1(γ1)dγ1∫

Γ0
f n
0 (zn|γ0)p0(γ0)dγ0

,

where pi(γi) is a parameter prior underMn
i (i = 0,1); then

Pr(Mn
1|zn) =

BF10(zn)

1 + BF10(zn)
,

assuming Pr(Mn
0) = Pr(Mn

1) = 1/2, where zn = (z1, . . . , zn).
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Ockham’s razor

Asymptotic learning rate

LetMn
0 be nested inMn

1 (Γ0 ≡ Γ̃0 ⊂ Γ1) with dimensions d0 < d1.

Assume p0(·) is a local prior (continuous and strictly positive on Γ0).

Typically p1(·) is also a local prior, so that (under regularity conditions)

BF10(zn) = n− (d1−d0)

2 eOP(1),

as n→∞, if the sampling distribution of zn belongs toMn
0,

BF10(zn) = eKn+OP(n1/2),

for some K > 0, if the sampling distribution of zn belongs toMn
1 \Mn

0.

This imbalance in the asymptotic learing rate motivated the
introduction of non-local priors1. . .

1Johnson, V. E. and Rossell, D. (2010). On the use of non-local prior densities
in Bayesian hypothesis tests. J. R. Stat. Soc. Ser. B Stat. Methodol. 72, 143–170.
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The whetstone

Generalized moment priors

. . . such as generalized moment priors2 of order h:

pM
1 (γ1|h) ∝ gh(γ1)p1(γ1), γ1 ∈ Γ1,

where gh(·) is a smooth function from Γ1 to <+,
vanishing on Γ̃0 together with its first 2h − 1 derivatives,
while g(2h)

h (γ1) > 0 for all γ1 ∈ Γ̃0; let g0(γ1) ≡ 1.

Asymptotic learning rate changed to

BF10(zn) = n−h− (d1−d0)

2 eOP(1),

as n→∞, if the sampling distribution of zn belongs toMn
0;

unchanged if the sampling distribution of zn belongs toMn
1 \Mn

0.
2Consonni, G. , Forster, J. J. and La Rocca, L. (2013). The whetstone and the alum

block: Balanced objective Bayesian comparison of nested models for discrete data.
Statist. Sci. 38, 398–423.
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The whetstone

Comparing two proportions

Let the larger model be the product of two binomial models,

f n1+n2
1 (y1, y2|θ1, θ2) = Bin(y1|n1, θ1)Bin(y2|n2, θ2), (θ1, θ2) ∈ ]0,1[2,

and the null model assume θ1 = θ2 = θ,

f n1+n2
0 (y1, y2|θ) = Bin(y1|n1, θ)Bin(y2|n2, θ), θ ∈ ]0,1[.

Starting from the conjugate local prior

p1(θ1, θ2|a) = Beta(θ1|a11,a12)Beta(θ2|a21,a22),

underM1, where a is 2× 2 matrix of strictly positive real numbers,
define the conjugate moment prior of order h as

pM
1 (θ1, θ2|a,h) ∝ (θ1 − θ2)2hBeta(θ1|a11,a12)Beta(θ2|a21,a22);

assume a11 = a12 = b1 and a21 = a22 = b2.
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The whetstone

Going non-local from a default prior
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The whetstone

Increasing the order of a default moment prior
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The whetstone

Jeffreys-Lindley-Bartlett paradox

Related to the limiting argument of the JLB paradox, the idea that
probability mass should not be “wasted” in parameter areas too remote
from the null is both old and new:

If a rare event for H0 occurs that also is rare
for typical H1 values, it provides little evidence
for rejecting H0 in favor of H1

3

A vague prior distribution assigns much of its probability
on values that are never going to be plausible,
and this disturbs the posterior probabilities
more than we tend to expect—something that we probably
do not think about enough in our routine applications
of standard statistical methods4

3Morris, C. N. (1987). Comments on “Testing a point null hypothesis:
The irreconcilability of P values and evidence.” J. Amer. Statist. Assoc. 82, 131–133.

4Gelman, A. (2013). P values and statistical practice. Epidemiology 24, 69–72.
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The whetstone

Were you wearing a red tie, Sir?
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The alum block

Intrinsic moment priors

Mixing5 over all possible training samples x t = (x1, . . . , xt ) of size t ,
the intrinsic moment prior on γ1 is given by

pIM
1 (γ1|h, t) =

∑
x t

pM
1 (γ1|x t ,h)m0(x t ), γ1 ∈ Γ1,

where pM
1 (·|x t ,h) is the posterior of γ1 underM1, given x t ,

and m0(x t ) =
∫

Γ0
f t
0(x t |γ0)p0(γ0)dγ0 is the marginal of x t underM0;

let pIM
1 (·|h,0) = pM

1 (·|h).

As the training sample size t grows, the intrinsic moment prior
increases its concentration on regions around the subspace Γ̃0,
while the non-local nature of pM

1 (·|h) is preserved.

5Pérez, J. M. and Berger, J. O. (2002). Expected-posterior prior distributions
for model selection. Biometrika 89, 491–511.
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The alum block

Pulling the mass back toward the null
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The alum block

Bleeding stopped
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The alum block

How was t chosen?
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The alum block

How about the choice of h?

Choice h = 1 recommended, based on the following considerations:
switching from h = 0 to h = 1 changes the asymptotic learning
rate from sublinear to superlinear (making a big difference);
switching from h = 1 to h = 2 results in a less remarkable
difference (while aggravating the problem with small samples).

Inverse moment priors (Johnson and Rossell, 2010, JRSS-B)
achieve an exponential learning rate also when the sampling
distribution belongs to the smaller model; do you really want to drop
that fast a model with the sampling distribution on its boundary?
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The alum block

Predictive performance

Cross−Validation Study

Table (Efron, 1996)
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Discussion

Computational burden

The Bayes factor againstMn
0 using a generalized moment prior

underMn
1 can be written as

BF M
10(zn|h) =

∫
Γ1

gh(γ1)p1(γ1|zn)dγ1∫
Γ1

gh(γ1)p1(γ1)dγ1
BF10(zn),

so that the extra effort required amounts to computing some
generalized moments of the local prior and posterior.

The Bayes factor againstMn
0 using an intrinsic moment prior

underMn
1 can be written as a mixture of conditional Bayes factors:

BF IM
10 (zn|h, t) =

∑
x t

BF M
10(zn|x t ,h)m0(x t ),

where BF M
10(z t |x t ,h) is the Bayes factor using pM

1 (·|x t ,h) as prior
underMn

1; recall that m0(x t ) =
∫

Γ0
f t
0(x t |γ0)p0(γ0)dγ0.
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Discussion

Why not just increase prior sample size?
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Discussion

Logistic regression models

Suppose we observe y = (y1, . . . , yN) with f (yi |θi) = Bin(yi |ni , θi),
i = 1, . . . ,N, and we let

log
θi

1− θi
= β0 +

k∑
j=1

wijβj , i = 1, . . . ,N,

where wij , j = 1, . . . , k , are the values of k explanatory variables

observed with yi ; the likelihood is f n+

k (y |β) =
{∏N

i=1
(ni

yi

)}
Lk (β|y ,n),

where β = (β0, β1, . . . , βk ), n = (n1, . . . ,nN), and

Lk (β|y ,n) =
N∏

i=1

eyi(β0+
∑k

j=1 wijβj)−ni log(1+exp{β0+
∑k

j=1 wijβj}).

Special cases: N = 2, k = 1, wij = (i − 1) & N = 2, k = 0
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Discussion

Logistic regression priors

Conjugate local prior6 given by pC
k (β|u, v) ∝ Lk (β|u, v),

where u = (u1, . . . ,uN) and v = (v1, . . . , vN);
default specification of these hyperparameters:

vi = v+
ni

n+
, ui =

vi

2
, i = 1, . . . ,N,

for some v+ > 0 representing a prior sample size;
the condition ui = vi/2 ensures that the prior mode is at β = 0.

In the special cases corresponding to comparing two proportions,
the induced prior on the common proportion is θ ∼ Beta(v+/2, v+/2)
while (θ1, θ2) ∼ Beta(v1/2, v1/2)⊗ Beta(v2/2, v2/2). . .

6Bedrick, E. J., Christensen, R. and Johnson, W. (1996). A new perspective
on priors for generalized linear models. J. Amer. Statist. Assoc. 91, 1450–1460.
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Discussion

Going non-local in a different parameterization

. . . whereas the product moment prior7 on β

pM
k (β|u, v ,h) ∝

k∏
j=1

β2h
j pC

k (β|u, v),

in the special case N = 2, k = 1, wij = (i − 1),
induces on (θ1, θ2) a prior not in the family of conjugate moment priors
considered before; how much can results differ?

Intrinsic procedure successfully applied to pM
k (·|u, v ,h),

but maybe increasing v+ is an interesting alternative?

7Johnson, V. E. and Rossell, D. (2012). Bayesian model selection
in high-dimensional settings. J. Amer. Statist. Assoc. 107, 649–660.
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Thank you!

http://xianblog.wordpress.com/2013/08/01/whetstone-and-alum-and-occams-razor/
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