(iii) Prior $p(\mathbf{Z})$ on $(S \times C)$ binary matrix \mathbf{Z} , prior $p(\mathbf{w})$ on mixture weights w_{tc} for composition (i).

Modeling Tumor Heterogeneity

PETER MÜLLER, UT Austin

JUHEE LEE, UCSC, YUAN JI, U Chicago & NorthShore, K. GULUKOTA, NorthShore Health System

Slide 2

Tumor Heterogeneity

- Mutations acquired over a tumor's life history
- Every new mutation gives rise to a new subpopulation of cells ("subclone")
- — heterogeneous population of cells, composed of subpopulations with varying numbers of mutations.
- Tumor history imprinted in each sample as the mosaicism of mutations.

Slide 3

Data

SNV: point mutations, s = 1, ..., S

Data: $N_{st} = \#$ reads mapped to locus of SNV s in sample t. $n_{st} = \#$ of these with SNV.

Sampling model: $n_{st} \sim \text{Bin}(N_{st}, p_{st})$

Prior: in words,

- (i) p_{st} arises as a composition of sample t as a mixture of C latent cell subclones.
- (ii) Mutation s in subclone c is either present $(Z_{sc} = 1)$ or not $(Z_{sc} = 0)$. $\mathbf{Z}_c = (Z_{sc}, s = 1, ..., S)$ defines subclone, c.

Slide 4

Inference

Goal: Reconstruct cell subpopulations = estimate Z and C.

Problem: Deconvolution of p_{st} as a mixture of binary indicators Z_{sc}

$$p_{st} = \sum_{c} w_{tc} Z_{sc} + w_{t0} p_{s0}$$

plus "background noise"

Real problem: Z is latent, need to infer Z from the data.

Identifiability: In principle even feasible with one sample. Weights are identified across mutations s.

Slide 5

Prior

Latent cell types: $p(\mathbf{Z})$ on $(S \times C)$ binary matrix, w. random C.

Feature allocation: Think of SNV s selecting cell types c Features (dishes) = c; experimental units (customers) = s

Random feature allocation: define p(Z) as

- $p(Z_{sc} = 1 \mid \pi_c) = \pi_c, c = 1, \dots, C$
- $\pi_c \sim \operatorname{Be}\left(\frac{\alpha}{C}, 1\right)$
- Drop unselected features

IBP as $C \to \infty$.

Composition of sample t as mix of cell types:

 $(w_{tc}, c = 1, \ldots, C) \sim \text{Dir}(\cdot).$

Slide 6 \mathbb{A} PZfixed CC = 3

= truth

This is for normal sampling, asymptotically for small variance and shrinking total mass.

Simulation IBP: Broderick et al. (2013) extend a similar argument to the IBP, with normal sampling and small variance and shrinking rate of new features,

> **IBP** with binomial sampling: same argument can be made :-)

using increasing scaling of Bin with β and shrinking IBP par γ , using $\gamma = \exp(-\beta \lambda^2)$

Approx posterior: use k-means with different starting values to characterize posterior.

Slide 10

Slide 7

Results - Pancreatic Cancer n=5 samples of pancreatic cancer (PDAC, pancreatic ductal adenocarcinoma).

Simulation

True and estimated Z

Slide 11

Slide 8

Computation

... is a pain.

Slide 9

Results - Pancreatic Cancer n=5 samples of pancreatic cancer (PDAC, pancreatic ductal adenocarcinoma). Estimated w_{tc} :

S = 118 SNV's in KEGG pathway

S = 7000 SNV's

MAD Bayes for TH

with Yanxun XU, UT Austin; Yuan YUAN, Baylor C.of Med.;

Yuan JI and Kamalakar Gulukota, NorthShore Hospi- $\overline{Slide~12}$

DP mixture: Kulis & Jordan (2012) recognize log posterior \approx criterion function in k-means – voila!

Results - Breast Cancer

Horvath et al. (2013): n = 17 BC patients, S = 329 SNV's.

Estimated w_{tc} with C=4.

Slide 13

Summary

TH: Model-based estimation of cell subpopulations is possible – and seems to work.

Big data: MCMC is not feasible anymore – alternative approaches remain feasible.

Limitations: and extensions

Tumor phylogenetics: Without condition on phylogenetic tree of subclones

A priori independent cell types: indpendent $z_c = (Z_{1...S,c})$, with $p(z_c = z_{c'}) > 0$, a priori (i know — arrgh!)

Alternative dependent prior using DPP or others.

CNV: we conditioned on N_{st} .

Could use N_{st} to learn about CNV.