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e Big data?

e Why model selection?

e Toy example

o Traffic speed cameras

e Selection induced bias

e Bayesian predictive model selection

e Reference predictive approaches

Aki.Vehtari@aalto.fi On high-dimensional covariate selection



Identifying disease risk factors

e Motivation: “bioinformatics and medical applications”

e Predict risk of CVD, diabetes, cancers

- biomarkers: lipids, growth hormones, etc.
- genetic markers
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Big data?

e We have

people in studies n ~ 200 — 8000

clinical covariates p < 20

biomarkers p < 200

genetic markers p ~ 10 — 1e6

survival models with latent linear, sparse linear or
Gaussian process model
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Why model selection?

e Assume a model rich enough capturing lot of uncertainties
- e.g. Bayesian model average (BMA) or non-parametric
- model criticism and predictive assessment done
— if we are happy with the model, no need for model
selection
- Box: “All models are wrong, but some are useful”
- there are known unknowns and unknown unknowns

e Model selection

- what if some smaller (or more sparse) or parametric
model is practically as good?
- which uncertainties can be ignored?
— reduced measurement cost, simpler to explain
(e.g. less biomarkers, and easier to explain to doctors)
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Previously

e University of Warwick, 2010, CRiSM Workshop: Model
uncertainty and model selection

- | talked about Bayesian predictive model selection
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So many predictive papers

- Predictive model selection

- Predictive variable selection in generalized linear models

- A predictive model selection criterion

- A predictive approach to model selection

- Optimal predictive model selection

- Bayesian predictive model selection

- A Bayesian predictive approach to model selection

- A Bayesian predictive semiparametric approach to variable
selection and model comparison in regression

- A generalized predictive criterion for model selection

- Some Bayesian predictive approaches for model selection

- Model determination using predictive distributions

- Model choice: A minimum posterior predictive loss
approach

- etc.

Aki.Vehtari@aalto.fi On high-dimensional covariate selection



Previously

e Aki Vehtari and Janne Ojanen (2012). A survey of
Bayesian predictive methods for model assessment,
selection and comparison. In Statistics Surveys,
6:142-228.

e Andrew Gelman, Jessica Hwang and Aki Vehtari (2014).
Understanding predictive information criteria for Bayesian
models. Statistics and Computing, in press. Published
online 20 August 2013.

e This talk is about how the reviewed methods behave in
high dimensional cases
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Toy example

e Toy data with n = 20, 200 replications

Z4,20,23,24 ~ U(—1.73,1.73)
x1234 ~ N(21,.05%)
X5.6,7.8 ~ N(2z,.05%)
Xg,10,11,12 ~ N(23,.05)
X13,...100 ~ N(z4, .052)
Yy =21+ 520+ .2523 4+ ¢
e ~ N(0,0.5%),
that is, x’s are noisy observations of z so that there are

four groups of correlated covariates and 88 of the
covariates have no effect on y

e Linear model with prior on weights
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Traffic speed cameras

¢ In UK there have been a lot of discussion about the
effectiveness of speed cameras to reduce the number of
traffic accidents

e lllustration with dice
- throw a bunch of dice
- choose the dice showing six dots
- re-throw the chosen dice
- note that the re-thrown dice show the same or
reduced number of dots
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Selection induced bias

e Even if the original model performance estimate is
unbiased (like bias corrected cross-validation)
selecting a model with a better estimate can lead to
overfitting

o lllustration with covariate selection

- adding an irrelevant covariate to a model is like
throwing a die

- just by chance an irrelevant covariate can improve the
model fit

- if the model with best fit is chosen, it is likely that it
does not fit so well the future data

- the problem is not solved by penalising complexity as
we have same phenomenon when comparing models
with equal number of covariates
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Selection induced bias

e Even if the original model performance estimate avoids
double use of data (like cross-validation),
the model selection step uses the data again

e We could use two-layer / nested cross-validation to obtain
unbiased estimate for the effect of model selection
- this does not fix the problem of getting worse
predictions
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Bayes factor

e Marginal likelihood in Bayes factor is also a predictive
criterion

- chain rule

p(y|Mk) = p(y1|Mi)p(yalyt, Mi), . ...pWalY1, - s Va1, Mk)
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How to avoid double use of data in model selection

e Decision theory helps
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Predictive model

e p(y|Xx, D, M) is the posterior predictive distribution
- p(j/’)?v D, Mk) = fp(.'ﬂ;(’ 0, Mk)p(0|Da ;(7 Mk)de
- y is a future observation
- X is a future random or controlled covariate value
-D={(xD y).i=12 .. n}
- M is a model
- 6 denotes parameters
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Predictive performance

e Future outcome y is unknown (ignoring X in this slide)

e With a known true distribution p;(y), the expected utility
would be

o(a) = / pu(5)u(a 7)dy

where u is utility and a is action (in our case, a prediction)

e Bayes generalization utility
BUs = [ pu(7)10g p(71D. M)y

where a = p(-|D, M) and u(a; y) = log(a(y))
- ais to report the whole predictive distribution
- utility is the log-density evaluated at y
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Bayesian predictive methods

e Many ways to approximate

BUy = / pi(7) 1og (71D, Me)dy

for example

- Bayesian cross-validation
- WAIC
- reference predictive methods

e Many other Bayesian predictive methods estimating
something else, e.g.,
- DIC
- L-criterion, posterior predictive criterion
- projection methods

e See our survey for more methods
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M-open,-closed,-completed

e Following Bernardo & Smith (1994), there are three
different approaches for dealing with the unknown p;
- M-open
- M-closed
- M-completed
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e Explicit specification of p;(¥) is avoided by re-using the
observed data D as a pseudo Monte Carlo samples from
the distribution of future data

e For example, Bayes leave-one-out cross-validation

1 n
LOO = > " log p(yilxi, D_j, Mk)

i=1
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Cross-validation

e Bayes leave-one-out cross-validation
1 n
LOO = — ) | | xi, D_;, M,
00 n; ng(yl|xla is k)

- different part of the data is used to update the
posterior and assess the performance
- almost unbiased estimate for a single model

E[LOO(n)] = E[BUqy(n — 1)]

expectation is taken over all the possible training sets
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Selection induced bias

e Selection induced bias in LOO-CV
- same data is used to assess the performance and
make the selection
- the selected model fits more to the data
- the LOO-CV estimate for the selected model is biased
- recognised already, e.g., by Stone (1974)

e Same holds for many other methods, e.g., DIC/WAIC

e Performance of the selection process itself can be
assessed using two level cross-validation, but it does not
help choosing better models

e Bigger problem if there is a large number of models as in
covariate selection
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M-closed and M-completed

o Explicit model for p:(y)

e M-closed
- possible to enumerate all possible model candidates
{Mi 3
- belief that one of the candidate models is “true”
- set a prior distribution p(Mx) and compute pgma(¥|D)

e M-completed
- suitable when M-closed can not be assumed
- rich enough model M, whose predictions are
considered to best reflect the uncertainty in the
prediction task
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M-closed and M-completed

e Actual belief model M,

- arich enough model, describing well the knowledge
about the modeling problem and capturing the
essential prior uncertainties

- could be, for example

- encompassing model
- Bayesian model averaging model
- flexible non-parametric model

- the predictive distribution of the actual belief model
p(y|x, D, M,) is a quantitatively coherent
representation of our subjective beliefs about the
unobserved future data
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Reference model and reference predictive approach

e Reference model
- a model used to asses the predictive performance of
other models
- natural choice is the actual belief model M,
o Reference predictive approach
- predictive model assessment using a reference model
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e M-open for both p(y|X) and p(X)
e Reference model for both p(y|x) and p(X)

o Reference model for p(y|x) and M-open for p(x)

see our survey for discussion about fixed and deterministic x
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Reference predictive approach

¢ Reference model for both p(y|x, D, M,) and p(x|D, M,)
- good model for X may often be difficult to construct

e Lindley (1968)
- use of linear Gaussian model for y|x and squared
error cost function made computations simpler
- only first moments of x were needed
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Reference predictive approach

o Reference model for p(y|x) and simple M-open for p(X)

b~ b.(My) = Z/Iogp 71%:, D, Mo)p(§/|%, D, M.)dy

e San Martini & Spezzaferri (1984) used BMA model as the
reference model
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Reference predictive approach

o Reference model for p(y|x) and CV for p(x)
1 n
i 8(M) = 1 [ 100 p(71x. D-i. Mp(F1x. D-1. M)dy
i=1

- better assessment of the out-of-sample predictive
performance
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Reference predictive approach

o Reference predictive model selection using log-score
corresponds to minimizing the KL-divergence from the
reference predictive distr. to the submodel predictive distr.

- divergence is minimized by the reference model itself

- requires additional cost term or calibration of
acceptable divergence from the reference

- no selection induced bias, since data has been used
only once to create the reference model, and selection
process fits towards the reference model

- bias depends on the reference model and is generally
unknown

- variance is reduced as model is used for p(y) instead
of n pseudo Monte carlo samples

- reduced variance helps discriminating good models
from the others
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Experimental results

Methods compared

reference predictive for y|x (1% inform. loss)

reference predictive for y|x + CV for x (1% inform. loss)

- LOO-CV

DIC (Spiegelhalter et al, 2002)

WAIC (watanabe 2010)

posterior predictive loss = GG (Gelfand & Ghosh, 1998)
cross-validation predictive loss = MSP (Marriot et al, 2001)

Bayes factor
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Toy example
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Toy example
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Toy example - alternative prior
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Toy example - noisier small data
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Computational issues

e The presented reference approach requires computation of
KL divergences of the posterior predictive densities
- generally no closed form equation
- quadrature can be used for pointwise predictions
- some models are easy, like binary classification

e Traversing model space
- forward selection
- branch and bound
- greedy selection
- stochastic search
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Conclusions

e Selection induced bias is a problem when there are many
models (e.g. in covariate selection)

o Reference predictive approach with CV for x avoids
selection induced bias
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e Gibbs score

e Projection methods
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