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Infectious Disease Transmission Models

Goal:

Use data to build a mathematical model for how disease spreads
through some population

Why?

To help us understand how disease spreads
To help predict what may occur
To help understand how to control disease
To help design optimal vaccination/culling/surveillance policies
To quantify risk/uncertainty associated with any of the above
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Discrete Time Individual-based Modelling Framework

We assume a population of n individuals : i = 1, . . . , n:
(e.g. herds; animals in herd; plants; fields of plants;

humans; schools; census divisions )

We assume that at discrete time point t, t = 1, . . . tmax , each individual can be
in one of three states:

S Susceptible doesn’t have disease;
can contract it

I Infectious has contracted the disease;
can pass it on

R Removed been removed from the susceptible population
e.g. died from the disease;
e.g. isolated from the susceptible population;
e.g. recovered and developed immunity

Individuals moves through states in the following way:
S → I → R

Rob Deardon Emulation-based Disease Models



Infectious Disease Transmission Models
Inference and computational issues

GP Emulator
Applications

Discussion

Background
Some Examples

Model 1: Power-law Spatial Model

The probability of susceptible individual i being infected at time t is given by:

P(i , t) = 1− exp

−α ∑
j∈I (t)

d
−β
ij


where

I I (t) is the set of infectious individuals at time t

I Kij = d
−β
ij is a power-law infection/distance kernel

I dij is the distance between individuals i and j
I α > 0 is an ‘infectivity’ parameter
I β > 0 is a ‘spatial’ parameter
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Infection Kernel versus Distance (Kij = d
−β
ij )
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Power-law spatial-ILM simulation across grid

From Vrbik et al (2012) in Bayesian Analysis, 7(3), 615 638..
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Model 2: Network Model

The probability of susceptible individual i being infected at time t is given by:

P(i , t) = 1− exp

−α ∑
j∈I (t)

cij


where

I I (t) is the set of infectious individuals at time t
I Kij = cij is the (i , j)th element of a contact matrix

I cij =

[
1 if i and j have contact
0 otherwise

I α > 0 is an ‘infectivity’ parameter
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Model 2b: Network Model

The probability of susceptible individual i being infected at time t is given by:

P(i , t) = 1− exp

− ∑
j∈I (t)

(
α1c

(1)
ij + α2c

(2)
ij + α3c

(3)
ij + . . .

)
where

I I (t) is the set of infectious individuals at time t

I Kij = c
(k)
ij is the (i , j)th element of a contact matrix k

I c
(k)
ij =

[
1 if i and j have contact within network k
0 if i and j otherwise

I α1, α2, . . . > 0 are ‘infectivity’ parameter
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†Friendship network – Pennsylvanian Elementary School

†Cauchemez et al., 2011, Role of social networks in shaping disease transmission
during a community outbreak of 2009 H1N1 pandemic influenza, PNAS, 108(7):
2825-30.
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Model 4: Coalescent (Genetic) Network-Spatial Model

Imagine the ‘true’ probability of infection is given by:

P(i , t) = 1− exp

− ∑
j∈I (t)

(
α0d

−β
ij + α1cij + α2X1j

)
but we don’t observe cij and X1j

So we fit a model with

P(i , t) = 1− exp

− ∑
j∈I (t)

(
α0d

−β
ij

)
Spatial effect will be estimated with less precision
(and be biased).
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Model 4: Coalescent (Genetic) Network-Spatial Model

Now imagine we have collected sequence information on the pathogen in the
blood of infected invdividuals

Thus we can fit a model:

P(i , t) = 1− exp

− ∑
j∈I (t)

([
α0d

−β
ij

]
gij

)
where

gij ∈ {0, 1} is a measure of genetic similarity between pathogen sequences
i and j

Therefore, should get improved estimation of spatial effect...
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Model 5: From Deardon et al. (2010)

The probability of susceptible individual i being infected at time t is given by:

P(i , t) = 1− exp

−SNψS
i

 ∑
j∈I (t)

TN
ψT
j KA(dij )

+ ε|I (t)|

 . (1)

where

κ(i , j) = KA(dij ) =


k0 0 < dij ≤ δ0

db
ij δ0 < dij ≤ δmax ;

0 otherwise

SN
ψS
i = (Ss Sc )

(
Ni ,s

ψS ,s

Ni ,c
ψS,c

)
; TN

ψT
j = (Ts Tc )

(
Nj ,s

ψS,s

Nj ,c
ψS ,c

)
;

and |I (t)| is the number of elements of the set, I (t).
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UK 2001 foot-and-mouth disease epidemic
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Infectious Period (I → R)

Problem: infection times and removal times (and thus infectious periods) are
usually unknown.

Can be modelled in various ways

I Typically: assume infectious periods are ‘random effects’ that follow some
distribution (typically exponential) then use data augmentation to infer
infection times, removal times and infectious periods

Here (for simplicity) we will assume:

I we know when individuals become infected
and that they all have the same known infectious period.
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Model of focus: Power-law Spatial Model

The probability of susceptible individual i being infected at time t is given by:

Pit = 1− exp

−α ∑
j∈I (t)

d
−β
ij


where

I I (t) is the set of infectious individuals at time t

I κ(i , j) = d
−β
ij is a power-law infection/distance kernel

I dij is the distance between individuals i and j
I α > 0 is an ‘infectivity’ parameter
I β > 0 is a ‘spatial’ parameter
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Likelihood

The likelihood is given by:

π(Y|θ) = ∏
t

 ∏
i∈S(t+1)

1− Pit

 ∏
i∈I (t+1)\I (t)

Pit


where:

S(t + 1) is the set of susceptible individuals at time, t + 1

I (t + 1)\I (t) is the set of newly infected individuals at time, t + 1

N.B. Assuming we know when individuals are infected/infectious.
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Bayesian Framework, Data and Parameters

Set in a Bayesian framework:

π(θ|Y ) =
π(Y |θ) π(θ)

π(Y )

( posterior ∝ likelihood × prior )

Data: Y parameter vector: θ = (α, β)

π(Y ) =
∫

π(Y |θ) π(θ)dθ is a normalization constant

In the rest of this talk:

Want to use Metropolis-Hastings MCMC to sample from π(θ|Y )

We put vague priors π(θ) on θ
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Issues with Statistical Modeling of Infectious Diseases

Recall that we are assuming we know infection times and infectious periods (i.e.
no data augmentation).

However, even for moderately sized populations and epidemic lengths, likelihood
calculation can be computationally prohibitive.

Bad since here the likelihood function is calculated numerous times in an
MCMC chain.
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Issues with Statistical Modeling of Infectious Diseases

Possible solutions:

I Simplify model – e.g. homogeneous mixing
I Data aggregation
I Approximate Bayesian computation

(e.g. McKinley et al., 2009; Numminen et al., 2013)
I Linearization of kernel

(e.g. Deardon et al., 2010; Kwong & Deardon, 2012)
I Sampling-based likelihood approximation
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Issues with Statistical Modeling of Infectious Diseases

Possible solutions:

I Simplify model – e.g. homogeneous mixing
I Data aggregation
I Approximate Bayesian computation

(e.g. McKinley et al., 2009; Numminen et al., 2013)
I Linearization of kernel

(e.g. Deardon et al., 2010; Kwong & Deardon, 2012)
I Sampling-based likelihood approximation

I Emulation (build fast model of likelihood)
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Emulation-based Inference

Here, we propose to use inference based on so-called emulation
techniques.

The method involves:

I replacing the likelihood with a Gaussian Process (GP)
approximation (EMULATOR) of the likelihood function

I within an otherwise Bayesian MCMC framework
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GP Emulator

Design Matrix:

X =


1 θ

(1)
1 θ

(1)
2 . . . θ

(1)
n

1 θ
(2)
1 θ

(2)
2 . . . θ

(2)
n

...
...

...
. . .

...

1 θ
(p)
1 θ

(p)
2 . . . θ

(p)
n



For each Θ(i) = (θ
(i)
1 , θ

(i)
2 , ..., θ

(i)
n ) we simulate an epidemic to get data (or set of

summary statistics of data):

Ysim(Θ(i)) = (δ
(i)
1 , δ

(i)
2 , ..., δ

(i)
tmax

)

Then calculate a distance metric between simulated and observed data:

D(Θ(i)) = ||Ysim(Θ(i))−Yobs ||2,

This gives us our training data:

D(Θ) = [D(Θ(1)), D(Θ(2)), ..., D(Θ(p))]T

where Θ = (Θ(1), Θ(2), ..., Θ(p))T
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GP Emulator

Fit GP model: D|Θ, βG , ψG ∼ N (XβG , Σ(ψG )),

where βG = (β0, β1, ...., βn),

(Σ(ψG ))ij =

τ2
GP exp

(
−∑n

k=1 ηk

(
θ
(i)
k − θ

(j)
k

)2
)

, if i 6= j ,

τ2
GP + τ2

ε , otherwise

τ2
GP = Var[D(Θ)], unconditional variance of GP,

ηk are smoothing parameters,

τ2
ε is a nugget parameter, representing variance due to the

stochasticity of the response.
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Predictive distribution

The predictive distribution for a new data set Y ∗ producing distance D∗ for
parameters Θ∗, fE (D

∗; Θ∗) is Gaussian and so can be readily computed

We can therefore approximate the computationally costly likelihood function
using this predictive distribution

Naively, may use fE (0; Θ∗)

However, since our GP emulator is an approximation to the underlying likelihood
function works better to us fE (δ; Θ∗)

where δ is a discrepancy parameter to be estimated

δ is usually a priori constrained to be ‘small’
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Predictive distribution

MLE of βG and ψG are β̂G = (β̂0G , β̂1G , ...., β̂nG ) and
ψ̂G = (τ̂2

GP , τ̂2
ε , η̂).

Any new data producing distance D∗ at unknown parameter Θ∗, has
the normal predictive distribution D∗|D, Θ, Θ∗ ∼ N(µ∗, Σ∗), where

µ∗ = β̂0G + θ∗1 β̂1G + θ∗2 β̂2G + ...+ θ∗n β̂nG + τ̂2
GP r

T (Σ(ψ̂G ))−1(D−Xβ̂G ),

Σ∗ = τ̂2
GP + τ̂2

ε − τ̂4
GP r

T (Σ(ψ̂G ))−1r

r = (r1, r2, ..., ri , ..., rp), and ri = cor(D(Θ∗),D(Θ(i))).

We can use the predictive distribution: fE (D
∗; Θ∗) as an emulator

(approximation to the likelihood).

Discrepancy: D∗ := λ → use fE (δ; Θ∗) where δ is a parameter to
be estimated.
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Bayesian MCMC framework

So we replace our previous Bayesian framework:

π(α, β|Y ) ∝ π(Y |α, β) π(α)π(β)

( posterior proportional to likelihood × prior )

....with an approximate Bayesian framework:

π(α, β|Y )
∼
∝ fE (δ; α, β) π(α)π(β)π(δ)

( posterior approximately proportional to emulator × prior )
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Epidemic simulation I
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Epidemic simulated with a fixed infectious period of γI = 2 from power-law model:

Pit = 1− exp

−α ∑
j∈I (t)

d
−β
ij


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Epidemic simulation II

For observed data:
infectivity, spatial parameters were α = 0.2 and β = 2.5.

For simulated data and design matrix:
I α ∈ [0.1, 1.0] and β ∈ [2.1, 3.0]
I on a regular grid

I To evaluate the robustness, 10, 15, 20, and 25 points in the
parameter intervals were used.

One individual approximately in the centre was set as the initial seed
for each simulation.
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Spatial Stratification for building GP Emulator

Rectangular:

I Regular: each stratum has equal
area (size).

I Irregular: First infection is
approximately at the centre of
one of the strata.

Circular: Concentric circles with rings of
equal width, centre is the location of the first
infection.
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Global and Stratified Epidemic Curves

Global epidemic curve:

I Simulated data: ∆(Θ(i)) = (δ
(i)
1 , δ

(i)
2 , ..., δ

(i)
tmax

).

I Observed data: Z (Θ∗) = (z1, z2, ..., ztmax ).

I D(i) = ||∆(Θ(i))− Z (Θ∗)||2.

Stratified epidemic curve:

I Simulated data in kth stratum: ∆(i)
k = (δ

(i)
k1 , δ

(i)
k2 , ..., δ

(i)
kν ).

I Observed data in kth stratum: Zk (Θ
∗) = (zk1, zk2, ..., zkν).

I Full simulated epidemic data: ∆̄(i) = (∆(i)
1 , ∆(i)

2 , ..., ∆(i)
s ).

I Full observed epidemic data: Z̄ (Θ∗) = (Z1,Z2, ...,Zs ).

I D(i) = ||∆̄(i) − Z̄ (Θ∗)||2.

The response variable for GP model: D = [D(1),D(2), ...,D(p)]T .
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Model Fitting: Simulated Data

The full Bayesian model and emulation-based model were fitted to
this data set via RW-MH-MCMC.

Vague exponential priors with mean 105 were placed on α and β.

An exponential prior, Exp(10) was used for the discrepancy λ.

MCMC run for 200,000 iterations and convergence visually
ascertained
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Results: Global population
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Blue: true posterior surface.

Red: Emulation-based posterior surface.

Green: 95% confidence ellipse.

Black lines: True parameter values.

Parameter grid size matters:

I Lower resolutions ⇒ bias.
I Higher resolution ⇒ biased and

time consuming.

202 grid size works well.
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Results: Circular stratification
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Blue: true posterior surface.

Red: Emulation-based posterior surface.

Black lines: True parameter values.

Performance was reasonably good for
some stratification settings (4 rings and
202 grid).

Overall, little improvement obvious.
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Results: Computation time

Table: CPU time to run 200,000 MCMC iterations for both the full Baysian
and emulation-based models with different grid sizes in the parameter space.

Model Grid size Time in seconds

Bayesian Model - 3533.69
10 13.99

Emulation-based 15 57.47
Model 20 168.15

25 392.61
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Introduction: Tomato Spotted Wilt Virus (TSWV) I

TSWV is one of the most widespread and significantly economically
damaging plant virus infecting over 1000 plant species.

                                       

Figure: Pictures are taken from google web.
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Introduction: Tomato Spotted Wilt Virus (TSWV) II

Data from a 1993 study, described in Hughes et al. (1997), of TSWV in
pepper plants consist 520 individuals in a uniform grid of 26× 10.

Epidemic ran for t = 1, 2, ..., 7 in increments of 14 days.
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Model Fitting: TSWV

The full Bayesian model and emulation-based model were fitted to this
data set via RW-MH-MCMC.

A fixed infectious period, γI = 3 and distance-based power-law kernel

κ(i , j) = d
−β
ij were used.

Design matrix: α ∈ [0.005, 0.5] and β ∈ [1.0, 2.0] with 202 grid size.

Vague exponential priors with mean 105 were placed on α and β; and an
exponential prior Exp(100) was used for the discrepancy λ.
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Spatial Stratification
Results: Simulated Data
TSWV – Background
Results: TSWV Data

Results:TSWV

Parameter Estimate, ... (..., ...) = mean (95% PI)
Model Stratification α β λ

Bayesian Model - 0.0194 (0.0092, 0.0296) 1.3597 (0.8567, 1.7553) -

Global 0.0227 (0.0165, 0.0287) 1.1963 (1.1123, 1.2886) 4258.1 (3273.9, 5334.6)
2 Rings 0.0254 (0.0173, 0.0350) 1.2055 (1.0851, 1.3242) 3540.6 (2611.5, 4557.3)
3 Rings 0.0209 (0.0137, 0.0287) 1.1803 (1.0533, 1.2898) 3136.9 (2377.9, 3951.6)
4 Rings 0.0241 (0.0173, 0.0311) 1.2335 (1.1458, 1.3253) 2992.7 (2412.3, 3619.3)

Emulation-based 5 Rings 0.0213 (0.0124, 0.0305) 1.1066 (0.9196, 1.2606) 2723.4 (1985.5, 3548.0)
Model 6 Rings 0.0254 (0.0159, 0.0347) 1.2274 (1.1213, 1.3337) 2187.5 (1612.5, 2848.3)

7 Rings 0.0196 (0.0083, 0.0301) 1.2059 (1.0846, 1.3339) 2235.1 (1671.3, 2857.9)
2× 2 0.0240 (0.0158, 0.0325) 1.2268 (1.1315, 1.3175) 2671.5 (1972.9, 3396.6)
3× 3 0.0245 (0.0140, 0.0363) 1.2204 (1.0648, 1.3713) 2000.6 (1537.8, 2526.3)
4× 4 0.0195 (0.0032, 0.0368) 1.1646 (0.8675, 1.4279) 1589.2 (1190.2, 2044.9)
5× 5 0.0172 (0.0019, 0.0335) 1.1731 (0.9737, 1.3854) 1284.6 (1013.1, 1606.1)

The full Bayesian analysis took about 41 times longer (6834 seconds)
than the emulation-based methods (166 seconds).
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Conclusions

1 Emulation-based method offer a much quicker mode of analysis than the
full Bayesian MCMC analysis.

2 The emulation-based methods can successfully infer the biological
characteristics of simple spatial infectious disease systems.

3 Spatial stratification did not noticeably improve the model fit.

4 Care in defining the design matrix is needed to achieve accurate and
computationally efficient emulation-based inference.
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Future work

1 Compare model fit for different models

2 Much bigger, more complex systems

I Observation models to account for unknown infection times,
infectious periods, under-reporting, etc.

I Continuous time disease models.
I Network-based complex disease systems.

3 For complex and large number of parameter system, GP covariance
matrix inversion become a computational bottleneck in itself. Consider
methods to address...

4 Systematic comparison with other available methods for speeding up
computation time.
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