Emulation-based Inference for Spatial Infectious Disease Models

Dr. Rob Deardon

Department of Production Animal Health, Faculty of Veterinary Medicine Department of Mathematics & Statistics, Faculty of Science

(Joint work with Gyanendra Pokharel, University of Guelph)

< 67 ▶

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

3 GP Emulator

5 Discussion

э

(日) (同) (三) (三)

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Infectious Disease Transmission Models

Goal:

Use data to build a mathematical model for how disease spreads through some population

Why?

To help us understand how disease spreads

To help predict what may occur

To help understand how to control disease

To help design optimal vaccination/culling/surveillance policies

To quantify risk/uncertainty associated with any of the above

< 口 > < 同 >

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Rob Deardon Emulation-based Disease Models

< 同 ▶

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Discrete Time Individual-based Modelling Framework

- We assume a population of n individuals : i = 1,...,n: (e.g. herds; animals in herd; plants; fields of plants; humans; schools; census divisions)
- We assume that at discrete time point t, $t = 1, ..., t_{max}$, each individual can be in one of three states:

S	Susceptible	doesn't have disease;		
		can contract it		
1	Infectious	has contracted the disease;		
		can pass it on		
R	Removed	been removed from the susceptible population		
		e.g. died from the disease;		
		e.g. isolated from the susceptible population;		
		e.g. recovered and developed immunity		

• Individuals moves through states in the following way:

 $\mathsf{S} \to \mathsf{I} \to \mathsf{R}$

Inference and computational issues GP Emulator Applications Discussion

Some Examples

Model 1: Power-law Spatial Model

The probability of susceptible individual i being infected at time t is given by: ۰

$$P(i,t) = 1 - \exp\left[-\alpha \sum_{j \in I(t)} d_{ij}^{-\beta}\right]$$

where

- I(t) is the set of infectious individuals at time t
- *K_{ij}* = *d_{ij}^{−β}* is a power-law infection/distance kernel
 d_{ij} is the distance between individuals *i* and *j*
- $\alpha > 0$ is an 'infectivity' parameter
- $\beta > 0$ is a 'spatial' parameter

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Infection Kernel versus Distance $(\mathcal{K}_{ij} = d_{ij}^{-\beta})$

< 17 ▶

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Power-law spatial-ILM simulation across grid

From Vrbik et al (2012) in Bayesian Analysis, 7(3), 615 638..

< 17 ▶

-

Inference and computational issues GP Emulator Applications Discussion

Some Examples

Model 2: Network Model

The probability of susceptible individual *i* being infected at time *t* is given by: ۰

$$P(i, t) = 1 - \exp\left[-lpha \sum_{j \in I(t)} c_{ij}
ight]$$

where

- I(t) is the set of infectious individuals at time t
- $\mathcal{K}_{ii} = c_{ii}$ is the $(i, j)^{\text{th}}$ element of a contact matrix

 $c_{ij} = \begin{bmatrix} 1 & \text{if i and j have contact} \\ 0 & \text{otherwise} \end{bmatrix}$

• $\alpha > 0$ is an 'infectivity' parameter

- 4 同 6 4 日 6 4 日 6

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Model 2b: Network Model

• The probability of susceptible individual *i* being infected at time *t* is given by:

$$P(i,t) = 1 - \exp\left[-\sum_{j \in I(t)} \left(\alpha_1 c_{ij}^{(1)} + \alpha_2 c_{ij}^{(2)} + \alpha_3 c_{ij}^{(3)} + \ldots\right)\right]$$

where

- 4 同 6 4 日 6 4 日 6

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

⁺Friendship network – Pennsylvanian Elementary School

[†]Cauchemez et al., 2011, *Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza*, PNAS, 108(7): 2825-30.

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Model 4: Coalescent (Genetic) Network-Spatial Model

• Imagine the 'true' probability of infection is given by:

$$P(i,t) = 1 - \exp\left[-\sum_{j \in I(t)} \left(\alpha_0 d_{ij}^{-\beta} + \alpha_1 c_{ij} + \alpha_2 X_{1j}\right)\right]$$

but we don't observe c_{ij} and X_{1j}

∃ >

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Model 4: Coalescent (Genetic) Network-Spatial Model

• Imagine the 'true' probability of infection is given by:

$$P(i, t) = 1 - \exp\left[-\sum_{j \in I(t)} \left(\alpha_0 d_{ij}^{-\beta} + \alpha_1 c_{ij} + \alpha_2 X_{1j}\right)\right]$$

but we don't observe c_{ij} and X_{1j}

So we fit a model with

$$\mathcal{P}(i, t) = 1 - \exp\left[-\sum_{j \in I(t)} \left(\alpha_0 d_{ij}^{-\beta}\right)\right]$$

• Spatial effect will be estimated with less precision (and be biased).

< ∃ >

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Model 4: Coalescent (Genetic) Network-Spatial Model

- Now imagine we have collected sequence information on the pathogen in the blood of infected invdividuals
- Thus we can fit a model:

$$P(i, t) = 1 - \exp \left[-\sum_{j \in I(t)} \left(\left[\alpha_0 d_{ij}^{-\beta} \right] g_{ij} \right) \right]$$

where

 $g_{ij} \in \{0,1\}$ is a measure of genetic similarity between pathogen sequences i and j

• Therefore, should get improved estimation of spatial effect...

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Model 5: From Deardon et al. (2010)

The probability of susceptible individual i being infected at time t is given by:

$$P(i,t) = 1 - \exp\left(-\mathsf{SN}_{i}^{\boldsymbol{\psi}_{S}}\left[\left\{\sum_{j\in I(t)}\mathsf{TN}_{j}^{\boldsymbol{\psi}_{T}}\mathcal{K}_{A}(d_{ij})\right\} + \epsilon|I(t)|\right]\right).$$
(1)

where

$$\kappa(i,j) = \mathcal{K}_{\mathcal{A}}(d_{ij}) = \left\{ egin{array}{ccc} k_0 & & 0 < d_{ij} \leq \delta_0 \ d_{ij}^b & & \delta_0 < d_{ij} \leq \delta_{max} \ 0 & & ext{otherwise} \end{array}
ight.;$$

$$\mathbf{SN}_{i}^{\boldsymbol{\psi}_{S}} = (S_{s} \ S_{c}) \begin{pmatrix} N_{i,s}^{\psi_{S,s}} \\ N_{i,c}^{\psi_{S,c}} \end{pmatrix}; \ \mathbf{TN}_{j}^{\boldsymbol{\psi}_{T}} = (T_{s} \ T_{c}) \begin{pmatrix} N_{j,s}^{\psi_{S,s}} \\ N_{j,c}^{\psi_{S,c}} \end{pmatrix};$$

and |I(t)| is the number of elements of the set, I(t).

(日) (同) (三) (三)

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

UK 2001 foot-and-mouth disease epidemic

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Infectious Period (I \rightarrow R)

- Problem: infection times and removal times (and thus infectious periods) are usually unknown.
- Can be modelled in various ways
 - Typically: assume infectious periods are 'random effects' that follow some distribution (typically exponential) then use data augmentation to infer infection times, removal times and infectious periods
- Here (for simplicity) we will assume:
 - we know when individuals become infected and that they all have the same known infectious period.

< D > < A > < B >

Inference and computational issues GP Emulator Applications Discussion

Background Some Examples

Model of focus: Power-law Spatial Model

• The probability of susceptible individual *i* being infected at time *t* is given by:

$$P_{it} = 1 - \exp\left[-lpha \sum_{j \in I(t)} d_{ij}^{-eta}
ight]$$

where

- I(t) is the set of infectious individuals at time t
- $\kappa(i, j) = d_{ij}^{-\beta}$ is a power-law infection/distance kernel
- d_{ij} is the distance between individuals i and j
- $\alpha > 0$ is an 'infectivity' parameter
- β > 0 is a 'spatial' parameter

Inference and computational issues

3 GP Emulator

5 Discussion

Rob Deardon Emulation-based Disease Models

<ロト <部ト < 注ト < 注ト

э

Likelihood

The likelihood is given by:

$$\pi(\mathbf{Y}|\boldsymbol{\theta}) = \prod_t \left[\prod_{i \in \mathcal{S}(t+1)} 1 - P_{it}\right] \left[\prod_{i \in I(t+1) \backslash I(t)} P_{it}\right]$$

where:

S(t+1) is the set of susceptible individuals at time, t+1 $I(t+1) \setminus I(t)$ is the set of newly infected individuals at time, t+1

N.B. Assuming we know when individuals are infected/infectious.

(日) (同) (三) (三)

э

Bayesian Framework, Data and Parameters

Set in	a B	ayesian	framework:
--------	-----	---------	------------

$$\pi(\boldsymbol{\theta}|\boldsymbol{Y}) = \frac{\pi(\boldsymbol{Y}|\boldsymbol{\theta}) \ \pi(\boldsymbol{\theta})}{\pi(\boldsymbol{Y})}$$

(posterior \propto likelihood \times prior)

• Data: Y parameter vector: $\boldsymbol{\theta} = (\alpha, \beta)$

• $\pi(\mathbf{Y}) = \int \pi(\mathbf{Y}|\boldsymbol{\theta}) \ \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$ is a normalization constant

(日) (同) (三) (三)

Bayesian Framework, Data and Parameters

Set in a Bayesian framework:

$$\pi(\boldsymbol{\theta}|\boldsymbol{Y}) = \frac{\pi(\boldsymbol{Y}|\boldsymbol{\theta}) \ \pi(\boldsymbol{\theta})}{\pi(\boldsymbol{Y})}$$

(posterior \propto likelihood \times prior)

- Data: Y parameter vector: $\boldsymbol{\theta} = (\alpha, \beta)$
- $\pi(\mathbf{Y}) = \int \pi(\mathbf{Y}|\boldsymbol{\theta}) \ \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$ is a normalization constant

In the rest of this talk:

- Want to use Metropolis-Hastings MCMC to sample from $\pi(\theta|\mathbf{Y})$
- We put vague priors $\pi(\theta)$ on θ

(日) (同) (三) (三)

Issues with Statistical Modeling of Infectious Diseases

- Recall that we are assuming we know infection times and infectious periods (i.e. no data augmentation).
- However, even for moderately sized populations and epidemic lengths, likelihood calculation can be computationally prohibitive.
- Bad since here the likelihood function is calculated numerous times in an MCMC chain.

Issues with Statistical Modeling of Infectious Diseases

- Possible solutions:
 - Simplify model e.g. homogeneous mixing
 - Data aggregation
 - Approximate Bayesian computation
 - (e.g. McKinley et al., 2009; Numminen et al., 2013)
 - Linearization of kernel
 - (e.g. Deardon et al., 2010; Kwong & Deardon, 2012)
 - Sampling-based likelihood approximation

Issues with Statistical Modeling of Infectious Diseases

- Possible solutions:
 - Simplify model e.g. homogeneous mixing
 - Data aggregation
 - Approximate Bayesian computation
 - (e.g. McKinley et al., 2009; Numminen et al., 2013)
 - Linearization of kernel
 - (e.g. Deardon et al., 2010; Kwong & Deardon, 2012)
 - Sampling-based likelihood approximation
 - Emulation (build fast model of likelihood)

Emulation-based Inference

- Here, we propose to use inference based on so-called emulation techniques.
- The method involves:
 - replacing the likelihood with a Gaussian Process (GP) approximation (EMULATOR) of the likelihood function
 - within an otherwise Bayesian MCMC framework

Rob Deardon Emulation-based Disease Models

<ロト <部ト < 注ト < 注ト

э

GP Emulator

• Design Matrix:

$$X = \begin{pmatrix} 1 & \theta_1^{(1)} & \theta_2^{(1)} & \dots & \theta_n^{(1)} \\ 1 & \theta_1^{(2)} & \theta_2^{(2)} & \dots & \theta_n^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_1^{(p)} & \theta_2^{(p)} & \dots & \theta_n^{(p)} \end{pmatrix}$$

<ロ> <同> <同> < 同> < 同>

æ

GP Emulator

• Design Matrix:

$$X = \begin{pmatrix} 1 & \theta_1^{(1)} & \theta_2^{(1)} & \dots & \theta_n^{(1)} \\ 1 & \theta_1^{(2)} & \theta_2^{(2)} & \dots & \theta_n^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_1^{(p)} & \theta_2^{(p)} & \dots & \theta_n^{(p)} \end{pmatrix}$$

For each Θ⁽ⁱ⁾ = (θ₁⁽ⁱ⁾, θ₂⁽ⁱ⁾, ..., θ_n⁽ⁱ⁾) we simulate an epidemic to get data (or set of summary statistics of data):

$$\mathbf{Y}_{\mathsf{sim}}(\mathbf{\Theta}^{(i)}) = (\delta_1^{(i)}, \delta_2^{(i)}, \dots, \delta_{t_{\max}}^{(i)})$$

▲ 同 ▶ → 三 ▶

GP Emulator

• Design Matrix:

$$X = \begin{pmatrix} 1 & \theta_1^{(1)} & \theta_2^{(1)} & \dots & \theta_n^{(1)} \\ 1 & \theta_1^{(2)} & \theta_2^{(2)} & \dots & \theta_n^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_1^{(p)} & \theta_2^{(p)} & \dots & \theta_n^{(p)} \end{pmatrix}$$

For each Θ⁽ⁱ⁾ = (θ₁⁽ⁱ⁾, θ₂⁽ⁱ⁾, ..., θ_n⁽ⁱ⁾) we simulate an epidemic to get data (or set of summary statistics of data):

$$\mathbf{Y}_{\mathsf{sim}}(\mathbf{\Theta}^{(i)}) = (\delta_1^{(i)}, \delta_2^{(i)}, ..., \delta_{t_{\mathit{max}}}^{(i)})$$

• Then calculate a distance metric between simulated and observed data: $D(\boldsymbol{\Theta}^{(i)}) = ||\mathbf{Y}_{sim}(\boldsymbol{\Theta}^{(i)}) - \mathbf{Y}_{obs}||^2,$

GP Emulator

Design Matrix:

$$X = \begin{pmatrix} 1 & \theta_1^{(1)} & \theta_2^{(1)} & \dots & \theta_n^{(1)} \\ 1 & \theta_1^{(2)} & \theta_2^{(2)} & \dots & \theta_n^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_1^{(p)} & \theta_2^{(p)} & \dots & \theta_n^{(p)} \end{pmatrix}$$

For each Θ⁽ⁱ⁾ = (θ₁⁽ⁱ⁾, θ₂⁽ⁱ⁾, ..., θ_n⁽ⁱ⁾) we simulate an epidemic to get data (or set of summary statistics of data):

 $\mathbf{Y}_{\mathrm{sim}}(\mathbf{\Theta}^{(i)}) = (\delta_1^{(i)}, \delta_2^{(i)}, ..., \delta_{t_{\mathit{max}}}^{(i)})$

- Then calculate a distance metric between simulated and observed data: $D(\Theta^{(i)}) = ||\mathbf{Y}_{\textit{sim}}(\Theta^{(i)}) \mathbf{Y}_{\textit{obs}}||^2,$
- This gives us our training data: $\mathbf{D}(\mathbf{\Theta}) = [D(\mathbf{\Theta}^{(1)}), D(\mathbf{\Theta}^{(2)}), ..., D(\mathbf{\Theta}^{(p)})]^T$ where $\mathbf{\Theta} = (\mathbf{\Theta}^{(1)}, \mathbf{\Theta}^{(2)}, ..., \mathbf{\Theta}^{(p)})^T$

イロト イポト イヨト イヨト

GP Emulator

• Fit GP model: $\mathbf{D}|\Theta, \beta_G, \psi_G \sim \mathcal{N}(\mathbf{X}\beta_G, \Sigma(\psi_G)),$ where $\boldsymbol{\beta}_G = (\beta_0, \beta_1, ..., \beta_n),$

$$(\Sigma(\boldsymbol{\psi}_{G}))_{ij} = \begin{cases} \tau_{GP}^{2} \exp\left(-\sum_{k=1}^{n} \eta_{k} \left(\boldsymbol{\theta}_{k}^{(i)} - \boldsymbol{\theta}_{k}^{(j)}\right)^{2}\right), & \text{if } i \neq j, \\ \tau_{GP}^{2} + \tau_{\epsilon}^{2}, & \text{otherwise} \end{cases}$$

•
$$au_{GP}^2 = Var[\mathbf{D}(\mathbf{\Theta})]$$
, unconditional variance of GP,

- η_k are smoothing parameters,
- τ_{ϵ}^2 is a nugget parameter, representing variance due to the stochasticity of the response.

Predictive distribution

- The predictive distribution for a new data set Y* producing distance D* for parameters Θ*, f_E(D*; Θ*) is Gaussian and so can be readily computed
- We can therefore approximate the computationally costly likelihood function using this predictive distribution
- Naively, may use f_E(0; Θ^{*})
- However, since our GP emulator is an approximation to the underlying likelihood function works better to us f_E(δ; Θ*)
 where δ is a discussion permetter to be estimated

where $\boldsymbol{\delta}$ is a discrepancy parameter to be estimated

• δ is usually a priori constrained to be 'small'

A B A B A B A

Predictive distribution

• MLE of
$$\beta_G$$
 and ψ_G are $\hat{\beta}_G = (\hat{\beta}_{0G}, \hat{\beta}_{1G}, ..., \hat{\beta}_{nG})$ and $\hat{\psi}_G = (\hat{\tau}^2_{GP}, \hat{\tau}^2_{\epsilon}, \hat{\eta})$.

 Any new data producing distance D^{*} at unknown parameter Θ^{*}, has the normal predictive distribution D^{*} |**D**, Θ, Θ^{*} ~ N(μ^{*}, Σ^{*}), where

$$\begin{split} \boldsymbol{\mu}^* &= \hat{\beta}_{0G} + \theta_1^* \hat{\beta}_{1G} + \theta_2^* \hat{\beta}_{2G} + \ldots + \theta_n^* \hat{\beta}_{nG} + \hat{\tau}_{GP}^2 \mathbf{r}^T (\boldsymbol{\Sigma}(\hat{\psi}_G))^{-1} (\mathbf{D} - \mathbf{X} \hat{\boldsymbol{\beta}}_G), \\ \boldsymbol{\Sigma}^* &= \hat{\tau}_{GP}^2 + \hat{\tau}_{\epsilon}^2 - \hat{\tau}_{GP}^4 \mathbf{r}^T (\boldsymbol{\Sigma}(\hat{\psi}_G))^{-1} \mathbf{r} \\ \mathbf{r} &= (r_1, r_2, ..., r_i, ..., r_p), \text{ and } r_i = \operatorname{cor}(D(\boldsymbol{\Theta}^*), D(\boldsymbol{\Theta}^{(i)})). \end{split}$$

- We can use the predictive distribution: f_E(D^{*}; Θ^{*}) as an emulator (approximation to the likelihood).
- Discrepancy: $D^* := \lambda \rightarrow \text{use } f_E(\delta; \Theta^*)$ where δ is a parameter to be estimated.

Bayesian MCMC framework

So we replace our previous Bayesian framework:

 $\pi(\alpha, \beta | \mathbf{Y}) \propto \pi(\mathbf{Y} | \alpha, \beta) \ \pi(\alpha) \pi(\beta)$

(posterior proportional to likelihood imes prior)

(日) (同) (三) (三)

э

Bayesian MCMC framework

So we replace our previous Bayesian framework:

 $\pi(\alpha, \beta | \mathbf{Y}) \propto \pi(\mathbf{Y} | \alpha, \beta) \ \pi(\alpha) \pi(\beta)$

(posterior proportional to likelihood imes prior)

....with an approximate Bayesian framework:

 $\pi(\alpha,\beta|\mathbf{Y}) \stackrel{\sim}{\propto} f_{E}(\delta;\alpha,\beta) \ \pi(\alpha)\pi(\beta)\pi(\delta)$

(posterior approximately proportional to emulator \times prior)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Infectious Disease Transmission Models

2 Inference and computational issues

3 GP Emulator

<ロ> <同> <同> < 同> < 同>

э

Simulated Data

Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Epidemic simulation I

Epidemic simulated with a fixed infectious period of $\gamma_I = 2$ from power-law model:

$$P_{it} = 1 - \exp\left[-\alpha \sum_{j \in I(t)} d_{ij}^{-\beta}\right]$$

Rob Deardon Emulation-based Disease Models

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Epidemic simulation II

For observed data:

infectivity, spatial parameters were $\alpha = 0.2$ and $\beta = 2.5$.

• For simulated data and design matrix:

•
$$\alpha \in [0.1, 1.0]$$
 and $\beta \in [2.1, 3.0]$

- on a regular grid
- ► To evaluate the robustness, 10, 15, 20, and 25 points in the parameter intervals were used.
- One individual approximately in the centre was set as the initial seed for each simulation.

A B > A B >

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Spatial Stratification for building GP Emulator

Rectangular:

- Regular: each stratum has equal area (size).
- Irregular: First infection is approximately at the centre of one of the strata.
- Circular: Concentric circles with rings of equal width, centre is the location of the first infection.

A B > A B >

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Global and Stratified Epidemic Curves

- Global epidemic curve:
 - Simulated data: $\Delta(\Theta^{(i)}) = (\delta_1^{(i)}, \delta_2^{(i)}, ..., \delta_{t_{max}}^{(i)}).$
 - Observed data: $Z(\Theta^*) = (z_1, z_2, ..., z_{t_{max}}).$
 - $\triangleright D^{(i)} = ||\Delta(\Theta^{(i)}) Z(\Theta^*)||^2.$
- Stratified epidemic curve:
 - Simulated data in k^{th} stratum: $\Delta_k^{(i)} = (\delta_{k1}^{(i)}, \delta_{k2}^{(i)}, ..., \delta_{k\nu}^{(i)})$.
 - Observed data in k^{th} stratum: $\mathcal{Z}_k(\Theta^*) = (z_{k1}, z_{k2}, ..., z_{k\nu}).$
 - ► Full simulated epidemic data: $\bar{\Delta}^{(i)} = (\Delta_1^{(i)}, \Delta_2^{(i)}, ..., \Delta_s^{(i)}).$
 - ▶ Full observed epidemic data: $\bar{Z}(\Theta^*) = (Z_1, Z_2, ..., Z_s)$.
 - $D^{(i)} = ||\bar{\Delta}^{(i)} \bar{Z}(\Theta^*)||^2.$

• The response variable for GP model: $\mathbf{D} = [D^{(1)}, D^{(2)}, ..., D^{(p)}]^T$.

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Model Fitting: Simulated Data

- The full Bayesian model and emulation-based model were fitted to this data set via RW-MH-MCMC.
- Vague exponential priors with mean 10^5 were placed on α and β .
- An exponential prior, Exp(10) was used for the discrepancy λ .
- MCMC run for 200,000 iterations and convergence visually ascertained

Simulated Data Spatial Stratification **Results: Simulated Data** TSWV – Background Results: TSWV Data

Results: Global population

- Blue: true posterior surface.
- Red: Emulation-based posterior surface.
- Green: 95% confidence ellipse.
- Black lines: True parameter values.
- Parameter grid size matters:
 - Lower resolutions \Rightarrow bias.

< 17 ▶

- ► Higher resolution ⇒ biased and time consuming.
- 20² grid size works well.

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Results: Circular stratification

- Blue: true posterior surface.
- Red: Emulation-based posterior surface.
- Black lines: True parameter values.
- Performance was reasonably good for some stratification settings (4 rings and 20² grid).
- Overall, little improvement obvious.

Rob Deardon

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Results: Computation time

Table: CPU time to run 200,000 MCMC iterations for both the full Baysian and emulation-based models with different grid sizes in the parameter space.

Model	Grid size	Time in seconds
Bayesian Model	-	3533.69
	10	13.99
Emulation-based	15	57.47
Model	20	168.15
	25	392.61

< □ > < 同 > < 回 >

Simulated Data Spatial Stratification Results: Simulated Data **TSWV – Background** Results: TSWV Data

Introduction: Tomato Spotted Wilt Virus (TSWV) I

• TSWV is one of the most widespread and significantly economically damaging plant virus infecting over 1000 plant species.

Figure: Pictures are taken from google web.

A B > A B >

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Introduction: Tomato Spotted Wilt Virus (TSWV) II

- Data from a 1993 study, described in Hughes et al. (1997), of TSWV in pepper plants consist 520 individuals in a uniform grid of 26×10 .
- Epidemic ran for t = 1, 2, ..., 7 in increments of 14 days.

Rob Deardon

Emulation-based Disease Models

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Model Fitting: TSWV

- The full Bayesian model and emulation-based model were fitted to this data set via RW-MH-MCMC.
- A fixed infectious period, $\gamma_I = 3$ and distance-based power-law kernel $\kappa(i,j) = d_{ij}^{-\beta}$ were used.
- Design matrix: $\alpha \in [0.005, 0.5]$ and $\beta \in [1.0, 2.0]$ with 20² grid size.
- Vague exponential priors with mean 10^5 were placed on α and β ; and an exponential prior Exp(100) was used for the discrepancy λ .

(日) (同) (目) (日)

Simulated Data Spatial Stratification Results: Simulated Data TSWV – Background Results: TSWV Data

Results:TSWV

		Parameter Estimate, (,) = mean (95% PI)			
Model	Stratification	α	β	λ	
Bayesian Model	-	0.0194 (0.0092, 0.0296)	1.3597 (0.8567, 1.7553)	-	
	Global	0.0227 (0.0165, 0.0287)	1.1963 (1.1123, 1.2886)	4258.1 (3273.9, 5334.6)	
	2 Rings	0.0254 (0.0173, 0.0350)	1.2055 (1.0851, 1.3242)	3540.6 (2611.5, 4557.3)	
	3 Rings	0.0209 (0.0137, 0.0287)	1.1803 (1.0533, 1.2898)	3136.9 (2377.9, 3951.6)	
	4 Rings	0.0241 (0.0173, 0.0311)	1.2335 (1.1458, 1.3253)	2992.7 (2412.3, 3619.3)	
Emulation-based	5 Rings	0.0213 (0.0124, 0.0305)	1.1066 (0.9196, 1.2606)	2723.4 (1985.5, 3548.0)	
Model	6 Rings	0.0254 (0.0159, 0.0347)	1.2274 (1.1213, 1.3337)	2187.5 (1612.5, 2848.3)	
	7 Rings	0.0196 (0.0083, 0.0301)	1.2059 (1.0846, 1.3339)	2235.1 (1671.3, 2857.9)	
	2×2	0.0240 (0.0158, 0.0325)	1.2268 (1.1315, 1.3175)	2671.5 (1972.9, 3396.6)	
	3×3	0.0245 (0.0140, 0.0363)	1.2204 (1.0648, 1.3713)	2000.6 (1537.8, 2526.3)	
	4×4	0.0195 (0.0032, 0.0368)	1.1646 (0.8675, 1.4279)	1589.2 (1190.2, 2044.9)	
	5 imes 5	0.0172 (0.0019, 0.0335)	1.1731 (0.9737, 1.3854)	1284.6 (1013.1, 1606.1)	

• The full Bayesian analysis took about 41 times longer (6834 seconds) than the emulation-based methods (166 seconds).

(日) (同) (三) (三)

э

Conclusions Future Work

2 Inference and computational issues

3 GP Emulator

<ロト <部ト < 注ト < 注ト

э

Conclusions Future Work

Conclusions

- Emulation-based method offer a much quicker mode of analysis than the full Bayesian MCMC analysis.
- The emulation-based methods can successfully infer the biological characteristics of simple spatial infectious disease systems.
- Spatial stratification did not noticeably improve the model fit.
- Care in defining the design matrix is needed to achieve accurate and computationally efficient emulation-based inference.

Image: A image: A

Conclusions Future Work

Future work

- Compare model fit for different models
- 2 Much bigger, more complex systems
 - Observation models to account for unknown infection times, infectious periods, under-reporting, etc.
 - Continuous time disease models.
 - Network-based complex disease systems.
- So For complex and large number of parameter system, GP covariance matrix inversion become a computational bottleneck in itself. Consider methods to address...
- Systematic comparison with other available methods for speeding up computation time.

Conclusions Future Work

Selected References

- Deardon et al (2010). Inference for individual level models of infectious diseases in large populations. Statistica Sinica, 20(1), 239 - 261.
- Kwong & Deardon (2012). Linearized forms of individual-level models for large-scale spatial infectious disease systems. Bulletin of Mathematical Biology, 74(8), 1912 37.
- E. Numminen, L. Cheng, M. Gyllenberg, and J. Corander (2013). Estimating the transmission dynamics of Streptococcus Pneumoniae from strain prevalence data. Biometrics, 69(3):748-757, 2013.
- Jandarov, R., Haran, M., Bjrnstad, O., and Grenfell, B. (2014). Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease. Journal of Royal Statitical Society: Series C (Applied Statistics), 63(3):423 - 444.
- Bayarri, M., Berger, J., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C. and Tu, J. (2007) A framework for validation of computer models. *Technometrics*, 49, 138-154.
- Kennedy, M. C. and O'Hagan, A. (2001) Bayesian calibration of computer models (with discussion). J. R. Statist. Soc. B, 63, 425-464.
- Sacks, J., Welch, W., Mitchell, T. and Wynn, H. (1989) Design and analysis of computer experiments. Statistical Science, 4, 409-423.

(a)

Conclusions Future Work

Acknowledgements

- This work has been funded by:
 - Ontario Ministry of Agriculture, Food & Rural Affairs (OMAFRA)
 - Natural Sciences & Engineering Council of Canada (NSERC)
 - Canadian Foundation for Innovation (CFI)

.⊒ . ►

< 17 ▶

Conclusions Future Work

Rob Deardon Emulation-based Disease Models

<ロ> <同> <同> < 同> < 同>

э