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Motivation
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Diffusion Models

Figure: Images generated by DDPM [1], DALLE-2 [2] and Imagen [3].
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Generative Modeling

The problem

Given samples from a data distribution pyaa(X), generate synthetic
samples coming from approximately the same distribution.
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Generative Modeling

The problem

Given samples from a data distribution pyaa(X), generate synthetic
samples coming from approximately the same distribution.

Applications: Image generation, text-to-speech, protein structure
modeling, approximate posterior inference etc.
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Motivation

But... these diffusion models are either restricted to data on R, or
rely on ad-hoc extensions to new state spaces.
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Motivation

But... these diffusion models are either restricted to data on R, or
rely on ad-hoc extensions to new state spaces.

Motivating question

Can we find a principled generalisation of diffusion models to new
state spaces?

Yes - Denoising Markov Models!
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Brief Introduction to Diffusion Models
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Brief Introduction to Diffusion Models

Diffusion models on R?
* Noising process (Y})se[o, 7] With maringals gi(x) via the SDE
dY; = -} Yidt + dB;, Yo = Xo ~ Pdata-
e Time-reversed process X; = Yr_; satisfies
dX; = {~3X; + Vlog gr_¢(X:)}dt + dB:.

e Strategy: Learn approximation to V log g:(x), use to simulate
reverse process.

Noising process: Generative process:
dY; = b(Y;, t)dt + dB, dX, = {~b(X;, T —t) + s9(X;, T — t)}dt +dB,
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Diffusion models on R?

e We approximate V log g:(x) using the L2 objective

1 T
Tpsm(0) = 5/0 Ego.(xo.x1) [||Vx log gyjo(X¢X0) — Se(Xt, t)||2] dt.
® sy(xy, t) is an approximation parameterised by a neural

network.
e Originally proposed ad hoc; later derived by Huang et al. [4].
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Score Matching

e A method for fitting unnormalized probability distributions of
Hyvarinen [5].

e Approximate the distribution gy using parametric family
p(x;0) = q(x;0)/Z(6) by minimising
1
Tesm(0) = 5Equ00) | Vx1og qo(X) — Vxlog a(x; 0) ]
e This is intractable, but equivalent to minimising

1
sw0) = Eq [ Bxl0g a(8:0) + 1 [Vxog g 0) ]

or a denoising score matching objective.
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Our Novel Framework: Denoising Markov Models
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Our Novel Framework: Denoising Markov Models

Denoising Markov Models

® Dyata(X) ON space X.

* Noising Markov process ( Yt)ico, 7}, generator £, marginals
gi(x).

* Learn reverse process (X)sc[o,7, ge€nerator K, marginals py(x).

state space X state space X’

generator £, marginals g¢(x)

generator K, marginals p;(x)

data distribution reference distribution
qo (X) = pdata(x) Po (X) = Qrcf(x)

Benton et al. From Denoising Diffusions to DMMs 10/11/2023 11/28



Our Novel Framework: Denoising Markov Models

Example

Euclidan Diffusion
If (Xt)tejo, 7 (Yt)teo, 1) @re given by the SDEs

dX; = (X, t)dt + dB;,
dYt = b()/t, t)dt"‘ dBta

then the corresponding generators are

K=0+pV+ A,
L=01+b-V+ A
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Plan
Key question

How do we learn the reverse process generator K?
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Our Novel Framework: Denoising Markov Models

Key question

How do we learn the reverse process generator K£?

The plan:

@ Model likelihood using Fokker-Planck, Feynman-Kac.
® Lower bound on model log likelihood using Girsanov.
© Equivalent tractable objectives.
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Model Likelihood
(Generalised) Fokker-Planck PDE
otpt = K*py
=] = = - QA




Our Novel Framework: Denoising Markov Models

Model Likelihood

(Generalised) Fokker-Planck PDE
Ot = K*py

Assumption 1

With v(x, t) = pr_s(x), FP becomes Mv + cv = 0, where M is
generator of (Z;)icp,pand c: & x [0, T] — R.
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Model Likelihood

(Generalised) Fokker-Planck PDE
dpr = K*pt

Assumption 1

With v(x, t) = pr_s(x), FP becomes Mv + cv = 0, where M is
generator of (Z;)icp,pand c: & x [0, T] — R.

Euclidean Diffusion

Set-upis K =0 +u-V+3A0,and L =09+ b-V + A,
Then, FP PDEis: 0;v = p- Vv + (V- p)v — 3Av.
c=—(V-p)and M =9y — pu-V + JA.
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Model Likelihood

Applying a generalised form of the Feynman-Kac theorem, we can
write the model likelihood as

pr(x) = E [po(ZT) exp { /0 "ozt dt} ‘ Zy = x}
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Our Novel Framework: Denoising Markov Models

Lower Bound on Model Log Likelihood

Assumption 2
Thereis : X x [0, T] = (0,00) s.t. B~ Mf = £(B~1f) — fL(B~). J

Recall K determines M via dyp; = K*p; < Mv + cv = 0.
We think of g as parameterising K via M.
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Lower Bound on Model Log Likelihood

Assumption 2
Thereis : X x [0, T] = (0,00) s.t. B~ Mf = £(B~1f) — fL(B~). J

Recall K determines M via dyp; = K*p; < Mv + cv = 0.
We think of g as parameterising K via M.

Euclidean Diffusion

Set-upis K =0r+u-V+3A,and L =09;+ b-V + JA.
Assumption 2 becomes V log 5 = u + b.
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Our Novel Framework: Denoising Markov Models

Lower Bound on Model Log Likelihood

Starting from

log pr(X) = log E [po(ZT) exp { /0 "ozt dt} ’ Zy = x]

and applying Jensen'’s and (generalised) Girsanov,

N
*

|ngT(x) > E@[bgpo(YT)‘ Yo = X] _/OTEQ |:£B

B—i—ﬁlogﬂ ‘ Yo :X]dt.
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Tractable Training Objective
Consider

£ = E@[logpo(yr)‘yo ZX] —/OT]E@[

L*B
The first term is constant.

5 +£Alogﬁ‘ Yozx}dt.
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Benton et al. From Denoising Diffusions to DMMs




Our Novel Framework: Denoising Markov Models

Tractable Training Objective

Consider
T ﬁ* R
E® = ]EQ[IogPO(YT)‘Yo ZX] —/ EQ[ 5 + Llog 8 ‘ Yo :x]dt.
0

The first term is constant. The expectation of the second term is
7 (5)—/TE LB 1oe sixe )| dit
smlP) = | Fatx) | g, ) g b(Xt, :

This is tractable to minimise!
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Our Novel Framework: Denoising Markov Models

Tractable Training Objective

We also have the corresponding denoising score matching
objective

T [E@/E D
o) = | o e e 0 £ /0]t
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Our Novel Framework: Denoising Markov Models

Tractable Training Objective

We also have the corresponding denoising score matching
objective

.
IDSM(@:/O o, [ﬁ(q.o/ﬂ( ))(Xt, 1) ﬁlog(q.|o/6)(xt,t)] dt.

Clt|o(Xt’Xo)/5(Xt7 )

Euclidean Diffusion
The objective becomes

1 T
Ipsm(B) = 5/0 Ego.¢(x0.%1) [||Vx log Gijo(Xt[Xo) — Vx log B(Xt, t)][|?

We recover the original diffusion objective.
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Other Properties of DMMs

e Can be used for inference; draw (Xg, &) ~ Pgatas NOISE Xg
according to L, learn generative process conditioned on
observation £*, parameterised by 3(x;, £*, t).

e Original discrete-time diffusion model framework of
Sohl-Dickstein et al. is natural first order discretisation of
DMMs.
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Generalised Score Matching
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Generalised Score Matching

Generalised Score Matching

* Tism(B) reduces to implicit score matching objective of
Hyvarinen [5] for Euclidean diffusions.

Benton et al. From Denoising Diffusions to DMMs 10/11/2023

22/28



Generalised Score Matching

* Tism(B) reduces to implicit score matching objective of
Hyvarinen [5] for Euclidean diffusions.

® So, we interpret Zisy(8) as a generalisation of the score
matching objective.
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Generalised Score Matching

* Tism(B) reduces to implicit score matching objective of
Hyvarinen [5] for Euclidean diffusions.

® So, we interpret Zisy(8) as a generalisation of the score
matching objective.

¢ Given data distribution go(x) on X, we learn an approximation
©(X) to qo by minimising

Tesm() = Equ0 % ~ Llog(qo/2)(x)|.

Benton et al. From Denoising Diffusions to DMMs 10/11/2023 22/28



Generalised Score Matching

Generalised Score Matching

¢ This is not directly tractable, but is equivalent to

Lo(X) 4
Jism() = Eqy(x) %()) + Llogp(X) |

e This gives a principled generalisation of score matching to
arbitrary state spaces!

e We define the score matching operator

o(f) = g—ﬁlogf.
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Generalised Score Matching

Generalized Score Matching

Intuitions for score matching on R carry over:

Proposition 1

Feller process Y with generator £, semigroup operators (Q;)>o
and score matching operator ¢. Then:

@ o(f) > 0 with equality if f is constant;
@ for probability measures m,m on X,

d 3 KLm Quf[m2Qt) = ~Er g [‘b (jg:;gg)] -
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Experimental Performance of DMMs
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Experimental Performance of DMMs

Discrete Space CTMC: MNIST

We train a DMM to reconstruct images of handwritten digits,
conditioned on the border of the image and the value of the digit.

Our state space is X = {0,...,255}28%28 and our noising process is

a continuous time Markov chain.
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Figure: First column plots the ground truth images. Second column has

the centre 14 x 14 pixels missing.
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Experimental Performance of DMMs

Brownian Diffusion on SO(3): Pose Estimation

DMM estimates 3D orientation of solids based on 2D views. State
space is X = SO(3), noising process is a Brownian diffusion.

Ground truth

\ 180°
270¢, 'r| 90¢

180°

270 @90
0o

Figure: Ground truth (middle) and DMM estimation (right) of the 3D pose
conditioned on 2D views of two shapes (left).
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Experimental Performance of DMMs
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