From Denoising Diffusions to Denoising Markov Models

Joe Benton

University of Warwick Friday 10th November 2023

Diffusion Models

Figure: Images generated by DDPM [1], DALLE-2 [2] and Imagen [3].

Generative Modeling

The problem

Given samples from a data distribution $p_{\text{data}}(\mathbf{x})$, generate synthetic samples coming from approximately the same distribution.

Generative Modeling

The problem

Given samples from a data distribution $p_{\text{data}}(\mathbf{x})$, generate synthetic samples coming from approximately the same distribution.

Applications: Image generation, text-to-speech, protein structure modeling, approximate posterior inference etc.

But... these diffusion models are either restricted to data on \mathbb{R}^d , or rely on ad-hoc extensions to new state spaces.

But... these diffusion models are either restricted to data on \mathbb{R}^d , or rely on ad-hoc extensions to new state spaces.

Motivating question

Can we find a principled generalisation of diffusion models to new state spaces?

But... these diffusion models are either restricted to data on \mathbb{R}^d , or rely on ad-hoc extensions to new state spaces.

Motivating question

Can we find a principled generalisation of diffusion models to new state spaces?

Yes – Denoising Markov Models!

Brief Introduction to Diffusion Models

Diffusion models on \mathbb{R}^d

• Noising process $(Y_t)_{t \in [0,T]}$ with maringals $q_t(\mathbf{x})$ via the SDE

$$\mathrm{d} Y_t = - \frac{1}{2} Y_t \mathrm{d} t + \mathrm{d} B_t, \qquad Y_0 = \mathbf{x}_0 \sim p_{\text{data}}.$$

• Time-reversed process $X_t = Y_{T-t}$ satisfies

$$dX_t = \{-\frac{1}{2}X_t + \nabla \log q_{T-t}(X_t)\}dt + d\hat{B}_t.$$

• **Strategy:** Learn approximation to $\nabla \log q_t(\mathbf{x})$, use to simulate reverse process.

Diffusion models on \mathbb{R}^d

• We approximate $\nabla \log q_t(\mathbf{x})$ using the L^2 objective

$$\mathcal{I}_{\mathsf{DSM}}(heta) = rac{1}{2} \int_0^T \mathbb{E}_{q_{0,t}(\mathbf{x}_0,\mathbf{x}_t)} \left[||
abla_{\mathbf{x}} \log q_{t|0}(\mathbf{x}_t|\mathbf{x}_0) - s_{ heta}(\mathbf{x}_t,t) ||^2
ight] \; \mathrm{d}t.$$

- $s_{\theta}(\mathbf{x}_t, t)$ is an approximation parameterised by a neural network.
- Originally proposed ad hoc; later derived by Huang et al. [4].

Score Matching

- A method for fitting unnormalized probability distributions of Hyvärinen [5].
- Approximate the distribution q_0 using parametric family $p(\mathbf{x}; \theta) = q(x; \theta)/Z(\theta)$ by minimising

$$\mathcal{J}_{\mathsf{ESM}}(heta) = rac{1}{2} \mathbb{E}_{q_0(\mathbf{x})} \left[||
abla_{\mathbf{x}} \log q_0(\mathbf{x}) -
abla_{\mathbf{x}} \log q(\mathbf{x}; heta) ||^2
ight].$$

• This is intractable, but equivalent to minimising

$$\mathcal{J}_{\mathsf{ISM}}(heta) = \mathbb{E}_{q_0(\mathbf{x})} \left[\Delta_{\mathbf{x}} \log q(\mathbf{x}; heta) + rac{1}{2} \|
abla_{\mathbf{x}} \log q(\mathbf{x}; heta) \|^2
ight],$$

or a denoising score matching objective.

Our Novel Framework: Denoising Markov Models

Denoising Markov Models

- $p_{\text{data}}(\mathbf{x})$ on space \mathcal{X} .
- Noising Markov process $(Y_t)_{t \in [0,T]}$, generator \mathcal{L} , marginals $q_t(\mathbf{x})$.
- Learn reverse process $(X_t)_{t \in [0,T]}$, generator \mathcal{K} , marginals $p_t(\mathbf{x})$.

Example

Euclidan Diffusion

If $(X_t)_{t \in [0,T]}$, $(Y_t)_{t \in [0,T]}$ are given by the SDEs

$$dX_t = \mu(X_t, t)dt + d\hat{B}_t,$$

$$dY_t = b(Y_t, t)dt + dB_t,$$

then the corresponding generators are

$$\mathcal{K} = \partial_t + \mu \cdot \nabla + \frac{1}{2}\Delta,$$

$$\mathcal{L} = \partial_t + b \cdot \nabla + \frac{1}{2}\Delta.$$

Plan

Key question

How do we learn the reverse process generator K?

Plan

Key question

How do we learn the reverse process generator K?

The plan:

- 1 Model likelihood using Fokker-Planck, Feynman-Kac.
- 2 Lower bound on model log likelihood using Girsanov.
- 3 Equivalent tractable objectives.

(Generalised) Fokker-Planck PDE

$$\partial_t p_t = \hat{\mathcal{K}}^* p_t$$

(Generalised) Fokker-Planck PDE

$$\partial_t p_t = \hat{\mathcal{K}}^* p_t$$

Assumption 1

With $v(\mathbf{x},t) = p_{T-t}(\mathbf{x})$, FP becomes $\mathcal{M}v + cv = 0$, where \mathcal{M} is generator of $(Z_t)_{t \in [0,T]}$ and $c : \mathcal{X} \times [0,T] \to \mathbb{R}$.

(Generalised) Fokker-Planck PDE

$$\partial_t p_t = \hat{\mathcal{K}}^* p_t$$

Assumption 1

With $v(\mathbf{x},t)=p_{T-t}(\mathbf{x})$, FP becomes $\mathcal{M}v+cv=0$, where \mathcal{M} is generator of $(Z_t)_{t\in[0,T]}$ and $c:\mathcal{X}\times[0,T]\to\mathbb{R}$.

Euclidean Diffusion

Set-up is $\mathcal{K} = \partial_t + \mu \cdot \nabla + \frac{1}{2}\Delta$, and $\mathcal{L} = \partial_t + b \cdot \nabla + \frac{1}{2}\Delta$. Then, FP PDE is: $\partial_t v = \mu \cdot \nabla v + (\nabla \cdot \mu)v - \frac{1}{2}\Delta v$. $c = -(\nabla \cdot \mu)$ and $\mathcal{M} = \partial_t - \mu \cdot \nabla + \frac{1}{2}\Delta$.

Applying a generalised form of the Feynman–Kac theorem, we can write the model likelihood as

$$ho_T(\mathbf{x}) = \mathbb{E}igg[
ho_0(Z_T) \expigg\{\int_0^T c(Z_t,t) \; \mathrm{d}tigg\} \; igg| \; Z_0 = \mathbf{x}igg]$$

Lower Bound on Model Log Likelihood

Assumption 2

There is
$$\beta: \mathcal{X} \times [0, T] \to (0, \infty)$$
 s.t. $\beta^{-1} \mathcal{M} f = \mathcal{L}(\beta^{-1} f) - f \mathcal{L}(\beta^{-1})$.

Recall \mathcal{K} determines \mathcal{M} via $\partial_t p_t = \hat{\mathcal{K}}^* p_t \Leftrightarrow \mathcal{M}v + cv = 0$.

We think of β as parameterising \mathcal{K} via \mathcal{M} .

Lower Bound on Model Log Likelihood

Assumption 2

There is
$$\beta: \mathcal{X} \times [0, T] \to (0, \infty)$$
 s.t. $\beta^{-1} \mathcal{M} f = \mathcal{L}(\beta^{-1} f) - f \mathcal{L}(\beta^{-1})$.

Recall \mathcal{K} determines \mathcal{M} via $\partial_t p_t = \hat{\mathcal{K}}^* p_t \Leftrightarrow \mathcal{M}v + cv = 0$.

We think of β as parameterising K via M.

Euclidean Diffusion

Set-up is $\mathcal{K} = \partial_t + \mu \cdot \nabla + \frac{1}{2}\Delta$, and $\mathcal{L} = \partial_t + b \cdot \nabla + \frac{1}{2}\Delta$. Assumption 2 becomes $\nabla \log \beta = \mu + b$.

Lower Bound on Model Log Likelihood

Starting from

$$\log p_T(\mathbf{x}) = \log \mathbb{E} \bigg[p_0(Z_T) \exp \left\{ \int_0^T c(Z_t, t) \, \mathrm{d}t \right\} \, \, \bigg| \, \, Z_0 = \mathbf{x} \bigg]$$

and applying Jensen's and (generalised) Girsanov,

$$\log p_T(\mathbf{x}) \geq \mathbb{E}_{\mathbb{Q}}\Big[\log p_0(Y_T)\Big|\,Y_0 = \mathbf{x}\Big] - \int_0^T \mathbb{E}_{\mathbb{Q}}\Big[\frac{\hat{\mathcal{L}}^*\beta}{\beta} + \hat{\mathcal{L}}\log\beta \,\,\Big|\,\,Y_0 = \mathbf{x}\Big]\mathrm{d}t.$$

Consider

$$\mathcal{E}^{\infty} := \mathbb{E}_{\mathbb{Q}}\Big[\log p_0(Y_T)\Big|Y_0 = \mathbf{x}\Big] - \int_0^T \mathbb{E}_{\mathbb{Q}}\Big[rac{\hat{\mathcal{L}}^*eta}{eta} + \hat{\mathcal{L}}\logeta\Big|Y_0 = \mathbf{x}\Big]\mathrm{d}t.$$

The first term is constant.

Consider

$$\mathcal{E}^{\infty} := \mathbb{E}_{\mathbb{Q}}\Big[\log p_0(Y_T)\Big|Y_0 = \mathbf{x}\Big] - \int_0^T \mathbb{E}_{\mathbb{Q}}\Big[rac{\hat{\mathcal{L}}^*eta}{eta} + \hat{\mathcal{L}}\logeta\Big|Y_0 = \mathbf{x}\Big]\mathrm{d}t.$$

The first term is constant. The expectation of the second term is

$$\mathcal{I}_{\mathsf{ISM}}(\beta) = \int_0^T \mathbb{E}_{q_t(\mathbf{x}_t)} \left[\frac{\hat{\mathcal{L}}^* \beta(\mathbf{x}_t, t)}{\beta(\mathbf{x}_t, t)} + \hat{\mathcal{L}} \log \beta(\mathbf{x}_t, t) \right] dt.$$

This is tractable to minimise!

We also have the corresponding denoising score matching objective

$$\mathcal{I}_{\mathsf{DSM}}(eta) = \int_0^T \mathbb{E}_{q_{0,t}} \left[rac{\mathcal{L}(q_{\cdot|0}/eta(\cdot,\cdot))(\mathbf{x}_t,t)}{q_{t|0}(\mathbf{x}_t|\mathbf{x}_0)/eta(\mathbf{x}_t,t)} - \mathcal{L}\log(q_{\cdot|0}/eta)(\mathbf{x}_t,t)
ight] \mathrm{d}t.$$

We also have the corresponding denoising score matching objective

$$\mathcal{I}_{\mathsf{DSM}}(eta) = \int_0^T \mathbb{E}_{q_{0,t}} \left[rac{\mathcal{L}(q_{\cdot|0}/eta(\cdot,\cdot))(\mathbf{x}_t,t)}{q_{t|0}(\mathbf{x}_t|\mathbf{x}_0)/eta(\mathbf{x}_t,t)} - \mathcal{L}\log(q_{\cdot|0}/eta)(\mathbf{x}_t,t)
ight] \mathrm{d}t.$$

Euclidean Diffusion

The objective becomes

$$\mathcal{I}_{\mathsf{DSM}}(eta) = rac{1}{2} \int_0^T \mathbb{E}_{q_{0,t}(\mathbf{x}_0,\mathbf{x}_t)} \left[||
abla_{\mathbf{x}} \log q_{t|0}(\mathbf{x}_t|\mathbf{x}_0) -
abla_{\mathbf{x}} \log eta(\mathbf{x}_t,t) ||^2
ight] \, \mathrm{d}t.$$

We recover the original diffusion objective.

Other Properties of DMMs

- Can be used for inference; draw $(\mathbf{x}_0, \boldsymbol{\xi}_0) \sim p_{\text{data}}$, noise \mathbf{x}_0 according to \mathcal{L} , learn generative process conditioned on observation $\boldsymbol{\xi}^*$, parameterised by $\beta(\mathbf{x}_t, \boldsymbol{\xi}^*, t)$.
- Original discrete-time diffusion model framework of Sohl-Dickstein et al. is natural first order discretisation of DMMs.

• $\mathcal{I}_{\mathsf{ISM}}(\beta)$ reduces to implicit score matching objective of Hyvärinen [5] for Euclidean diffusions.

- $\mathcal{I}_{\mathsf{ISM}}(\beta)$ reduces to implicit score matching objective of Hyvärinen [5] for Euclidean diffusions.
- So, we interpret $\mathcal{I}_{\mathsf{ISM}}(\beta)$ as a generalisation of the score matching objective.

- $\mathcal{I}_{\mathsf{ISM}}(\beta)$ reduces to implicit score matching objective of Hyvärinen [5] for Euclidean diffusions.
- So, we interpret $\mathcal{I}_{\mathsf{ISM}}(\beta)$ as a generalisation of the score matching objective.
- Given data distribution $q_0(\mathbf{x})$ on \mathcal{X} , we learn an approximation $\varphi(\mathbf{x})$ to q_0 by minimising

$$\mathcal{J}_{\mathsf{ESM}}(arphi) = \mathbb{E}_{q_0(\mathbf{x})}igg[rac{\mathcal{L}(q_0/arphi)(\mathbf{x})}{(q_0(\mathbf{x})/arphi(\mathbf{x}))} - \mathcal{L}\log(q_0/arphi)(\mathbf{x})igg].$$

This is not directly tractable, but is equivalent to

$$\mathcal{J}_{\mathsf{ISM}}(arphi) = \mathbb{E}_{q_0(\mathbf{x})} igg[rac{\hat{\mathcal{L}}^* arphi(\mathbf{x})}{arphi(\mathbf{x})} + \hat{\mathcal{L}} \log arphi(\mathbf{x}) igg].$$

- This gives a principled generalisation of score matching to arbitrary state spaces!
- We define the score matching operator

$$\Phi(f) = \frac{\mathcal{L}f}{f} - \mathcal{L}\log f.$$

Intuitions for score matching on \mathbb{R}^d carry over:

Proposition 1

Feller process Y with generator \mathcal{L} , semigroup operators $(Q_t)_{t\geq 0}$ and score matching operator Φ . Then:

- **1** $\Phi(f) \geq 0$ with equality if f is constant;
- 2 for probability measures π_1, π_2 on \mathcal{X} ,

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{KL}(\pi_1 Q_t || \pi_2 Q_t) = -\mathbb{E}_{\pi_1 Q_t} \left[\Phi \left(\frac{\mathrm{d}(\pi_1 Q_t)}{\mathrm{d}(\pi_2 Q_t)} \right) \right].$$

Experimental Performance of DMMs

Discrete Space CTMC: MNIST

We train a DMM to reconstruct images of handwritten digits, conditioned on the border of the image and the value of the digit.

Our state space is $\mathcal{X}=\{0,\dots,255\}^{28\times28}$ and our noising process is a continuous time Markov chain.

Figure: First column plots the ground truth images. Second column has the centre 14 \times 14 pixels missing.

Brownian Diffusion on SO(3): Pose Estimation

DMM estimates 3D orientation of solids based on 2D views. State space is $\mathcal{X} = SO(3)$, noising process is a Brownian diffusion.

Figure: Ground truth (middle) and DMM estimation (right) of the 3D pose conditioned on 2D views of two shapes (left).

References

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. *NeurIPS*, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical Text-Conditional Image Generation with CLIP Latents. *arXiv:2204.06125*, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion models with deep language understanding. *Advances in Neural Information Processing Systems*, 35:36479–36494, 2022.

Chin-Wei Huang, Jae Hyun Lim, and Aaron Courville. A Variational Perspective on Diffusion-Based Generative Models and Score Matching. *NeurIPS*, 2021.

Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching. *Journal of Machine Learning Research*, 6:695–709, 2005.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts: A Diffusion Probabilistic Model for Text-to-speech. *ICML*, 2021.

Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and Tommi Jaakkola. Diffusion Probabilistic Modeling of Protein Backbones in 3D for the Motif-scaffolding Problem. *ICLR*, 2023.

