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Statistical modelling

Suppose we have some (potentially vast) dataset y = {y1, y2, . . . , yN}.

Posit a model (density function) fx(y) which generated y , which depends upon parameters
x ∈ X = Rd .

Seek learn or infer values of the parameter x which are commensurate with the observed
dataset y .
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The Bayesian approach

Encode prior beliefs into a prior distribution ν(x), and define likelihood `y (x) := fx(y).

Given our observations, our posterior distribution is

π(x) = π(x |y) =
ν(x)`y (x)∫
ν(z)`y (z) dz

∝ ν(x)`y (x).

We are then interested in quantities of the form

I = π(f ) =

∫
X
f (x)π(x) dx ,

e.g. f (x) = ‖x‖p (posterior moments), f (x) = 1A(x) (credible sets / posterior tail
probabilities), etc.
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Sampling

So we wish to evaluate integrals

I = π(f ) =

∫
X
f (x)π(x) dx ,

where π is a probability density function (our posterior distribution).

Direct integration infeasible in high-dimensions (curse of dimensionality), furthermore only
have access to π up to a normalizing constant!

So instead, approximate I by sampling X1,X2, . . . ,Xn ∼ π and consider

In :=
1

n

n∑
i=1

f (Xi ) ≈ I =

∫
X
f (x)π(x) dx .
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Monte Carlo

So instead, approximate I by sampling X1,X2, . . . ,Xn ∼ π.

Exact sampling hard (e.g. rejection sampling also suffers from a curse of dimensionality)
so instead: build an ergodic Markov chain X which possesses π as its stationary distribution.

We simulate a π-reversible ergodic Markov chain,

X1,X2, . . .

where Xn → π in distribution and considering

In :=
1

n

n∑
i=1

f (Xi ) ≈ I =

∫
X
f (x)π(x) dx .
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Metropolis–Hastings

Algorithm 1 Metropolis–Hastings (MH)

1: initialise: X0 = x0, i = 0
2: while i < N do
3: i ← i + 1
4: simulate Yi ∼ Q(Xi−1, ·)
5: α(Xi−1,Yi ) = 1 ∧ q(Yi ,Xi−1)π(Yi )

q(Xi−1,Yi )π(Xi−1)

6: with probability α(Xi−1,Yi )
7: Xi ← Yi

8: else
9: Xi ← Xi−1

10: return (Xi )i=1,...,N
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Random walk Metropolis

Popular approach: Random Walk Metropolis (RWM) [Metropolis et. al. (1953)]:
Q(Xi−1, ·) = N (Xi−1, σ

2 · I).

Very simple to implement, and yet surprisingly robust [Livingstone and Zanella (2022)].

But tuning of σ2 · I is critical for good performance.

In [Andrieu, Lee, Power, W. (2022)], showed that the spectral gap for nice densities decays like
O(d−1), and RWM will converge very slowly for heavy-tailed and/or multimodal distributions.

Slice Sampling was introduced to try and circumvent these deficiencies.
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Slice Sampling [Neal (2003)]

Target: π(dx) = $(x)ν(dx) on X , reference measure ν.

G (t) := {x ∈ X : $(x) > t}, νt :=
ν(· ∩ G (t))

ν(G (t))
.

Algorithm 2 Ideal Slice Sampling

1: initialise: X0 = x0, i = 0
2: while i < N do
3: i ← i + 1
4: Sample t ∼ Unif([0, $(x)]);
5: Sample Y ∼ νt ;
6: Set Xi = Y .

7: return (Xi )i=1,...,N
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Slice Sampling

Slice Sampling defines a π-reversible Markov chain.

It possesses no tuning parameters and is entirely rejection-free.

Convergence properties (spectral gap) have been discussed in [Natarovskii et. al. (2021)].

Catch: sampling from νt is in general intractable.

But this can be relaxed, if instead we have access to νt-reversible kernels!

(Similar to going from Gibbs sampling  Metropolis-within-Gibbs.)
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Hybrid Slice Sampling

Suppose we have a family of kernels (Ht) where each Ht is νt-reversible (e.g. RWM on the
slice).

Algorithm 4 Hybrid Slice Sampling (HSS)

1: initialise: X0 = x0, i = 0
2: while i < N do
3: i ← i + 1
4: Sample t ∼ Unif([0, $(x)]);
5: Sample Y ∼ Ht(Xi−1, ·);
6: Set Xi = Y .

7: return (Xi )i=1,...,n

This is still a π-reversible Markov chain.
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Hybrid Slice Sampling examples

HSS also defines a π-reversible Markov chain.

Random Walk Metropolis on the slice

Hit-and-Run

Step out and shrinkage

...

It is known that in each case, the performance of HSS is worse than the original ISS (which
cannot be implemented), since each Ht is really trying to approximate νt
[Rudolf and Ullrich (2018)].

Question: how much worse?
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Example: Metropolis chains

Consider the special case of Metropolis–Hastings where the proposal Q is ν-reversible, for
some measure ν.

For example: ν = Leb, Q(x , ·) = N (x , σ2 · I), Random Walk Metropolis.
ν = N (0,C), Q(x , ·) = N (ρx , (1− ρ2) · C) , preconditioned Crank–Nicolson.

It turns out that such chains can actually be seen as examples of Hybrid Slice Samplers.
Intuition: the ideal SS first draws an acceptance region, then a proposed point conditional on
being in this acceptance region.

Thus our subsequent results allow us to study such chains.
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Summary

We will present a comparison result which can quantify precisely how much worse the HSS is
compared to the ISS.

Intuitively, it relates the convergence of HSS to the convergence rate of ISS in terms of the
convergence rates of the (Ht) kernels.

We will do this comparison using the framework of weak Poincaré inequalities.

This will enable us to give quantitative bounds, convering cases when there is no spectral gap,
i.e. the convergence is subgeometric, substantially extending previous results
[Qin et. al. (2023),  Latuszyński & Rudolf (2014)].
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Convergence of Markov chains

Recall that a reversible π-invariant Markov kernel P defines a (self-adjoint) operator on L2(π).

Its convergence to equilibrium can be bounded by the spectral gap γ (and this is the best rate):

‖Pnf − π(f )‖2 ≤ (1− γ)n‖f ‖2, ∀f ∈ L2(π).

However some chains have 0 spectral gap and have only subgeometric convergence;

‖Pnf − π(f )‖2
2 ≤ γ(n)Φ(f ),

where
Φ(f ) = ‖f ‖2

osc = (ess sup f − ess inf f )2.
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Standard Poincaré inequalities

We work on L2(µ) = {f : X → R : ‖f ‖2
2 <∞}, 〈f , g〉 :=

∫
fg dµ,

L2
0(µ) := {f ∈ L2(µ) : µ(f ) = 0}.

For a µ-invariant Markov transition kernel P with L2(µ)-adjoint P∗, consider the Dirichlet
form E(P∗P, f ), for f ∈ L2

0(µ):

E(P∗P, f ) := 〈(I − P∗P)f , f 〉.

Standard Poincaré inequality (SPI)

A SPI holds if there exists a constant CP > 0 such that for all f ∈ L2
0(µ),

CP‖f ‖2
2 ≤ E(P∗P, f ).
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Geometric convergence / spectral gap

CP‖f ‖2
2 ≤ E(P∗P, f ).

Theorem (Geometric convergence)

Under a standard Poincaré inequality, we have for all f ∈ L2
0(µ), n ∈ N0,

‖Pnf ‖2
2 ≤ (1− CP)n‖f ‖2

2.

Proof. Rewriting the SPI, see E(P∗P, f ) behaves like a discrete derivative:

CP‖f ‖2
2 ≤ E(P∗P, f ) = ‖f ‖2

2 − 〈P∗Pf , f 〉
= ‖f ‖2

2 − ‖Pf ‖2
2

⇒ ‖Pf ‖2
2 ≤ (1− CP)‖f ‖2

2.

The rest is by induction. �
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SPI to weak Poincaré inequality

CP‖f ‖2
2 ≤ E(P∗P, f ).

We now generalize this to allow for subgeometric rates of convergence:

Require β : (0,∞)→ [0,∞) decreasing with β(s) ↓ 0 as s →∞ and Φ : L2(µ)→ [0,∞] given
by Φ(f ) = ‖f ‖2

osc = (essµ sup f − essµ inf f )2 .

Weak Poincaré inequality (WPI) (c.f. [Röckner and Wang (2001)])

A WPI holds if: for some such β, Φ, ∀s > 0, f ∈ L2
0(µ),

‖f ‖2
2 ≤ s E(P∗P, f ) + β(s)Φ(f ).

E.g. β(s) = c0s
−c1 .
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Subgeometric convergence

‖f ‖2
2 ≤ s E(P∗P, f ) + β(s)Φ(f ), ∀s > 0, f ∈ L2

0(µ).

Define

K (u) := uβ(1/u), u ≥ 0,

K ∗(v) := sup
u≥0
{uv − K (u)}, v ≥ 0,

F (x) :=

∫ 1

x

dv

K ∗(v)
, 0 < x ≤ 1.

Theorem ([Andrieu, Lee, Power, W. (2022)])

Under a weak Poincaré inequality, we have, ∀n ∈ N0, f ∈ L2
0(µ),

‖Pnf ‖2
2 ≤ Φ(f )F−1(n).
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Examples

Theorem ([Andrieu, Lee, Power, W. (2022)])

Under a weak Poincaré inequality, we have, ∀n ∈ N0, f ∈ L2
0(µ),

‖Pnf ‖2
2 ≤ Φ(f )F−1(n).

If β(s) = c0s
−c1 , we can bound

F−1(n) ≤ Cn−c1 .

If β(s) = η0 exp(−η1s
η2), we can bound

F−1(n) ≤ C ′exp
(
−(Cn)η2/(1+η2)

)
.

Intuition: the faster β decays, the faster the rate of convergence.
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Comparisons of Markov chains

Furthermore we can compare Markov chains. Suppose we have chains P, P̃ which are both
π-reversible (think of P̃ as an approximation of P).

Suppose ∀s > 0, f ∈ L2
0(µ),

E(P, f ) ≤ s E(P̃, f ) + β(s)Φ(f ).

This implies that P̃ converges at a rate governed by β, relative to P. In other words, β
controls the degradation in convergence when we move from P to P̃.

In [Andrieu, Lee, Power, W. (2022)], we used this machinery to study pseudo-marginal MCMC.
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Comparisons of Markov chains II

Suppose we are able to establish the comparison: ∀s > 0, f ∈ L2
0(µ),

E(P, f ) ≤ s E(P̃, f ) + β(s)Φ(f ).

Suppose the ‘ideal’ chain P possesses a spectral gap, i.e. it satisfies a SPI:

CP‖f ‖2
2 ≤ E(P, f ).

Then by combining these inequalities,

‖f ‖2
2 ≤ s E(P̃, f ) + C−1

P β(CP · s)Φ(f ),

from which a convergence bound for P̃ can be obtained.
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Main result

We have π(dx) = $(x)ν(dx)
mt := ν(G (t)),

recall νt = ν(· ∩ G (t))/mt . Let’s write U for Ideal Slice Sampling, H for Hybrid Slice
Sampling.

Theorem (Rudolf, Power, Sprungk, W. (2023+))

Suppose each Ht is νt-reversible, positive and satisfies a WPI with function βt .
We have the comparison: ∀s > 0, f ∈ L2

0(µ),

E(U, f ) ≤ s · E(H, f ) + β(s)Φ(f ),

where β : (0,∞)→ [0,∞) is given by

β(s) :=

∫ ‖$‖∞
0

βt(s)mt dt,
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Comments

E(U, f ) ≤ s · E(H, f ) + β(s)Φ(f ), β(s) :=

∫ ‖π‖∞
0

βt(s)mt dt.

We see that the convergence rate of U is a kind of weighted average of the convergence rates
of each Ht .

For instance, if each Ht has a uniform spectral gap bound, then so does H (relative to U).

However if ‘enough’ of the Ht are subgeometric, or the spectral gaps decay to 0, H will only
be subgeometric (relative to U).

If we further have a convergence estimate for U e.g. [Natarovskii et. al. (2021)], then these
can be combined to give a convergence bound for H.

This significantly extends the previous work of [ Latuszyński & Rudolf (2014)].
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Example: Independent Metropolis–Hastings (IMH)

Recall the IMH(π, q) chain: at each iteration with Xn = x , propose Y ∼ q, and accept this
proposal with probability

α(x ,Y ) = 1 ∧ π(Y )q(x)

π(x)q(Y )
.

It is known that the IMH (π, q) satisfies an SPI with constant
∥∥dπ/dq∥∥−1

∞
[Mengersen and Tweedie (1996)].
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Explicit example: Exponential distributions

Consider the case when X = [0,∞), π(x) = exp(−x), and ν(dx) = λ exp(−λx) dx for some
λ > 0.

So
π(x) = λ−1exp(−(1− λ)x) ν(dx).

The level sets G (t) are determined by exp(−(1− λ)x), and the Slice Sampler will sample from
ν restricted to G (t).

Lemma

This Ideal Slice Sampler has a spectral gap which can be lower-bounded explicitly:

When λ ∈ (0, 1), the slice sampler has a spectral gap of at least 1+λ
2 ;

When λ > 1, the slice sampler has a spectral gap of at least (2λ− 1)−2.

Derived using a contractivity argument.
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Hybrid case

Consider doing now performing an IMH with proposal ν on each slice:

Ht = IMH (νt , ν) .

When λ ∈ (0, 1), we obtain the following comparison for the IMH:

β(s) =
1

4
+

1

4
(1− s−1)1/λ

(
1

λ(s − 1)
− 1

)
∼ s−1,

and a WPI for the IMH-within-Slice Sampler with β̃(s) =
2β((1+λ)s/2)

1+λ ∼ s−1.

When λ > 1, we obtain the following comparison for the IMH:

β(s) =
λ− 1

4λ
s−1/λ,

and a WPI for the IMH-within-Slice Sampler with β̃(s) = (2λ− 1)2β
(
(2λ− 1)−2s

)
.
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Example: Hit-and-Run

An example of a HSS: on each slice, pick a random direction, then sample a uniform point on
this line intersected with the slice.

From [Lovàsz and Vempala (2004)], we deduce that for L-smooth and m-strongly concave
potentials the spectral gap of hit-and-run on a bounded set in dimension d is at least

2−33d−2κ−2,

where κ is the condition number.

Thus we arrive at the comparison

E(U, f ) ≤ (233κ2d2) E(H, f ).

I.e. spectral gap of H is at least 2−33κ−2d−2 times the spectral gap of U.
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Concluding remarks

We have derived quantitative comparison theorems relating Simple Slice Sampling with Hybrid
Slice Sampling, which covers the subgeometric setting.

We made use of the framework of Weak Poincaré Inequalities, introduced in
[Andrieu, Lee, Power, W. (2022)].

This significantly extends prior work e.g. [ Latuszyński & Rudolf (2014)] which was mostly
qualitative.

We have further applied this to look at IMH on the slice and Hit-and-run.

Preprint forthcoming!
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Convergence of MCMC

What is the criteria for an MCMC chain to be ‘good’?

Classically, MCMC is good if it converges fast to equilibrium and mixes well.

One measure of the former is to look at rates of convergence:

Theorem ([?, ?])

RWM converges to equilibrium exponentially fast if* and only if π has an exponential moment
(e.g. π(x) ∝ exp(−‖x − µ‖α), α ≥ 1.). Otherwise, the chain converges at a subgeometric
(e.g. polynomial) rate.
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L2 convergence and Dirichlet forms

We work on L2(π) = {f : X → R : ‖f ‖2
2 <∞}, 〈f , g〉 :=

∫
fg dπ,

L2
0(π) := {f ∈ L2(π) : π(f ) = 0}.

For a π-invariant Markov transition kernel P with L2(π)-adjoint P∗, define the Dirichlet form
E(P∗P, f ), for f ∈ L2

0(π):

E(P∗P, f ) := 〈(I − P∗P)f , f 〉 = ‖f ‖2 − ‖Pf ‖2.

This acts like a discrete derivative, and we will seek to lower bound it.

Furthermore if P is reversible and positive (so its spectrum σ(P) ⊂ [0, 1]), we have that

E(P∗P, f ) = E(P2, f ) ≥ E(P, f ).

So it will be sufficient to lower bound E(P, f ).
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Conductance and spectral profiles

Lemma ([?])

For nonconstant nonnegative g ∈ L2
0(π), we have the lower bound

E(P, g) ≥ Varπ(g) · 1

2
· ΛP

(
4[π(g)]2

Varπ(g)

)
,

where ΛP is the spectral profile of P.

Lemma

For π-reversible P, we have the further lower bound

ΛP(v) ≥

{
1
2 ΦP(v)2 0 < v ≤ 1/2,
1
2 [Φ∗P ]2 v > 1/2.
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Proof of convergence bound (I)

Fix f ∈ L2
0(µ). Have that

‖f ‖2
2 ≤ sE(P∗P, f ) + β(s)Φ(f ), ∀s > 0

⇒ E(P∗P, f )

Φ(f )
≥ ‖f ‖

2
2

sΦ(f )
− β(s)

s
.

Set u := 1/s, K (u) := uβ(1/u).

E(P∗P, f )

Φ(f )
≥ u · ‖f ‖

2
2

Φ(f )
− K (u), ∀u > 0.

E(P∗P, f )

Φ(f )
≥ sup

u>0

{
u · ‖f ‖

2
2

Φ(f )
− K (u)

}
=: K ∗

(
‖f ‖2

2

Φ(f )

)
.

Call this final inequality optimized WPI (oWPI).
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− K (u), ∀u > 0.

E(P∗P, f )

Φ(f )
≥ sup

u>0

{
u · ‖f ‖

2
2

Φ(f )
− K (u)

}
=: K ∗

(
‖f ‖2

2

Φ(f )

)
.

Call this final inequality optimized WPI (oWPI).
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Proof of convergence bound (II)

Now define

F (x) :=

∫ 1

x

dv

K ∗(v)
, x ∈ (0, a], hn :=

‖Pnf ‖2
2

Φ(f )
.

Want to bound convergence of hn → 0.

F (hn)− F (hn−1) =

∫ hn−1

hn

dv

K ∗(v)

≥ (hn−1 − hn)/K ∗(hn−1)

=
E(P∗P,Pn−1f )/Φ(f )

K ∗(hn−1)

≥ K ∗(hn−1)/K ∗(hn−1) = 1. (oWPI)

⇒ F (hn)− F (h0) ≥ n.

So we invert this to obtain
‖Pnf ‖2

2 ≤ Φ(f )F−1(n). �
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