Large deviations for MC.MC:

The surprisingly curious case of the Metropolis-Hastings algorithm

Pierre Nyquist

Department of Mathematical Sciences Chalmers \& University of Gothenburg

> Algorithms seminar Warwick, February 23, 2024
joint work with Federica Milinanni (+ others)
SepierreNyq https://people.kth.se/~pierren/

Milinanni, N. - A large deviation principle for the empirical measures of Metropolis-Hastings chains. Stochastic Process and their Applications, 170 (2024).

Milinanni, N. - Large deviakions for certain Melropolis-Hastings chains: Existence of suitable Lyapunov functions * Preprint, arXiv next week.

* Prelim title.

I. Introduction

Starting point: Subcellular pathway models in neuroscience

Main question: How to sample from a distribution π know only up to a normalising constant?

$$
\pi(y) \propto \exp \{-U(y)\}, U: S \rightarrow \mathbb{R} .
$$

Example I: Bayesian inference. Posterior distributions on the form

$$
\pi(\xi) \propto \pi_{0}(\xi) L\left(\mathbf{x}_{1: n} \mid \xi\right),
$$

with unknown normalising constant $Z=\int \pi_{0}(\xi) L\left(\mathrm{x}_{1: n} \mid \xi\right) d \xi$.

Main question: How to sample from a distribution π know only up to a normalising constant?

$$
\pi(y) \propto \exp \{-U(y)\}, \quad U: S \rightarrow \mathbb{R}
$$

Example II: Computational chemistry. Compute thermodynamic properties with respect to the Gibbs measure $\propto e^{-U}$.

Source: Schwantes, Shukla, Pande Biophysical Journal, 2016.

Main question: How to sample from a distribution π know only up to a normalising constant?

$$
\pi(y) \propto \exp \{-U(y)\}, \quad U: S \rightarrow \mathbb{R}
$$

Example III: Counting problems. Determine the number of objects in a large (finite) class that satisfy certain constraints.

Ex: Number of binary contingency tables with row and column sums $\mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$.

$$
\left|\mathscr{X}^{*}\right|=\left|\left\{\mathrm{x} \in\{0,1\}^{m+n}: \sum_{i=1}^{m} x_{i, j}=c_{j}, j=1, \ldots, n, \sum_{j=1}^{n} x_{i, j}=r_{i}, i=1, \ldots, m\right\}\right| .
$$

Main question: How to sample from a distribution π know only up to a normalising constant?

$$
\pi(y) \propto \exp \{-U(y)\}, \quad U: S \rightarrow \mathbb{R} .
$$

Idea: Construct a Markov process with π as invariant measure.

Main question: How to sample from a distribution π know only up to a normalising constant?

$$
\pi(y) \propto \exp \{-U(y)\}, \quad U: S \rightarrow \mathbb{R}
$$

Idea: Construct a Markov process with π as invariant measure.
(Metropolis et al. 1963, Hastings 1970.)

Main question: How to sample from a distribution π know only up to a normalising constant?

$$
\pi(y) \propto \exp \{-U(y)\}, U: S \rightarrow \mathbb{R} .
$$

Idea: Construct a Markov process with π as invariant measure.
(Metropolis et al. 1953, Hastings 1970.)

Infinitely many possibilities. How to choose?

Main hindrance: Poor communication / complex energy landscape.

Main question: How to sample from a distribution π know only up to a normalising constant?

$$
\pi(y) \propto \exp \{-U(y)\}, U: S \rightarrow \mathbb{R} .
$$

Idea: Construct a Markov process with π as invariant measure.
(Metropolis et al. 1953, Hastings 1970.)

Infinitely many possibilities. How to choose?

Main hindrance: Poor communication / complex energy landscape.
Q: How to analyse the efficiency of MC MC methods?

Performance analysis of MCMC methods:
Q: How to analyse the efficiency of MCMC methods?

Performance analysis of MCMC methods:
Q: How to analyse the efficiency of MCMC methods?
Step 1: Ergodicily of the underlying process $X=\{X(t)\}_{t \geq 0}$.
Beyond ergodicily, tools include empirical observations, spectral properties ("and eigenvalue information"), asymptotic variance and functional inequalities (Poincaré, log-Sobolev).

Performance analysis of MC MC methods:
Q: How to analyse the efficiency of MCMC methods?
Step 1: Ergodicily of the underlying process $X=\{X(t)\}_{t \geq 0}$.
Beyond ergodicily, tools include empirical observations, spectral properties ("and eigenvalue information"), asymptotic variance and functional inequalities (Poincaré, log-Sobolev).

In practice: approximation of π built on the empirical measure

$$
\eta_{T}=\frac{1}{T} \int_{0}^{T} \delta_{X(t)}(\cdot) d t
$$

Under ergodicily $\eta_{T} \rightarrow \pi$.

Performance analysis of MCMC methods:
Q: How to analyse the efficiency of MCMC methods?
Step 1: Ergodicily of the underlying process $X=\{X(t)\}_{t \geq 0}$.
Beyond ergodicily, tools include empirical observations, spectral properties ("and eigenvalue information"), asymptotic variance and functional inequalities (Poincaré, log-Sobolev).

In practice: approximation of π built on the empirical measure

$$
\eta_{T}=\frac{1}{T} \int_{0}^{T} \delta_{X(t)}(\cdot) d t
$$

Under ergodicily $\eta_{T} \rightarrow \pi$.
Empirical measure Large deviations: Relates directly to the behaviour of η_{T} as $T \rightarrow \infty$. So far (severely) underutilised.

II. Primer on Large deviations

Large deviation principle:
A sequence $\left\{X_{n}\right\}_{n}$ of random elements satisfy the large deviation principle (LDP), with rate function $I: X \rightarrow[0, \infty]$, and speed n if

$$
\begin{aligned}
-\inf _{x \in G^{\circ}} I(x) & \leq \liminf _{n} \frac{1}{n} \log P\left(X_{n} \in G^{\circ}\right) \\
& \leq \limsup _{n} \frac{1}{n} \log P\left(X_{n} \in \bar{G}\right) \leq-\inf _{x \in \bar{G}} I(x) .
\end{aligned}
$$

Large deviation principle:
A sequence $\left\{X_{n}\right\}_{n}$ of random elements satisfy the large deviation principle (LDP), with rate function $I: X \rightarrow[0, \infty]$, and speed n if

$$
\begin{aligned}
-\inf _{x \in G^{\circ}} I(x) & \leq \liminf _{n} \frac{1}{n} \log P\left(X_{n} \in G^{\circ}\right) \\
& \leq \limsup _{n} \frac{1}{n} \log P\left(X_{n} \in \bar{G}\right) \leq-\inf _{x \in \bar{G}} I(x) .
\end{aligned}
$$

cist: For measurable $G \subset \mathcal{X}$,
$P\left(X_{n} \in G\right) \approx \exp \left\{-n \inf _{x \in G} I(x)\right\}$.

Large deviation principle:
A sequence $\left\{X_{n}\right\}_{n}$ of random elements satisfy the large deviation principle (LDP), with rate function $I: X \rightarrow[0, \infty]$, and speed n if

$$
\begin{aligned}
-\inf _{x \in G^{\circ}} I(x) & \leq \liminf _{n} \frac{1}{n} \log P\left(X_{n} \in G^{\circ}\right) \\
& \leq \limsup _{n} \frac{1}{n} \log P\left(X_{n} \in \bar{G}\right) \leq-\inf _{x \in \bar{G}} I(x) .
\end{aligned}
$$

cist: For measurable $G \subset \mathcal{X}$,
$P\left(X_{n} \in G\right) \approx \exp \left\{-n \inf _{x \in G} I(x)\right\}$.
Minimisers of I characterise how events occur.

Large deviation principle:
A sequence $\left\{X_{n}\right\}_{n}$ of random elements satisfy the large deviation principle (LDP), with rate function $I: X \rightarrow[0, \infty]$, and speed n if

$$
\begin{aligned}
-\inf _{x \in G^{\circ}} I(x) & \leq \liminf _{n} \frac{1}{n} \log P\left(X_{n} \in G^{\circ}\right) \\
& \leq \limsup _{n} \frac{1}{n} \log P\left(X_{n} \in \bar{G}\right) \leq-\inf _{x \in \bar{G}} I(x) .
\end{aligned}
$$

Gist: For measurable $G \subset X$,
$P\left(X_{n} \in G\right) \approx \exp \left\{-n \inf _{x \in G} I(x)\right\}$.
Minimisers of I characterise how events occur.

Example: Schilders theorem

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Example: Schilders theorem

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Q1: Probability X^{ϵ} Leaves $D=\left\{x \in \mathbb{R}^{2}:||x||^{2}<1\right\}$ in $[0, T]$?

Example: Schilders theorem

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Q1: Probability X^{ϵ} leaves $D=\left\{x \in \mathbb{R}^{2}:||x||^{2}<1\right\}$ in $[0, T]$?
Q2: How does X^{ϵ} exit D ?

Example: Schilders theorem

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Q1: Probability X^{ϵ} Leaves $D=\left\{x \in \mathbb{R}^{2}:\left||x| \|^{2}<1\right\}\right.$ in $[0, T]$?
Q2: How does X^{ϵ} exit D ?
Ans: $\left\{X^{\epsilon}\right\}_{\epsilon>0}$ satisfies LDP with rate function

$$
I(\varphi)=\frac{1}{2} \int_{0}^{T}\|\dot{\varphi}(s)\|^{2} d s ; \quad \varphi \in A C\left([0, T]: \mathbb{R}^{2}\right), \varphi(0)=0
$$

Roughly:
$P\left(X^{\epsilon}\right.$ leaves $\left.D\right) \approx \exp \left\{-\frac{1}{\epsilon} \inf _{\varphi}\{I(\varphi): \varphi(0)=0, \exists \tau \in[0, T]\right.$ s.t. $\left.\varphi(\tau) \in \partial D\}\right\}$

Example: Schilders theorem

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Q1: Probability X^{ϵ} Leaves $D=\left\{x \in \mathbb{R}^{2}:\left||x| \|^{2}<1\right\}\right.$ in $[0, T]$?
Q2: How does X^{ϵ} exit D ?
Ans: $\left\{X^{\epsilon}\right\}_{\epsilon>0}$ satisfies LDP with rate function

$$
I(\varphi)=\frac{1}{2} \int_{0}^{T}\|\dot{\varphi}(s)\|^{2} d s ; \quad \varphi \in A C\left([0, T]: \mathbb{R}^{2}\right), \varphi(0)=0
$$

Roughly:
$P\left(X^{\epsilon}\right.$ leaves $\left.D\right) \approx \exp \left\{-\frac{1}{\epsilon} \inf \frac{1(\varphi): \varphi(0)=0, \exists \tau \in[0, T] \text { s.t. } \varphi(\tau) \in \partial D\}}{\}}\right.$

Example: Schilders theorem

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Q1: Probability X^{ϵ} Leaves $D=\left\{x \in \mathbb{R}^{2}:\left||x| \|^{2}<1\right\}\right.$ in $[0, T]$?
Q2: How does X^{ϵ} exit D ?
Ans: $\left\{X^{\epsilon}\right\}_{\epsilon>0}$ satisfies LDP with rate function

$$
I(\varphi)=\frac{1}{2} \int_{0}^{T}\|\dot{\varphi}(s)\|^{2} d s ; \quad \varphi \in A C\left([0, T]: \mathbb{R}^{2}\right), \varphi(0)=0
$$

Roughly:
$P\left(X^{\epsilon}\right.$ leaves $\left.D\right) \approx \exp \left\{-\frac{1}{\epsilon} \inf _{\varphi}\{I(\varphi): \varphi(0)=0, \exists \tau \in[0, T]\right.$ s.t. $\left.\left.\varphi(\tau) \in \partial D\}\right)\right\}$
Solution $\varphi(s)=\left(C_{1} s, C_{2} s\right)$ where $C_{1}^{2}+C_{2}^{2}=1 / T^{2}$. Linear kowrds ∂D, reach al T.

Example: Schilders theorem (cont'd)

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Q1: Probability X^{ϵ} Leaves $D=\left\{x \in \mathbb{R}^{2}:||x||^{2}<1\right\}$ in $[0, T]$?
Q2: How does X^{ϵ} exit D ? LDP: Linear towards ∂D, reach at T.

5 of 100 K trajectories
$\epsilon=0.044$
Probability $\approx 10^{-5}$

Example: Schilders theorem (cont'd)

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Q1: Probability X^{ϵ} leaves $D=\left\{x \in \mathbb{R}^{2}:\|x\|^{2}<1\right\}$ in $[0, T]$?
Q2: How does X^{ϵ} exit D ? LDP: Linear towards ∂D, reach at T.

5 of 100 K trajectories
$\epsilon=0.044$
Probability $\approx 10^{-5}$

Example: Schilders theorem (cont'd)

Consider scaled $B M:\{B(t)\}_{t \in[0, T]}$ standard $B M$ in $\mathbb{R}^{2}, B(0)=0, \epsilon>0$, $X^{\epsilon}(t)=\sqrt{\epsilon} B(t)$.

Q1: Probability X^{ϵ} Leaves $D=\left\{x \in \mathbb{R}^{2}:||x||^{2}<1\right\}$ in $[0, T]$?
Q2: How does X^{ϵ} exit D? LDP: Linear towards ∂D, reach at T.

4 of 100 K left D
$\epsilon=0.044$
Probability $\approx 10^{-5}$

LDP: Empirical measures of a Markov chain
A sequence $\left\{X_{n}\right\}_{n}$ of random elements satisfy the large deviation principle (LDP), with rate function $I: X \rightarrow[0, \infty]$, and speed n if

$$
\begin{aligned}
-\inf _{x \in G^{\circ}} I(x) & \leq \liminf _{n} \frac{1}{n} \log P\left(X_{n} \in G^{\circ}\right) \\
& \leq \limsup _{n} \frac{1}{n} \log P\left(X_{n} \in \bar{G}\right) \leq-\inf _{x \in \bar{G}} I(x) .
\end{aligned}
$$

LDP: Empirical measures of a Markov chain
A sequence $\left\{X_{n}\right\}_{n}$ of random elements satisfy the large deviation principle (LDP), with rate function $I: X \rightarrow[0, \infty]$, and speed n if

$$
\begin{aligned}
-\inf _{x \in G^{\circ}} I(x) & \leq \liminf _{n} \frac{1}{n} \log P\left(X_{n} \in G^{\circ}\right) \\
& \leq \limsup _{n} \frac{1}{n} \log P\left(X_{n} \in \bar{G}\right) \leq-\inf _{x \in \bar{G}} I(x) .
\end{aligned}
$$

Consider a Markov chain $\left\{Y_{n}\right\}_{n \geq 0}$.
Define corresponding sequence of empirical measures:

$$
L_{n}=\frac{1}{n} \sum_{i=0}^{n-1} \delta_{X_{i}}, \quad n \geq 1
$$

Empirical measure LDP: LDP for $\left\{L_{n}\right\}_{n \geq 1}$.
III. Large deviations and Monke Carlo

Large deviations and Monte Carlo methods
Large deviations used extensively in the analysis and design of rare-event methods. Relies on process-level LDP's.

Large deviations and Monte Carlo methods
Large deviations used extensively in the analysis and design of rare-event methods. Relies on process-level LDP's.

Bucklew - Introduction to rare event simulation. Springer-Verlag, 2004

Dupuis, Wang - Subsolutions of an Isaacs equation and efficient schemes for importance sampling.
Math. Oper. Res. $32(3), 723-767,2007$
Budhiraja, Dupuis - Analysis and approximation of rare events: Representations and weak convergence methods. Springer, 2019.

Rhee et al. -Efficient rare-event simulation for multiple jump events in regularly varying random walks and compound Poisson processes. Math. Oper. Res. 44 (3), 919-942, 2019.

Large deviations and Monte Carlo methods

Rising interest in the use of LIPs for MCMC methods. Empirical measure LDP's the right thing to study.

Dupuis et al.- On the infinite swapping limit for parallel tempering.
SIAM Multiscale Model. Simul, 10(3):986-1022, 2012.
Rey-Bellet, Spiliopoutos - Irreversible Langevin samplers and variance reduction: A large deviations approach. Nonlinearity, 28(7):2081, 2016.

Bierkens - Non-reversible Metropolis-Hastings.
Stat. Compute., 26(6):1213-1228, 2016.
Doll, Dupuis, N. A large deviations analysis of certain qualitative properties of parallel tempering and infinite swapping algorithms.
Appl. Math. Optime., 78(1):103-144, 2018.
Bierkens, N., Schlottke - Large deviations for the empirical measure of the zig-zag process. Ann. Appl. Probab., 31(6):2811-2843, 2021.

Dupuis, Wu - Analysis and optimization of certain parallel tempering Monte Carlo methods in the low temperature limit.
Multiscale Model. Simul., 20(1):220-249, 2022.

Large deviations and Monte Carlo methods

Rising interest in the use of LDPs for MC MC methods. Empirical measure LDP's the right thing to study.

Dupuis et al.- On the infinite swapping limit for parallel tempering.
SIAM Multiscale Model. Simul,, 10(3):986-1022, 2012.
Rey-Bellet, Spiliopoulos - Irreversible Langevin samplers and variance reduction: A large deviations approach.
Nonlinearity, 28(7):2081, 2016.
Bierkens - Non-reversible Metropolis-Hastings.
Stat. Comput., 26(6):1213-1228, 2016.
Doll, Dupuis, N. A large deviations analysis of certain qualitative properties of parallel tempering and infinite swapping algorithms.
Appl. Math. Optime., 78(1):103-144, 2018.
Bierkens, N., Schlottke - Large deviations for the empirical measure of the zigzag process. Ann. Appl. Probab., 31(6):2811-2843, 2021.

Dupuis, Wu - Analysis and optimization of certain parallel tempering Monte Carlo methods in the low temperature limit.
Multiscale Model. Simul., 20(1):220-249, 2022.

Large deviations and Monte Carlo methods

Rising interest in the use of LIPs for MCMC methods. Empirical measure LDP's the right thing to study.

Dupuis et al.- On the infinite swapping limit for parallel tempering.
SIAM Multiscale Model. Simul, 10(3):986-1022, 2012.
Rey-Bellet, Spiliopoulos - Irreversible Langevin samplers and variance reduction: A large deviations approach.
Nonlinearity, $28(7): 2081,2016$.
Bierkens - Non-reversible Metropolis-Hastings.
Stat. Compute., 26(6):1213-1228, 2016.
Doll, Dupuis, N. A large deviations analysis of certain qualitative properties of parallel tempering and infinite swapping algorithms.
Appl. Math. Optime., 78(1):103-144, 2018.
Bierkens, N., Schlottke - Large deviations for the empirical measure of the zigzag process. Ann. Appl. Probab., 31(6):2811-2843, 2021.

Dupuis, Wu - Analysis and optimization of certain parallel tempering Monte Carlo methods in the low temperature limit.
Multiscale Model. Simul., 20(1):220-249, 2022.

Large deviations and Monte Carlo methods

Rising interest in the use of LIPs for MCMC methods. Empirical measure LDP's the right thing to study.

Dupuis et al.- On the infinite swapping limit for parallel tempering.
SIAM Multiscale Model. Simul, 10(3):986-1022, 2012.
Rey-Bellet, Spiliopoutos - Irreversible Langevin samplers and variance reduction: A large deviations approach. Nonlinearity, 28(7):2081, 2016.

Bierkens - Non-reversible Metropolis-Hastings.
Stat. Compute., 26(6):1213-1228, 2016.
Doll, Dupuis, N. A large deviations analysis of certain qualitative properties of parallel tempering and infinite swapping algorithms.
Appl. Math. Optime., 78(1):103-144, 2018.
Bierkens, N., Schlottke - Large deviations for the empirical measure of the zigzag process. Ann. Appl. Probab., 31(6):2811-2843, 2021.

Dupuis, Wu - Analysis and optimization of certain parallel tempering Monte Carlo methods in the low temperature limit.
Multiscale Model. Simul., 20(1):220-249, 2022.

Large deviations and Monte Carlo methods

Rising interest in the use of LDPs for MC MC methods. Empirical measure LDP's the right thing to study.

Dupuis et al.- On the infinite swapping limit for parallel tempering.
SIAM Multiscale Model. Simul, 10(3):986-1022, 2012.
Rey-Bellet, Spiliopoutos - Irreversible Langevin samplers and variance reduction: A large deviations approach. Nonlinearity, 28(7):2081, 2016.

Bierkens - Non-reversible Metropolis-Hastings.
Stat. Comput., 26(6):1213-1228, 2016.
Doll, Dupuis, N. A large deviations analysis of certain qualitative properties of parallel tempering and infinite swapping algorithms.
Appl. Math. Optime., 78(1):103-144, 2018.
Bierkens, N., Schlottke - Large deviations for the empirical measure of the zigzag process. Ann. Appl. Probab., 31(6):2811-2843, 2021.

Dupuis, Wu - Analysis and optimization of certain parallel tempering Monte Carlo methods in the low temperature limit.
Multiscale Model. Simul., 20(1):220-249, 2022.

Large deviations and Monte Carlo methods

Rising interest in the use of LIPs for MC MC methods. Empirical measure LDP's the right thing to study.

Dupuis et al.- On the infinite swapping limit for parallel tempering.
SIAM Multiscale Model. Simul, 10(3):986-1022, 2012.
Rey-Bellet, Spiliopoutos - Irreversible Langevin samplers and variance reduction: A large deviations approach. Nonlinearity, 28(7):2081, 2016.

Bierkens - Non-reversible Metropolis-Hastings.
Stat. Comput., 26(6):1213-1228, 2016.
Doll, Dupuis, N. A large deviations analysis of certain qualitative properties of parallel tempering and infinite swapping algorithms.
Appl. Math. Optime., 78(1):103-144, 2018.
Bierkens, N., Schlottke - Large deviations for the empirical measure of the zig-zag process. Ann. Appl. Probab., 31(6):2811-2843, 2021.

Dupuis, Wu - Analysis and optimization of certain parallel tempering Monte Carlo methods in the low temperature limit.
Multiscale Model. Simul., 20(1):220-249, 2022.

Large deviations and Monte Carlo methods

Rising interest in the use of LIPs for MC MC methods. Empirical measure LDP's the right thing to study.

Dupuis et al.- On the infinite swapping limit for parallel tempering.
SIAM Multiscale Model. Simul, 10(3):986-1022, 2012.
Rey-Bellet, Spiliopoutos - Irreversible Langevin samplers and variance reduction: A large deviations approach.
Nonlinearity, 28(7):2081, 2016.
Bierkens - Non-reversible Metropolis-Hastings.
Stat. Compute., 26(6):1213-1228, 2016.
Doll, Dupuis, N. A large deviations analysis of certain qualitative properties of parallel tempering and infinite swapping algorithms.
Appl. Math. Optime., 78(1):103-144, 2018.
Bierkens, N., Schlottke - Large deviations for the empirical measure of the zigzag process. Ann. Appl. Probab., 31(6):2811-2843, 2021.

Dupuis, Wu - Analysis and optimization of certain parallel tempering Monte Carlo methods in the low temperature limit.
Multiscale Model. Simul., 20(1):220-249, 2022.

Large deviations and Monte Carlo methods
Rising interest in the use of LIPs for MC MC methods. Empirical measure LDP's the right thing to study.

Interested in using LD approach for:
Metropolis-adjusted Langevin algorithm (MALA),
Random walk Metropolis (RWM),
ABC-MCMC.
Metropolis-Hastings the foundational building block.(Surprisingly!) Many (theoretical) questions remain open.

Metropolis-Haskings:

- State space $S \subseteq \mathbb{R}^{d}$
- Proposal distribution $J(\cdot \mid x), x \in S$
- For a state x and proposal y, define the acceptance probability

$$
\omega(x, y)=\min \left\{1, \frac{\pi(y) J(x \mid y)}{\pi(x) J(y \mid x)}\right\} .
$$

- Metropolis-Hastings algorithm: Given $X_{i}=x_{i}$,
i) Generate a proposal $Y_{i+1} \sim J\left(\cdot \mid x_{i}\right)$.
ii) Set

$$
X_{i+1}= \begin{cases}Y_{i+1}, & \omega, \text { probability } \omega\left(x_{i}, Y_{i+1}\right) \\ x_{i}, & \omega, \text { probability } 1-\omega\left(x_{i}, Y_{i+1}\right) .\end{cases}
$$

Metropolis-Hastings:

- State space $S \subseteq \mathbb{R}^{d}$
- Proposal distribution $J(\cdot \mid x), x \in S$
- For a state x and proposal y, define the acceptance probability

$$
\omega(x, y)=\min \left\{1, \frac{\pi(y) J(x \mid y)}{\pi(x) J(y \mid x)}\right\} .
$$

- Metropolis-Hastings algorithm: Generate Markov chain w. kernel

$$
K(x, d y)=a(x, d y)+r(x) \delta_{x}(d y),
$$

where

$$
a(x, d y)=\min \left\{1, \frac{\pi(y) J(x \mid y)}{\pi(x) J(y \mid x)}\right\} J(d y \mid x), \quad r(x)=1-\int_{S} a(x, d y)
$$

Melropolis-Haskings:

- State space $S \subseteq \mathbb{R}^{d}$
- Proposal distribution $J(\cdot \mid x), x \in S$
- For a state x and proposal y, define the acceptance probability

$$
\omega(x, y)=\min \left\{1, \frac{\pi(y) J(x \mid y)}{\pi(x) J(y \mid x)}\right\}
$$

- Melropolis-Hastings algorithm: Generate Markov chain w. Kernel

$$
K(x, d y)=a(x, d y)+r(x) \delta_{x}(d y)
$$

where

$$
a(x, d y)=\min \left\{1, \frac{\pi(y) J(x \mid y)}{\pi(x) J(y \mid x)}\right\} J(d y \mid x), \quad r(x)=1-\int_{S} a(x, d y)
$$

Q: What about empirical measure large deviations for MH chains?
IV. Large deviakions for MH chains

Large deviations for Metropolis-Hastings chains:
Empirical measure Large deviations for Markov processes dates back to work by Donsker and Varadhan ('75-'76)

Covers many (well-behaved) Markov processes, rate function on variational form:

$$
I(\mu)=-\inf _{u>0} \int \log \frac{K u}{u} d \mu, \quad \mu \in \mathscr{P}(S) .
$$

Large deviations for Metropolis-Haskings chains:

Empirical measure Large deviations for Markov processes dates back to work by Donsker and Varadhan (175-176)

Covers many (well-behaved) Markov processes, rate function on variational form:

$$
I(\mu)=-\inf _{u>0} \int \log \frac{K u}{u} d \mu, \quad \mu \in \mathscr{P}(S)
$$

Q: What about MH chains?

Large deviations for Metropolis-Hastings chains:

Let X be a compact metric space and let $\lambda(d x)$ be a probability measure on X. Let $X_{0}, X_{1}, X_{2}, \cdots$ be a stationary Markov process whose state space is X, with $X_{0}=x$, having transition probability function $\pi(x, d y)$ about which we assume:

1. $\pi(x, d y)=\pi(x, y) \lambda(d y)$,
2. there exist constants a and A such that $0<a \leqq \pi(x, y) \leqq A<\infty$ for all $x \in \mathbb{X}$ and almost all (λ-measure) $y \in X$,
3. for any function $u(y) \in L_{1}(\lambda)$,

$$
\int_{x} \pi(x, y) u(y) \lambda(d y)
$$

is a continuous function of x.

(Donsker, Varadhan '75)

Large deviations for Metropolis-Hastings chains:

Let X be a compact metric space and let $\lambda(d x)$ be a probability measure on X. Let $X_{0}, X_{1}, X_{2}, \cdots$ be a stationary Markov process whose state space is X, with $X_{0}=x$, having transition probability function $\pi(x, d y)$ about which we assume:

1. $\pi(x, d y)=\pi(x, y) \lambda(d y)$,
2. there exist constants a and A such that $0<a \leqq \pi(x, y) \leqq A<\infty$ for all $x \in \mathbb{X}$ and almost all (λ-measure) $y \in X$,
3. for any function $u(y) \in L_{1}(\lambda)$,

$$
\int_{x} \pi(x, y) u(y) \lambda(d y)
$$

is a continuous function of x.
(Donsker, Varadhan 175)

Large deviations for Metropolis-Hastings chains:

Let X be a compact metric space and let $\lambda(d x)$ be a probability measure on X. Let $X_{0}, X_{1}, X_{2}, \cdots$ be a stationary Markov process whose state space is X, with $X_{0}=x$, having transition probability function $\pi(x, d y)$ about which we assume:

1. $\pi(x, d y)=\pi(x, y) \lambda(d y)$,
2. there exist constants a and A such that $0<a \leqq \pi(x, y) \leqq A<\infty$ for all $x \in \mathbb{X}$ and almost all (λ-measure) $y \in X$,
3. for any function $u(y) \in L_{1}(\lambda)$,

$$
\int_{x} \pi(x, y) u(y) \lambda(d y)
$$

is a continuous function of x.
(Donsker, Varadhan 176)

Condition 6.3 The transition kernel p satisfies the followion in S,
There exist positive integers l_{0} and n_{0} such that for all x and ζ in

$$
\begin{equation*}
\sum_{i=l_{0}}^{\infty} \frac{1}{2^{i}} p^{(i)}(x, d y) \ll \sum_{j=n_{0}}^{\infty} \frac{1}{2^{j}} p^{(j)}(\zeta, d y), \tag{6.7}
\end{equation*}
$$

where $p^{(k)}$ denotes the k-step transition probability.
(Dupuis, Liu '16; Budhiraja, Dupuis '19)

Large deviations for Metropolis-Hastings chains:
Need new conditions adapted to MH-type dynamics.
Main issue: Rejection part $r(x) \delta_{x}(d y)$ in K.

Large deviations for Metropolis-Hastings chains:
Need new conditions adapted to MH-type dynamics.
Main issue: Rejection part $r(x) \delta_{x}(d y)$ in K.
One possible set of assumptions:
A.1) Target π equivalent bo λ (Lebesgue) on S, has cont. density.
A.2) Proposal $J(\cdot \mid x)<\pi$ for all $x \in S$. Density is cont, and bounded and $J(y \mid x)>0$ for all $(x, y) \in S^{2}$.
A.3) There exists a suitable Lyapunov-type function associated with K (for non-compactness)

Large deviations for Metropolis-Hastings chains:
Need new conditions adapted to MH-type dynamics.
Main issue: Rejection part $r(x) \delta_{x}(d y)$ in K.
One possible set of assumptions:
A.1) Target π equivalent to λ (Lebesgue) on S, has cont. density.
A.2) Proposal $J(\cdot \mid x)<\pi$ for all $x \in S$. Density is conk, and bounded and $J(y \mid x)>0$ for all $(x, y) \in S^{2}$.
A.3) There exists a suitable Lyapunov-type function associated with K (for non-compactness)

Large deviations for Metropolis-Hastings chains:
Theorem (Milinanni, N. '24a): Under assumptions (A.1), (A.2), (A.3), the empirical measures $\left\{L_{n}\right\}_{n \geq 1}$ associated with the MH chain $\left\{X_{i}\right\}_{i \geq 0}$ satisfy an LDP with rate function

$$
I(\mu)=\inf _{\gamma \in A(\mu)} R(\gamma \| \mu \otimes K), \quad \mu \in \mathscr{P}(S) .
$$

$A(\mu)=\left\{\gamma \in \mathscr{P}\left(S^{2}\right):[\gamma]_{1}=[\gamma]_{2}=\mu\right\}$.
$R(\mu \| \nu)= \begin{cases}\int_{S} \log \left(\frac{d \mu}{d \nu}\right) d \mu, & \mu \ll \nu, \\ +\infty, & \text { otherwise. }\end{cases}$

Large deviations for Metropolis-Hastings chains:
Theorem (Milinanni, N. '24a): Under assumptions (A.1), (A.2), (A.3), the empirical measures $\left\{L_{n}\right\}_{n \geq 1}$ associated with the MH chain $\left\{X_{i}\right\}_{i \geq 0}$ satisfy an LDP with rate function

$$
I(\mu)=\inf _{\gamma \in A(\mu)} R(\gamma \| \mu \otimes K), \quad \mu \in \mathscr{P}(S) .
$$

$A(\mu)=\left\{\gamma \in \mathscr{P}\left(S^{2}\right):[\gamma]_{1}=[\gamma]_{2}=\mu\right\}$.
$R(\mu \| \nu)= \begin{cases}\int_{S} \log \left(\frac{d \mu}{d \nu}\right) d \mu, & \mu \ll \nu, \\ +\infty, & \text { otherwise. }\end{cases}$

Idea: Use rate function to gauge efficiency / compare alg's.
"Larger = better"

Toy example: IMH

Toy example (WIP): Independent MH sampler
Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$.
Q: For a given target, can we find the "best" sampling dist.?

Toy example (WIP): Independent MH sampler
Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$.
Q: For a given target, can we find the "best" sampling dist.?
Take $\pi \sim N(0,1), f \sim N\left(m, s^{2}\right)$. Rate function $I(\cdot)=I_{f}(\cdot)=I(\cdot ; m, s)$

Toy example (WIP): Independent MH sampler
Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$.
Q: For a given target, can we find the "best" sampling dist.?
Take $\pi \sim N(0,1), f \sim N\left(m, s^{2}\right)$. Rate function $I(\cdot)=I_{f}(\cdot)=I(\cdot ; m, s)$
"Ideal": find optimal $\left(m^{*}, s^{*}\right)$ for all (relevant) $\mu \in \mathscr{P}(S)$:

$$
I\left(\mu ; m^{*}, s^{*}\right) \geq I(\mu ; m, s), \quad \forall \mu, m, s .
$$

Toy example (WIP): Independent MH sampler
Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$.
Q: For a given target, can we find the "best" sampling dist.?
Take $\pi \sim N(0,1), f \sim N\left(m, s^{2}\right)$. Rate function $I(\cdot)=I_{f}(\cdot)=I(\cdot ; m, s)$
"Ideal": find optimal $\left(m^{*}, s^{*}\right)$ for all (relevant) $\mu \in \mathscr{P}(S)$:

$$
I\left(\mu ; m^{*}, s^{*}\right) \geq I(\mu ; m, s), \quad \forall \mu, m, s
$$

Reality: Numerical comparison of lower bound for a given μ.
Lower bound for the rate function:

$$
I_{f}(\mu) \geq-\log \left(1-\frac{1}{2} \iint \min \left\{\frac{f(x)}{\pi(x)}, \frac{f(y)}{\pi(y)}\right\}(\sqrt{\mu(x) \pi(y)}-\sqrt{\mu(y) \pi(x)})^{2} d x d y\right)
$$

Toy example (WIP): Independent MH sampler
Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$.
Q: For a given target, can we find the "best" sampling dist.?
Take $\pi \sim N(0,1), f \sim N\left(m, s^{2}\right)$. Rate function $I(\cdot)=I_{f}(\cdot)=I(\cdot ; m, s)$
Lower bound for the rate function:

$$
I_{f}(\mu) \geq-\log \left(1-\frac{1}{2} \iint \min \left\{\frac{f(x)}{\pi(x)}, \frac{f(y)}{\pi(y)}\right\}(\sqrt{\mu(x) \pi(y)}-\sqrt{\mu(y) \pi(x)})^{2} d x d y\right)
$$

Toy example (WIP): Independent MH sampler Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$.
Q: For a given target, can we find the "best" sampling dist.?
Take $\pi \sim N(0,1), f \sim N\left(m, s^{2}\right)$. Rate function $I(\cdot)=I_{f}(\cdot)=I(\cdot ; m, s)$
Lower bound for the rate function:

$$
I_{f}(\mu) \geq-\log \left(1-\frac{1}{2} \iint \min \left\{\frac{f(x)}{\pi(x)}, \frac{f(y)}{\pi(y)}\right\}(\sqrt{\mu(x) \pi(y)}-\sqrt{\mu(y) \pi(x)})^{2} d x d y\right)
$$

$\mu \sim \operatorname{Uni}(0,1)$

Toy example (WIP): Independent MH sampler
Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$.
Q: For a given target, can we find the "best" sampling dist.?
Take $\pi \sim N(0,1), f \sim N\left(m, s^{2}\right)$. Rate function $I(\cdot)=I_{f}(\cdot)=I(\cdot ; m, s)$
Lower bound for the rate function:
$I_{f}(\mu) \geq-\log \left(1-\frac{1}{2} \iint \min \left\{\frac{f(x)}{\pi(x)}, \frac{f(y)}{\pi(y)}\right\}(\sqrt{\mu(x) \pi(y)}-\sqrt{\mu(y) \pi(x)})^{2} d x d y\right)$

$$
\mu \sim N(1,2)
$$

$\mu \sim \operatorname{Gamma}(3,5)$

$\mu \sim \operatorname{Uni}(0,1)$

Large deviations for Metropolis-Hastings chains:
Theorem (Milinanni, N. '24a): Under assumptions (A.1), (A.2), (A.3), the empirical measures $\left\{L_{n}\right\}_{n \geq 0}$ associated with the MH chain $\left\{X_{i}\right\}_{i \geq 0}$ satisfy an LDP with rate function

$$
I(\mu)=\inf _{\gamma \in A(\mu)} R(\gamma \| \mu \otimes K), \quad \mu \in \mathscr{P}(S) .
$$

$A(\mu)=\left\{\gamma \in \mathscr{P}\left(S^{2}\right):[\gamma]_{1}=[\gamma]_{2}=\mu\right\}$.
$R(\mu \| \nu)= \begin{cases}\int_{S} \log \left(\frac{d \mu}{d \nu}\right) d \mu, & \mu \ll \nu, \\ +\infty, & \text { otherwise. }\end{cases}$

Idea: Use rate function to gauge efficiency / compare alg's.
"Larger = better"

Large deviations for Metropolis-Hastings chains:
Theorem (Milinanni, N. '24a): Under assumptions (A.1), (A.2), (A.3), the empirical measures $\left\{L_{n}\right\}_{n \geq 0}$ associated with the MH chain $\left\{X_{i}\right\}_{i \geq 0}$ satisfy an LDP with rate function

$$
I(\mu)=\inf _{\gamma \in A(\mu)} R(\gamma \| \mu \otimes K), \quad \mu \in \mathscr{P}(S)
$$

Proof strategy: Establish variational upper \& Lower bounds:

$$
\limsup _{n \rightarrow \infty}\left(\liminf _{n \rightarrow \infty}\right)-\frac{1}{n} \log E\left[e^{-n F\left(L_{n}\right)}\right] \leq(\geq) \inf _{\mu \in \mathscr{P}(S)}(F(\mu)+I(\mu))
$$

Relies on stochastic control and weak convergence methods.

Large deviations for Metropolis-Hastings chains:
I. Variational representation: For F bounded, cont.,

$$
-\frac{1}{n} \log E\left[e^{-n F\left(L_{n}\right)}\right]=\inf _{\left\{\left\{\bar{\mu}_{i}^{n}\right\}\right.} E\left[F\left(\bar{L}_{n}\right)+\frac{1}{n} \sum_{i=1}^{n} R\left(\bar{\mu}_{i}^{n} \| K\left(\bar{X}_{i}^{n}, \cdot\right)\right] .\right.
$$

$\bar{\mu}_{i}^{n}$: cond. distribution of \bar{X}_{i}^{n} given $\sigma\left(\bar{X}_{1}^{n}, \ldots, \bar{X}_{n-1}^{n}\right)$.
$\bar{L}^{n}(\cdot)=\frac{1}{n} \sum_{i=0}^{n-1} \delta_{\bar{X}_{i}^{n}}(\cdot):$ controlled empirical measure.

Large deviations for Metropolis-Hastings chains:
I. Variational representation: For F bounded, cont.,

$$
-\frac{1}{n} \log E\left[e^{-n F\left(L_{n}\right)}\right]=\inf _{\left\{\left\{\mu_{i}^{n}\right\}\right.} E\left[F\left(\bar{L}_{n}\right)+\frac{1}{n} \sum_{i=1}^{n} R\left(\bar{\mu}_{i}^{n} \| K\left(\bar{X}_{i}^{n}, \cdot\right)\right] .\right.
$$

$\bar{\mu}_{i}^{n}$: cond. distribution of \bar{X}_{i}^{n} given $\sigma\left(\bar{X}_{1}^{n}, \ldots, \bar{X}_{n-1}^{n}\right)$.
$\bar{L}^{n}(\cdot)=\frac{1}{n} \sum_{i=0}^{n-1} \delta_{\bar{X}_{i}^{n}}(\cdot):$ controlled empirical measure.
II. Variational upper bound:

$$
\liminf _{n \rightarrow \infty}-\frac{1}{n} \log E\left[e^{-n F\left(L_{n}\right)}\right] \geq \inf _{\mu \in \mathscr{F}(S)}(F(\mu)+I(\mu))
$$

"Easy" direction. Show Feller property for K. Rest from Budhiraja \# Dupuis.

Large deviations for Metropolis-Hastings chains:
III. Variational Lower bound:

$$
\limsup _{n \rightarrow \infty}-\frac{1}{n} \log E\left[e^{-n F\left(L_{n}\right)}\right] \leq \inf _{\mu \in \mathscr{P}(S)}(F(\mu)+I(\mu))
$$

Large deviations for Metropolis-Hastings chains:
III. Variakional lower bound:

$$
\limsup _{n \rightarrow \infty}-\frac{1}{n} \log E\left[e^{-n F\left(L_{n}\right)}\right] \leq \inf _{\mu \in \mathscr{P}(S)}(F(\mu)+I(\mu))
$$

Difficult part: construction of near-optimal controls $\left\{\bar{\mu}_{i}^{n}\right\}_{i=1}^{n}$.
Key property in Budhiraja \& Dupuis: $I(\nu)<\infty$ guarantees $\nu \ll \pi$.

Large deviations for Metropolis-Hastings chains:
III. Variational tower bound:

$$
\limsup _{n \rightarrow \infty}-\frac{1}{n} \log E\left[e^{-n F\left(L_{n}\right)}\right] \leq \inf _{\mu \in \mathscr{P}(S)}(F(\mu)+I(\mu))
$$

Difficult part: construction of near-optimal controls $\left\{\bar{H}_{j}^{n}\right\}_{i=1}^{n}$. Key property in Budhiraja \& Dupuis: $I(\nu)<\infty$ guarantees $\nu<\pi$.

Not true for MH; due to rejection part $r(x) \delta_{x}(d y)$ in K.

Large deviations for Metropolis-Hastings chains:
III. Variational lower bound:

$$
\limsup _{n \rightarrow \infty}-\frac{1}{n} \log E\left[e^{-n F\left(L_{n}\right)}\right] \leq \inf _{\mu \in \mathscr{P}(S)}(F(\mu)+I(\mu))
$$

Difficult part: construction of near-optimal controls $\left\{\bar{\mu}_{i}^{n}\right\}_{i=1}^{n}$. Key property in Budhiraja \& Dupuis: $I(\nu)<\infty$ guarantees $\nu<\pi$.

Not true for MH; due to rejection part $r(x) \delta_{x}(d y)$ in K.
Idea: Take $\nu \in \mathscr{P}(S)$ s.k. $I(\nu)<\infty$. Show existence of ν^{*} s.t.:
(i) arbitrarily close to ν,
(ii) $I\left(\nu^{*}\right) \leq I(\nu)+\epsilon$,
(iii) $\nu^{*} \ll \pi$.

Condition (A.3) needed to show tightness of controls.
V. On condition (A.B): Existence of a suitable Lyapunov function
(is it ever satisfied?)

Existence of Lyapunov function I:

Condition (A.3): There exists a function $U: S \rightarrow[0, \infty)$ such that
a) $\inf _{x \in S}\left\{U(x)-\log \int_{S} e^{U(y)} K(x, d y)\right\}>-\infty$.
b) For each $M<\infty$, the following set is relatively compact in S :

$$
\left\{x \in S: U(x)-\log \int_{S} e^{U(y)} K(x, d y) \leq M\right\} .
$$

c) For every compact $A \subset S$, there exists $C_{A}<\infty$ such that

$$
\sup _{x \in A} U(x) \leq C_{A} .
$$

Existence of Lyapunov function I:
Condition (A.3): There exists a function $U: S \rightarrow[0, \infty)$ such that
a) $\inf _{x \in S}\left\{U(x)-\log \int_{S} e^{U(y)} K(x, d y)\right\}>-\infty$.
b) For each $M<\infty$, the following set is relatively compact in S :

$$
\left\{x \in S: U(x)-\log \int_{S} e^{U(y)} K(x, d y) \leq M\right\}
$$

c) For every compact $A \subset S$, there exists $C_{A}<\infty$ such that

$$
\sup _{x \in A} U(x) \leq C_{A} \text {. }
$$

Note: For compact S condition is trivially satisfied.
Henceforth: $S=\mathbb{R}^{d}$.

Existence of Lyapunov function II:

Condition (A.3): Part (b) critical part,
b) For each $M<\infty$, the following set is relatively compact in S :

$$
\left\{x \in S: U(x)-\log \int_{S} e^{U(y)} K(x, d y) \leq M\right\}
$$

Existence of Lyapunov function II:
Condition (A.3): Part (b) critical part,
b) For each $M<\infty$, the following set is relatively compact in S :

$$
\left\{x \in S: U(x)-\log \int_{S} e^{U(y)} K(x, d y) \leq M\right\}
$$

Proposition (Milinanni, $N, 24 b$): (A.3b) is equivalent to

$$
\lim _{|x| \rightarrow \infty} \int_{S} a(x, y) d y=1
$$

and

$$
\lim _{|x| \rightarrow \infty} \int_{S} e^{U(y)-U(x)} a(x, y) d y=0
$$

(where: $a(x, d y)=\min \left\{1, \frac{\pi(y) J(x \mid y)}{\pi(x) J(y \mid x)}\right\} J(d y \mid x)$)

Existence of Lyapunov function III: Independent MH

Existence of Lyapunov function III: Independent MH Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$. $\Rightarrow a(x, y)=\min \left\{1, \frac{\pi(y) f(x)}{\pi(x) f(y)}\right\} f(y), \quad \forall x \in S$.

Consider target and proposal on the form

$$
\pi(x) \propto e^{-\eta|x|^{\alpha}}, \quad f(y) \propto e^{-\left.\gamma|x|\right|^{\beta}} .
$$

Existence of Lyapunov function III: Independent MH Proposal distribution $J(\cdot \mid x)=f(\cdot), \forall x \in S$.
$\Rightarrow a(x, y)=\min \left\{1, \frac{\pi(y) f(x)}{\pi(x) f(y)}\right\} f(y), \quad \forall x \in S$.
Consider target and proposal on the form

$$
\pi(x) \propto e^{-\eta|x|^{\alpha}}, \quad f(y) \propto e^{-\gamma|x|^{\beta}} .
$$

Proposition (Milinanni, N., 24b): (A.3) is satisfied iff either of the following hold:
i) $\alpha=\beta, \eta>\gamma$,
ii) $\alpha \geq \beta$.

Gist: Target has lighter tails than proposal. Same as for UE/GE.

Existence of Lyapunov function IV: MALA

Existence of Lyapunov function IV: MALA

Proposal distribution:

$$
J(y \mid x) \propto \exp \left\{-\frac{1}{2 \varepsilon}\left|y-x-\frac{\varepsilon}{2} \nabla \log \pi(x)\right|^{2}\right\}, \varepsilon>0
$$

Consider target on the form

$$
\pi(x) \propto e^{-\eta|x|^{\alpha}}
$$

Existence of Lyapunov function IV: MALA
Proposal distribution:

$$
J(y \mid x) \propto \exp \left\{-\frac{1}{2 \varepsilon}\left|y-x-\frac{\varepsilon}{2} \nabla \log \pi(x)\right|^{2}\right\}, \varepsilon>0
$$

Consider target on the form

$$
\pi(x) \propto e^{-\eta|x|^{\alpha}}
$$

Proposition (Milinanni, $N ., 24 b$): (A.3) is satisfied iff either of the following hold:
i) $\alpha=2, \quad \varepsilon \eta<2$,
ii) $1<\alpha<2$.

Existence of Lyapunov function V: RWM

Existence of Lyapunov function V: RWM

Proposal distribution $J(y \mid x)=\hat{J}(y-x)=\hat{J}(x-y)$.
$\Rightarrow a(x, y)=\min \left\{1, \frac{\pi(y)}{\pi(x)}\right\} \hat{J}(y-x), \quad \forall x \in S$.

Existence of Lyapunov function V: RWM
Proposal distribution $J(y \mid x)=\hat{J}(y-x)=\hat{J}(x-y)$.
$\Rightarrow a(x, y)=\min \left\{1, \frac{\pi(y)}{\pi(x)}\right\} \hat{J}(y-x), \quad \forall x \in S$.

Proposition (Milinanni, N., 24b): For the RWM algorithm, there does not exist a function U satisfying condition (A.3), regardless of the choice of π.

LDP for MH chains: LDPs for IMH and MALA chains

Theorem (MiLinanni, N., 24b):
Consider a target on the form

$$
\pi(x) \propto e^{-\eta|x|^{\alpha}}
$$

LDP for MH chains: LIPs for IMH and MALA chains

Theorem (Milinanni, N., 24b):
Consider a target on the form

$$
\pi(x) \propto e^{-\eta|x|^{\alpha}}
$$

i) For IMH, with proposal on the form $f(y) \propto e^{-\gamma|x|^{\beta}}$, if either $\alpha=\beta$ and $\eta>\gamma$, or $\alpha>\beta$, the empirical measures of the underlying MH chain satisfy an LDP.

LDP for MH chains: LIPs for IMH and MALA chains

Theorem (MiLinanni, N., 24b):
Consider a target on the form

$$
\pi(x) \propto e^{-\eta|x|^{\alpha}}
$$

i) For IMH, with proposal on the form $f(y) \propto e^{-\gamma|x|^{\beta}}$, if either $\alpha=\beta$ and $\eta>\gamma$, or $\alpha>\beta$, the empirical measures of the underlying MH chain satisfy an LDP.
ii) For MALA, with proposal

$$
J(y \mid x) \propto \exp \left\{-\left.\left.\frac{1}{2 \varepsilon}\left|y-x+\frac{\varepsilon \eta \alpha}{2}\right| x\right|^{\alpha-2} x\right|^{2}\right\}, \varepsilon>0
$$

if either $\alpha=2$ and $\varepsilon \eta<2$, or $\alpha \in(1,2)$, the empirical measures of the underlying MH chain satisfy an LDP.

LDP for MH chains: LIPs for IMH and MALA chains

Theorem (MiLinanni, N., 24b):
Consider a target on the form

$$
\pi(x) \propto e^{-\eta|x|^{\alpha}} .
$$

i) For IMH, with proposal on the form $f(y) \propto e^{-\gamma|x|^{\beta}}$, if either $\alpha=\beta$ and $\eta>\gamma$, or $\alpha>\beta$, the empirical measures of the underlying MH chain satisfy an LDP.
ii) For MALA, with proposal

$$
J(y \mid x) \propto \exp \left\{-\left.\left.\frac{1}{2 \varepsilon}\left|y-x+\frac{\varepsilon \eta \alpha}{2}\right| x\right|^{\alpha-2} x\right|^{2}\right\}, \varepsilon>0 .
$$

if either $\alpha=2$ and $\varepsilon \eta<2$, or $\alpha \in(1,2)$, the empirical measures of the underlying MH chain satisfy an L.DP.

Q: When should we expect an LDP to hold for MH chains?

LDP for MH chains: A conjecture

Q: When should we expect an LDP to hold for MH chains?

LDP for MH chains: A conjecture
Q: When should we expect an LDP to hold for MH chains?
I. Comparison of $(A, 3)$ and drift condition: Standard drift cond. for $V: \lambda \in(0,1), b<\infty$,

$$
\int_{S} V(y) K(x, d y) \leq \lambda V(x)+b I\{x \in C\}
$$

For $U=\log V$ drift condition becomes

$$
U(x)-\log \int_{S} e^{U(y)} K(x, d y) \geq-\log \left(\lambda+e^{-U(x)} b I\{x \in C\}\right)
$$

\Rightarrow the Lyapunov function V gives rise to U satisfying ($A, 3 a$).

LDP for MH chains: A conjecture
Q: When should we expect an LDP to hold for MH chains?
I. Comparison of $(A, 3)$ and drift condition: Standard drift cond. for $V: \lambda \in(0,1), b<\infty$,

$$
\int_{S} V(y) K(x, d y) \leq \lambda V(x)+b I\{x \in C\}
$$

For $U=\log V$ drift condition becomes

$$
U(x)-\log \int_{S} e^{U(y)} K(x, d y) \geq-\log \left(\lambda+e^{-U(x)} b I\{x \in C\}\right)
$$

\Rightarrow the Lyapunov function V gives rise to U satisfying (A.3a).
II. Previous LDP results: Typically for geometrically ergodic chains (e.g., Kontoyiannis $\&$ Meyn' 03, '06).

LDP for MH chains: A conjecture

III. Resultes for IMH, MALA, RWM:

LDP for MH chains: A conjecture

 III. Results for IMH, MALA, RWM:| | | Assumption (A.3) | Ceometric ergodicity |
| :---: | :---: | :---: | :---: |
| IMH | $\alpha=\beta, \eta>\gamma \text {, or } \alpha \geq \beta \text {. }$
 otherwise | | |
| MALA | $\alpha=2, \varepsilon \eta<2 \text {, or } \alpha \in(1,2) \text {. }$ $\alpha=1$
 otherwise | | |
| RWM | tails as in [MT96] otherwise | $\frac{x}{x}$ | $\frac{x}{x}$ |

LDP for MH chains: A conjecture

 III. Results for IMH, MALA, RWM:

Current (abstract) LDP: (A.3b) the restrictive condition. Conjecture: (A.3b) too strict, geometric ergodicity enough.

on-going/future work

On-going/fukure work

Alternative representations for the rate function.Similar to work by D-V; relation to Dirichlet forms...

On-going/future work

Alternative representations for the rate function.Similar to work by D-V; relation to Dirichlet forms...
In-depth study of RWM and non-reversible selling.Compare to recent work by Audi et al.
Generalise the finite-stabe examples by Bierkens '16.

On-going/fukure work

Alternative representations for the rate function.
\rightarrow Similar to work by D-V; relation to Dirichlet forms...
In-depth study of RWM and non-reversible selling.Compare to recent work by Audi et al.
Generalise the finite-skate examples by Bierkens '16.

Examine connection LDP \Leftrightarrow geometric ergodicity.

on-going/future work

Alternative representations for the rate function.
\rightarrow similar to work by D-V; relation to Dirichlet forms...
In-depth study of RWM and non-reversible setting.
\rightarrow Compare to recent work by Andi et al.
\rightarrow Generalise the finite-state examples by Bierkens '16.

Examine connection LDP \Leftrightarrow geometric ergodicity.
Extend LDP approach to other types/classes of algorithms.

on-going/future work

Alternative representations for the rate function.
\longrightarrow similar to work by $\mathrm{D}-\mathrm{V}$; relation to Dirichlet forms...
In-depth study of RWM and non-reversible setting.
\rightarrow Compare to recent work by Andi et al.
\rightarrow Generalise the finite-state examples by Bierkens '16.

Examine connection LDP \Leftrightarrow geometric ergodicity.
Extend LDP approach to other types/classes of algorithms.
Examine high-dimensional limit/optimal scaling using LD/rate function.

Thank you!

Bonus material

Spectral properties: Concern the convergence rate of transition probabilities. Easy to come up with examples of processes with large spectral gap but fast convergence of time averages.

Ex. (Rosenchal '03): $\quad P=\left(\begin{array}{cc}\epsilon & 1-\epsilon \\ 1-\epsilon & \epsilon\end{array}\right)$.

Empirical measure converges rapidly to $(1 / 2,1 / 2)$. Spectral gap suggest very slow convergence.

Reversibility of MH and MH-like algorithms often good:

+ Neat mathematical theory: self-adjoint transition operator, spectrum is real, geometric ergodicily gives CLT for L^{2} functions...
+ Local condition; helps with implementation.
- Leads to random-walk behaviour. Pot. slow convergence and high computational cost per iteration.

Reversibility of MH and MH-like algorithms often good:

+ Neat mathematical theory: self-adjoint transition operator, spectrum is real, geometric ergodicity gives CLT for L^{2} functions...
+ Local condition; helps with implementation.
- Leads to random-walk behaviour. Pot. slow convergence and high computational cost per iteration.

Non-reversible processes avoid RW behaviour by introducing auxiliary variables (e.g. velocity).

Reversibility of MH and MH-like algorithms often good:

+ Neal mathematical theory: self-adjoint transition operator, spectrum is real, geometric ergodicily gives CLT for L^{2} functions...
+ Local condition; helps with implementation.
- Leads to random-walk behaviour. Pol. slow convergence and high computational cost per iteration.

Non-reversible processes avoid RW behaviour by introducing auxiliary variables (e.g. velocily).

Conkinuous-kime MC MC methods introduced co have such nonreversible processes. Based on piecewise deterministic Markov processes (PDMPs).

Large deviations for Metropolis-Hastings chains:

Empirical measure Large deviations for Markov processes dates back to work by Donsker and Varadhan (175-176)

Covers many (well-behaved) Markov processes, rate function on variational form:

$$
I(\mu)=-\inf _{u \in \mathscr{D}^{+}(L)} \int \log \frac{K u}{u} d \mu, \quad \mu \in \mathscr{P}(S)
$$

Large deviations for Metropolis-Haskings chains:

Empirical measure large deviations for Markov processes dates back to work by Donsker and Varadhan (175-76)

Covers many (well-behaved) Markov processes, rate function on variational form:

$$
I(\mu)=-\inf _{u \in \mathscr{D}^{+}(L)} \int \log \frac{K u}{u} d \mu, \quad \mu \in \mathscr{P}(S)
$$

DV-like results typically rely on the following properties:

Large deviations for Metropolis-Haskings chains:

Empirical measure large deviations for Markov processes dates back to work by Donsker and Varadhan (175-76)

Covers many (well-behaved) Markov processes, rate function on variational form:

$$
I(\mu)=-\inf _{u \in \mathscr{D}^{+}(L)} \int \log \frac{K u}{u} d \mu, \quad \mu \in \mathscr{P}(S)
$$

DV-Like results typically rely on the following properties:
DV.I) The semigroup is Feller continuous and strongly continuous.

Large deviations for Melropolis-Haslings chains:

Empirical measure large deviations for Markov processes dates back to work by Donsker and Varadhan (175-76)

Covers many (well-behaved) Markov processes, rate function on variational form:

$$
I(\mu)=-\inf _{u \in \mathscr{D}^{+}(L)} \int \log \frac{K u}{u} d \mu, \quad \mu \in \mathscr{P}(S)
$$

DV-Like results typically rely on the following properties:
DV.I) The semigroup is Feller continuous and strongly continuous.
DV.2) There is a reference measure such that transition probabilities are abs. cont. w.r.t. this measure (transitivity assump.)

Large deviations for Melropolis-Haslings chains:

Empirical measure Large deviations for Markov processes dates back to work by Donsker and Varadhan (175-76)

Covers many (well-behaved) Markov processes, rate function on variational form:

$$
I(\mu)=-\inf _{u \in \mathscr{D}^{+}(L)} \int \log \frac{K u}{u} d \mu, \quad \mu \in \mathscr{P}(S)
$$

DV-Like results typically rely on the following properties:
DV.I) The semigroup is Feller continuous and strongly continuous. DV.2) There is a reference measure such that transition probabilities are abs. cont. w.r.t. this measure (transitivity assump.)

