
Example: Equity premium

Stocks (or equities) tend to have more variable annual price changes (or is higher, as a way of 
compensating investors for the additional risk they bear. In most of this century, for example, stock 
returns were about 8% per year higher than bond returns. This was accepted as a reasonable return 
premium for equities until Mehra and Prescott (1985) asked how large a degree of risk-aversion is 
implied by this premium. 

The answer is surprising-- under the standard assumptions of economic theory, investors must be 
extremely risk-averse to demand such a high premium.  For example, a person with enough risk-
aversion to explain the equity premium would be indifferent between a coin flip paying either $50,000 
or $100,000, and a sure amount of $51,329.

Benartzi and Thaler(1997) offer prospect theory based explanation: Investors are not averse to the 
variability of returns, they are averse to loss (the chance that returns are negative). Since annual stock 
returns are negative much more frequently than annual bond returns are, loss-averse investors will 
demand a large equity premium to compensate them for the much higher chance of losing money in a 
year. (Note: Higher average return to stocks means that the cumulative return to stocks over a longer 
horizon is increasingly likely to be positive as the horizon lengthens.)

They compute the expected prospect values of stock and bond returns over various horizons, using 
estimates of investor utility functions from Kahneman and Tversky (1992), and including a loss-aversion 
coefficient of 2.25 (i.e., the disutility of a small loss is 2.25 times as large as the utility of an equal gain). 
Benartzi and Thaler show that over a one-year horizon, the prospect values of stock and bond returns 
are about the same if stocks return 8% more than bonds, which explains the equity premium.



Example: Disposition effect

Shefrin and Statman (1985) predicted that because people dislike incurring losses much more than 
they like incurring gains, and are willing to gamble in the domain of losses, investors will hold on to 
stocks that have lost value (relative to their purchase price) too long and will be eager to sell stocks 
that have risen in value. They called this the disposition effect.

The disposition effect is anomalous because the purchase price of a stock should not matter much for 
whether you decided to sell it. If you think the stock will rise, you should keep it; if you think it will fall, 
you should sell it. In addition, tax laws encourage people to sell losers rather than winners, since such 
sales generate losses which can be used to reduce the taxes owed on capital gains.

Disposition effects have been found in experiments by (Weber and Camerer, 1998).

On large exchanges, trading volume of stocks that have fallen in price is lower than for stocks that 
have risen. 

The best field study was done by Odean. He obtained data from a brokerage firm about all the 
purchases and sales of a large sample of individual investors. He found that investors held losing stocks 
a median of 124 days, and held winners only 104 days. 

Hold losers because they expect them to bounce back (or mean- revert)? Odean’s sample, the unsold 
losers returned only 5% in the subsequent year, while winners that weres old later returned 11.6%. Tax 
incentives inverse behaviour.



Example: New York cab drivers working hours

Camerer, Babcock, Loewenstein and Thaler studied cab drivers in New York City about when they 
decide to quit driving each day. Most of the drivers lease their cabs, for a fixed fee, for up to 12 hours. 
Many said they set an income target for the day, and quit when they reach that target. While daily 
income targeting seems sensible, it implies that drivers will work long hours on bad days when the per-
hour wage is low, and will quit earlier on good high-wage days. The standard theory of the supply of 
labor predicts the opposite: Drivers will work the hours which are most profitable, quitting early on bad 
day, and making up the shortfall by working longer on good days.

The daily targeting theory and the standard theory of labor supply therefore predict opposite signs of 
the correlation between hours and the daily wage. To measure the correlation, we collected three 
samples of data on how many hours drivers worked on different days. The correlation between hours 
and wages was strongly negative for inexperienced drivers and close to zero for experienced drivers. 

This suggests that inexperienced drivers began using a daily income targeting heuristic, but those who 
did so either tended to quit, or learned by experience to shift toward driving around the same number 
of hours every day.

Daily income targeting assumes loss-aversion in an indirect way. To explain why the correlation between 
hours and wages for inexperienced drivers is so strongly negative, one needs to assume that drivers 
take a one-day horizon, and have a utility function for the day.



Example: Racetrack betting

In parimutuel betting on horse races, there is a pronounced bias toward betting on longshots , horses 
with a relatively small chance of winning. That is, if one groups longshots with the same percentage of 
money bet on them into a class, the fraction of time horses in that class win is far smaller than the 
percentage of money bet on them. Horses with 2% of the total money bet on them, for example, win 
only about 1% of the time (see Thaler and Ziemba, 1988; Hausch and Ziemba, 1995).

The fact that longshots are overbet implies favorites are underbet. Indeed, some horses are so heavily 
favored that up to 70% of the win money is wagered on them. For these heavy favorites, the return for a 
dollar bet is very low if the horse wins. (Since the track keeps about 15% of the money bet for expenses 
and profit, bettors who bet on such a heavy favorite share only 85% of the money with 70% of the 
people, a payoff of only about $2.40 for a $2 bet.) People dislike these bets so much that in fact, if you 
make those bets you can earn a small positive profit (even accounting for the track s 15% take).

There are many explanations for the favorite-longshot bias, each of which probably contributes to the 
phenomenon. Horses that have lost many races ina row tend to be longshots, so a gambler s fallacy 
belief that such horses are due for a win may contribute to overbetting on them. Prospect theoretic 
overweighting of low probabilities of winning will also lead to overbetting of longshots.



Examples: Insurance options

Samuelson and Zeckhauser (1988) coined the term status quo bias to refer to an exaggerated preference 
for the stat us quo, and showed such a bias in a series of experiments. They also reported several 
observations in field data which are consistent with status quo bias.

When Harvard University added new health-care plan options, older faculty members who were hired 
previously, when the new options were not available were, of course, allowed to switch to the new 
options. If one assumes that the new and old faculty members have essentially the same preferences for 
health care plans, then the distribution of plans elected by new and old faculty should be the same. 
However, Samuelson and Zeckhauser found that older faculty members tended to stick to their previous 
plans; compared to the newer faculty members, fewer of the old faculty elected new options.

In cases where there is no status quo, people may have an exaggerated preference for whichever option is 
the default choice. Johnson, Hershey, Meszaros, and Kunreuther (1993) observed this phenomenon in 
decisions involving insurance purchases. At the time of their study, Pennsylvania and New Jersey legislators 
were considering various kinds of tort reform, allowing firms to offer cheaper automobile insurance 
which limited the rights of the insured person to sue for damages from accidents. Both states adopted 
very similar forms of limited insurance, but they chose different default options, creating a natural 
experiment. All insurance companies mailed forms to their customers, asking the customers whether they 
wanted the cheaper limited-rights insurance or the unlimited-rights insurance. One state made the 
limited-rights insurance the default-- the insured person would get that if they did not respond-- and the 
other made unlimited-rights the default. In fact, the percentage of people electing the limited-rights 
insurance was higher in the state where that was the default. An experiment replicated the effect.



Examples: Buying & selling prices

A closely related body of research on endowment effects established that buying and selling prices for a 
good are often quite different. 

The paradigmatic experimental demonstration of this is the mugs experiments of Kahneman, Knetsch and 
Thaler (1990). In their experiments, some subjects are endowed (randomly) with coffee mugs and others 
are not. Those who are given the mugs demand a price about 2-3 times as large as the price that those 
without mugs are willing to pay, even though in economic theory these prices should be extremely close 
together. In fact, the mugs experiments were inspired by field observations of large gaps in hypothetical 
buying and selling prices in contingent valuations. 

Contingent valuations are measurements of the economic value of goods which are not normally traded-- 
like clean air, environmental damage, and so forth. These money valuations are used for doing benefit-cost 
analysis and establishing economic damages in lawsuits. 

There is a huge literature establishing that selling prices are generally much larger than buying prices, 
although there is a heated debate among psychologists and economists about what the price gap means, 
and how to measure true valuations in the face of such a gap.



Effects: Endowment effect etc

Three phenomena:

status quo biases

default preference

endowment effects 

All consistent with aversion to losses relative to a reference 
point. Making one option the status quo or default, or endowing 
a person with a good (even hypothetically), seems to establish a 
reference point people move away from only reluctantly, or if 
they are paid a large sum.



“Give me an axiom, and I’ll design the experiment that 
refutes it.”

Amos Tversky 

Israeli-American mathematical psychologist
Heuristics & biases research program about probabilistic 
judgement and decision making under uncertainty, 
prospect theory 
Daniel Kahneman briefly after receiving the Nobel Prize for 
prospect theory: 
"I feel it is a joint prize. We were twinned for more than a decade."
Grawemeyer Award in Psychology

On normative theory



On importance

“Nothing in life is quite as important as you think it is while 
you're thinking about it.”

Daniel Kahneman

Israeli-American psychologist
Psychology of judgment and decision-making, prospect theory,
behavioral economics, hedonic psychology
Nobel Memorial Prize in Economic Sciences
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“People who know math understand what other mortals 
understand, but other mortals do not understand them. This 
asymmetry gives them a presumption of superior ability.”

Daniel Kahneman

On mathematicians

“Economists think about what people ought to do. Psychologists watch 
what they actually do.”

On economists
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Gigerenzer, Todd & the ABC Research Group, Simple Heuristics That Make Us Smart, 1999, OUP

Gigerenzer and Brighton:  Homo Heuristicus:  Why Biased Minds Make Better Inferences, Topics in 
Cognitive Science 1 (2009) 107–143

More references and links at: 

http://fastandfrugal.com/

https://www.mpib-berlin.mpg.de/en/research/adaptive-behavior-and-cognition/key-concepts

Another descriptive approach: Ecological rationality

In a nutshell: 

Decision have to be made under uncertainty and under limited 
resources such as time and knowledge. Simple rules of thumb are 
successfully used by humans (and animals). 

These heuristics are not inferior to so-called rational theory of 
decision-making, but produce good decisions in real-life situations.

Gigerenzer’s school of thought
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New main character: Homo heuristicus

Evolutionary perspective:      
Humans adapt to environment

Animal’s rely on heuristics to solve 
problems: e.g. in measuring, 
navigating, mating

heuristic (Greek) = ‘‘serving to find out or discover”

Heuristics and biases: from K & T’s angle they are fallacies (violate logic, 
probability and other standards of rationality)

Heuristics: G emphasises their usefulness in problem solving



Heuristics - wrong and/or useful?

1. Heuristics are always second-best.

2. We use heuristics only because of our cognitive limitations.

3. More information, more computation, and more time would   

always be better.

By the end of the 20th century, the use of heuristics became associated 
with shoddy mental software, generating three widespread misconceptions:

Accuracy-effort trade-off:  (general low of cognition)

Information and computation cost time and effort; therefore, minds rely 
on simple heuristics that are less accurate than strategies that use more 
information and computation.



Question: Is more better?

Accuracy-effort trade-off: 

Carnap: “Principle of total evidence”

Good: “it is irrational to leave observations in the record but not use 
them”

First important discovery: 
Heuristics can lead to more accurate inferences than strategies that use 
more information and computation 

a

Less-is-more effects: 
More information or computation can decrease accuracy; therefore, minds 
rely on simple heuristics in order to be more accurate than strategies that 
use more information and time. This relates to the existence of a point at 
which more information or computation becomes detrimental, 
independent of costs.



Example: Daily temperature series

Mean daily temperature for London in 2000 as a function of days and 
alternative polynomial fits

2.2. The bias–variance dilemma

Fig. 3A plots the mean daily temperature for London in 2000 as a function of days since
January 1. In addition, the plot depicts two polynomial models attempting to capture the
temperature pattern underlying the data. The first is a degree-3 polynomial model and the
second a degree-12 polynomial model. As a function of the degree of the polynomial model,
Fig. 3B plots the mean error in fitting random samples of 30 observations. All models were
fitted using the least squares method. Using goodness of fit to the observed sample as a per-
formance measure, Fig. 3B reveals a simple relationship: The higher the degree of the poly-
nomial, the lower the error in fitting the observed data sample. The same figure also shows,
for the same models, the error in predicting novel observations. Here, the relationship
between the degree of polynomial used and the resulting predictive accuracy is U-shaped.
Both high- and low- degree polynomials suffer from greater error than the best predicting
polynomial model, which has degree-4.

This point illustrates the fact that achieving a good fit to observations does not necessarily
mean we have found a good model, and choosing the model with the best fit is likely to
result in poor predictions. Despite this, Roberts and Pashler (2000) estimated that, in psy-
chology alone, the number of articles relying on a good fit as the only indication of a good
model runs into the thousands. We now consider the same scenario but in a more formal
setting. The curve in Fig. 4A shows the mean daily temperature in some fictional location
for which we have predetermined the ‘‘true’’ underlying temperature pattern, which is a
degree-3 polynomial, h(x). A sample of 30 noisy observations of h(x) is also shown. This
new setting allows us to illustrate why bias is only one source of error impacting on the

(A) (B)

Fig. 3. Plot (A) shows London’s mean daily temperature in 2000, along with two polynomial models fitted with
using the least squares method. The first is a degree-3 polynomial, and the second is a degree-12 polynomial.
Plot (B) shows the mean error in fitting samples of 30 observations and the mean prediction error of the same
models, both as a function of degree of polynomial.
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Achieving a good fit to observations does not necessarily mean we have found 
a good model, and choosing the model with the best fit is likely to result in 
poor predictions.



Example: Daily temperature series

accuracy of model predictions. The second source of error is variance, which occurs when
making inferences from finite samples of noisy data.

As well as plotting prediction error as a function of the degree of the polynomial model,
Fig. 4B decomposes this error into bias and variance. As one would expect, a degree-3 poly-
nomial achieves the lowest mean prediction error on this problem. Polynomials of degree-1
and degree-2 lead to significant estimation bias because they lack the ability to capture the
underlying cubic function h(x) and will therefore always differ from the underlying func-
tion. Unbiased models are those of degree-3 or higher, but notice that the higher the degree
of the polynomial, the greater the prediction error. The reason why this behavior is observed
is that higher degree polynomials suffer from increased variance due to their greater flexibil-
ity. The more flexible the model, the more likely it is to capture not only the underlying
pattern but unsystematic patterns such as noise. Recall that variance reflects the sensitivity
of the induction algorithm to the specific contents of samples, which means that for different
samples of the environment, potentially very different models are being induced. Finally,
notice how a degree-2 polynomial achieves a lower mean prediction error than a degree-10
polynomial. This is an example of how a biased model can lead to more accurate predictions
than an unbiased model.

This example illustrates a fundamental problem in statistical inference known as the
bias–variance dilemma (Geman et al., 1992). To achieve low prediction error on a broad
class of problems, a model must accommodate a rich class of patterns in order to ensure low
bias. For example, the model must accommodate both linear and nonlinear patterns if, in
advance, we do not know which kind of pattern will best describe the observations. Diver-
sity in the class of patterns that the model can accommodate is, however, likely to come at a
price. The price is an increase in variance, as the model will have a greater flexibility, which

(A) (B)

Fig. 4. Plot (A) shows the underlying temperature pattern for some fictional location, along with a random sam-
ple of 30 observations with added noise. Plot (B) shows, as a function of degree of polynomial, the mean error in
predicting the population after fitting polynomials to samples of 30 noisy observations. This error is decomposed
into bias and variance, also plotted as function of degree of polynomial.
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Underlying temperature pattern 
for some fictional location, along 
with a random sample of 30 
observations with added noise. 

 Study model fit with simulations



Example: Daily temperature series

accuracy of model predictions. The second source of error is variance, which occurs when
making inferences from finite samples of noisy data.

As well as plotting prediction error as a function of the degree of the polynomial model,
Fig. 4B decomposes this error into bias and variance. As one would expect, a degree-3 poly-
nomial achieves the lowest mean prediction error on this problem. Polynomials of degree-1
and degree-2 lead to significant estimation bias because they lack the ability to capture the
underlying cubic function h(x) and will therefore always differ from the underlying func-
tion. Unbiased models are those of degree-3 or higher, but notice that the higher the degree
of the polynomial, the greater the prediction error. The reason why this behavior is observed
is that higher degree polynomials suffer from increased variance due to their greater flexibil-
ity. The more flexible the model, the more likely it is to capture not only the underlying
pattern but unsystematic patterns such as noise. Recall that variance reflects the sensitivity
of the induction algorithm to the specific contents of samples, which means that for different
samples of the environment, potentially very different models are being induced. Finally,
notice how a degree-2 polynomial achieves a lower mean prediction error than a degree-10
polynomial. This is an example of how a biased model can lead to more accurate predictions
than an unbiased model.

This example illustrates a fundamental problem in statistical inference known as the
bias–variance dilemma (Geman et al., 1992). To achieve low prediction error on a broad
class of problems, a model must accommodate a rich class of patterns in order to ensure low
bias. For example, the model must accommodate both linear and nonlinear patterns if, in
advance, we do not know which kind of pattern will best describe the observations. Diver-
sity in the class of patterns that the model can accommodate is, however, likely to come at a
price. The price is an increase in variance, as the model will have a greater flexibility, which

(A) (B)

Fig. 4. Plot (A) shows the underlying temperature pattern for some fictional location, along with a random sam-
ple of 30 observations with added noise. Plot (B) shows, as a function of degree of polynomial, the mean error in
predicting the population after fitting polynomials to samples of 30 noisy observations. This error is decomposed
into bias and variance, also plotted as function of degree of polynomial.
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Plot (A) shows the underlying temperature pattern for some fictional location, along 
with a random sample of 30 observations with added noise. Plot (B) shows, as a 
function of degree of polynomial, the mean error in predicting the population after 
fitting polynomials to samples of 30 noisy observations. This error is decomposed 
into bias and variance, also plotted as function of degree of polynomial.



accuracy of model predictions. The second source of error is variance, which occurs when
making inferences from finite samples of noisy data.

As well as plotting prediction error as a function of the degree of the polynomial model,
Fig. 4B decomposes this error into bias and variance. As one would expect, a degree-3 poly-
nomial achieves the lowest mean prediction error on this problem. Polynomials of degree-1
and degree-2 lead to significant estimation bias because they lack the ability to capture the
underlying cubic function h(x) and will therefore always differ from the underlying func-
tion. Unbiased models are those of degree-3 or higher, but notice that the higher the degree
of the polynomial, the greater the prediction error. The reason why this behavior is observed
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ity. The more flexible the model, the more likely it is to capture not only the underlying
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of the induction algorithm to the specific contents of samples, which means that for different
samples of the environment, potentially very different models are being induced. Finally,
notice how a degree-2 polynomial achieves a lower mean prediction error than a degree-10
polynomial. This is an example of how a biased model can lead to more accurate predictions
than an unbiased model.

This example illustrates a fundamental problem in statistical inference known as the
bias–variance dilemma (Geman et al., 1992). To achieve low prediction error on a broad
class of problems, a model must accommodate a rich class of patterns in order to ensure low
bias. For example, the model must accommodate both linear and nonlinear patterns if, in
advance, we do not know which kind of pattern will best describe the observations. Diver-
sity in the class of patterns that the model can accommodate is, however, likely to come at a
price. The price is an increase in variance, as the model will have a greater flexibility, which

(A) (B)
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predicting the population after fitting polynomials to samples of 30 noisy observations. This error is decomposed
into bias and variance, also plotted as function of degree of polynomial.

G. Gigerenzer, H. Brighton ⁄ Topics in Cognitive Science 1 (2009) 119

Degree-3 polynomial achieves the lowest mean prediction error on this problem. 
Polynomials of degree-1 and degree-2 lead to significant estimation bias because they lack 
the ability to capture the underlying cubic function h(x) and will therefore always differ from 
the underlying function. Unbiased models are those of degree-3 or higher, but notice that the 
higher the degree of the polynomial, the greater the prediction error. The reason why this 
behavior is observed is that higher degree polynomials suffer from increased variance due to 
their greater flexibility. The more flexible the model, the more likely it is to capture not only 
the underlying pattern but unsystematic patterns such as noise. Recall that variance reflects 
the sensitivity of the induction algorithm to the specific contents of samples, which means 
that for different samples of the environment, potentially very different models are being 
induced. Finally, notice how a degree-2 polynomial achieves a lower mean prediction error 
than a degree-10 polynomial.



Question: Is more better?

a

Daily temperature example has demonstrated:
A biased model can lead to more accurate predictions than an unbiased model.

Illustrates a fundamental problem in statistical inference known as the 
bias–variance dilemma (Geman et al., 1992)

Diversity in the class of patterns that the model can accommodate is, 
however, likely to come at a price.  The price is an increase in variance, as the 
model will have a greater flexibility, will enable it to accommodate not only 
systematic patterns but also accidental patterns such as noise.  When 
accidental patterns are used to make predictions, these predictions are likely 
to be inaccurate.

Dilemma: Combating high bias requires using a rich class of models, while 
combating high variance requires placing restrictions on this class of models. 

This is why ‘‘general purpose’’ models tend to be poor predictors of the 
future when data are sparse.



Implications: Cognitive processes 

• cognitive system performs remarkably well when generalizing from few 
observations, so much so that human performance is often characterized 
as optimal (e.g., Griffiths & Tenenbaum, 2006; Oaksford & Chater, 1998).

• ability of the cognitive system to make accurate predictions despite sparse 
exposure to the environment strongly indicates that the variance 
component of error is successfully being kept within acceptable limits

• to control variance, one must abandon the ideal of general-purpose 
inductive inference and instead consider, to one degree or another, 
specialization

Bias–variance dilemma shows formally why a mind can be better off with an 
adaptive toolbox of biased, specialized heuristics.  
    
A single, general-purpose tool with many adjustable parameters is likely to 
be unstable and to incur greater prediction error as a result of high 
variance.



Example: Hot hand vs gambler’s fallacy

1974, p. 1125). Next consider the hot-hand fallacy, which is the opposite belief: After a bas-
ketball player scores a series of n hits, the expectation of another hit increases. This belief
was also attributed to representativeness, because ‘‘even short random sequences are thought
to be highly representative of their generating process’’ (Gilovich, Vallone, & Tversky, 1985,
p. 295). No model of similarity can explain a phenomenon and its contrary; otherwise it would
not exclude any behavior. But a label can do this by changing its meaning: To account for the
gambler’s fallacy, the term alludes to a higher similarity between the series of n + 1 outcomes
and the underlying chance process, whereas to account for the hot hand fallacy, it alludes to a
similarity between a series of n and observation number n + 1 (Fig. 6). Labels of heuristics
cannot be proved or disproved, and hence are immune to improvement.

In a debate over vague labels, Gigerenzer (1996) argued that they should be replaced by
models, whereas Kahneman and Tversky (1996, p. 585) insisted that this is not necessary
because ‘‘representativeness (like similarity) can be assessed empirically; hence it need not
be defined a priori.’’ The use of labels is still widespread in areas such as social psychology,
and it is therefore worth providing a second illustration of how researchers are misled by
their seductive power. Consider the ‘‘availability heuristic,’’ which has been proposed to
explain distorted frequency and probability judgments. From the very beginning, this label
encompassed several meanings, such as the number of instances that come to mind (e.g.,
Tversky & Kahneman, 1973); the ease with which the first instance comes to mind (e.g.,
Kahneman & Tversky, 1996); the recency, salience, vividness, and memorability, among
others (e.g., Jolls, Sunstein, & Thaler, 1998; Sunstein, 2000). In a widely cited study
designed to demonstrate how people’s judgments are biased due to availability, Tversky and
Kahneman (1973) had people estimate whether each of five consonants (K, L, N, R, V)
appears more frequently in the first or the third position in English words. This is an atypical
sample, because all five occur more often in the third position, whereas the majority of con-
sonants occur more frequently in the first position. Two-thirds of participants judged the first
position as being more likely for a majority of the five consonants. This result was inter-
preted as demonstration of a cognitive illusion and attributed to the availability heuristic:
Words with a particular letter in the first position come to mind more easily. While this
latter assertion may or may not be true, there was no independent measure of availability
in this study, nor has there been a successful replication in the literature.

Sedlmeier, Hertwig, and Gigerenzer (1998) defined the two most common meanings of
availability––ease and number––and measured them independently of people’s frequency
judgments. The number of instances was measured by the number of retrieved words within a

Fig. 6. Illustration of the seductive power of one-word explanations. The gambler’s fallacy and the hot hand fal-
lacy are opposite intuitions: After a series of n similar events, the probability of the opposite event increases
(gambler’s fallacy), and after a series of similar events, the probability for same event increases (hot hand
fallacy). Both have been explained by the label ‘‘representativeness’’ (see main text).
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The gambler’s fallacy and the hot hand fallacy are opposite intuitions:  
After a series of n similar events, the probability of the opposite event 
increases (gambler’s fallacy), and after a series of similar events, the 
probability for same event increases (hot hand fallacy). 

Both have been explained by the label ‘‘representativeness’’

Sedlmeier, Hertwig, and Gigerenzer (1998)
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Applications: Financial regulation

FFT to determine risk of bank failure

Neth, H., Meder, B., Kothiyal, A. & Gigerenzer, G. (2014). Homo heuristicus in the financial world: From risk 
management to managing uncertainty.  Journal of Risk Management in Financial Institutions, 7(2), 134–144.



“It simply wasn’t true that a world with almost perfect 
information was very similar to one in which there was perfect 
information.”

J. E. Stiglitz (2010). Freefall: America, free markets, and the 
sinking of the world economy, p. 243

Joseph Eugene Stiglitz, ForMemRS, FBA 
American economist, professor at Columbia University
Nobel Memorial Prize in Economic Sciences, John Bates Clark Medal

On information



Similar estimates across the literature132 GONZALEZ AND WU

FIG. 2. One-parameter weighting functions estimated by Camerer and Ho (1994), Tversky
and Kahneman (1992), and Wu and Gonzalez (1996) using w(p) ! (pβ/(pβ " (1 # p)β)1/β).
The parameter estimates were .56, .61, and .71, respectively.

Kahneman & Tversky, 1979). An individual may agree that the probability
of a fair coin landing on heads is .5, but in decision making distort that
probability by w(.5).
The weighting function shown in Fig. 1 cannot account for the pattern

discussed above because it is not concave for low probability. The introduc-
tory examples suggest that probability changes appear more dramatic near
the endpoints 0 and 1 than near the middle of the probability scale. General-
ized, this implies a probability weighting function that is inverse-S-shaped:
concave for low probability and convex for high probability. Weighting func-
tions consistent with the survey data are shown in Fig. 2; empirical support
for this shape appeared in three recent choice studies (Camerer & Ho, 1994;
Hartinger, 1998; Tversky & Kahneman, 1992; Wu & Gonzalez, 1996).
The general question studied in this paper is how the psychophysics of

probability influences decision making under risk. In turn, an understanding
of the probability weighting function will provide insights about the psychol-
ogy of risk. The outline of the paper is as follows: we first provide a sketch
of the relevant theoretical background, review relevant studies, and discuss



Concepts:  PT utility function (value function)

DeÖnition 17 (Lotteries in incremental form) Let xi = yi  y0; i = m;m + 1; :::; n

be the increment in wealth relative to y0 and xm < ::: < x0 = 0 < ::: < xn. Let the

restriction on probabilities be ni=mpi = 1, pi  0, i = m;m+1; :::; n. Then, a lottery
is presented in incremental form if it is represented as:

L = (xm; pm; :::;x1; p1;x0; p0;x1; p1; :::;xn; pn) . (5.6)

DeÖnition 18 (Lotteries and prospects): Lotteries that are represented in incremental
form are known as prospects.

DeÖnition 19 (Set of Lotteries): Denote by LP the set of all prospects of the form given
in (5.6) subject to the restrictions in deÖnition 17.

DeÖnition 20 (Domains of losses and gains): The decision maker is said to be in the
domain of gains if xi > 0 and in the domain of losses if xi < 0. x0 lies neither in the

domain of gains nor in the domain of losses.

5.2.1. The utility function in CP

DeÖnition 21 (Tversky and Kahneman, 1979). A utility function, v(x), is a continuous,
strictly increasing, mapping v : R! R that satisÖes:

1. v (0) = 0 (reference dependence).

2. v (x) is concave for x  0 (declining sensitivity for gains).
3. v (x) is convex for x  0 (declining sensitivity for losses).

4. v (x) > v (x) for x > 0 (loss aversion).

Tversky and Kahneman (1992) propose the following utility function:

v (x) =


x if x  0

 (x) if x < 0
(5.7)

where ; ;  are constants. The coe¢cients of the power function satisfy 0 <  < 1; 0 <

 < 1.  > 1 is known as the coe¢cient of loss aversion. Tversky and Kahneman (1992)
assert (but do not prove) that the axiom of preference homogeneity ((x; p)  y ) (kx; p) 
ky) generates this value function. al-Nowaihi et al. (2008) give a formal proof, as well

as some other results (e.g. that  is necessarily identical to ). Tversky and Kahneman

(1992) estimated that  '  ' 0:88 and  ' 2:25. The reader can visually check the

properties listed in deÖnition 21 for the utility function, (5.7), plotted in Ögure 5.1 for the

case: 
v(x) =

p
x if x  0

2:5
p
x if x < 0

(5.8)
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Figure 5.1: The utility function under CCP for the case in (5.8)

5.2.2. Construction of decision weights under CP

Let w(p) be a PWF, such as the Prelec PWF in DeÖnition 8. We could have di§erent

weighting functions for the domain of gains and losses, respectively, w+ (p) and w (p).

However, we make the empirically founded assumption that w+ (p) = w (p); see Prelec

(1998).

DeÖnition 22 (Tversky and Kahneman, 1992). For CP, the decision weights, i, are
deÖned as follows:

Domain of Gains Domain of Losses
n = w (pn) m = w (pm)
n1 = w (pn1 + pn) w (pn) ::: m+1 = w (pm + pm+1) w (pm) :::
i = w


nj=i pj


 w


nj=i+1 pj


::: j = w


ji=m pi


 w


j1i=m pi


:::

1 = w

nj=1 pj


 w


nj=2 pj


1 = w


1i=m pi


 w


2i=m pi



5.2.3. The objective function under prospect theory

As in EU, a decision maker using CP maximizes a well deÖned objective function, called

the value function, which we now deÖne.

DeÖnition 23 (The value function under CP) The value of the prospect, LP , to the deci-
sion maker is given by

V (LP ) = 
n
i=miv (xi) . (5.9)
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↵ > 0 : degree of risk aversion in gains

� > 0 : degree of risk seeking in losses

� > 0 : degree of loss aversion

v(x) =

(
x

↵
x � 0

��(�x)� x < 0



Normative Theories
Purpose of the normative theories is to express, how people should behave when 
they are confronting risky decisions. Thus the behavioral models based on EUT 
stresses the rationality of decisions. We are not interested so much on how people 
behave in real life or in empirical experiments. Notice that one of these theories is 
the SEUT. Furthermore, the EUT can be also defended on grounds that it works 
satisfactory in many cases.

Descriptive Theories
From the descriptive point of view, we are concerned with how people make 
decisions (rational and not rational) in real life. The starting point for these 
theories has been in empirical experiments, where it has been shown that people’s 
behavior is inconsistent with the normative theories. These theories are, for 
example, prospect theory and regret theory. We will present some of them more 
precisely in the next sections.

Prescriptive Point of View
Prescriptive thinking in risky decisions means that our purpose is to help people to 
make good and better decisions. In short, the aim is to give some practical aid with 
choices to the people, who are less rational, but nevertheless aspire to rationality. 
This “category” includes, for example, operation research and management science.
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