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Optimal Consumption and Sale Strategies for a Risk Averse Agent∗

David Hobson† and Yeqi Zhu†

Abstract. In this article we consider an optimal consumption/optimal portfolio problem in which an agent
with constant relative risk aversion seeks to maximize expected discounted utility of consumption
over the infinite horizon, in a model comprising a risk-free asset and a risky asset in which the
risky asset can only be sold and not bought. The problem is an extension of the Merton problem
and a special case of the transaction costs model of Constantinides–Magill and Davis–Norman. Via
various transforms we are able to make considerable progress towards an analytical solution. The
solution can be expressed via a first crossing problem for an initial-value, first order ODE. The fact
that we have a relatively explicit solution means we are able to consider the comparative statics of
the problem. There are some surprising conclusions, such as consumption rates are not monotone
increasing in the return of the asset, nor are the certainty equivalent values of the risky positions
monotone in the risk aversion.
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1. Introduction. This article is concerned with the optimal behavior of an agent whose
goal is to maximize the expected discounted utility of consumption, and who finances con-
sumption from a combination of initial wealth and from the sale of an initial endowment of
an infinitely divisible security. Her actions are to choose an optimal consumption strategy
and an optimal holding or portfolio of a risky security, under the restriction that the risky
asset can only be sold, and purchases are not permitted. As such this problem is a extension
of the Merton [21] optimal consumption/optimal portfolio problem and a special case of a
consumption/investment problem with proportional transaction costs.

Merton [21] considered portfolio optimization and consumption in a continuous-time
stochastic model, with an investment opportunity set comprising a risk-free bond and a risky
asset with constant return and volatility. Merton chose to study these issues by first un-
derstanding the behavior of a single agent acting as a price taker. Under an assumption of
constant relative risk aversion (CRRA) he obtained a closed form solution to the problem and
the optimal strategy in his model consists of trading continuously in order to keep the fraction
of wealth invested in the risky security equal to a constant.

Merton’s model was subsequently generalized to an incomplete financial market setting
where perfect hedging is no longer possible. Constantinides and Magill [4] (see, also, Constan-
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tinides [3]) introduced proportional transaction costs to the model and considered an investor
whose aim is to maximize the expected utility of consumption over an infinite horizon un-
der power utility. They conjectured the existence of a “no-transaction” region, and that it
is optimal to keep the proportion of wealth invested in the risky asset within some interval.
Subsequently Davis and Norman [5] gave a precise formulation. The Davis and Norman [5]
analysis of the problem via stochastic control is a landmark in the study of transaction cost
problems. This analysis was extended using viscosity solutions by Shreve and Soner [23].

Recently there have been a series of papers considering the problem from the dual perspec-
tive using the concept of shadow prices. Kallsen and Muhle-Karbe [16] consider an agent with
logarithmic utility, and their results are extended to power utility by Herczegh and Prokaj [12].
Choi, Sirbu, and Z̆itković [2] give a deep analysis of the solution of the problem, including
several singular cases, and give a complete analysis of the parameter combinations for which
a solution exists.

In this article we consider a special case of the transaction cost model in which the trans-
action costs associated with purchases of the risky asset are infinite. Effectively purchases are
disallowed, and we may think of an agent who is endowed with a quantity of an asset which
she may sell, but which she may not trade dynamically. There are at least two main reasons
for considering this special case. First, there are often situations whereby agents are endowed
with units of assets which they may sell but may not repurchase, whether for legal reasons or
because of liquidity or trading restrictions. See the next section for further discussion and ref-
erences. Second, our situation may be thought of as an approximation of the large transaction
cost regime.

The dual method via shadow prices has been exploited to great success. Nonetheless, one
of the advantages of the primal method which focuses on the value function (expressed via
the solution of a differential equation problem with free boundary) is that it is possible to
calculate the optimal consumption and investment strategy and the certainty equivalent value
of the holding of risky asset directly. For example, the optimal consumption is given in terms
of a derivative of the value function. In general comparative statics are available more directly
from the primal approach.

In this paper we take the classical, stochastic control approach to the primal problem,
placing us in the tradition of [5, 23] rather than the shadow price literature [16, 12, 2]. Our
methods arguably lead to a simpler set of governing equations than those that arise from the
shadow price method (see section 4.1 for a comparison). In the setting of the sale problem
we study the comparative statics of the problem. To the best of our knowledge this has not
been attempted via the shadow price approach, and would appear to be quite challenging
even under the current best formulation of this method.

The next two sections describe the main results, first informally, and then more precisely.
Then, in section 4, we give the heuristics behind the results, which are proved in section 5
(and the appendices). A final section discusses the comparative statics in the model.

2. Related literature and main conclusions.

2.1. Related literature. Davis and Norman [5] were the first to study the Merton model
with proportional transaction costs in a mathematically precise formulation. They showed that
under optimal behavior the no-transaction region is a wedge containing the Merton line and
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that the optimal buying and selling strategies are local times at boundaries chosen to keep
the process inside the wedge. In the transaction region, transactions take place at infinite
speed and except for the initial transaction, all transactions take place at the boundaries.
They obtained their results by writing down the (nonlinear, second order) Hamilton–Jacobi–
Bellman (HJB) equation with free boundary conditions and then by a series of transformations
reducing the problem to one of solving a system of first order ordinary differential equations
(ODEs). Motivated by Davis and Norman’s work, Shreve and Soner [23] studied the same
problem but with an approach via viscosity solutions. They recovered the results of Davis
and Norman [5] without imposing all of the conditions of [5].

Kallsen and Muhle-Karbe [16] were the first to consider using the shadow price method.
They restricted attention to the case of logarithmic utility and showed that the approach
could be used both to develop a candidate solution and to prove a verification result. Further,
they showed it was possible to determine the shadow price process. Herczegh and Prokaj [12]
extended the results to a power-law investor. In the logarithmic case the optimal consumption
plan is relatively simple, so one of the contributions of Herczegh and Prokaj was to develop
a heuristic for solving for the optimal consumption, and thence the shadow price in the
power-law case. At about the same time, and independently, Choi, Sirbu, and Z̆itković [2]
also undertook a detailed study of the problem for a power-law investor. In their main
result they determine precisely for which parameter combinations the problem is well-posed,
and they go on to give an expression for the shadow price via the solution of a differential
equation.

In related work, Duffie and Sun [7], Liu [19] and Korn [20] study the problem when there
are fixed (as opposed to proportional) transaction costs. Liu used the HJB approach, deriving
an ODE to characterize the value function and solving it numerically. He found that if there
is only a fixed transaction cost, the optimal trading strategy is to trade to a certain target
amount as soon as the fraction of wealth in stock goes outside a certain range. Korn [20]
solved a similar problem by an impulse control and optimal stopping approach. He proved
the Bellman principle and solved for the reward function by an iteration procedure under the
assumption that the value function is finite.

While financial assets can often be actively traded, in other contexts dynamic trading
is not possible. Svensson and Werner [24] were the first to consider the problem of pricing
nontraded assets in Merton’s model. More generally, it is a standard assumption in the real
options literature (see Dixit and Pindyck [6]) that the underlying asset is not liquidly traded.
An agent can sell the asset, but cannot purchase any units. In the simplest case the agent is
endowed with a single unit of an indivisible asset which cannot be traded and the problem
reduces to an optimal sale problem for an asset. Evans, Henderson, and Hobson [8] (see, also,
Henderson and Hobson [14]), consider an agent with power-law utility who owns an indivisible,
nontraded asset and wishes to choose the optimal time to sell the asset in order to maximize
the expected utility of terminal wealth in an incomplete market. Their results show that the
optimal criterion for the sale of the asset is to sell the first time the value of the nontraded
asset exceeds a certain proportion of the agent’s trading wealth and this critical threshold is
governed by a transcendental equation.

A second application, where our assumption that the agent cannot actively trade is rea-
sonable, is in the context of executive stock options. Legal restrictions (see Carpenter [1])
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mean that executives cannot short sell stock on their own company. If executives are compen-
sated with a large tranche of options, then they might wish to hedge their position by selling
stock and the restriction on short sales becomes an implicit bar on any trading. Often, in the
mathematical finance literature on executive stock options (see Grasselli and Henderson [10]
and Leung and Sircar [18]) the simple assumption is made that legal restrictions prevent the
agent from any trading in the underlying asset.

2.2. Informal statement of the main conclusions. This paper considers an individual
who is endowed with cash and units of an infinitely divisible asset, which can be sold but not
dynamically traded, and who aims to maximize the expected discounted utility of consumption
over an infinite horizon. (The case of an indivisible asset is considered by Henderson and
Hobson [15].) The problem facing the individual is to choose the optimal strategy for the
liquidation of the endowed asset portfolio, and an optimal consumption process chosen to
keep cash wealth nonnegative. The price process of the endowed asset is assumed to follow
an exponential Brownian motion and the agent is assumed to have CRRA.

The constraint that the asset can be sold but not bought is equivalent to an assumption of
no transaction costs on sales, and an infinite transaction cost on purchases. (The assumption
of no transaction cost on sales can easily be relaxed to a proportional transaction cost on
sales by working with a process representing the post-transaction-cost price rather than the
precost price.) In this sense the problem we consider can be interpreted as a special case of the
Davis–Norman problem for Merton’s model with transaction costs in which the transaction
cost associated with buying the endowed asset is infinite.

Our main results are of three types. First we are able to completely classify the different
types of optimal strategies and the parameter ranges over which they apply. Second, we can
simplify the problem of solving for the value function, especially when compared with direct
approaches for solving the HJB equation via a smooth fit. Third, we can perform comparative
statics on quantities of interest, and uncover some surprising implications of the model.

Some of our main results are as follows.

Result 1. If the endowed asset is depreciating over time then the investor should sell im-
mediately. Conversely, if the mean return is too strong and the coefficient of relative risk
aversion is less than unity, then the problem is ill-posed, and provided the initial holding of
the endowed asset is positive the value function is infinite.

Otherwise, there are two cases. For small and positive mean return there exists a finite
critical ratio and the optimal sale strategy for the endowed asset is to sell just enough to keep
the ratio of wealth held in the endowed asset to cash wealth below this critical ratio. For larger
returns it is optimal to first consume all cash wealth, and once this cash wealth is exhausted
to finance consumption through sales of the endowed asset.

Result 2. In the case where the critical ratio is finite then it is given via the solution of a
first crossing problem for a first order initial-value ODE. Other quantities of interest can be
expressed in terms of the solution of this ODE. In the case where the critical ratio is infinite,
the value function can again be expressed in terms of the solution of a first order ODE.

Result 3. We give three sample conclusions from the comparative statics:
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1. The optimal consumption process is not monotone in the drift of the endowed asset.
Although we might expect that the higher the drift, the more the agent would consume,
sometimes the agent’s consumption is a decreasing function of the drift.

2. The certainty equivalent value of the holdings of the risky asset is not monotone in
risk aversion. For small quantities of endowed asset, the certainty equivalent value is
increasing in risk aversion, while for larger quantities, it is decreasing.

3. The cost of illiquidity (see Definition 26 below), representing the loss in welfare of the
agent when compared with an otherwise identical agent who can buy and sell the risky
asset with zero transaction costs, is a U-shaped function of the size of the endowment
in the risky asset.

We work with bond as numéraire (so that interest rate effects can be ignored) and then the
relevant parameters are the discount parameter and the relative risk aversion of the agent, and
the drift and volatility of the price process of the risky asset. In the nondegenerate parameter
cases the agent faces a conflict between the incentive to keep a large holding in the risky asset
(since it has a positive return) and the incentive to sell in order to minimize risk exposure.
From the homothetic property we expect decisions to depend on the ratio between the value
of the holdings of risky asset and cash wealth.

The HJB equation for our problem is second order, nonlinear, and subject to value match-
ing and smooth fit of the first and second derivatives at an unknown free boundary. One of
our contributions is to show that the problem can be reduced to a crossing problem for the
solution of a first order ODE. (Choi, Sirbu, and Z̆itković [2] and Herczegh and Prokaj [12]
also reduce the problem to a first order ODE, but ours appears simpler in two ways. First, we
have an initial-value problem. This is a result of the fact that we do not allow sales. Second,
the ODE itself is simpler to analyze, because the set of candidate crossing points is expressed
via a quadratic function (rather than an ellipse or hyperbola as in [2].) This big simplification
(compared with [5, 23]) is useful both when considering analytical properties of the solution,
and when trying to construct a solution numerically. We classify the parameter combinations
which lead to different types of solutions and provide a thorough analysis of the existence and
finiteness of the critical ratio, and the corresponding optimal strategies. In the case of a finite
and positive critical ratio we show how the solution to the problem can be characterized by
an autonomous one-dimensional diffusion process with reflection and its local time.

The structure of the paper is as follows. First, we give a precise description of the model
and then a statement of the main results. The HJB equation for the problem is second
order and nonlinear, but a change of variable makes the equation homogeneous and then a
change of dependent variable reduces the order. Hence the form of the solution is governed
by the solution of a first crossing problem of an initial-value problem for a first order ODE.
Even though closed form solutions of this ODE are not available we can provide a complete
characterization of when the first crossing problem has a solution, and given a solution of the
first crossing problem we show how to construct the (candidate) value function. There are
two types of degenerate solutions (in one case it is always optimal to liquidate all units of
the risky asset immediately, and in the other the value function is infinite and the problem is
ill-posed). In addition there are two different types of nondegenerate behaviors (in one case
the agent sells units of asset in order to keep the proportion of wealth held in the risky asset



OPTIMAL CONSUMPTION AND SALE STRATEGIES 679

below a certain level, and in the other the agent exhausts all her cash reserves before selling
any units of the risky asset.) We give proofs of all the main results, although technical details
of the verification arguments are sometimes relegated to the appendices.

Once the analysis of the problem is complete we are in a position to consider the com-
parative statics of the problem. We consider the comparative statics of the critical ratio, the
value function, the optimal consumption, the certainty equivalent value of the portfolio, and
the cost of illiquidity.

Our aim is to be as explicit as possible about the solution in a simple special case, thus
facilitating the study of comparative statics. Some natural extensions include the case of finite
transaction costs, the multidimensional case with several assets, and the case of a dividend
paying asset. (On this subject, we note the recent paper of Guasoni, Liu, and Muhle-Karbe [11]
who argue that agents will not sell dividend-paying assets if there are transaction costs as they
can use the flow of dividends as a transfer of wealth from risky asset to safe asset and as a
proxy for sales.) However, these extensions are left as future work.

3. The model and main results. We work on a filtered probability space (Ω,F ,P, (Ft)t≥0)
such that the filtration satisfies the usual conditions and is generated by a standard Brownian
motion B = (Bt)t≥0. The price process Y = (Yt)t≥0 of the endowed asset is assumed to be
given by

(3.1) Yt = y0 exp

[(
α− η2

2

)
t+ ηBt

]
,

where α and η > 0 are the constant mean return and volatility of the nontraded asset, and y0
is the initial price.

Let C = (Ct)t≥0 denote the consumption rate of the individual and let Θ = (Θt)t≥0

denote the number of units of the endowed asset held by the investor. The consumption rate
is required to be progressively measurable and nonnegative, and the portfolio process Θ is
progressively measurable, right continuous with left limits, nonnegative, and nonincreasing to
reflect the fact that the nontraded asset is only allowed for sale. We assume the initial number
of shares held by the investor is θ0. Since we allow for an initial transaction at time 0 we may
have Θ0 < θ0. We write Θ0− = θ0. This is consistent with our convention that Θ is right
continuous.

We denote by X = (Xt)t≥0 the wealth process of the individual, and suppose that the
initial wealth is x0, where x0 ≥ 0. Provided the only changes to wealth occur from either
consumption or from the sale of the endowed asset, X evolves according to

(3.2) dXt = −Ctdt− YtdΘt,

subject to X0− = x0, and X0 = x0 + y0(θ0 − Θ0). We say a consumption/sale strategy pair
is admissible if the components satisfy the requirements listed above and if the resulting cash
wealth process X is nonnegative for all time. Let A(x0, y0, θ0) denote the set of admissible
strategies for initial setup (X0− = x0, Y0 = y0,Θ0− = θ0).

The objective of the agent is to maximize over admissible strategies the discounted ex-
pected utility of consumption over the infinite horizon, where the discount factor is β and the
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utility function of the agent is assumed to be CRRA with relative risk aversion R ∈ (0,∞)\1.
In particular, the goal is to find

(3.3) sup
(C,Θ)∈A(x0,y0,θ0)

E

[ˆ ∞

0
e−βt

C1−R
t

1−R
dt

]
.

Since the setup has a Markovian structure, we expect the value function, optimal con-
sumption, and optimal sale strategy to be functions of the current wealth and endowment of
the agent and of the price of the risky asset. Let V = V (x, y, θ, t) be the forward starting
value function for the problem so that

(3.4) V (x, y, θ, t) = sup
(C,Θ)∈A(x,y,θ,t)

E

[ˆ ∞

t
e−βs

C1−R
s

1−R
ds

∣∣∣∣Xt− = x, Yt = y,Θt− = θ

]
.

Here the space of forward starting, admissible strategies A(x, y, θ, t) is such that C = (Cs)s≥t is
a nonnegative progressively measurable process, Θ = (Θs)s≥t is a right-continuous, decreasing,
and progressively measurable process and satisfies Θt − (ΔΘ)t = θ, and X given by Xs =
x− ´ st Cudu− ´[t,s] YudΘu is nonnegative.

Define the certainty equivalent value (see, for example, [13]) p = p(x, y, θ, t) of the holdings
of the risky asset to be the solution to

(3.5) V (x+ p, y, 0, t) = V (x, y, θ, t).

In fact, by the scalings of the problem it will turn out that p is independent of time (and,
henceforth, we write p = p(x, y, θ)), and depends on the price y of the risky asset and the
quantity θ of the holdings in the risky asset only through the product yθ.

Our goal is to characterize the value function, the optimal consumption and sale strategies,
and the certainty equivalent price p.

The key to the form of the solution to the problem is contained in the following proposition,
which concerns the solution of an ODE on [0, 1) and which is proved in Appendix A. There
is a one-to-one correspondence between the four cases in the proposition and the four types
of solutions to the optimal sale problem.

Let ε = α/β and δ2 = η2/β.

Proposition 1. For q ∈ [0, 1] define m(q) = 1 − ε(1 − R)q + δ2

2 R(1 − R)q2 and �(q) =

1 + ( δ
2

2 − ε)(1 −R)q − δ2

2 (1−R)2q2 = m(q) + q(1− q) δ
2

2 (1−R). Let n = n(q) solve

(3.6) n′(q) = O(q, n(q)),

where

(3.7) O(q, n) =
(1−R)

R

n

(1− q)
− δ2

2

(1−R)2

R

qn

� (q)− n
=

(1−R)

R

n

(1− q)

m(q)− n

�(q)− n

subject to n(0) = 1 and n′(0)
1−R < �′(0)

1−R = δ2

2 − ε. Suppose that if n hits zero, then 0 is absorbing
for n. See Figure 1.

For R < 1, let q∗ = inf{q > 0 : n(q) ≤ m(q)}. For R > 1, let q∗ = inf{q > 0 : n(q)≥m(q)}.
For j ∈ {�,m, n} let qj = inf{q > 0 : j(q) = 0} ∧ 1.



OPTIMAL CONSUMPTION AND SALE STRATEGIES 681

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

x

m
(x

),
 n

(x
),

 l(
x)

 

 

 m(x)
 n(x)
 l(x)

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

1.25

x

m
(x

),
 n

(x
),

 l(
x)

 

 

 n(x)
 m(x)
 l(x)

x* x*

Figure 1. Stylized plot of m(q), n(q), �(q), and q∗. Parameters are chosen to satisfy the conditions in the
second case of Proposition 1 so that q∗ ∈ (0, 1). The left figure is the case R < 1 and the right figure R > 1.

1. Suppose ε ≤ 0. Then q∗ = 0.
2. Suppose 0 < ε < δ2R and, if R < 1, suppose, in addition, that ε < δ2

2 R + 1
1−R . Then

0 < q∗ < 1.
3. Suppose ε ≥ δ2R and, if R < 1, ε < δ2

2 R+ 1
1−R . Then q∗ = 1 = q� = qn = qm.

4. Suppose R < 1 and ε > δ2

2 R+ 1
1−R . Then qm < qn = q� < 1. If R < 1, ε = δ2

2 R+ 1
1−R ,

and ε < δ2R then qm < qn = q� = 1. If R < 1, ε = δ2

2 R + 1
1−R , and ε ≥ δ2R then

q∗ = 1 = q� = qn = qm.

Remark 2. Note that the condition ε < δ2R is equivalent to (1−R)m′(1) > 0. Further, if

R < 1 then the condition ε < δ2

2 R+ 1
1−R is equivalent tom(1) > 0. Also, n has a turning point

at q∗ < 1 if and only if n(q∗) = m(q∗). See Figure 1. In particular, if m is monotone (and

ε > 0) then q∗ = 1. Then, if R < 1, 0 < ε < δ2R and ε < δ2

2 R+ 1
1−R , we have q� = qn = 1.

Remark 3. It is easy to see that (1−R)n is decreasing in ε. In fact it can also be shown
that over parameter ranges where 0 < q∗ < 1 q∗ is increasing in ε.

Theorem 4 divides the parameter space into the four distinct regions. In particular, it
distinguishes the degenerate cases, and it gives necessary and sufficient conditions for the two
different regimes in the nondegenerate case.

Theorem 4.
1. Suppose ε ≤ 0. Then it is always optimal to sell the entire holding of the endowed

asset immediately, so that Θt = 0 for t ≥ 0. The value function for the problem is
V (x, y, θ, t) = (R/β)Re−βt(x+ yθ)1−R/1−R, and the certainty equivalent value of the
holdings of the asset is p(x, y, θ) = yθ.
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2. Suppose 0 < ε < δ2R and ε < δ2

2 R + 1
1−R if R < 1. Then there exists a positive and

finite critical ratio z∗ and the optimal behavior is to sell the smallest possible quantity
of the risky asset which is sufficient to keep the ratio of wealth in the risky asset to
cash wealth at or below the critical ratio. If θ > 0 then p(x, y, θ) > yθ.

3. Suppose ε ≥ δ2R and ε < δ2

2 R + 1
1−R if R < 1. Then the optimal consumption and

sale strategy is first to consume liquid (cash) wealth, and then when this liquid wealth
is exhausted, to finance further consumption from sales of the illiquid asset. If θ > 0
then p(x, y, θ) > yθ.

4. Suppose R < 1 and ε ≥ δ2

2 R + 1
1−R . Then the problem is ill-posed, and provided θ is

positive, the value function V = V (x, y, θ, t) is infinite. There is no unique optimal
strategy, and the certainty equivalent value p is not defined.

Remark 5. In light of Proposition 1 there is one fewer case for R > 1. The fourth case in
the theorem does not happen for R > 1 since the value function is always finite, as in Merton’s
problem.

Similarly, when R < 1, if δ2 ≥ 2/(R(1 − R)) then the third case above does not happen.

In that case, as ε increases we move directly from ε < δ2

2 R + 1
1−R and a finite value function

and z∗ to ε ≥ δ2

2 R+ 1
1−R and an infinite value function.

Remark 6. In their more general model with transaction costs Choi, Sirbu, and Z̆itković [2]

show that if R < 1 and ε ≥ δ2R
2 + 1

1−R then the problem is ill-posed, so the final part of the
theorem is a corollary of [2, Theorem 2.6]

The second and third cases above are nondegenerate and they are further characterized
in Theorems 7 and 10. In Theorem 7 the solution is expressed in terms of a one-dimensional
autonomous reflecting stochastic process J and its local time at zero L; see (3.14).

For 0 ≤ q ≤ q∗ define N(q) = n(q)−R(1−q)R−1 where n is the solution to (3.6). Assuming
that N is monotonic, let W be inverse to N . Let h∗ = N(q∗). Then W (h∗) = q∗ and
h∗(1− q∗)1−R = m(q∗)−R.

Theorem 7.
(i) Suppose R < 1. Suppose 0 < ε < δ2R and ε < δ2

2 R+ 1
1−R so that 0 < q∗ < 1. Then N

as defined above is increasing, and W is well-defined.
Let z∗ be given by

(3.8) z∗ = (1− q∗)−1 − 1 =
q∗

1− q∗
∈ (0,∞).

On [1, h∗] let h be the solution of

(3.9) u∗ − u =

ˆ h∗

h

1

(1−R)fW (f)
df,

where u∗ = ln z∗. Let g be given by

(3.10) g (z) =

⎧⎪⎨⎪⎩
(
R
β

)R
m(q∗)−R (1 + z)1−R ,(

R
β

)R
h (ln z) ,

z ∈ [z∗,∞),

z ∈ (0, z∗].
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Then, the value function V is given by

(3.11) V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0,

and we can extend this to x = 0 and θ = 0 by continuity to give

V (x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
,(3.12)

V (0, y, θ, t) = e−βt
y1−Rθ1−R

1−R

(
R

β

)R
m(q∗)−R.(3.13)

Fix z0 = y0θ0/x0. Let (J,L) = (Jt, Lt)t≥0 be the unique pair such that
(a) J is positive,
(b) L is increasing, continuous, L0 = 0, and dLt is carried by the set {t : Jt = 0},
(c) J solves

(3.14) Jt = (z∗ − z0)
+ −
ˆ t

0
Λ̃(Js)ds−

ˆ t

0
Γ̃(Js)dBs + Lt,

where Λ(z) = αz+ z(g(z)− 1
1−Rzg

′(z))−1/R, Γ(z) = ηz, Λ̃(j) = Λ(z∗ − j), and

Γ̃(j) = Γ(z∗ − j).
For such a pair 0 ≤ Jt ≤ z∗.
If z0 ≤ z∗ then set Θ∗

0 = θ0 and X∗
0 = x0; else if z0 > z∗ then set

Θ∗
0 = θ0

z∗

(1 + z∗)
(1 + z0)

z0

and X∗
0 = x0+ y0(θ0−Θ0). This corresponds to the sale of a positive quantity θ0−Θ0

of units of the endowed asset at time 0.
Then, the optimal holdings Θ∗

t of the endowed asset, the optimal consumption process
C∗
t = C(X∗

t , Yt,Θ
∗
t ), the resulting wealth process, and the certainty equivalent value

are given by

Θ∗
t = Θ∗

0 exp

{
− 1

z∗(1 + z∗)
Lt

}
,(3.15)

X∗
t =

YtΘ
∗
t

(z∗ − Jt)
,(3.16)

C(x, y, θ) = x

[
g

(
yθ

x

)
− 1

1−R

yθ

x
g′
(
yθ

x

)]− 1
R

,(3.17)

p(x, y, θ) = x

⎡⎣g
(
yθ
x

)
g(0)

⎤⎦
1

1−R

− x.(3.18)
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(ii) Now suppose R > 1 and 0 < ε < δ2R so that 0 < q∗ < 1. Let all quantities be defined
as before. Then N is decreasing. On (h∗, 1) h is defined via

u∗ − u =

ˆ h

h∗

1

(R− 1)fW (f)
df.

The value function, the optimal holdings Θ∗, the optimal consumption process C∗, the
resulting wealth process X∗, and the certainty equivalent value p are the same as before.

Remark 8. Recall that n solves the first order differential equation (3.6), and q∗ ∈ (0, 1)
is the solution of a first crossing problem for n. Once we have constructed n and determined
q∗, numerically if appropriate, expressions for all other quantities can be derived by solving a
further integral equation, which can be reexpressed as a first order differential equation. This
two-stage procedure is significantly simpler than solving the HJB equation directly, as this
equation is second order and nonlinear, and subject to second order smooth fit at an unknown
free boundary.

Remark 9. In the corresponding Merton problem for the unconstrained agent who may
both buy and sell the risky asset at zero transaction cost, optimal behavior for the agent is
to hold a fixed proportion qM = α/η2R = ε/δ2R of total wealth in the risky asset. This
corresponds to keeping Qt := YtΘt/(Xt + YtΘt) equal to the constant qM or, equivalently,
Zt = YtΘt/Xt equal to z

M := qM/(1− qM ) = ε/(δ2R− ε). In Lemma 27 below we show that
if ε > 0 then q∗ > ε/δ2R = qM so that optimal behavior for the agent who cannot buy units
of the risky asset is to keep the ratio of money invested in the risky asset to cash wealth in in
interval [0, q∗], where qM ∈ (0, q∗).

The following theorem characterizes the solution to the problem in the second non-
degenerate case (the third case in Theorem 4). In this case, the optimal strategy is to first
hold the endowed asset and finance consumption with initial wealth. When liquid wealth is
exhausted, consumption is further financed by the sale of endowed asset. Here, the critical
threshold z∗ = ∞.

Theorem 10. Suppose ε ≥ δ2R and if R < 1, ε < δ2

2 R+ 1
1−R .

Let n solve (3.6) on [0, 1]. Then for the given parameter combinations we have q∗ = 1. As
in Theorem 7, let N(q) = n(q)−R(1− q)R−1. Then N is monotonic.

Let W be inverse to N . For R < 1 define γ : (1,∞) �→ R by

(3.19) γ(v) =
ln v

1−R
+

R

1−R
lnm(1)− 1

1−R

ˆ ∞

v

(1−W (s))

sW (s)
ds.

If R > 1 define γ : (0, 1) �→ R by

(3.20) γ(v) = − ln v

R− 1
− R

R− 1
lnm(1) − 1

R− 1

ˆ v

0

(1−W (s))

sW (s)
ds.

Let h be inverse to γ and let g(z) = (R/β)Rh(ln z).
Then, the value function V is given by

(3.21) V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0,
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which can be extended by continuity to give

V (x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
,(3.22)

V (0, y, θ, t) = e−βt
y1−Rθ1−R

1−R

(
R

β

)R
m(1)−R.(3.23)

The optimal consumption process C∗ is given by C∗
t = C(X∗

t , Yt,Θ
∗
t ), where C(x, y, θ) is

as in (3.17) and the optimal holdings Θ∗
t of the endowed asset and the resulting wealth process

are given by

(3.24) Θ∗
t =

{
θ0, t ≤ τ,

θ0e
− β

R
m(1)(t−τ), t > τ,

X∗
t =

{
x0 −

´ t
0 C(X∗

s , Ys, θ0)ds, t ≤ τ,

0, t > τ,

where τ = inf{t ≥ 0 : X∗
t = 0}. Finally the certainty equivalent value is given by (3.18).

Remark 11. Note that limz↑∞ 1
z (g(z) − zg′(z)

1−R )−1/R = βm(1)/R and, hence, by continuity
we may set C(0, y, θ) = yθβm(1)/R. Then for t > τ we have that

C∗
t = C(0, Yt,Θ

∗
t ) =

β

R
m(1)YtΘ

∗
t .

4. Heuristics. The goal is to solve for the value function V = V (x, y, θ, t) as in (3.4).
From the scalings of the problem we expect that we can write

V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
,

where the key variable is the ratio z = yθ/x of wealth held in the risky asset to cash wealth.
Note that if θ = 0 then the problem is purely deterministic, the optimal strategy is to consume
a constant fraction of wealth per unit time, and the value function is such that g(0) = (R/β)R.

Further, we expect that the no-transaction region will be a wedge 0 ≤ yθ ≤ z∗x and that
for Y0Θ0− > z∗X0− the optimal sale strategy includes an immediate sale to bring the ratio
of risky wealth to cash wealth below z∗. In particular, if Y0 = y and if the initial portfolio
(X0− = x,Θ0− = θ) is such that yθ > xz∗ then we sell φ = −(ΔΘ)0 units of the risky asset,
where φ = θ − z∗

1+z∗
x+yθ
y0

so that (recall Θ is right continuous so that Θ0+ = Θ0)

yΘ0

X0
=
y(θ − φ)

x0 + y0φ
= z∗.

This should not change the value function and we conclude, for yθ > xz∗

x1−Rg
(
yθ

x

)
= (x+ yφ)1−Rg(z∗) =

(x+ yθ)1−R

(1 + z∗)1−R
g(z∗),

or, equivalently, g(z) = (Rβ )
RA(1 + z)1−R for z > z∗, where A = ( βR )

R g(z∗)
(1+z∗)1−R .
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We expect that ˆ t

0
e−βs

C1−R
s

1−R
ds + V (Xt, Yt,Θt, t)

will be a supermartingale in general and a martingale under the optimal strategy. Applying
Itô’s formula, and optimizing over Ct and Θt we find the HJB equation is a (second order,
semilinear) differential equation for g in the no-transaction region:

(4.1) 0 =
R

1−R

(
g − zg′(z)

1−R

)1−1/R

− β
g

1−R
+ μ

zg′(z)
1−R

+
η2

2

z2g′′

1−R
, z ≤ z∗.

Finally, we expect that there will be value matching and second order smooth fit at the free
boundary.

In analyzing the problem our first goal is to solve (4.1). The equation in the no-transaction
region can be simplified by setting z = eu and h(u) = h(ez) = ( βR )

Rg(z). Then h(−∞) = 1,
h′(−∞) = 0, and h solves a (second order, nonlinear) autonomous equation (with no u-
dependence):

0 =

(
h− h′

1−R

)1−1/R

− h+

(
ε− δ2

2

)
h′ +

δ2

2
h′′.

This equation can be simplified by setting dh
du = w(h) so that d2h

du2
= h′′ = w′(h)w(h). After

the transformations we find that w solves (5.8) below. In particular w solves a first order
equation with w(1) = 0.

Various further transformations do not reduce the order of the problem, but rather simplify
the problem significantly in appearance, and improve our ability to interpret the solution. Set
W (h) = (1−R)hw(h), N = W−1, and, finally, n(q) = N(q)−1/R(1− q)1−1/R. Then (at least
for the range of problems we consider) 0 ≤ W ≤ 1, so that N and n are defined on [0, 1] and
n solves the linear first order equation (3.6) subject to n(0) = 1.

The advantage of switching to n becomes apparent when we consider the solution outside
the no-transaction region. For z ≥ z∗, g(z) = (Rβ )

RA(1 + z)1−R for A to be determined.

Then using the same transformations we find that for h ≥ h∗ = A(1 + z∗)1−R we have
h(u) = ( βR )

Rg(eu) = A(1 + eu)1−R and

w(h) =
dh

du
= (1−R)h

eu

1 + eu
= (1−R)h

(h/A)1/(1−R) − 1

(h/A)1/(1−R)
.

It follows that for h > h∗, W (h) = 1 − (A/h)1/(1−R) and for q > q̃∗ := W (h∗), N(q) =
A(1− q)−(1−R) and n(q) = A−1/R which is a constant.

A second order smooth fit of g corresponds to a first order smooth fit of w (andW , N , and
n). Hence we are looking for a solution n and free boundary q∗ such that n ∈ C1 and n′ = 0
at q = q̃∗. However, the places in (q, n) space where n′ = 0 are exactly the points on the
curve (q,m(q)) where m is the quadratic function of q given in the statement of Proposition 1.
Hence the free boundary problem becomes a first crossing problem for n, and q̃∗ = q∗, the
first crossing point by n of m.

Suppose 0 < R < 1. (The analysis for R > 1 is similar, but sometimes the inequalities and
monotonicities are reversed.) It is clear from the form of the differential equation for n that
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if n(q̂) ∈ (0, �(q̂)) for some q̂ ∈ (0, 1) then n(q) < �(q) on [q̂, 1 ∧ q�), where q� is the first time
that � hits zero. Further, n is decreasing at q if n(q) ∈ (m(q), �(q)). By the above arguments
A = n(q∗)−R and by construction

q∗ =W (h∗) =
w(h∗)

(1−R)h∗
= 1−

(
A

h∗

)1/(1−R)
= 1− 1

(1 + z∗)
.

In particular, we can read off the limits of the no-transaction region and the value function
outside the no-transaction region directly from the solution of the first crossing problem for
n; z∗ = q∗

1−q∗ and g(z) = (Rβ )
Rn(q∗)−R(1 + z)1−R for z ≥ z∗. This simplifies many of the

comparative statics for the problem significantly. Finally, given h∗ and q∗ we can solve for h
and, hence, g and V via w(h) = dh

du or, equivalently, (3.9).

4.1. Relationship with Choi, Sirbu, and Z̆itković. In a recent paper, Choi, Sirbu, and
Z̆itković [2] consider the finite transaction cost version of the problem we discuss here. Their
results can be specialized to our problem. Conversely our approach as described above extends
to the case of transaction costs; the main change is that instead of solving a first order equation
for n started at n(0) = 1 we need to find a solution for n which starts and ends on the curve
(q,m(q)). One unimportant distinction between this paper and [2] is that we insist that
X ≥ 0 whereas Choi, Sirbu, and Z̆itković work in the solvency region whereby agents are
allowed negative cash wealth, provided any borrownings can be covered by the sale of the
risky asset, net of any transaction costs. In our case the stronger requirement X ≥ 0 is
not unnatural, and does have the advantage of simplifying the analysis, in that some of the
singular cases discussed in [2] do not occur. Instead we have the results in Theorem 10.

In their more complicated problem with an extra parameter corresponding to the round-
trip transaction cost, Choi, Sirbu, and Z̆itković [2] concentrate on deriving the form of the
value function, and delimiting the various parameter regimes under which the solution takes
different forms. They find some very interesting results concerning how the solution changes
within the different regimes. In our simpler problem when the risky asset can be sold but not
bought, we prove a similar set of results. The innovation in our paper is that we discuss in
detail the comparative statics.

The solution approach in Choi, Sirbu, and Z̆itković is different to that proposed here in
that the approach is via the dual problem and shadow prices. In contrast our approach is
classical and is based on consideration of the HJB equation for the value function. In principle,
the two formulations should be equivalent, and one is a reparametrization of the other, and
one or the other approach in a given application may lead to a more direct solution or an easier
verification. But, our belief is that our final problem, as expressed as a first crossing problem
for the solution of a first order differential equation is simpler, at least in appearance, than
that in [2], and this remains the case, both when our approach is extended to finite transaction
costs, and when their method is specialized to allow sales but not purchases. (It may be the
case that the source of this apparent simplification is the extra effort we expend after the
order reduction, i.e., after changing the dependent variable from u to h. In particular, the
transformation from w to n leads to an equation which is much simpler to interpret. Choi,
Sirbu, and Z̆itković [2] make a similar order reducing transformation, but then proceed directly
from the resulting equation.)
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Choi, Sirbu, and Z̆itković [2, section 5] reduce the problem1 to solving

s′(p) =
P (p, s)

Q(p, s)
,

where P is a polynomial in s and p which is quadratic in both p and s and Q is a polynomial
which is quadratic in p and linear in s. In Choi, Sirbu, and Z̆itković’s method the candidate
locations of the smooth fit points are the solutions to P (p, s) = 0 which are points on an
ellipse, or on a hyperbola. In contrast, in our formulation the candidate locations of the
smooth fit points lie on the quadratic m. Further, in our formulation, and as described above,
the value function outside the no-transaction region and the location of the free boundary can
be inferred directly from the solution of the first crossing problem for n. Finally, we note that
in a closing remark Choi, Sirbu, and Z̆itković [2, Remark 6.15] state that they are unable to
give a direct argument for the monotonicity of one of the important quantities of interest. In
our specification, this monotonicity is easy to prove.

5. Proofs and verification arguments. For F = F (x, y, θ, t) ∈ C1,2,1,1 such that Fx > 0
define operators L and M by

LF = sup
c>0

{
e−βt

c1−R

1−R
− cFx

}
+ αyFy + Ft +

1

2
η2y2Fyy

=
R

1−R
e−

β
R
tF 1−1/R
x + αyFy + Ft +

1

2
η2y2Fyy,

MF = Fθ − yFx.

Remark 12. The state space of (Xt, Yt,Θt, t) is [0,∞) × (0,∞) × [0,∞) × [0,∞), and we
want to define L and M on this region including at the boundary. In practice, all the functions
to which we apply the operators are of the form F (x, y, θ, t) = e−βtF (x, y, θ) for some function
F which is independent of t in which case Ft = −βF , and this latter form is well-defined at
t = 0. Also, we typically need MF only for θ > 0. Then, given F defined for x > 0 we can
define F at x = 0 by continuity, and then MF |x=0 is also well-defined. LF at θ = 0 can be
defined similarly, by first defining F at θ = 0 by continuity. In order to define LF at x = 0 for
θ > 0 we extend the domain of F to x > −θy and then show that Fx and the other derivatives
of F are continuous across x = 0 with this extension.

5.1. The verification lemma in the case of a depreciating asset. Suppose ε ≤ 0. Our
goal is to show that the conclusions of Theorem 4(1) hold.

From Proposition 1 we know q∗ = 0. Define the candidate value function via

(5.1) G(x, y, θ, t) = e−βt
(
R

β

)R (x+ yθ)1−R

1−R
, x ≥ 0, θ ≥ 0.

1The methodologies of Kallsen and Muhle-Karbe [16], Herczegh and Prokaj [12], and Choi, Sirbu, and
Z̆itković [2] all lead to a differential equation which must be solved. In [16, (3.13)] this is expressed as a
semilinear second order equation f ′′ = LKM (f, f ′), where LKM is a polynomial of third order in f ′ with
co-efficients which are ratios of linear functions of ef . In [12, (55)] the problem is reduced to a first order
differential equation f ′ = LHP (x, f), where LHP is cubic in f with coefficients which are rational functions
of x.
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The candidate optimal strategy is to sell all units of the risky asset immediately. The domain
of G can be extended to −θy < x < 0 for θ > 0, using the same functional form as in (5.1).

Prior to the proof of the theorem, we need the following lemma.

Lemma 13. Suppose ε ≤ 0. Consider the candidate value function constructed in (5.1).
Then on (x ≥ 0, θ > 0) we have MG = 0, and on (x ≥ 0, θ ≥ 0) we have LG ≤ 0 with equality
at θ = 0.

Proof. Given the form of the candidate value function in (5.1), we have

MG = e−βt
(
R

β

)R
y(x+ yθ)−R − e−βt

(
R

β

)R
y(x+ yθ)−R = 0.

On the other hand, writing z = yθ/x, provided x > 0,

LG = β

(
R

β

)R
e−βt

(x+ yθ)1−R

1−R

[
ε(1−R)

z

1 + z
− 1

2
δ2R(1−R)

(
z

1 + z

)2
]
≤ 0

with equality at z = 0. If x = 0 then LG = βG(1 −R)[ε− δ2R
2 ] < 0.

Theorem 14. Suppose ε ≤ 0. Then the value function is

(5.2) V (x, y, θ, t) = e−βt
(
R

β

)R (x+ yθ)1−R

1−R
,

and the optimal holdings Θ∗
t of the endowed asset, the optimal consumption process C∗

t , and
the resulting wealth process are given by

(5.3) (	Θ∗)t=0 = −θ0, C∗
t =

β

R
(x0 + y0θ0)e

− β
R
t, X∗

t = (x0 + y0θ0)e
− β

R
t.

Proof. Note that candidate optimal strategy given in (5.3) is to sell the entire holding of
the risky asset at time zero (which gives X∗

0 = x0+y0θ0) and thereafter to finance consumption
from liquid wealth, whence the wealth process (X∗

t )t≥0 is deterministic and evolves as dX∗
t =

−C∗
t dt. This gives X∗

t = (x0 + y0θ0)e
− β

R
t. It follows that the candidate optimal strategy is

admissible.
The value function under the strategy proposed in (5.3) is

E

[ˆ ∞

0
e−βt

C∗
t
1−R

1−R
dt

]
=

ˆ ∞

0
e−βt

(
β

R

)1−R
(
e−

β
R
t(x0 + y0θ0)

)1−R
1−R

dt

=

(
R

β

)R (x0 + y0θ0)
1−R

1−R
= G(x0, y0, θ0, 0).

Hence V ≥ G.
Now, consider general admissible strategies. Suppose first that R < 1. Define the process

M = (Mt)t≥0 by

(5.4) Mt =

ˆ t

0
e−βs

C1−R
s

1−R
ds+G (Xt, Yt,Θt, t) .
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Applying the generalized Itô’s formula [9, section 4.7] to Mt and suppressing the argument
(Xs−, Ys,Θs−, s) in derivatives of G, leads to

Mt −M0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsGx + αYsGy +

1

2
η2Y 2

s Gyy +Gs

]
ds

+

ˆ t

0
(Gθ − YsGx)dΘs

+
∑

0≤s≤t
[G(Xs, Ys,Θs, s)−G(Xs−, Ys−,Θs−, s)−Gx(	X)s −Gθ(	Θ)s](5.5)

+

ˆ t

0
ηYsGydBs

= N1
t +N2

t +N3
t +N4

t .

(Note that in the sum we allow for a portfolio rebalancing at s = 0.)
Lemma 13 implies that LG ≤ 0 and MG = 0, which leads to N1

t ≤ 0 and N2
t = 0. Using

the fact that (ΔX)s = −Ys(ΔΘ)s and writing θ = Θs−, x = Xs−, χ = −(ΔΘ)s each nonzero
jump in N3 is of the form

(ΔN3)s = G(x+ yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

Given the form of the candidate value function in (5.1), it is easy to see that ψ(φ) = G(x +
yφ, y, θ − φ, s) is constant in φ, which gives ψ(χ) = ψ(0) and yGx = Gθ, whence (ΔN3) = 0.
Then, since R < 1, we have 0 ≤ Mt ≤ M0 + N4

t , and the local martingale N4
t is bounded

from below and, hence, a supermartingale. Taking expectations we find E(Mt) ≤ M0 =
G(x0, y0, θ0, 0), which gives

(5.6) G(x0, y0, θ0, 0) ≥ E

ˆ t

0
e−βs

Cs
1−R

1−R
ds+ EG(Xt, Yt,Θt, t) ≥ E

ˆ t

0
e−βs

Cs
1−R

1−R
ds,

where the last inequality follows since G(Xt, Yt,Θt, t) ≥ 0 for R ∈ (0, 1). Letting t → ∞ in
(5.6) leads to

G(x0, y0, θ0, 0) ≥ E

ˆ ∞

0
e−βt

Ct
1−R

1−R
dt,

and taking a supremum over admissible strategies leads to G ≥ V .
The case R > 1 is considered in Appendix C.

5.2. Proof in the ill-posed case of Theorem 4. Recall we are in the case where R < 1
and ε ≥ δ2R/2 + 1/(1 −R).

It is sufficient to give an example of an admissible strategy when θ > 0 for which the
expected utility of consumption is infinite. Note that V (x, y, 0, t) = e−βtx1−RRRβ−R/(1−R)
so that the value function is not continuous at θ = 0.

Consider a consumption and sale strategy pair ((C̃)t≥0, (Θ̃)t≥0), given by
(5.7)

Θ̃t = Θ̃t(φ) = e−φtθ0, C̃t = C̃t(φ) = φYtΘ̃t = φy0θ0 exp
{
β(ε− δ2/2− φ/β)t+ δ

√
βBt

}
,

where φ is some positive constant.
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Note first that that such strategies are admissible since the corresponding wealth pro-
cess satisfies dX̃t = −φYtΘ̃tdt + YtdΘ̃t = 0, and hence (X̃t)t≥0 = x0 > 0. In particular,
consumption is financed by the sale of the endowed asset only.

The expected discounted utility from consumption G̃ = G̃(φ) corresponding to the con-
sumption and sale processes (C̃, Θ̃) is given by

G̃ = E

[ˆ ∞

0
e−βt

C̃1−R
t

1−R
dt

]

=
(φy0θ0)

1−R

1−R
E

[ˆ ∞

0
exp

{
β

[
(1−R)

(
ε− δ2

2
− φ

β

)
− 1

]
t+ (1−R)δ

√
βBt

}
dt

]
=

(φy0θ0)
1−R

1−R

ˆ ∞

0
exp

{
β(1−R)

[(
ε− δ2R

2
− 1

1−R

)
− φ

β

]
t

}
dt.

Suppose first that ε > δ2R/2 + 1/(1 − R). Then for λ ∈ (0, 1) and φ = λβ(ε − δ2R/2 −
1/(1 −R)) we have(

ε− δ2R

2
− 1

1−R

)
− φ

β
= (1− λ)

(
ε− δ2R

2
− 1

1−R

)
> 0,

and G̃ is infinite.
Now suppose that ε = δ2R/2 + 1/(1 −R). Then

G̃(φ) =
(φy0θ0)

1−R

(1−R)

1

φ(1−R)
= φ−R

(y0θ0)
1−R

(1−R)2

and G̃(φ) ↑ ∞ as φ ↓ 0.

5.3. The verification lemma in the first nondegenerate case with finite critical exercise
ratio. Suppose 0 < ε < δ2R and, if R < 1, ε < δ2

2 R + 1
1−R . From Proposition 1 we know

0 < q∗ < 1.
Recall the definition N(q) = n(q)−R(1 − q)R−1 and that W is inverse to N . We have

h∗ = N(q∗).

Proposition 15.
1. For R < 1, N is increasing on [0, q∗]. W is increasing and 0 < W (v) < q∗ on (1, h∗).

For R > 1, N is decreasing on [0, q∗]. W is decreasing and 0 < W (v) < q∗ on (h∗, 1).
2. Let w(v) = v(1−R)W (v). Then w solves

(5.8)
δ2

2
w(v)w′(v)− v +

(
ε− δ2

2

)
w(v) +

(
v − w(v)

1−R

)1−1/R

= 0.

3. For R < 1 and 1 < v < h∗, and for R > 1 and h∗ < v < 1 we have w′(v) <
1−Rw(v)/((1 −R)v) with w′(h∗) = 1−Rw(h∗)/((1 −R)h∗).

The proof of Proposition 15 is given in the appendix.
Now define h on [1, h∗) by dh

du = w(h) = (1 − R)hW (h) subject to h(u∗) = h∗. Then h

solves (3.9) and w′(h)w(h) = d2h
du2

. Let g(z) = (Rβ )
Rh(ln z). Then g solves (3.10).
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Lemma 16. Let m(q∗)−R, z∗, and g be as given in (3.8) and (3.10) of Theorem 7. Then,
g(z), g′(z), g′′(z) are continuous at z = z∗.

Proof. We have

g(z∗+) =

(
R

β

)R
h∗(1− q∗)1−R (1 + z∗)1−R =

(
R

β

)R
h∗ =

(
R

β

)R
h(u∗) = g(z∗−).

For the first derivative we have for z > z∗,

zg′(z) = (1−R)

(
zg(z)

1 + z

)
and then, since z∗

1+z∗ = q∗, z∗g′(z∗) = (1 − R)(Rβ )
Rh∗q∗. Meanwhile, for z < z∗, and noting

that dh
du = h(1 −R)W (h) = w(h),

zg′(z) =
(
R

β

)R
h′(u) =

(
R

β

)R
w(h)

so that z∗g′(z∗−) = (Rβ )
Rw(h∗) and the result follows from the substitution w(h∗) =

(1−R)h∗W (h∗) = (1−R)h∗q∗.
Finally, for z > z∗

(5.9) z2g′′(z) = −R(1−R)
(
R

β

)R
m(q∗)−R(1+z)1−R

(
z

1 + z

)2

= −R(1−R)g(z)
(

z

1 + z

)2

and (z∗)2g′′(z∗+) = −R(1−R)g(z∗)(q∗)2. For z < z∗,

(5.10) z2g′′(z) =
(
R

β

)R
(h′′ − h′) =

(
R

β

)R
(w′(h)− 1)w(h)

and at z∗, (z∗)2g′′(z∗−) = −R(1−R)(Rβ )
Rh∗(q∗)2, where we use Proposition 15(3).

Proposition 17. Suppose g(z) solves (3.10). Then for R < 1, g is an increasing concave
function such that g(0) = (Rβ )

R. Otherwise, for R > 1, g is a decreasing convex function

such that g(0) = (R/β)R and g(z) ≥ 0. Further, for all values of R we have that 0 ≥
Rg′(z)2 + (1−R)g(z)g′′(z) with equality for z ≥ z∗.

Proof. Consider first R < 1. Since the statements are immediate in the region z ≥ z∗, and
since there is second order smooth fit at z∗ the result will follow if h(−∞) = 1, h is increasing,
and, using (5.10), w(h)w′(h)− w(h) ≤ 0. The last two properties follow from Proposition 15
since w(h) ≥ 0 and w′(h) < 1.

To evaluate h(−∞) note that

u∗ − u =

ˆ h∗

h(u)

df

(1−R)fW (f)
=

ˆ q∗

W (h(u))

N ′(q)
(1−R)N(q)q

dq =

ˆ q∗

W (h(u))

δ2

2 (1−R)

�(q)− n(q)
dq.
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We have that �(q) − n(q) is bounded away from zero when q is bounded away from zero.
Further, near q = 0 we have �(q)− n(q) ∼ Cq for some positive constant C = �′(0)− n′(0+).
Hence W (h(−∞)) = 0 and h(−∞) = 1, since W (1) = 0.

For R > 1, and z ≥ z∗, the statement holds immediately. For z ≤ z∗, Proposition 15
implies that h is decreasing and w(h) ≤ 0, w′(h) < 1. Together with (5.10), we have g is a
decreasing convex function and g(z) ≥ 0 given that h ∈ [0, 1].

For the final statement of the proposition, for z ≥ z∗ the result follows immediately,
whereas for z < z∗

(1−R)gg′′z2 +R(zg′)2 =
(
R

β

)2R [
(1−R)hw(h)[w′(h)− 1] +Rw(h)2

] ≤ 0,

where the final inequality follows from Proposition 15(3), noting that (1−R)w(h) ≥ 0.

Define the candidate value function via

(5.11) G(x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0,

and extend to x ≤ 0 and θ = 0 using the formulas

G(x, y, θ, t) = e−βt
(x+ yθ)1−R

1−R
m(q∗)−R, −θy < x ≤ 0, θ > 0,(5.12)

G(x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
, x ≥ 0, θ = 0.(5.13)

Lemma 18. Fix y and t. Then G = G(x, θ) is concave in x and θ on [0,∞) × [0,∞). In
particular, if ψ(χ) = G(x− χyφ, y, θ + χφ, t), then ψ is concave in χ.

Proof. Consider first R < 1. In order to show the concavity of the candidate value function
it is sufficient to show that G(x, 0) is concave in x, G(0, θ) is concave in θ, and that the Hessian
matrix given by

HG =

(
Gxx Gxθ
Gxθ Gθθ

)
has a positive determinant, and that one of the diagonal entries is nonpositive. The conditions
on G(x, 0) and G(0, θ) are trivial to verify.

Direct computation leads to

Gxx (x, y, θ, y) = e−βtx−R−1

[
−Rg (z) + 2R

1−R
zg′ (z) +

1

1−R
z2g′′ (z)

]
,

Gxθ (x, y, θ, t) = −e−βtx−R−1 y

1−R

[
Rg′ (z) + zg′′ (z)

]
,

Gθθ (x, y, θ, t) = e−βtx−R−1 y2

1−R
g′′ (z) ,

and the determinant of the Hessian matrix is

(5.14) GxxGθθ − (Gxθ)
2 = −e−2βtx−2Rθ−2 R

(1−R)2

[
(1−R)g (z) z2g′′ (z) +R

(
zg′ (z)

)2]
which is nonnegative by Proposition 17. Further, since g is concave we have that Gθθ ≤ 0.
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In order to show the concavity of ψ in χ, it is equivalent to examine the sign of d
2ψ
dχ2 , but

d2ψ

dχ2
= φ2

[
y2Gxx +Gθθ − 2yGxθ

]
= φ2(y, 1) det(HG)(y, 1)

T ≤ 0.

For R > 1 the argument is similar, except that Gθθ ≤ 0 is now implied by the convexity
of g.

Lemma 19. Consider the candidate value function constructed in (5.11).
(a) For θ > 0 and 0 ≤ x ≤ yθ/z∗, MG = 0 and LG ≤ 0.
(b) For θ > 0 and x ≥ yθ/z∗, MG ≥ 0. For θ ≥ 0 and x ≥ yθ/z∗, LG = 0.

Proof. (a) For z ≥ z∗, MG= 0 is immediate from the definition of G. For 0 < x≤ yθ/z∗

we have that G(x, y, θ, t) = (Rβ )
Rm(q∗)−Re−βt x

1−R

1−R (1 + z)1−R and then

LG = βG

[
m(q∗)− 1 + ε (1−R)

z

1 + z
− 1

2
δ2R (1−R)

z2

(1 + z)2

]
= βG

[
m(q∗)−m

(
z

1 + z

)]
.

The required inequality follows from part (5) of Lemma 27 in Appendix A and the fact
that m(q)/(1 − R) is increasing on (q∗, 1). At x = 0 using both (5.11) and (5.12) we have
LG|x=0+ = LG|x=0−βG[m(q∗)−m(1)] < 0.

(b) In order to prove LG = 0 for θ > 0 we calculate

LG(x, y, θ, t) = e−βt
x1−R

1−R

[
R

(
g − zg′(z)

1−R

)1−1/R

− βg + αzg′(z) +
η2

2
z2g′′(z)

]

= βe−βt
x1−R

1−R

[
h1−1/R

(
1− w(h)

(1−R)h

)
− h+

(
ε− δ2

2

)
w(h) +

δ2

2
w′(h)w(h)

]
and the result follows from Proposition 15. For θ = 0, LG = 0 is a simple calculation.

Now consider MG. We have

(5.15) MG = e−βtx−Ry
[
(1 + z)

1−R
g′ (z)− g (z)

]
.

Hence for R < 1, it is sufficient to show that ψ(z) ≥ 0 on (0, z∗], where

ψ (z) =
1 + z

1−R
− g (z)

g′ (z)
.

By value matching and smooth fit g(z∗) = m(q∗)−R(1 + z∗)1−R and z∗g′(z∗) =
m(q∗)−R(1−R)(1 + z∗)−R. Hence ψ(z∗) = 0 and it is sufficient to show that ψ is decreasing,
but

ψ′ (z) =
R

1−R
+
g (z) g′′ (z)
g′ (z)2

=
R

1−R
+
h [w (h)w′ (h)− w (h)]

w (h)2

≤ 0,(5.16)
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where the last inequality follows from Proposition 15. Similarly, for R > 1, provided that g is
decreasing by Proposition 17, it is sufficient to show that ψ is increasing, but Proposition 15
gives

ψ′ (z) =
R

1−R
+
g (z) g′′ (z)
g′ (z)2

=
R

1−R
+
h [w (h)w′ (h)− w (h)]

w (h)2
≥ 0.

Proposition 20. Let X∗, Θ∗, and C∗ be as defined in Theorem 7. Then they correspond to
an admissible wealth process. Moreover, Z∗

t = YtΘ
∗/X∗

t satisfies 0 ≤ Z∗
t ≤ z∗.

Proof. Note that if y0θ0/x0 > z∗ then the optimal strategy includes a sale of the endowed
asset at time zero, and the effect of the sale is to move to new state variables (X∗

0 , y0,Θ
∗
0, 0)

with the property that Z∗
0 = y0Θ

∗
0/X

∗
0 = z∗.

Recall the definitions of Λ̃ and Γ̃ and set Σ(z) = z(1 + z) and Σ̃(j) = Σ(z∗ − j).
Consider the equation

(5.17) Ĵt = Ĵ0 −
ˆ t

0
Λ̃
(
Ĵs

)
ds−

ˆ t

0
Γ̃
(
Ĵs

)
dBs + L̂t

with initial condition Ĵ0 = (z∗−z0)+. This equation is associated with a stochastic differential
equation with reflection (Revuz and Yor [22, p. 385]) and has a unique solution (J,L) for which
(J,L) is adapted, J ≥ 0, L0 = 0, and L only increases when J is zero.

Note that Λ̃(z∗) = Λ(0) = 0 = Γ(0) = Γ̃(z∗) and hence J is bounded above by z∗.
Recall that Θ∗

t = Θ∗
0 exp(−Lt/Σ̃(0)). Then Θ∗

t is adapted, continuous, and hence pro-
gressively measurable (Karatzas and Shreve [17, p. 5]). Θ∗

t is also decreasing and dΘ∗
t =

−Θ∗
tdLt/Σ̃(0) = −Θ∗

tdLt/Σ̃(Jt) since L only grows when J = 0.
Then let Z∗

t = z∗ − Jt, X
∗
t = Θ∗

tYt/Z
∗
t , and C∗

t = X∗
t (g(Z

∗
t ) − Z∗

t g
′(Z∗

t )/(1 − R))−1/R.
Then X∗ and C∗ are positive and progressively measurable. It remains to show that X is the
wealth process arising from the consumption and sale strategy (C∗,Θ∗). But, from (5.17) and
using, for example Λ̃(Jt) = Λ(Z∗

t ),

dZ∗
t = Λ(Z∗

t ) dt+ Γ (Z∗
t ) dBt +Σ(Z∗

t )
dΘ∗

t

Θ∗
t

and then

dX∗
t =

Θ∗
tYt
Z∗
t

[
dΘ∗

t

Θ∗
t

+
dYt
Yt

− dZ∗
t

Z∗
t

+

(
dZ∗

t

Z∗
t

)2

− dYt
Yt

dZ∗
t

Z∗
t

]

= X∗
t

[(
η − Γ(Z∗

t )

Z∗
t

)
dBt +

(
α− Λ(Z∗

t )

Z∗
t

+
Γ(Z∗

t )
2

(Z∗
t )

2
− η

Γ(Z∗
t )

Z∗
t

)
dt

]
+

(
Yt
Z∗
t

− Yt
Z∗
t

Σ(Z∗
t )

Z∗
t

)
dΘ∗

t

= −C∗
t dt− YtdΘ

∗
t

as required, where we use the definitions of Λ, Γ, and Σ for the final equality.
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Proof of Theorem 7. First we show that there is a strategy such that the candidate value
function is attained, and hence that V ≥ G.

Observe first that if y0θ0/x0 > z∗ then

θ0 −Θ∗
0 = θ0

(
1− z∗

1 + z∗
1 + z0
z0

)
and

X∗
0 = x0 + y0(θ0 −Θ∗

0) = x0
(1 + z0)

(1 + z∗)
.

Then, since g(z∗)/g(z0) = (1 + z∗)1−R/(1 + z0)
1−R for z0 > z∗,

G(X∗
0 , y0,Θ

∗
0, 0) =

(X∗
0 )

1−R

1−R
g(z∗) =

x1−R0

1−R
g(z0) = G(x0, y0, θ0, 0).

For a general admissible strategy define the process M = (Mt)t≥0 by

(5.18) Mt =

ˆ t

0
e−βs

C1−R
s

1−R
ds+G (Xt, Yt,Θt, t) .

Write M∗ for the corresponding process under the proposed optimal strategy. Then M∗
0 =

G(X∗
0 , y0,Θ

∗
0, 0) = G(x0, y0, θ0, 0) so there is no jump of M∗ at t = 0. Further, although the

optimal strategy may include the sale of a positive quantity of the risky asset at time zero,
it follows from Proposition 20 that thereafter the process Θ∗ is continuous and such that
Z∗
t = YtΘ

∗
t/X

∗
t ≤ z∗.

From the form of the candidate value function and the definition of g given in (3.10), we
know that G is C1,2,1,1. Then applying Itô’s formula to Mt, using the continuity of X∗ and
Θ∗ for t > 0, and writing G· as shorthand for G·(X∗

s , Ys,Θ
∗
s, s) we have

M∗
t −M0 =

ˆ t

0

[
e−βs

(C∗
s )

1−R

1−R
− C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy +Gt

]
ds

+

ˆ
(0,t]

(Gθ − YsGx) dΘ
∗
s(5.19)

+

ˆ t

0
ηYsGydBs

=: N1
t +N2

t +N3
t .

Since Z∗
t ≤ z∗, and since C∗

t = e−βs/RG−1/R
x and LG = 0 for z ≤ z∗ we have N1

t = 0. Further,
dΘs 
= 0 if and only if Z∗

t = z∗ and then MG = 0, so that N2
t = 0.

To complete the proof of the theorem we need the following lemma which is proved in
Appendix B.

Lemma 21.
1. N3 given by N3

t =
´ t
0 ηYsGy(X

∗
s , Ys,Θ

∗
s, s)dBs is a martingale.

2. limt↑∞ E[G(X∗
t , Yt,Θ

∗
t , t)] = 0.
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Returning to the proof of the theorem, and taking expectations on both sides of (5.19),
we have E[M∗

t ] =M0, which leads to

G (x0, y0, θ0, 0) = E

(ˆ t

0
e−βs

(C∗
s )

∗1−R

1−R
ds

)
+ E [G (X∗

t , y,Θ
∗
t , t)] .

Using the second part of Lemma 21 and applying the monotone convergence theorem, we have

G (x0, y0, θ0, 0) = E

(ˆ ∞

0
e−βs

C∗1−R
s

1−R
ds

)
and hence V ≥ G.

Now we consider general admissible strategies. Applying the generalized Itô’s formula [9,
section 4.7] to Mt leads to the same expression as in (5.5). Lemma 19 implies that under
general admissible strategies, N1

t ≤ 0, N2
t ≤ 0. Consider the jump term

(5.20) N3
t =

∑
0≤s≤t

[G (Xs, Ys,Θs, s)−G (Xs−, Ys,Θs−, s)−Gx(ΔX)s −Gθ(ΔΘ)s] .

Using the fact that (ΔX)s = −Ys(ΔΘ)s and writing θ = Θs−, x = Xs−, χ = −(ΔΘ)s each
nonzero jump in N3 is of the form

(ΔN3)s = G(x+ yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

But, by Lemma 18, G(x+ yχ, y, θ − χ, s) is concave in χ and hence (ΔN3) ≤ 0.
For R < 1 the rest of the proof is exactly as in Theorem 14. The case of R > 1 is covered

in Appendix C.

5.4. The verification lemma in the second nondegenerate case with no finite critical
exercise ratio. Throughout this section we suppose that ε ≥ δ2R and that if R < 1 then
0 < ε < δ2

2 R+ 1
1−R . It follows that q

∗ = 1 and z∗ = ∞, and that n(1) = m(1) > 0.
Recall the definition of n in (3.6) and the subsequent definitions of N by N(q) =

n(q)−R(1− q)R−1 and W = N−1. Suppose R < 1 and define γ as in (3.19) by

γ(v) =
1

1−R
ln v +

R

1−R
lnm(1)− 1

1−R

ˆ ∞

v

1−W (s)

sW (s)
ds.

In the case R > 1 define γ via (3.20) so that

γ(v) = − 1

R− 1
ln v − R

R− 1
lnm(1) − 1

R− 1

ˆ v

0

1−W (s)

sW (s)
ds.

For all R also define γ̃ by

γ̃(v) =
ln v

1−R
− γ(v).

Let h be inverse to γ and set g(z) = (R/β)Rh(ln z).
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Lemma 22.
1. Suppose R < 1. Then γ : (1,∞) �→ (−∞,∞) is well-defined, increasing, continuous,

and onto. Furthermore,

lim
v↑∞

γ̃(v) =
−R
1−R

lnm(1) and lim
v↑∞

(1 −W (v))eγ(v) = 1.

Suppose R > 1. Then γ : (0, 1) �→ (−∞,∞) is well-defined, decreasing, continuous,
and onto. Furthermore,

lim
v↓0

γ̃(v) =
R

R− 1
lnm(1) and lim

v↓0
(1−W (v))eγ(v) = 1.

2. h solves h′ = (1−R)hW (h) and h(−∞) = 1.

Proof. Suppose R < 1, the proof for R > 1 being similar. First we want to show thatˆ ∞ 1−W (s)

sW (s)
ds <∞ and

ˆ
1+

1−W (s)

sW (s)
ds = ∞,

which, given lims↑∞W (s) = 1 and lims↓1W (s) = 0, is equivalent toˆ ∞ 1−W (s)

s
ds <∞,

ˆ
1+

1

W (s)
ds = ∞.

But (1−q)N(q)1/(1−R) q↑1−→ n(1)−R/(1−R) and so (1−W (s)) ∼ n(1)−R/(1−R)s−1/(1−R) for large
s and the first integral is finite. Conversely, since N ′(0+) = κ for some κ ∈ (0,∞) we have
W ′(1+) = κ−1 and W (s) ∼ (s− 1)κ−1 for s near 1. Since 1/(s − 1) is not integrable near 1,
the second integral explodes.

It follows that γ is onto; the fact that γ is increasing follows on differentiation. Indeed
γ′(v) = 1/((1 −R)vW (v)) and hence h′ = (1−R)hW (h). Also h(−∞) := limu↓−∞ h(u) = 1.

The first limit result for γ̃ follows immediately from the definition. For the second,

lim
v↑∞

eγ(v)(1−W (v)) = lim
v↑∞

e−γ̃(v)v1/(1−R)(1−W (v)) = lim
v↑∞

e−γ̃(v) lim
q↑1

N(q)1/(1−R)(1− q)

= m(1)R/(1−R) lim
q↑1

n(q)−R/(1−R) = 1.

Define the candidate value function via

(5.21) G(x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0,

and extend the definition to θ = 0 and −θy < x ≤ 0 by

G(x, y, θ, t) = e−βt
(x+ yθ)1−R

1−R

(
R

β

)R
m(1)−R, −θy < x ≤ 0, θ > 0,(5.22)

G(x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
, x ≥ 0, θ = 0.(5.23)

Here continuity of G at x = 0 follows from the identity

(5.24) lim
z↑∞

zR−1g(z) = lim
u↑∞

e−(1−R)uh(u) = lim
v
e−(1−R)γ(v)v = lim

v
e−(1−R)γ̃(v) = m(1)−R.
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Lemma 23. Fix y and t. Then G = G(x, θ) is concave in x and θ on [0,∞) × [0,∞). In
particular, if ψ(χ) = G(x− χy, y, θ + χ, t), then ψ is concave in χ.

Proof. The proof follows similarly to the proof of Lemma 18, and makes use of the fact
dh/du = (1−R)hW (h) proved in Lemma 22.

Lemma 24. Consider the candidate function constructed in (5.21)–(5.23). Then for x >
0, θ > 0, LG = 0 and MG ≥ 0. Further, MG = 0 at (x = 0, θ > 0) and LG = 0 at x = 0 and
at θ = 0.

Proof. The majority of the lemma follows exactly as in Lemma 19.
For MG|x=0, note that Gθ|x=0 = yG(1−R)/(x+yθ)|x=0 = (1−R)G/θ. Then, yGx|x=0− =

yG(1−R)/(x+ yθ)|x=0− = (1−R)G/θ, whereas for x > 0,

yGx =
y(1−R)G

x
− g′

g

y2θ

x2
G =

(1−R)G

θ

[
z − z2g′(z)

(1−R)g(z)

]
,

and then for fixed (y, θ)

lim
x↓0

[
z − z2g′(z)

(1−R)g(z)

]
= lim

u↑∞
eu
(
1− h′(u)

(1−R)h(u)

)
= lim

v
eγ(v) (1−W (v)) = 1.

Proof of Theorem 10. For an admissible strategy (C,Θ) = (Ct,Θt)t≥0 define the process
M(C,Θ) = (Mt)t≥0 via

(5.25) Mt =

ˆ t

0
e−βs

C1−R
s

1−R
ds +G (Xt, Yt, 0, t) ,

where G is as given in (5.21)–(5.23).
Case 1. θ0 = 0 and x0 > 0: we show V = G. For these initial values the agent does

not own any units of asset for sale and consumption can only be financed from liquid (cash)
wealth. Then (Θt)t≥0 = 0, dXt = −Ctdt, and the problem is nonstochastic. The candidate
optimal consumption function is C(x, y, 0) = βx/R and the associated consumption process

is C∗
t = β

Rx0e
− β

R
t with resulting wealth process X∗

t = x0e
− β

R
t.

Then the value function is

E

[ˆ ∞

0
e−βt

C∗
t
1−R

1−R
dt

]
=

ˆ ∞

0
e−βt

(
β

R

)1−R
(
e−

β
R
tx0

)1−R
1−R

dt

=

(
R

β

)R x1−R0

1−R
= G(x0, y0, 0, 0),

where the last equality follows from (5.23). Hence, we have V ≥ G.
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Now consider general admissible strategies. LetM0 be given byM0
t =Mt(Ct, 0). Applying

Itô’s formula to M0, we get

M0
t −M0

0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsGx + αYsGy +

1

2
η2Y 2

s Gyy +Gs

]
ds

+

ˆ t

0
ηYsGydBs

= N1
t +N3

t .

Lemma 24 implies that LG = 0 and hence N1
t = 0.

Suppose R < 1. Then we have 0 ≤ M0
t ≤ M0

0 + N3
t , and the local martingale N3

t is
now bounded from below and hence a supermartingale. Taking expectations we conclude
E(M0

t ) ≤M0
0 = G(x0, y0, 0, 0), and hence

(5.26) G(x0, y0, 0, 0) ≥ E

ˆ t

0
e−βs

Cs
1−R

1−R
ds + EG(Xt, Yt, 0, t) ≥ E

ˆ t

0
e−βs

Cs
1−R

1−R
ds.

Letting t → ∞, from (5.26) we conclude

G(x0, y0, 0, 0) ≥ E

ˆ ∞

0
e−βt

Ct
1−R

1−R
dt,

and taking a supremum over admissible strategies we have G ≥ V , and hence G = V .
For R > 1, a modification of the proof of Theorem 14 also applies here and G = V .
Case 2. x0 = 0 and θ0 > 0: we show V ≥ G. Under the candidate optimal strategy

defined in Theorem 10 the consumption and sale processes evolve according to Ctdt = −YtdΘt,
meaning that the investor finances consumption only from the sales of the endowed asset and
wealth stays constant and identically zero. In this case, the proposed strategies in (3.24)
become

Θ∗
t = θ0e

− β
R
φt, C∗

t =
β

R
φYtΘ

∗
t =

β

R
φy0θ0 exp

{
β(ε− δ2/2− φ/R)t+ δ

√
βBt

}
,

where temporarily we write φ = m(1) = δ2R(1−R)/2− ε(1−R) + 1 > 0.
The corresponding value function is

G∗ = E

[ˆ ∞

0
e−βt

C∗
t
1−R

1−R
dt

]

=

(
β

R

)1−R (φy0θ0)
1−R

1−R
E

[ˆ ∞

0
e−βte(1−R)β(ε−

δ2

2
− φ

R
)t+δ

√
β(1−R)Btdt

]
=

(
β

R

)1−R (φy0θ0)
1−R

1−R

ˆ ∞

0
e{(ε(1−R)−

δ2

2
R(1−R)−1)− (1−R)

R
φ}βtdt

=

(
R

β

)1−R (φy0θ0)
1−R

1−R

ˆ ∞

0
e−(βφ/R)tdt =

(
R

β

)R (y0θ0)
1−R

1−R
φ−R = G(0, y0, θ0, 0).
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Then, under the candidate optimal strategy,

G(0, y0, θ0, 0) = E

[ˆ ∞

0
e−βt

(C∗
t )

1−R

1−R
dt

]
,

and we have G(0, y0, θ0, 0) ≤ V (0, y0, θ0, 0).
Case 3. x0 > 0 and θ0 > 0: we show V ≥ G. Let M∗ = M(C∗,Θ∗) for the candidate

optimal strategies in Theorem 10.
From the form of the candidate value function we know that G is C1,2,1,1. Then applying

Itô’s formula to M∗, we have

M∗
t −M∗

0 =

ˆ t

0

[
e−βs

(C∗
s )

1−R

1−R
− C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy +Gt

]
ds

+

ˆ
(0,t]

(Gθ − YsGx) dΘs(5.27)

+

ˆ t

0
ηYsGydBs

=: N1
t +N2

t +N3
t .

Since C∗
s = G

−1/R
x eβs/R is optimal and, by Lemma 24, LG = 0, we have N1

t = 0. Further,
under the proposed strategies in (3.24), dΘt 
= 0 if and only if Xt = 0. Then, by Lemma 24,
MG|x=0 = 0 and N2

t = 0.
The following Lemma is proved in the appendix.

Lemma 25.
(1) N3, given by N3

t =
´ t
0 ηYsGy(X

∗
s , Ys,Θ

∗
s, s)dBs, is a martingale.

(2) limt↑∞ E[G(X∗
t , Yt,Θ

∗
t , t)] = 0.

The conclusion that V ≥ G now follows exactly as in the proof of Theorem 7 but using
Lemma 25 in place of Lemma 21.

Case 4. x0 ≥ 0 and θ0 > 0: V ≤ G. To complete the proof of the theorem, it re-
mains to show that for θ0 > 0 and general admissible strategies, we have V (x0, y0, θ0, 0) ≤
G(x0, y0, θ0, 0). Recall the definition of M in (5.25).

Applying the generalized Itô’s formula [9, section 4.7] to Mt leads to the expression in
(5.5) and

Mt −M0 = N1
t +N2

t +N3
t +N4

t .

Lemma 24 implies that under general admissible strategies, N1
t ≤ 0, and N2

t ≤ 0 with equality
at x = 0. Consider the jump term,

(5.28) N3
t =

∑
0≤s≤t

[G (Xs, Ys,Θs, s)−G (Xs−, Ys,Θs−, s)−Gx(ΔX)s −Gθ(ΔΘ)s] .

Using the fact that (ΔX)s = −Ys(ΔΘ)s and writing θ = Θs−, x = Xs−, χ = −(ΔΘ)s each
nonzero jump in N3 is of the form

(ΔN3)s = G(x+ yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

Note that by Lemma 23, G(x+ yχ, y, θ − χ, s) is concave in χ and hence (ΔN3) ≤ 0.
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Figure 2. Transformations from m,n, � to W (v) to γ(v) to h(u) and g(z) in the second nondegenerate
scenario in the case R < 1. Parameters are ε = 1 δ = 1, β = 0.1, and R = 0.5. For these parameters m is
monotonic decreasing.

For the case R < 1 the remainder of the proof follows as in the proof of Theorem 14. The
case R > 1 for general admissible strategies is covered in Appendix C.

6. Comparative statics. In this section, we provide comparative statics describing how
the outputs of the model depend on market parameters. This section consists of five parts,
analysis of the optimal threshold z∗, the value function g, the optimal consumption C(x, y, θ),
the utility indifference price p(x, y, θ), and the cost of illiquidity p∗(x, y, θ), and are based on
our numerical results. The cost of illiquidity, defined in (6.3) below, represents the loss in
cash terms faced by our agent when compared with an otherwise identical agent with the
same initial portfolio who is able to adjust her portfolio of the risky asset in either direction
at zero cost.

The equations describing the function n and the first crossing ofm are simple to implement
in MATLAB, and then it also proved straightforward to calculate h or γ and, thence, the value
function in the nondegenerate cases. Figures 2 and 3 are generic plots of the various functions
used in the construction of the value function. The parameter values are such that we are in
the second nondegenerate case (ε ≥ δ2R and ε < δ2R

2 + 1
1−R if R < 1), but the figures would

be similar for the first nondegenerate case (0 < ε < δ2R and ε < δ2R
2 + 1

1−R if R < 1). The
two figures cover the cases R < 1 and R > 1, respectively. For R < 1, as plotted in Figure 2,
m and n are monotone decreasing and W is increasing on [1,∞) with limv→1W (v) = 0
and limv→∞W (v) = 1. Further, we have γ(v) is increasing on [1,∞) and g is concave and
increasing. For R > 1, as plotted in Figure 3, m and n are monotone increasing and W is
decreasing on (0, 1] with limv→0W (v) = 1 and limv→1W (v) = 0. Finally, we have γ(v) is
decreasing on (0, 1] and g is convex decreasing and convergent to zero as z tends to infinity.
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Figure 3. Transformations from m,n, � to W (v) to γ(v) to h(u) and g(z) in the second nondegenerate
scenario in the case R > 1. Parameters are ε = 3 δ = 1, β = 0.1, and R = 2.
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Figure 4. z∗ increases as ε increases or as δ increases. Here β = 0.1 and R = 0.5.

Figures 4 and 5 show that z∗ increases as mean return ε increases and decreases as volatility
δ increases or risk aversion R increases. As ε increases, the nontraded asset Y becomes more
valuable and it is optimal for the investor to wait longer to sell Y for a higher return. For
ε = 0, when the endowed asset has zero return but with additional risk, the optimal strategy
is to sell immediately to remove the risk. Similarly, as δ increases, the level of z∗ decreases
as holding Y involves additional risk. Hence, it is optimal for the investor to sell units of
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Figure 5. z∗ decreases as R increases or as ε decreases. Here δ = 3 and β = 0.1.

Y sooner in order to mitigate this risk. As the risk aversion of the investor increases, she is
less tolerant to the risk of the endowed asset and hence more inclined to sell Y earlier. As
R → 0 (provided ε > 0) we have z∗ → ∞, which implies the optimal strategy is never to sell
the asset. In the limit the investor is not concerned about the risk of holding the risky asset.
Conversely, as R → ∞, we have z∗ → 0. In this case, the investor cannot tolerate any risks
and it is therefore optimal to sell the asset immediately to arrive at a safe position.

The value function as expressed via g in nondegenerate cases is plotted in Figures 6 and
7 under different drifts and risk aversions. These figures show that g is increasing in drift
while g has no monotonicity in risk aversion. (A similar plot shows that g is decreasing in
volatility.) As the nontraded asset becomes more valuable, the investor can choose optimal
sale and consumption strategies which lead to a larger value function. (Further, as the asset
becomes more risky, the additional risk makes the value function smaller.) Meanwhile, as ε
increases, z∗ in Figure 6 is decreasing (and as δ increases, z∗ is increasing). These results
are consistent with the results described in the previous paragraph. At z = z∗, smooth fit
conditions are satisfied. Observe also that for different values of drift, we nonetheless have
that g starts at the same point. This corresponds to the value function when θ0 = 0, whereby
consumption is only financed by initial wealth and the problem is deterministic. In this case,
we have g(0) = (R/β)R.

Optimal consumption C(x, y, θ) is considered in Figures 8–10. Figure 8 plots the optimal
consumption C(1, 1, θ) as a function of endowed units θ and shows that the optimal con-
sumption increases in θ: as the size of the holdings of the nontraded asset Y increases, the
agent feels richer and hence consumes at a faster rate. For θ = 0, the optimal consumption
C(x, y, 0) = xg(0)−

1
R = β

Rx is strictly positive and is financed from cash wealth. Figure 8
also suggests that the optimal consumption C(1, 1, θ) decreases in risk aversion. Given the
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Figure 7. g(z) with different risk aversion R in the first and second nondegenerate scenarios. In the left
graph, R takes values in 0.7, 0.8, and 0.9. The rest of the parameters are ε = 3, δ = 2, β = 0.1. The critical
risk aversion is R = ε/δ2 = 0.75. The dots represent finite z∗ and the solid line is the value function g in the
second nondegenerate scenario with infinite z∗. In the right graph, R takes values in 1.3, 1.4, and 1.5 and the
rest of the parameters are ε = 6, δ = 2, and β = 0.1.

set of parameters the critical risk aversion (i.e., the boundary between the two nondegenerate
cases) is at R = ε/δ2 = 0.75. For the bottom two lines in Figure 8 with R > 0.75, we have
ε < δ2R and this falls into the first nondegenerate case with finite z∗. For R ≤ 0.75, we
have ε ≥ δ2R, which is the second nondegenerate case with infinite z∗. As we see, there is
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Figure 9. Optimal consumption C(x, 1, 1) and C(x, 1, 1)/x as R varies. R takes values in 0.6, 0.75, 0.9,
and 1.05 with parameters ε = 3, δ = 2, y0 = 1, and θ0 = 1. The dots represent x∗ = 1/z∗ and the critical
risk aversion is R = ε/δ2 = 0.75. In both graphs, the top two lines correspond to the optimal consumptions
in the second nondegenerate case with x∗ = 0. The bottom two lines are the optimal consumptions in the first
nondegenerate case with finite z∗ or, equivalently, x∗ > 0.

no discontinuity in consumption with respect to risk aversion at either R = 0.75 or R = 1.
The optimal consumptions for different risk aversions differ primarily in the levels, and the
dominant factor is the optimal consumption for θ = 0. As argued above C(x, y, 0) = βx/R is
decreasing in R.
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Figure 10. Optimal consumption C(1, 1, θ) as ε varies. ε takes values in 0.5, 1, 1.5, and 2 with parameters
δ = 2, β = 0.1, R = 0.5, x0 = 1, and y0 = 1. The critical mean return is ε = δ2R = 2. When ε = 2 we are in
the second nondegenerate case.

Figure 9 plots both consumption as a function of wealth C(x, 1, 1) and the ratio of con-
sumption to wealth C(x, 1, 1)/x as a function of x with different risk aversions. Note that
this can only be shown for x > yθ/z∗ = 1/z∗ since if x < 1/z∗ the agent makes an immediate
sale of units of risky asset. The critical value of the risk aversion is R = ε/δ2 = 0.75. For
R > 0.75, we have z∗ <∞ and x∗ = 1/z∗ > 0 while for R ≤ 0.75, z∗ = ∞ and x∗ = 1/z∗ = 0.
The results show that the optimal rate of consumption is an increasing function of wealth
but that consumption per unit wealth is a decreasing function of wealth. (In the standard
Merton problem, consumption is proportional to wealth.) As the agent becomes richer, she
consumes more, but the fraction of wealth that she consumes becomes smaller. The expla-
nation is that her endowed wealth is being held constant. By scaling we have that if both
x and θ are increased by the same factor, then consumption would also rise by the same
factor, but here x is increasing, but θ (and y) are held constant and, hence, consumption
increases more slowly than wealth. In the limit x → ∞ we have limx→∞C(x, 1, 1) = ∞ and

limx→∞C(x, y, θ)/x = g(0)−
1
R = β/R.

Figure 10 plots the optimal consumption C(1, 1, θ) as a function of θ and ε. Here we find
a first surprising result: we might expect the optimal consumption C(x, y, θ) to be increasing
in the drift, but this is not the case for large θ. For an explanation of this phenomenon, recall
that the optimal exercise ratio z∗ is increasing in the drift. As the drift increases, the asset
has a more promising return on average which makes the agent feel richer and consume at a
higher rate. However, a larger drift also implies a larger z∗, indicating that the agent should
postpone the sale of the risky asset. Hence, a larger drift involves more risk, and in order to
mitigate this risk, the agent consumes less in the short term. Hence, the optimal consumption
decreases in the drift for large θ. We find similar results if we consider C(1, 1, θ) as a function
of δ. Optimal consumption is not necessarily decreasing in volatility and consumption can be
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Figure 11. Indifference price p(x, 1, 1) as ε varies. ε varies from top to bottom as 2.5, 2.1, 1.5, 1 with fixed
parameters δ = 2, β = 0.1, R = 0.5, θ0 = 1, and y0 = 1. The dots represent x∗ = 1/z∗ and the critical mean
return is ε = δ2R = 2.

increasing in volatility for large values of θ. Analogously, if we plot C(x, 1, 1) we find that
consumption is a decreasing (increasing) function of return ε if wealth x is small (large).

Figures 11–14 plot the utility indifference price or certainty equivalence value p(x, y, θ).
Recall that in the second and third cases of Theorem 4 the certainty equivalent value of the
nontraded asset is given by

p(x, y, θ) = x

⎡⎣g
(
yθ
x

)
g(0)

⎤⎦
1

1−R

− x.

Figures 11 and 12 consider the indifference price as a function of wealth. Dots in the figures
represent the optimal exercise ratio z∗ = yθ/x. In each of the figures we choose a range of
parameter values such that sometimes we are in the first nondegenerate case, and sometimes
in the second nondegenerate case. In Figure 11, for ε < 2, we have z∗ <∞ and x∗ = 1/z∗ > 0,
and for ε ≥ 2, we have z∗ = ∞ and x∗ = 0. We can see p(x, 1, 1) is concave and increasing
in x. It follows from Theorem 7 that g(z) = (R/β)Rm(q∗)−R(1 + z)1−R for z ≥ z∗. Further,

under the condition that 0 < ε < δ2R and ε < δ2

2 R + 1
1−R , which ensures a finite exercise

ratio,

lim
x→0

p(x, y, θ) = lim
x→0

x

⎧⎪⎨⎪⎩
⎡⎣g
(
yθ
x

)
g(0)

⎤⎦
1

1−R

− 1

⎫⎪⎬⎪⎭
= lim

x→0

{
m(q∗)

R
R−1 (x+ yθ)− x

}
= m(q∗)

R
R−1 yθ > yθ.
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Figure 12. Indifference price p(x, 1, 1). δ varies from top to bottom as 2.1, 2.4, 2.8, and 3.2 with fixed
parameters ε = 3, β = 0.1, R = 0.5, θ0 = 1, and y0 = 1. The dots represent x∗ = 1/z∗ and the critical volatility
is δ =

√
ε/R = 2.45. The top two lines correspond to the indifference prices in the second nondegenerate case

with x∗ = 0. The bottom two lines are indifference prices in the first nondegenerate case with x∗ > 0.

In that case, for x = 0, where no initial wealth is available to finance consumption, it is optimal
for the investor to sell some units of the endowed asset Y immediately so as to keep the ratio
of the wealth invested in the endowed asset to liquid wealth below z∗, i.e., from the initial
portfolio (x = 0, θ = Θ0−) the agent moves to (x = X0+, θ = Θ0+), where Θ0+ = z∗

1+z∗Θ0−
and X0+ = 1

1+z∗yΘ0−. The monotonicity of p(x, 1, 1) in ε and δ is also illustrated in Figures 11
and 12: a higher mean return adds value to the asset, while the increasing volatility makes
Y more risky and reduces value. Also observe that for drift larger than the critical value, the
change in drift does not move the dot (representing the critical ratio) while for drift smaller
than the critical value, the dot moves rightwards as drift increases. To the left of the dot, the
agent should sell the endowed asset initially, while to the right of the dot, the agent should
wait. As drift increases, the agent should wait longer for a higher return when selling the
asset.

Figure 13 considers the indifference price p(1, 1, θ) and unit indifference price p(1, 1, θ)/θ as
a function of θ. We see that p(1, 1, θ) is increasing in θ and for θ = 0, p(1, 1, 0) = 0, reflecting
the fact that a null holding is worth nothing. We also have the unit price p(1, 1, θ)/θ is
decreasing in the units of asset θ. For small holdings, the marginal price limθ→0 p(1, 1, θ)/θ is
infinite. As θ → ∞, the figures imply that the unit price p(1, 1, θ)/θ tends to some constant
larger than the unit price y of Y :

lim
θ→∞

p(x, y, θ)

θ
= lim

θ→∞

x

[
g( yθ

x )
g(0)

] 1
1−R

− x

θ
= lim

θ→∞
m(q∗)

R
R−1 (x+ yθ)− x

θ
= m(q∗)

R
R−1 y > y,

where the second equality follows since for z ≥ z∗, we have g(z) = (R/β)Rm(q∗)−R(1+z)1−R.
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Figure 13. Indifference price p(1, 1, θ) and unit price p(1, 1, θ)/θ. ε varies from top to bottom as 2, 1.5, 1, 0.5
with fixed parameters δ = 2, β = 0.1, R = 0.5, x0 = 1, and y0 = 1. The dots represent θ∗ = z∗ and the critical
mean return is ε = δ2R = 2. The top line corresponds to the indifference price in the second nondegenerate
case with infinite z∗.

Figure 13 also illustrates the monotonicity of p in the drift parameter ε and we have
p(1, 1, θ) and p(1, 1, θ)/θ both increase in the drift. Similarly, it can be shown that p(1, 1, θ)
and p(1, 1, θ)/θ are both decreasing in δ, reflecting the increased riskiness of positions as
volatility increases.

Figure 14 plots the indifference price as a function of cash wealth for different risk aversions.
Naively we might expect the price to be monotone decreasing in risk aversion—a more risk
averse agent will assign a lower value to a risky asset. However, the results show that this is
not the case, and for large wealths the utility indifference price is increasing in R. (If we fix
wealth x and consider the certainty equivalent value as a function of quantity θ then we find
a similar reversal, and the certainty equivalent value is increasing in R for small θ.)

An explanation of this phenomenon is as follows. Consider an agent with positive cash
wealth and zero endowment of the risky asset. This agent consumes at rate βx/R; in partic-
ular, as the parameter R increases, the agent consumes more slowly. The introduction of a
small endowment will not change this result and, in general, an increase in the parameter R
postpones the time at which the critical ratio reaches z∗. (Although z∗ depends on R also,
this is a secondary effect.) Since the endowed asset is appreciating, on average, by the time
the agent chooses to start selling the asset, it will be worth more. The total effect is to make
the indifference price increasing in R. Similarly, the indifference price p(1, 1, θ) and the unit
indifference price p(1, 1, θ)/θ as functions of θ are not necessarily monotone in risk aversion.

Finally, we consider the impact of the illiquidity assumption. We do this by considering
the value function of our agent who cannot buy the endowed asset and comparing it with the
value function of an otherwise identical agent, but who can both buy and sell the endowed
asset with zero transaction costs. Suppose parameters are such that we are in the second case
of Theorem 4. In the illiquid market, where Y is only allowed for sale, Theorem 7 proves the
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Figure 14. Indifference price p(x, 1, 1). R takes values in 0.5, 0.75, 0.9, and 1.2 with fixed parameters
ε = 3, δ = 2, β = 0.1, y0 = 1, and θ0 = 1. The dots represent x∗ = 1/z∗ and the critical risk aversion is
R = ε/δ2 = 0.75. The top two lines for x ∈ [0, 1] correspond to the indifference prices in the second non-
degenerate case with x∗ = 0. The bottom two lines are indifference prices in the first nondegenerate case with
x∗ > 0.

value function is

(6.1) VI(x, y, θ, 0) =
x1−R

1−R
g

(
yθ

x

)
= sup

(C,Θ)
E

[ˆ ∞

0
e−βt

C1−R
t

1−R
dt

]
,

where the newly introduced subscript I stands for the value function in the illiquid market,
in which the asset can only be sold.

In a liquid market such that Y can be dynamically traded, wealth evolves as dXt =
−Ctdt + ΠtdYt/Yt. Here (Π)t≥0 represents the portfolio process. We suppose the agent is
endowed with Θ0 units of Y initially and is constrained to keep X positive. This is Merton’s
model and we know the optimal strategy is to keep a constant fraction of wealth in the risky
asset. The initial endowment therefore only changes initial wealth and the value function is

(6.2) VL(x, y, θ, 0) = sup
(C,Π)

E

[ˆ ∞

0
e−βt

C1−R
t

1−R
dt

]
=

(x+ yθ)1−R

1−R

[
β

R
− α2(1−R)

2σ2R2

]−R
,

where the subscript L stands for the value function in the liquid market.
Now we consider the cost of illiquidity.

Definition 26. The cost of illiquidity, denoted p∗ = p∗(x, y, θ), is the solution to

(6.3) VL(x− p∗, y, θ, t) = VI(x, y, θ, t)

and represents the amount of cash wealth the agent who can only sell the risky asset would be
prepared to forgo, in order to be able to trade the risky asset with zero transaction costs.
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Figure 15. Cost of illiquidity p∗(1, 1, θ) as θ varies. Parameters are ε = 1, δ = 2, and R = 0.5. Here, we
fix x0 = y0 = 1 and θ ∈ [0, 1]. For the corresponding Merton problem with dynamic trading in Y we have that
it is optimal to invest a constant fraction zM = ε

δ2R−ε
in the risky asset. Recall Remark 9 and observe that

zM ≤ z∗.

Equating (6.1) and (6.2), we can solve for p∗ to obtain

(6.4) p∗(x, y, θ) = x

[
1 +

yθ

x
− g

(
yθ

x

) 1
1−R
(
β

R
− α2(1−R)

2σ2R2

) R
1−R

]
.

Considering (6.4) when θ = 0, where the investor is not endowed any units of Y initially, we
have

p∗(x, y, 0) = x

[
1−
(
β

R
− α2(1−R)

2σ2R2

) R
1−R

g(0)
1

1−R

]
= x

[
1−
(
1− ε2(1−R)

2δ2R

) R
1−R

]
> 0.

Suppose R < 1, 0 < ε < δ2

2 R + 1
1−R , and ε < δ2R, so that z∗ is finite. Figure 15 plots

p∗(1, 1, θ) for θ ∈ [0, 10]. Notice that p∗ decreases initially, has a strictly positive minimum
near 0.95, and then increases, before becoming linear beyond θ = z∗. Clearly, whatever the
initial endowment of the agent, she has a smaller set of admissible strategies than an agent
who can trade dynamically, and the cost of liquidity is strictly positive. For small initial
endowments the agent would like to increase the size of her portfolio of the risky asset, and
the smaller her initial endowment the more she would like to purchase at time zero. Hence
the cost of illiquidity is decreasing in θ for small θ. However, for large θ, the agent would
like to make an initial transaction (to reduce the ratio of wealth held in the risky asset to
cash wealth to below z∗), and indeed since she is free to do so, her optimal strategy involves
such a transaction at time zero. Hence for large wealth the cost of liquidity is proportional
to (x+ yθ), and hence is increasing in θ. For this reason, the cost of illiquidity is a U-shaped
function of θ.
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Appendix A. Properties of n. Recall the definitions of m and � and the differential
equation (3.6) for n, and also the definitions of q�, qm, qn, and q

∗. Define

q̃ = inf{q > 0 : (1−R)n(q) ≥ (1−R)�(q)} ∧ 1.

Note that m(0) = 1 = �(0) and m(1) = 1 − ε(1 − R) + δ2R(1 − R)/2 = �(1). The concave
function � is positive on (0, 1) if �(1) = 1− ε(1−R) + δ2R(1−R)/2 ≥ 0.

Lemma 27.
1. Define Φ via

Φ(χ) = χ2 − (1−R)

(
δ2

2
− ε+

1

R

)
χ− ε

(1−R)2

R
.

Then for R ∈ (0, 1), n′(0) is the smaller root of Φ(χ) = 0 and for R ∈ (1,∞), n′(0) is
the larger root.

2. For q ∈ (0, qn ∧ q̃), n′(q) > 0 if and only if n(q) < m(q), similarly n′(q) = 0 if and
only if n(q) = m(q).

3. If �(1) ≥ 0 then q̃ = qn = q� = 1.
4. If �(1) < 0 then q̃ = qn = q� < q∗.
5. If 0 ≤ q∗ < 1 then q∗ > ε/δ2R and (1−R)m is increasing on (q∗, 1).

Proof. (1) From the expression (3.6) and l’Hôpital’s rule, n′(0) = χ solves

χ =
1−R

R
− δ2

2

(1−R)2

R

1

(1−R)( δ
2

2 − ε)− χ

or, equivalently, Φ(χ) = 0. Further �′(0) = (1−R)( δ
2

2 − ε) and

Φ

(
(1−R)

(
δ2

2
− ε

))
= −δ

2

2

(1−R)2

R
< 0.

For R < 1, we have n′(0) < �′(0) by hypothesis, so that n′(0) is the smaller root of Φ. For
R > 1, we have n′(0) > �′(0) by hypothesis and n′(0) is the larger root of Φ.

(2) This follows immediately from the expression for n′(q).
(3) Suppose R < 1. Since n′(0) < �′(0) we have q̃ > 0. Notice that if 0 < n(q) < �(q) and

�(q)− n(q) is sufficiently small, then n′(q) < �′(q). Hence q̃ ≥ qn. Further, if n(q) < �(q)− φ
for some φ > 0 on some interval [q, q] ⊂ (0, 1), then n′(q)/n(q) is bounded below by a constant
on that interval and, provided n(q) > 0, it follows that n(q) > 0 also. Hence, if � is positive
on [0, 1) then so is n and qn = 1. For R > 1, we have n′(0) > �′(0) and the result follows via
a similar argument.

(4) Suppose R < 1. The same argument as above gives that q̃ = qn = q� and now these
quantities are less than one. Clearly qm < q�, and m is decreasing on (0, qm). We cannot have
q∗ ≤ qm for then n′(q∗) −m′(q∗) > 0 and n(q∗) −m(q∗) = 0 contradicting the minimality of
q∗, nor can we have qm < q∗ ≤ q� for on this region m < 0 ≤ n.

(5) We can only have q∗ < 1 if m(1) > 0 and (1−R)m′(1) > 0. For R < 1 we must have
n′(q∗) = 0 < m′(q∗). But m has a minimum at ε/δ2R, so q∗ > ε/δ2R. For R > 1, we must
have n′(q∗) = 0 > m′(q∗). But m has a maximum at ε/δ2R, so q∗ > ε/δ2R.
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Proof of Proposition 1. (1) Note that Φ(m′(0)) = (1 − R)2δ2ε/2. Then, if ε < 0 we have
n′(0) < m′(0) for R < 1 and q∗ = 0. Otherwise, for R > 1, we have n′(0) > m′(0) and q∗ = 0.
If ε = 0 then n′(0) = m′(0) and more care is needed.

Consider R < 1. Since ε ≤ 0, m is increasing. Suppose n(q̂) > m(q̂) for some q̂ in
[0, 1]. Let q = sup{q < q̂ : n(q) = m(q)}. Then on (q, q̂) we have n′(q) < 0 < m′(q) and

m(q̂)− n(q̂) = m(q)− n(q) +
´ q̂
q [m

′(y)− n′(y)]dy > 0, a contradiction.

For R > 1, the only difference is that m is decreasing given ε ≤ 0 and n′(0) > m′(0).
(2) Consider first R < 1 and suppose that 0 < ε < min{δ2R, δ22 R+ 1

1−R}. Then m′(1) > 0
and m(1) > 0. Since ε > 0 we have n′(0) > m′(0) and n − m is positive at least initially.
Write n(q) = m(q) + δ2(1−R)qb(q)/2. Then n(q) ≤ �(q) implies b(q) ≤ 1− q.

Suppose b(q) > 0 for all q ∈ (0, 1). Then n(q) ≥ m(q) and n′(q) < 0 so that n(q) ≥ n(1) =
m(1) and

m (1) = m (q)− (1− q) (1−R)
(
ε− δ2R

)− (1− q)2 δ2R (1−R) /2

> m (q) + φ (1− q) δ2 (1−R) q/2

for q > ε/δ2R and φ < (δ2R− ε)min{ 2
δ2
, Rε }. For such q, b(q) > φ(1 − q). Hence

n′ (q)
n (q)

= −1−R

R

b (q)

(1− q) (1− q − b (q))
≤ −1−R

R

φ

(1− q) (1− φ)

and we must have n′(1−) = −∞ contradicting the fact that n(q) ≤ �(q). It follows that we
must have b(q) = 0 for some q ∈ (0, 1). At this point n crosses m. Note that this crossing
point is unique: at any crossing point m′(q) > 0 = n′(q), so that all crossings of 0 in (0, 1) by
n−m are from above to below.

For R > 1, we have m′(1) < 0 and m(1) > 0. Since ε > 0, we have n′(0) < m′(0) and
n − m is negative initially. Let n(q) = m(q) + δ2(1 − R)qb(q)/2. Then n(q) ≥ �(q) implies
b(q) ≤ 1 − q. Suppose b(q) > 0 for all q ∈ (0, 1), then it leads to the same contradiction for
R < 1. It follows that b(q) = 0 for some q ∈ (0, 1), where n crosses m. At any crossing point
m′(q) < 0 = n′(q), so that n crosses m from below.

(3) ε ≥ δ2R and if R < 1, ε < δ2

2 R+ 1
1−R .

Consider first R < 1. Since ε > 0 we have that n′(0) > m′(0) and n > m in a neighborhood
to the right of zero. Further, m is decreasing and there are no solutions of n = m since at any
solution we must have that 0 = n′ < m′ < 0.

For R > 1, we have m is increasing and n′(0) < m′(0). There are no solutions of n = m
in that at any solution we should have 0 = n′ > m′ > 0.

(4) R < 1 and ε ≥ δ2

2 R+ 1
1−R .

Then m(1) ≤ 0. Since m is decreasing at least until it hits zero, and since n′ = 0 at a
crossing point we cannot have that n crosses m before it hits zero.

Proof of Proposition 15. (1) N solves

N ′ (q) =
1
2δ

2 (1−R)2 qN (q)

� (q)−N (q)−1/R (1− q)1−1/R
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and N is strictly increasing for R < 1. Otherwise, it is decreasing for R > 1. W solves

(A.1) W ′ (v) =
� (W (v))− v−1/R (1−W (v))1−1/R

1
2δ

2 (1−R)2 vW (v)
.

(2) This follows from (3.9) and (A.1).
(3) Consider first R < 1. On (0, q∗) we have n(q) > m(q) and then �(q) − n(q) <

�(q)−m(q) = q(1− q)δ2(1−R)/2. Then v−1/R(1−W (v))1−1/R = n(W (v)) and

v(1−R)W ′(v) =
�(W (v)) − n(W (v))

δ2

2 (1−R)W (v)
< 1−W (v).

It follows that w′(v) = (1 − R)W (v) + v(1 − R)W ′(v) < 1 − RW (v). At q∗, n(q∗) = m(q∗)
and the inequality becomes an equality throughout.

For R > 1, we have n(q) < m(q) on (0, q∗) and �(q) − n(q) > �(q) − m(q) =
q(1 − q)δ2(1 − R)/2. Then again v(1 − R)W ′(v) < 1 −W (v) and w′(v) < 1 − RW (v) with
equality at h∗.

Note that since W is nonnegative, 1−RW (h) ≤ 1.

Appendix B. The martingale property of the value function.

Proof of Lemma 21. First we want to show the the local martingale

N3
t =

ˆ t

0
ηYsGy(X

∗
s , Ys,Θ

∗
s, s)dBs

is a martingale. This will follow if, for example,

(B.1) E

ˆ t

0
(YsGy(X

∗
s , Ys,Θ

∗
s, s))

2 ds <∞

for each t > 0. From the form of the value function (5.11), we have

(B.2) yGy(x, y, θ, s) = e−βt
x1−R

1−R
zg′ (z) = G (x, y, θ, t)

zg′ (z)
g (z)

≤ (1−R)G (x, y, θ, t)

where we use that zg′(z)
g(z) = w(h)

h = (1 −R)W (h) and 0 ≤W (h) ≤ 1.

Define a process (Dt)t≥0 by Dt = lnG(X∗
t , Yt,Θ

∗
t , t). Then D solves

Dt −D0 =

ˆ t

0

1

G

(
Gt − C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy

)
ds

+

ˆ t

0

1

G
(Gθ − YsGx) dΘs +

ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds

= −
ˆ t

0

e−
β
R
s

1−R

1

G
G

R−1
R

x ds+

ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds.
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It follows that the candidate value function along the optimal trajectory has the representation

(B.3) G (X∗
t , Yt,Θ

∗
t , t) = G (X∗

0 , y0,Θ
∗
0, 0) exp

{
−
ˆ t

0

e−
1
R
βs

1−R

1

G
G

R−1
R

x ds

}
Ht,

where H = (Ht)t≥0 is the exponential martingale

Ht = E
(
ηYsGy
G

◦B
)
t

:= exp

{ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds

}
.

Note that (B.2) implies 1
GηyGy ≤ η(1−R), so that H is indeed a martingale, and not merely

a local martingale.
From (B.2) and (B.3), we have

(yGy)
2 = G (X0, y0,Θ0, 0)

2

(
zg′ (z)
g (z)

)2

× exp

{
−2

ˆ t

0

e−
1
R
βs

(1−R)

1

G
G

R−1
R

x ds

}
H2
t

≤ G (X0, y0,Θ0, 0)
2 (1−R)2H2

t ,

but

H2
t = E

(
2

G
ηYsGy ◦B

)
t

exp

{ˆ t

0

1

G2
η2Y 2

s G
2
yds

}
≤ E

(
2

G
ηYsGy ◦B

)
t

e(1−R)
2η2t.

Hence E[H2
t ] ≤ e(1−R)2η2t and it follows that (B.1) holds for every t and, hence, that the local

martingale N3
t =
´ t
0 ηyGydBs is a martingale under the optimal strategy.

(ii) Consider
´ t
0
e−

1
R

βs

1−R
1
GG

R−1
R

x ds. To date we have merely argued that this function is
increasing in t. Now we want to argue that it grows to infinity at least linearly. By (5.11), we
have

e−
1
R
βt

1−R

1

G
G

R−1
R

x =

[
g (z)− 1

1−Rzg
′ (z)
]R−1

R

g (z)
=

[
h− 1

1−Rw (h)
]R−1

R

h

= (1−W (h))1−1/Rh−1/R = n(W (h)) ≥ min{1, n(W (h∗))} > 0.

Hence from (B.3) there exists a constant k > 0 such that

0 ≤ (1−R)G(X∗
t , Yt,Θ

∗
t , t) ≤ (1−R)G(x0, y0, θ0, 0)e

−ktHt → 0

and then G→ 0 in L1, as required.

Proof of Lemma 25. This follows exactly as in the proof of Lemma 21.

Appendix C. Extension to R > 1.

Verification lemmas for the case R > 1. It remains to extend the proofs of the verification
lemmas to the case R > 1. In particular we need to show that the candidate value function is
an upper bound on the value function. The main idea is taken from Davis and Norman [5].

Suppose G(x, y, θ, t) is the candidate value function. Consider for ε > 0,

(C.1) Ṽε(x, y, θ, t) = Ṽ (x, y, θ, t) = G (x+ ε, y, θ, t)



OPTIMAL CONSUMPTION AND SALE STRATEGIES 717

and M̃t = M̃t(C,Θ) given by

M̃t =

ˆ t

0
e−βs

C1−R
s

1−R
ds+ Ṽ (Xt, Yt,Θt, t) .

Then,

M̃t − M̃0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsṼx + αYsṼy +

1

2
η2Y 2

s Ṽyy + Ṽt

]
ds

+

ˆ t

0

(
Ṽθ − YsṼx

)
dΘs

+
∑

0≤s≤t

[
Ṽ (Xs, Ys,Θs, s)− Ṽ (Xs−, Ys−,Θs−, s−)− Ṽx(	X)s − Ṽθ(	Θ)s

]
+

ˆ t

0
ηYsṼydBs

= Ñ1
t + Ñ2

t + Ñ3
t + Ñ4

t .

Lemma 13 (in the case ε ≤ 0 and, otherwise, Lemma 19 or Lemma 24) implies Ñ1
t ≤ 0 and

Ñ2
t ≤ 0. The concavity of Ṽ (x+yχ, y, θ−χ, s) in χ (either directly if ε ≤ 0, or using Lemma 18

or Lemma 23) implies (ΔÑ3) ≤ 0.
Now define stopping times τn = inf{t ≥ 0 :

´ t
0 η

2Y 2
s Ṽ

2
y ds ≥ n}. It follows from (B.2) that

yṼy is bounded and hence τn ↑ ∞. Then the local martingale (Ñ4
t∧τn)t≥0 is a martingale and

taking expectations we have E(M̃t∧τn) ≤ M̃0 and, hence,

E

(ˆ t∧τn

0
e−βs

C1−R
s

1−R
ds+ Ṽ (Xt∧τn , Yt∧τn ,Θt∧τn , t ∧ τn)

)
≤ Ṽ (x0, y0, θ0, 0) .

In the case ε ≤ 0, (5.1) and (C.1) imply

Ṽ (x, y, θ, t) = e−βt
(x+ ε)1−R

1−R

(
1 +

yθ

x+ ε

)1−R(R
β

)R
≥ e−βt

(x+ ε)1−R

1−R

(
R

β

)R
≥ ε1−R

1−R

(
R

β

)R
.

Thus Ṽ is bounded, limn→∞ EṼ (Xt∧τn , Yt∧τn ,Θt∧τn , t ∧ τn) = E[Ṽ (Xt, Yt, θt, t)], and

Ṽ (x0, y0, θ0, 0) ≥ E

(ˆ t

0
e−βs

C1−R
s

1−R
ds

)
+ E

[
Ṽ (Xt, Yt,Θt, t)

]
.

Similarly,

Ṽ (x, y, θ, t) ≥ e−βt
ε1−R

1−R

(
R

β

)R
and, hence, E[Ṽ (Xt, Yt,Θt, t)] → 0. Then letting t → ∞ and applying the monotone conver-
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gence theorem, we have

Ṽε (x0, y0, θ0, 0) = Ṽ (x0, y0, θ0, 0) ≥ E

(ˆ ∞

0
e−βs

C1−R
s

1−R
ds

)
.

Finally let ε→ 0. Then V ≤ limε↓0 Ṽ = G. Hence, we have V ≤ G.
The two nondegenerate cases are very similar, except that now from (5.11) and (C.1),

Ṽ (x, y, θ, t) = e−βt
(x+ ε)1−R

1−R
g

(
yθ

x+ ε

)
≥ e−βt

ε1−R

1−R

(
R

β

)R
,

where we use that for R > 1, g is decreasing with g(0) = (Rβ )
R > 0. Hence Ṽ is bounded, and

the argument proceeds as before.
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