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1 PreambleDespite the 
omparatively re
ent origins of the subje
t, mathemati
al �nan
e is one of themost important appli
ation areas of mathemati
s today. Three de
ades ago the subje
tbarely registered as a resear
h area, but when in the early 1970s Fisher Bla
k, MyronS
holes and Robert Merton linked the well developed notions of Brownian motion and Itô
al
ulus to the problems of derivative pri
ing and hedging, a new and vibrant dis
iplinewas 
reated. The 
elebrated Bla
k-S
holes option pri
ing formula (the dis
overy and de-velopment of whi
h earned Nobel prizes in 1997 for S
holes and Merton, Bla
k havingdied a 
ouple of years previously) revolutionised the �nan
e industry, fa
ilitating the sub-sequent rapid expansion in the trading of �nan
ial derivatives. The growth in volume oftrading of these instruments has been mat
hed by the growth of mathemati
al �nan
e asa resear
h endeavour. This has helped 
reate new topi
s for mathemati
al inquiry, rein-vigorating many existing areas, and developing bridges between previously un
onne
tedsubje
ts. Now many mathemati
s departments in the United Kingdom and throughoutthe world are developing resear
h and tea
hing programmes in �nan
e, and the output ofthese programmes, both in terms of the resear
h and the graduates, provides an importantresour
e for the City of London and elsewhere.Mathemati
ian's Brownian motion was �rst introdu
ed by Ba
helier (1900) who wasmotivated by an attempt to model the 
u
tuations of asset pri
es and to pri
e deriva-tives. Although he was the �rst resear
her to 
hara
terise Brownian motion and his workwas well known to Kolmogorov and Doob, the impa
t of his work was not re
ognised bythe Finan
e 
ommunity for many years. (His name is, however, honoured by the maininternational Mathemati
al Finan
e so
iety.) Indeed it was mu
h later that Samuelson(1965) suggested using exponential Brownian motion to model sto
k pri
es. In the ex-ponential Brownian model the proportional pri
e 
hanges are generated by a Brownianmotion. Over a small time interval the proportional pri
e 
hanges are Gaussian randomvariables with a varian
e proportional to the length of the interval, and pri
e 
hanges overdisjoint intervals are un
orrelated. The exponential Brownian model re
e
ts the limitedliability (non-negativity) property of share pri
es and whilst it is not appropriate for all�nan
ial assets in all market 
onditions, it remains the referen
e model against whi
h anyalternative dynami
s are judged.It was in a model with exponential Brownian assets that Bla
k and S
holes (1973) 
on-stru
ted a repli
ating portfolio and with it proposed a `fair' pri
e for a �nan
ial derivative.(A derivative se
urity or 
ontingent 
laim is a �nan
ial instrument whose payo� is derivedfrom, or 
ontingent upon, the behaviour of some other underlying asset. For example a
all option on a sto
k or share gives the option holder the right, but not the obligation,to pur
hase one unit of the sto
k at a prespe
i�ed pri
e 
alled the strike.) Their ideaswere qui
kly advan
ed by Merton (1973). The key insight was that if it was possible torepli
ate the payo� of the derivative as the gains from trade from a dynami
, self-�nan
inghedging strategy, then the initial fortune required to �nan
e that strategy was exa
tly thearbitrage-free pri
e for the option. Furthermore, sin
e all the risks asso
iated with theoption were removed by hedging, the pri
e is independent of the risk preferen
es of theagent.This argument was developed into a mathemati
al theory by Harrison and Kreps (1979)and Harrison and Pliska (1981). These authors emphasised the 
entral role of probabilitytheory and martingales (a martingale is a random pro
ess whi
h is as likely to go upas down, on average) and it is their sto
hasti
 theory that we explain here, and whi
h2



provides the foundation for mu
h of the subsequent development of the subje
t. Their key
on
lusion is that option pri
es are given by expe
tations | but not expe
tations withrespe
t to the real world or physi
al measure. Instead pri
es are expe
tations with respe
tto the risk neutral measure under whi
h the dis
ounted pri
e of the underlying asset is amartingale.In this survey we 
on
entrate on the problems of derivative pri
ing. We begin with ananalysis of option pri
ing in the simplest possible one-period binomial model, the 
on
lu-sions from whi
h | in
luding the fa
t that there is a unique, preferen
e independent, fairoption pri
e | are subsequently mirrored in the Bla
k-S
holes world. We then investigatethe extent to whi
h the Bla
k-S
holes model 
an be generalised without destroying thesekey features.When all options 
an be pri
ed via repli
ation the model is 
omplete. Otherwise themodel is in
omplete. In this situation there is no universal s
heme for pri
ing options.Instead we 
ompare and 
ontrast some of the possible alternatives, and this topi
 is themain theme of the arti
le. In parti
ular we dis
uss in some simple but 
anoni
al settingshow options 
an be pri
ed and hedged under various investment 
riteria.No survey of mathemati
al �nan
e 
an 
over all areas of the subje
t in equal depth,and any summary inevitably re
e
ts the ba
kground and interests of the author. Thefa
t that this arti
le stresses sto
hasti
 methods for derivative pri
ing in 
omplete andin
omplete markets is a 
ase in point. In the �nal few se
tions we 
over, brie
y, some ofthe other important topi
s in �nan
e, in
luding interest rate models and 
redit risk.2 Derivative Pri
ing: A First PassConsider the following model of a �nan
ial market. There is a single risky asset whosepri
e is given by (Xt)0�t�T and a risk-less bank a

ount. The market in these assets isperfe
t, by whi
h we mean that there are no transa
tion 
osts or taxes, the risky andrisk-less assets 
an be bought in arbitrary quantities and agents are pri
e takers.A derivative se
urity, or 
ontingent 
laim, is a �nan
ial se
urity whose value is 
on-tingent upon the value of the risky asset. For example a 
all option (with strike K, andmaturity T ) gives the holder the right, but not the obligation, to buy one unit of the riskyasset at time T for pri
e K. If XT > K then the option holder 
an exer
ise this right, and(perhaps by selling the asset) make a pro�t of (XT �K), whereas if XT � K the optionmatures worthless. At maturity the 
all option is worth (XT �K)+.The fundamental problem in mathemati
al �nan
e is to give a fair pri
e for the randompayo� of a derivative se
urity given a sto
hasti
 model for the behaviour of the underlying.2.1 The simplest 
ase: the binomial model.Suppose X0 = x and that at time T , XT takes one of the values xu and xd where u > d.(More formally we let 
 = f!u; !dg and de�ne XT (!u) = xu, XT (!d) = xd and wesuppose 0 < P(f!ug) < 1.) There is also a bank a

ount whi
h pays a �xed and 
onstantrate of interest r over the period [0; T ℄ so that one unit invested in the a

ount at time 0is worth R = (1 + r) at time T . We assume R 2 (d; u) to prevent simple arbitrages.The problem is to pri
e a derivative se
urity whi
h pays o� hu = h(xu) in a year whenthe pri
e has moved `up', and hd = h(xd) otherwise.Suppose we 
an �nd �; � whi
h solvehu = �xu+ �R; (1)3



hd = �xd+ �R: (2)Then the agent is indi�erent between re
eiving the derivative and holding an initial port-folio of � units of risky asset and investing � units in the bank. Hen
e the time-zero fairvalue for the option is C = �x+�, the 
ost of �nan
ing the strategy impli
it in the right-hand-side of (1) and (2). This is our �rst example of pri
ing by arbitrage; if the derivativetrades at any pri
e other than C then there are risk-free pro�ts to be made, either by sell-ing the derivative and pur
hasing the portfolio (�; �) or by following the reverse strategy.Sin
e this 
annot happen in any sensible market | there would be in�nite demand forthe derivative if it traded for a pri
e below C, and in�nite supply if it traded above C |the derivative must trade for the arbitrage free pri
e C.In this simple binary model the values of � and � 
an be 
al
ulated from (1) and (2).We �nd � = (hu � hd)=(x(u � d)) and � = (uhd � dhu)=(R(u � d)), so that an expressionfor the derivative pri
e is 1R �R� du� d hu + u�Ru� d hd� (3)There are two key observations to be made in this simple model whi
h will inspire ourfuture analysis.The �rst is that the key to option pri
ing is the 
on
ept of repli
ation; the fa
t thatthe fair pri
e is determined by a trading strategy whi
h 
reates the same payo� as theoption. In the binomial model it is always possible to �nd � and � to solve (1) and (2) sothat repli
ation is possible for all 
ontingent 
laim payo�s h.The se
ond key observation relates to the 
on
ept of martingale pri
ing. If we writeq = (R� d)=(u� d) then q 2 (0; 1) and the derivative pri
e (3) 
an be written as1R fqhu + (1� q)hdg = 1RE q [h(XT )℄so that the option pri
e is the dis
ounted expe
ted payo� of the option, where the expe
-tation is taken with respe
t to the risk-neutral probabilities (q; 1 � q). The probability qhas the spe
ial property that the expe
ted value of the dis
ounted asset pri
e under theprobabilities (q; 1� q) is the initial value; ie q satis�esx = 1R (qxu+ (1� q)xd) :The dis
ounted asset pri
e is a martingale if we take expe
tations using the q-probabilities.Note that we have 
ompleted a full analysis of the problem without referen
e to theprobabilities of the various events under the real-world measure P.Rather than fo
using on the measure or probabilities, we 
an 
onsider instead the statepri
e density. Let p = P(f!ug) and de�ne � via �0 = 1 and�T (!u) = qpR = 1pR (R� d)(u� d) ;�T (!d) = (1� q)(1� p)R = 1(1� p)R (u�R)(u� d) :Then (�tXt)t=0;T is a martingale, and the fair pri
e of the option is E [�T h(XT )℄.The above model, whi
h is essentially due to Cox et al (1979) 
an be made more realisti
by extending it to 
over several time-steps. (Indeed, sin
e a random walk 
onverges to4



Brownian motion, the suitably s
aled limit will be the 
ontinuous-time model of the nextse
tion.) The 
ontingent 
laim pri
ing problem 
an be solved by ba
kward indu
tion andthe derivative pri
e is pre
isely the dis
ounted expe
ted payo� where the probabilitieshave been modi�ed to make the dis
ounted pri
es of traded assets into martingales.Note that if it is possible for the risky asset to take on more than two pri
e values atthe end of the time-step then the repli
ation argument fails. For example in a trinomialmodel in whi
h XT may take the values xu; xR; xd say, then the analogue to (1) and (2)is a triple of simultaneous equations in two unknowns for whi
h there is no solution ingeneral. Conversely there are many 
hoi
es of probabilities whi
h make the pri
e pro
essinto a martingale.2.2 The Bla
k-S
holes model: Pri
ing and hedgingWe now 
onsider the derivative pri
ing problem in 
ontinuous time. Following Samuel-son (1965) the model is based on a Brownian motion or a Wiener pro
ess Wt. Thesto
hasti
 pro
ess Wt is not �nite variation and so the standard rules of 
al
ulus do notapply. Instead we use sto
hasti
 
al
ulus. For a very brief introdu
tion to the key 
on
eptssee the appendix, or one of the many introdu
tory (Mikos
h (1998), Steele (2001)) or morespe
ialist texts (Revuz and Yor (1998), Rogers and Williams (2000)).We suppose that we have a perfe
t fri
tionless model (as before, zero transa
tion 
osts,zero taxes and dividends, the same interest rate for both borrowing and lending, agentsas pri
e takers) in whi
h trading takes pla
e in 
ontinuous time. The e
onomy 
onsists ofa single risky asset with pri
e pro
ess (Xt)0�t�T whi
h follows an exponential Brownianmotion, and a bank a

ount whi
h pays a 
onstant rate of interest r. The dynami
s forthe risky asset are spe
i�ed under the physi
al measure P and are exogenous to the model.This re
e
ts the fa
t that agents are taken to be small investors, and their a
tions donot a�e
t the market pri
e. The risky asset pri
e and the value of R0 units of 
urren
yinvested in the bank a

ount are given byXt = X0 exp��Wt +�� � 12�2� t� ; Rt = R0 exp frtg ;or, in di�erential notation (using Itô's formula (36))dXt = Xt(�dWt + �dt); dRt = rRtdt: (4)Here the parameters � > 0; � and r (respe
tively the volatility and drift of the riskyasset and the interest rate) are taken to be 
onstants. The value of monies invested inthe bank a

ount Rt obeys standard Newtonian 
al
ulus and the ordinary di�erentialequation for Rt in (4) might more usually be written dR(t)=dt = rR(t). We use the formdRt = rRtdt as an analogy to a sto
hasti
 di�erential equation, and to remind us thatin a more 
ompli
ated model the interest rate may itself be sto
hasti
. We 
all the assetwith pri
e Rt a bond.Our goal, as in the binomial model, is to 
onsider the wealth pro
ess whi
h resultsfrom holding a portfolio 
onsisting of �t units of the risky asset and �t units of the bond.The elements of the portfolio �t and �t must be 
hosen based on information available attime t. We assume this information set or �ltration is generated by the pri
e pro
ess Xt,whi
h means in our 
urrent 
ontext that it is the Brownian �ltration generated by Wt.The value of the portfolio is then given byVt = �tXt + �tRt: (5)5



We further assume that the dynami
s of the portfolio value satisfyVt = V0 + Z t0 �sdXs + Z t0 �sdRs (6)or, in di�erential notation, dVt = �tdXt + �tdRt: (7)It should be emphasised that (7) is not obtained by taking the Itô derivative of the produ
tsin (5). Instead it is postulated as a modelling assumption, motivated by the situation indis
rete time. See the remarks in Se
tion 3 for a further dis
ussion of this issue.A value pro
ess Vt whi
h satis�es (7) is said to be self-�nan
ing. The term 
apturesthe idea that no inputs or outputs of 
ash are needed to 
reate Vt; instead all 
u
tuationsin value 
ome from the investment in the risky asset and bond. Further, if Vt solves (5)then on
e �t has been 
hosen, �t is determined via the relationship �tRt = Vt � �tXt. Inparti
ular, we do not need to model � expli
itly; �t merely represents the number of bondswe 
an buy with the 
ash surplus after we pur
hase �t units of Xt. Sometimes we writeV � to stress the dependen
e of the self-�nan
ing value pro
ess on the strategy �, or V v;�if we also wish to stress the starting wealth. It follows that we 
an rewrite (7) asdV �t = �t(dXt � rXtdt) + rV �t dt; (8)whi
h, given the sto
hasti
 dynami
s of Xt is equivalent todV �t = �tXt�(dWt + �dt) + rV �t dt; (9)where � = (� � r)=� is the Sharpe ratio of the risky asset. It turns out to be mu
h more
onvenient to work with the Sharpe ratio � rather than the drift �, so that � will not bementioned again.Consider now the problem of pri
ing a 
ontingent 
laim with non-negative payo� h(XT )at time T .De�ne a super-repli
ating strategy to be a pair (v; �) su
h that the wealth pro
ess V v;�,de�ned via V v;�0 = v and V v;� solves (8), satis�es V v;�t � 0 and V v;�T � h(XT ), P-almostsurely. A repli
ating strategy has V v;�T = h(XT ). The key idea is that if there exists asuper-repli
ating strategy for initial wealth v, then an agent would be at least as happy tore
eive initial fortune v and to follow trading strategy �, as to re
eive the option. Hen
ethe no-arbitrage prin
iple gives us that v is an upper bound on the fair pri
e of the 
laim.Consider ~Xt = R0Xt=Rt. We will use the notation ~ to denote a dis
ounted quantity.We have d ~Xt = d(R0Xt=Rt) = R0XtRt �dXtXt � rdt�whi
h in our 
ase 
an be simpli�ed tod ~Xt = ~Xt�(dWt + �dt): (10)Now 
onsider the dis
ounted pro
ess ~V �t = R0V �t =Rt. If V � is self-�nan
ing then V � solves(8) and, in terms of dis
ounted quantities,d ~V �t = �td ~Xt (11)6



or equivalently, d ~V �t = �t ~Xt�(dWt + �dt). The simpli
ity of this equation shows theadvantage we gain from swit
hing to dis
ounted variables. Now suppose V v;� is the valuepro
ess asso
iated with a repli
ating strategy (v; �). ThenR0RT h(XT ) = R0RT V v;�T = ~V v;�T = v + Z T0 �td ~Xt (12)P-almost surely.Suppose for a brief moment, that � = 0 and ~Xt is a martingale. Then we 
an takeexpe
tations in (12) and provided that R T0 �td ~Xt is a true martingale and not just a lo
almartingale, we 
an dedu
e a value for v. This value represents the repli
ation pri
e forthe 
ontingent 
laim.Now remove the assumption that � = 0, so that the dis
ounted pri
e is not a martin-gale. Suppose, however, that we 
an �nd a new probability measure Q , equivalent to P,su
h that the sto
hasti
 integral in (12) is a martingale under Q . Then the identities in(12) hold Q-almost surely and taking expe
tations under Q we have the formulav = EQ �R0RT h(XT )� : (13)This gives us the fair pri
e of the option. The measure Q is a 
omputational devi
e, butit is extremely powerful in that it leads us to the option pri
e.Motivated by the above analysis, our goal is to �nd a measure Q under whi
h thepri
e pro
ess is a martingale, or to use a language more familiar to e
onomists, to �nd astate-pri
e density pro
ess �t su
h that �tXt is a martingale.De�ne the 
hange of measure density Zt viaZt = exp���Wt � 12�2t�and let Q and �t be given byQ(A) = E [ZT IA℄ and �t = R0Rt Zt: (14)Then the probability measure Q is equivalent to P and by the Cameron-Martin-Girsanovformula, see the appendix,WQ de�ned viaWQt =Wt+�t is a Q-Brownian motion. Hen
e,see (10), d ~Xt = � ~XtdWQt and ~X is a Q-martingale. Alternativelyd(�tXt) = d(Zt ~Xt) = (� � �)(�tXt)dWtso that �tXt is a P-martingale. The above result is a example of the simple propositionthat for any pro
ess Yt, we have that ~Yt is a (lo
al) martingale under Q if and only if �tYtis a (lo
al) martingale under P.Now suppose that V v;� is the value pro
ess of a super-repli
ating strategy for h(XT ).Then, from (11), ~V v;� is a lo
al Q-martingale. Further V v;�, and hen
e ~V v;�, is non-negative and we 
on
lude that ~V is a Q-supermartingale. Thusv � EQ [ ~V v;�T ℄ � EQ [R0h(XT )=RT ℄ = E [�T h(XT )℄In parti
ular E [�T h(XT )℄ is a lower bound on the fair pri
e of the derivative.7



If E [�T h(XT )℄ =1 then there is no super-repli
ating strategy 
orresponding to a �niteinitial pri
e. Hen
eforth we ex
lude this 
ase.Now we want to show that there is a super-repli
ating strategy with initial fortunev = E [�T h(XT )℄. De�ne the martingale~�t = EQt �R0RT h(XT )�where E t denotes expe
tation given information available at time t. Observe that ~�t � 0,and ~�T = R0h(XT )=RT Q-almost surely (and hen
e P-almost surely sin
e P and Q areequivalent). By the Brownian martingale representation theorem (re
all that the �ltrationis generated byWt) we 
an write any Q-martingale ~�t as a sto
hasti
 integral with respe
tto the Q-Brownian motion WQ . We have~�t = v + Z t0  sdWQs = v + Z t0 ��s d ~Xs (15)where ��t =  t=� ~Xt and d ~Xs = ~Xs�dWQs . Then �t de�ned via �t = Rt ~�t=R0 satis�es�0 = v, �t � 0 and �T = h(XT ), P-almost surely, with dynami
sd�t = ��t (dXt � rXtdt) + r�tdt:Hen
e �t de�nes the value pro
ess of a self-�nan
ing, super-repli
ating (and indeed repli-
ating) strategy with initial value v = EQ [R0h(XT )=RT ℄ and it follows that v is the fairpri
e for the derivative. The asso
iated hedging strategy is given by ��t .Note that, in exa
t parallel with the binomial model, the key ideas are the repli
ationof the option payo� and the idea of �nding a 
hange of measure under whi
h the dis
ountedpri
e pro
ess is a martingale. That measure is then used for pri
ing. The Sharpe ratio� in the original model is irrelevant for pri
ing (as is the drift), and instead volatility �is the 
ru
ial parameter. The fa
t that we pri
e the option by repli
ation means that anagent who sells the option for its fair pri
e 
an remove all the risk via a hedging strategy.This explains why the risk preferen
es of the agent do not enter into the pri
ing formula.To date we have identi�ed the fair pri
e of the option, but not the repli
ating strategy��t . To do this in general we need to know how to represent a martingale as a sto
hasti
integral in a Brownian �ltration. This 
an be done by Clark's Theorem whi
h is a spe
ial
ase of Malliavan 
al
ulus. Alternatively, for payo�s whi
h are a fun
tion of XT alone (orperhaps a fun
tion of XT and a small number of other path-dependent state variables |see the examples below) we 
an exploit the Markov property to give an expli
it form forthe hedging strategy �.Suppose the option payo� depends only on the value of the underlying asset at timeT . By the Markov property we 
an represent the time-t value Vt of the 
ontingent 
laimvia Vt = V (Xt; t) = EQt � RtRT h(XT )� : (16)Re
all that dXt = �XtdWQt +rXtdt. Then, by Itô's formula, assuming that V is suÆ
ientlysmooth,dVt = V 0(Xt; t)dXt + 12V 00(Xt; t)(dXt)2 + _V (Xt; t)dt= V 0(Xt; t)Xt�dWQ + �V 0(Xt; t)rXt + 12V 00(Xt; t)�2X2t + _V (Xt; t)� dt8



Conversely, if V is self-�nan
ing then from (9)dVt = �tXt�dWQt + Vtrdt:If V is the value fun
tion of a self-�nan
ing repli
ating portfolio then these representationsmust be almost surely identi
al, and for (almost every) path realisation we must have�t = V 0(Xt; t) (for Lebesgue almost surely all t 2 [0; T ℄). Further, when we equate �nitevariation terms we �nd that the value fun
tion must solveLV = 0 subje
t to V (x; T ) = h(x), (17)where Lf(x; t) = rxf 0(x; t) + 12�2x2f 00(x; t) + _f(x; t)� rf(x; t): (18)The partial di�erential equation (17) for V 
an be shown to be equivalent to the sto
hasti
pri
ing formula (16) using the Feynman-Ka
 formula and is sometimes 
alled the Bla
k-S
holes pri
ing pde. The hedging strategy �t = V 0(Xt; t) is known as the delta-hedge.2.3 Vanilla and Exoti
 OptionsIn the setting of the Samuelson-Bla
k-S
holes exponential Brownian motion model foroption pri
ing we have shown that it is possible to derive a unique fair pri
e for 
ontingent
laims. The key mathemati
al tools that we used were Itô's formula, the Cameron-Martin-Girsanov 
hange of measure and the Brownian martingale representation theorem. In laterse
tions we dis
uss in more detail the 
lass of admissible trading strategies and the extentto whi
h the 
on
lusions of the above analysis are robust to 
hanges in the underlyingmodel. We also 
onsider the impa
t that the failure of the model assumptions has onhedging and pri
ing. However in the rest of this se
tion we assume that the model holdsand investigate the impli
ations for the pri
ing of some 
ommon traded options.The advantage of working with a simple model, albeit an overly simplisti
 one, isthat it gives insights into the behaviour of derivative pri
es whi
h might be hidden in amore realisti
 situation. For example, it allows us to investigate the 
omparative stati
sof the option pri
e and to understand how pri
es depend on the key parameters su
has volatility (Bergman al (1996), Renault and Touzi (1997), Hobson (1998a)). The truetest of a model is partly how well does it explain option pri
es in the market (but asFiglewski (2002) argues one does not need the full power of the Bla
k-S
holes 
all pri
ingfun
tion for that), and partly how well do the theoreti
al hedges perform.2.3.1 Call optionsTraditionally the �rst, simplest and most widely traded options are put and 
all options.A 
all option with maturity T and strike K has payo� (XT �K)+. The time-t pri
e ofthe 
all option isV (Xt; t) = e�r(T�t)EQt �(XT �K)+� = Xt�(d+)�Ke�r(T�t)�(d�)where � is the 
umulative Normal distribution fun
tion andd� = ln(Xt=Ke�r(T�t))� �2(T � t)=2�pT � t :9



The delta-hedging strategy is given by �t = �(d+).A put option gives the holder the right to sell the risky asset for pri
e K. Sin
e(XT �K) = (XT �K)+ � (K �XT )+, there is a put-
all parity result; namely that thepri
e of a 
all option minus that of a put option equals Xt � e�r(T�t)K.2.4 Ameri
an OptionsIf a 
laim is European in style then it is exer
ised at a �xed predetermined time T .Ameri
an style options 
an be exer
ised at any (stopping) time � up to the, possiblyin�nite, maturity T . The pri
e be
omes (see Myneni (1992))ess sup��T EQ [e�r�h(X� )℄;where the ess sup is taken over all stopping times � with t � � � T . If h(x) = (x �K)+(an Ameri
an 
all) then provided there are no dividends it is never optimal to exer
ise theoption early and the Ameri
an 
all has the same pri
e as a European 
all. However foran Ameri
an put option with h(x) = (K � x)+ the bene�ts of the 
onvexity of the payo�
an sometimes be outweighed by the losses asso
iated with the fa
t that the undis
ountedpri
es in
rease on average over time and the payo� fun
tion is de
reasing. The pri
ingproblem be
omes an optimal stopping problem in whi
h the optimal exer
ise strategy hasto be determined.One fruitful approa
h to this problem is to 
onsider it as a dynami
 programmingproblem. The martingale optimality prin
iple allows us to write down a Hamilton-Ja
obi-Bellman equation. The pri
ing fun
tion solves V (x; t) � h(x) and LV = 0 on It = fx :V (x; t) > h(x)g where, as before,Lf = 12�2x2f 00 + rxf 0 � rf + _f;together with a smooth �t 
ondition on �It. This is a free boundary problem for whi
hthere is no 
losed form solution. It is related to the Stefan problem from 
uid dynami
s(Friedman 2000).The natural explanation for the European/Ameri
an nomen
lature would be that op-tions of appropriate style were traded in the relevant geographi
al markets. However thereis no strong eviden
e for this proposition. (Instead there is an ane
dote whi
h 
laims thatthe adje
tives were 
oined by an Ameri
an resear
her who wanted to appropriate themore sophisti
ated and 
hallenging option for his own 
ontinent.) Whatever the originsof the terminology, it began a trend for naming options after regions or 
ountries | Asia,Bermuda, Paris, Russia and Israel ea
h have an option named after them.Puts and 
alls have simple payo�s and are sometimes 
alled vanilla options in honourof the most basi
 
avour of i
e 
ream. Options with more 
ompli
ated payo�s are said tobe exoti
.2.5 Exoti
 Options2.5.1 Barrier OptionsAn example of an exoti
 option is an option whose payo� is 
ontingent upon both thevalue of the underlying at maturity and the value of the maximum pri
e attained bythe underlying over some period. For example a kno
k-out 
all option has payo� (XT �K)+IfXT�Bg where XT is the maximum pri
e attained by the underlying and B is the10



barrier level. The option be
omes worthless if ever the underlying ex
eeds the barrier. Inthe Bla
k-S
holes model there are 
losed form expressions for the pri
es and asso
iatedhedging strategies for barrier options whi
h involve the 
umulative Normal distributionfun
tion.In pra
ti
e barrier options 
an be diÆ
ult instruments to hedge. The 
lassi
al delta-hedge 
an involve very large positions, espe
ially when the underlying asset is near thebarrier and the time to maturity is small. In these 
ases pra
ti
al issues tend to dominate(for example it 
an be useful to hedge using the 
all as well as the underlying, see Andersenand Andreasen (2000), Brown et al (2001)) and an alternative pri
ing rule and hedgingstrategy is needed, perhaps aiming to super-repli
ate the payo� rather than aiming torepli
ate exa
tly.Barrier options are 
losely related to digital and lookba
k options. A digital optionpays one if ever the underlying 
rosses the barrier, whilst the payo� of a lookba
k is
ontingent upon the maximum pri
e attained by the underlying over the lifetime of theoption. In the Bla
k-S
holes model there are formulae for all of these, see for exampleGoldman et al (1979).2.5.2 Asian OptionsAn Asian �xed-strike 
all has payo� (AT �K)+ where AT = (1=T ) R T0 Xudu. (Of 
oursethis is an idealised mathemati
al version of the real 
ontra
t whi
h is based upon dis
reteaveraging.) Asian options are options on the average rate and were introdu
ed partly tomeet the need for 
ommodity produ
ers who sold their output at a 
onstant rate overtime, and partly to negate the e�e
ts of pri
e manipulation.The Asian pri
ing problem is to 
al
ulate the distribution of ÂT = R T0 e�Ws+(r��2=2)sdsin su
h a way that it is possible to give a simple representation formula for the pri
e ofthe Asian 
all. In general there are no 
losed form solutions but the pri
ing problemmotivated several attempts to give a sto
hasti
 
hara
terisation of the distribution, seeGeman and Yor (1993), as well as various ideas for the pri
ing of Asian options via Monte-Carlo methods (with 
arefully 
hosen 
ontrol variates, see Rogers and Shi (1995)) or pdes(Ve
er (2001)).2.5.3 Passport OptionsThe Passport option (introdu
ed by Hyer et al (1997)) is an example of an exoti
 op-tion whi
h was not widely traded, but whi
h generated some novel resear
h problems inmathemati
s. In the symmetri
 passport option problem the aim is to evaluatesupj�tj�1 EQ [( ~G�t )+℄where ~G� is the dis
ounted gains from trade using a self-�nan
ing strategy �. In parti
ular~G�t = g + Z T0 �sd ~Xs:It turns out (see for example Andersen et al (1998)) that the optimal strategy is to take�s = �sgn( ~Gs). Moreover, the pri
e is related via the Skorokhod Problem and lo
al timesto that of a lookba
k option (Henderson and Hobson (2000), Delbaen and Yor (2002)).11



2.6 Num�erairesWe saw in the analysis of the Bla
k-S
holes model that it is 
onvenient to work withdis
ounted pri
es. This swit
h 
an be des
ribed as a 
hange of num�eraire from 
ash tobond, and the fundamental and very sound e
onomi
 prin
iple upon whi
h it is based isthat the pri
es of 
ontingent 
laims should not depend on the units in whi
h they aredenominated.As well as 
ash and bond it is sometimes useful to use a risky asset, or the gains fromtrade of a portfolio of risky assets as num�eraire, see Geman et al (1995) and Gouri�erouxet al (1998). For example, 
onsider pri
ing an ex
hange option (Margrabe (1978)) withpayo� (XT �YT )+, where the pri
e pro
esses Xt and Yt are given by 
orrelated Brownianmotions. Then a 
hange of num�eraire from 
ash to Yt redu
es the pri
ing problem to thatof pri
ing a standard 
all in the Bla
k-S
holes model on the single underlying Xt=Yt.In general the form of a martingale measure Q depends on the 
hoi
e of num�eraire N(see Branger (2004)), and for 
larity one should 
onsider the pair (NT ;QN ). Alternativelywe 
an �x attention on the state-pri
e-density�T = N0NT dQNdPwhi
h is num�eraire independent.2.7 Optimal 
onsumption and investment problemsConsider an agent who 
an trade in a market as in Se
tion 2.2. Suppose that, rather thantrying to pri
e a derivative, the aim of this agent is to maximise his utility of terminalwealth, or alternatively to maximise his utility of 
onsumption over time.Let U : R+(orR) 7! R be an in
reasing (to re
e
t the fa
t that agents prefer moreto less) and 
on
ave (to re
e
t the law of diminishing marginal returns) utility fun
tion.Examples in
lude power-law utilities U(x) = x1�R=(1 � R), for R > 0, logarithmi
 util-ity U(x) = lnx and exponential utility U(x) = �e�x, together with various other lesstra
table families su
h asU(x) = ��1 �1 + �x�p1 + �2x2� � > 0:The 
lassi
al Merton problem (Merton, 1969) is to �nd the optimal trading strategywhi
h maximises the expe
ted utility of terminal wealth EU(VT ) where VT is given by (6).In the Bla
k-S
holes model there is a full solution to this optimal 
ontrol problem. In theprimal approa
h it is possible to write down a Hamilton-Ja
obi-Bellman (HJB) equationfor the value fun
tion of an agent, and then, at least for the 
ase of power law, logarithmi
and exponential utilities, to 
onje
ture the form of the solution. In simple 
ases a standardveri�
ation theorem gives that indeed we have a solution of the HJB equation, and theoptimal strategy. (In less simple 
ases the solution of the HJB equation may only exist inthe sense of a vis
osity solution see DuÆe et al (1997).)There is an alternative approa
h, 
alled the dual method, whi
h gives very powerfulinsights, see Karatzas (1989) for a survey. The problem is to maximise the expe
ted utilityof terminal wealth VT subje
t to the wealth satisfying a budget 
onstraint. If we writethis in Lagrangian form E [U(VT )� �(�TVT � v)℄12



and introdu
e the Legendre transform Û(y) = supvfU(v) � vyg of U thenE [U(VT )� �(�TVT � x)℄ � �v + E Û (��T ); (19)with equality when U 0(VT ) = ��T almost surely. This inequality holds for all admissiblestrategies, and all (positive) Lagrange multipliers so we havesupVT E [U(VT )℄ � inf� n�v + E Û (��T )o : (20)Further, in standard 
ases (when the asymptoti
 elasti
ity of utility is less than one, seeKramkov and S
ha
hermayer (1999)), there is no duality gap and there is equality betweenthe expressions in (20). The optimal solution given by a target wealth V �T and a Lagrangemultiplier �� is su
h that V �T = I(���T ) where I is the inverse to the derivative of U . (Infa
t �� is the value of the Lagrange multiplier su
h that E [�T V �T ℄ = E [�T I(���T )℄ = v.)In the analysis of the Merton problem for the Bla
k-S
holes model presented here, thedual problem is simpler than the primal problem sin
e the minimisation takes pla
e overa single real-valued Lagrange multiplier rather than a random-variable valued spa
e ofterminal wealths. If we think of the dual problem then it is natural to look for utilitieswhose Legendre transform Û takes a simple form. For example, 
onsider the 
lass ofdual fun
tions given by Û 00(y) = Ayq�2 for q 2 R and A a positive 
onstant. The 
lassof asso
iated utility fun
tions is exa
tly the 
lass of Hara utilities, whi
h in
ludes thepower, logarithmi
 and exponential utilities as spe
ial 
ases, see Merton (1990, p137).Instead of aiming to maximise expe
ted utility of terminal wealth it is also natural to
onsider agents who wish to maximise expe
ted dis
ounted utility of 
onsumption overtime. Let the wealth pro
ess be des
ribed by the equationdVt = �tdXt + (r � �tXt)dt� 
tdtwhere 
t is the 
onsumption rate. Then the problem fa
ing the agent is to maximiseE �Z 10 U(t; 
t)dt� ; (21)or more espe
ially to determine optimal investment and 
onsumption pairs (�t; 
t)t�0.Again this problem 
an be atta
ked via primal or dual methods.It should be noted that (21) is an unsatisfa
tory formulation in a 
ouple of ways. Firstly(21) does not arise as the 
ontinuous time limit of a realisti
 situation in whi
h 
onsumptiono

urs in dis
rete lumps, and se
ondly, the value fun
tion depends only on the marginaldistributions of the 
onsumption pro
ess (
t)t�0, and not on the joint distribution. DuÆeand Epstein (1992) introdu
ed sto
hasti
 di�erential utilities to address this se
ond issue.2.8 The su

esses and failures of the Bla
k-S
holes modelThe Bla
k-S
holes model has the property that it is possible to de�ne a unique fair pri
e,the repli
ation pri
e, for any 
ontingent 
laim. This pri
e is given as the dis
ountedexpe
tation of the option payo� under the unique risk-neutral or martingale measure.The model 
an be extended to in
lude dividends and to other types of underlyings, su
has forwards, futures, indi
es and foreign ex
hange rates. Above all the Bla
k-S
holesmodel has provided a language for the pri
ing of derivatives and a referen
e against whi
hmodi�
ations of the model 
an be 
ompared.13



In prin
iple, in the Bla
k-S
holes paradigm the option pri
ing problem is solved, andthe solution given in (13), but on o

asion it may be diÆ
ult to evaluate this sto
hasti
expression and give an analyti
 pri
ing formula. Instead pra
titioners sometimes resort tosolving the pde (17), or approximate the pri
e via Monte-Carlo simulation or even solvea multi-period extension of the Cox-Ross-Rubinstein binomial model. In su
h 
ases theissue is to exe
ute any of these approa
hes eÆ
iently and a

urately, parti
ularly in highdimensions.Unfortunately the assumptions of the Bla
k-S
holes model are never satis�ed, a themewe return to in Se
tion 4. (It is 
lear that something must be wrong sin
e the tradedpri
es of di�erent derivatives are frequently, by whi
h we mean invariably, 
onsistent withdi�erent values of the volatility parameter.) Continuous trading is impossible, there aretaxes, interest rates di�er for borrowing and lending, agents are never pri
e takers and fa
ea bid/ask spread, and the pri
es of underlyings never quite follow exponential Brownianmotion with 
onstant known parameters. Understanding and a

ommodating some ofthese market fri
tions and imperfe
tions is one of the main remaining goals of mathemati
al�nan
e and one of the subje
ts of the remaining se
tions.3 The General TheoryOur aim in this se
tion is to review the analysis we gave in the Samuelson-Bla
k-S
holesexponential Brownian 
ase and to 
onsider the extent to whi
h the results and 
on
lusionsgeneralise to a wider 
lass of models. At �rst sight it might appear that su
h generalisationsare issues of idle mathemati
al 
uriosity. In fa
t, sin
e the assumptions of the Bla
k-S
holesmodel 
learly fail in pra
ti
e, it is 
ru
ial to understand whi
h results are robust to modelmisspe
i�
ation. Our brief survey is based on the dis
ussion in S
ha
hermayer (2003),and the reader who wishes to learn more about the ba
kground to the \th�eorie g�en�erale"is referred to that very readable text.We begin with a �ltered probability spa
e (
;F ; (Ft)0�t�T1);P) where T1 is a �xedhorizon time whi
h is greater than the maturity of any options of interest. We supposethat the dis
ounted pri
e pro
ess of the risky asset ~Xt is a (lo
ally bounded, 
�adl�ag)semi-martingale whi
h is adapted to the �ltration Ft satisfying the usual 
onditions. The�ltration Ft 
aptures the information available at time t. The pro
ess ~Xt may be ve
torvalued, although our notation will not emphasise this. We have 
hosen to work withdis
ounted pri
e pro
esses (in part this is just a 
hoi
e of num�eraire), so that althoughthere is a bank a

ount in the model, it does not appear in the analysis.Already the per
eptive reader may wonder whether it is ne
essary to assume thatthe pri
e ~Xt of the risky asset is a semi-martingale. This assumption is very 
onvenientbe
ause the well developed theory of sto
hasti
 integration is based upon semi-martingales.Further, a

ording to Theorem 7.2 of Delbaen and S
ha
hermayer (1994) if the model is tobe 
onsistent with no-arbitrage then the pri
e pro
ess must be a semi-martingale, at leastwhen the set of admissible trading strategies is suÆ
iently large. This rules out 
ertain
andidate families of models very qui
kly. For example fra
tional Brownian motion is nota semi-martingale. Rogers (1997) gives a dire
t proof that fra
tional Brownian motionmodels admit arbitrage. On the other hand, we 
annot take models whi
h are too simple:if the dis
ounted pri
e pro
ess is of �nite variation then there is also arbitrage.Our �rst task is to de�ne the 
lass of admissible portfolios and the asso
iated valuefun
tions. Let �t be an adapted pro
ess whi
h represents the pur
hases of the risky asset14



and de�ne ~V �, the asso
iated self-�nan
ing value pro
ess with initial wealth ~V0, via~V �t = ~V0 + Z t0 �sd ~Xs: (22)As before the investment � in the bank a

ount is impli
it rather than expli
it.The integral on the right-hand-side of (22) is an Itô sto
hasti
 integral. In one sense the
hoi
e of the Itô integral is arbitrary | we 
ould equally use the Stratanovi
h integral, forexample, provided we in
lude all the appropriate 
orre
tion terms. But in another sensethe Itô sto
hasti
 integral is the only sto
hasti
 integral whi
h makes e
onomi
 sense. Tosee this observe that if the portfolio �t is a simple (pie
ewise 
onstant) strategy then thedis
ounted gains from trade from investment in the risky asset are given by~Gt =Xi �ti( ~Xti+1^t � ~Xti^t):In parti
ular the gains pro
ess is obtained by multiplying the in
rements of the pri
epro
ess by the number of units of risky asset held at the beginning of the relevant timeinterval. The Itô integral shares this non-anti
ipatory property | it is the integral of theintegrand against the forward in
rements of the integrator.We now de�ne an admissible strategy as an adapted portfolio pro
ess �t for whi
h theasso
iated value fun
tion is su
h that the Itô sto
hasti
 integral R T0 �td ~Xt is well de�nedand ~V �t de�ned via (22) is bounded below: ~V �t � �M for some 
onstantM . This de�nitionis suÆ
ient to rule out doubling strategies, but does not prevent sui
ide strategies.The key idea whi
h underpinned pri
ing in the Bla
k-S
holes model was the notionof an equivalent martingale measure. In general it is too mu
h to expe
t the underlyingto be
ome a martingale under a 
hange of measure, and all we really need is that thedis
ounted traded asset pro
ess, and hen
e the dis
ounted wealth pro
ess, be
omes a lo
almartingale. We have the following tautologi
al but important de�nition: a measure Q ,equivalent to P, under whi
h the dis
ounted asset pri
e is a lo
al martingale is 
alled anequivalent lo
al martingale measure.Before we dis
uss option pri
ing in general we would like to know whether the modelwe have makes e
onomi
 sense, and in parti
ular whether it is 
onsistent with no-arbitrage.(If there are arbitrage opportunities in the model | loosely des
ribed to be ways of makingpro�ts at zero risk | then the model is unsustainable. Some or indeed all agents wouldwant to follow these pro�t making strategies and the 
urrent market pri
es would notsurvive in equilibrium.) It turns out that the `right' 
on
ept to work with is the idea of`no-free-lun
h with vanishing-risk' (NFLVR). Roughly speaking there is a free lun
h withvanishing risk if, when you look at the 
lass of 
ontingent 
laims whi
h 
an be repli
atedby an admissible portfolio, and then look at the limits of sequen
es of su
h 
laims, thereis a limit random variable whi
h is non-negative almost surely and positive with positiveprobability. The key result is due to Delbaen and S
ha
hermayer (1994, Corollary 1.2),but see also Harrison and Pliska (1981) for the �nite 
ase, Kreps (1981) and Delbaen andS
ha
hermayer (1998).Theorem 3.1 (First Fundamental Theorem of Asset Pri
ing.) Suppose ~X is a lo-
ally bounded semi-martingale. Then there exists an equivalent lo
al martingale measureif and only if the model satis�es NFLVR.This theorem is one of the triumphs of the theory of mathemati
al �nan
e in theabstra
t semi-martingale setting. It was 
lear that one side of the if and only if 
ondition15



should be the existen
e of an equivalent (lo
al) martingale measure, sin
e this is a powerfulassumption from whi
h many natural and useful properties follow easily. Thus the diÆ
ultpart of the theorem involved �nding the appropriate de�nitions of admissible strategyand no-arbitrage whi
h would give the martingale measure 
ondition an e
onomi
allymeaningful interpretation.Sin
e we want to work with e
onomi
ally meaningful models we assume that the modelsatis�es NFLVR. Hen
e we are entitled to assume that there exists an equivalent lo
almartingale measure. Set ZT = dQ =dP and Zt = E t [ZT ℄. Then Zt and Zt ~Xt are bothP-lo
al martingales.In the general setting we say that a pair (v; �) is a super-repli
ating strategy for H ifthe strategy is admissible and if the asso
iated value pro
ess ~V v;� satis�es (22) subje
t to~V �0 = v and ~V v;�T � ~H, the dis
ounted payo� of the 
laim. Then by the same analysis asbefore, if (v; �) is a super-repli
ating strategy, then Zt ~V �t is a P-super-martingale andv � E [ZT ~V �T ℄ � E [ZT ~H℄:Hen
e E [ZT ~H℄ is a lower bound on the repli
ation pri
e of the option.This raises the question as to whether there is a super-repli
ating strategy for theoption with initial wealth v. In the one-dimensional Brownian 
ontext we have seen howthe Brownian martingale representation theorem 
an be used to produ
e a repli
atingstrategy. In general it is not always the 
ase that this is possible. The 
ondition underwhi
h repli
ating strategies 
an be found for all options 
an again be related to a 
onditionon the equivalent martingale measures, and is again given in Delbaen and S
ha
hermayer(1994).Theorem 3.2 (Se
ond Fundamental Theorem of Asset Pri
ing.) Every bounded 
laim
an be repli
ated if and only if there is only one equivalent lo
al martingale measure.This is the subje
t of the next se
tion.4 In
omplete marketsOur analysis of the Samuelson-Bla
k-S
holes model relied on two results from the the-ory of sto
hasti
 pro
esses and Brownian motion. Firstly, the Cameron-Martin-GirsanovTheorem guarantees the existen
e of an equivalent martingale measure Q under whi
h thedis
ounted pri
e pro
ess Xt is a martingale (or equivalently the existen
e of a state-pri
e-density �t with the property that �tRt and �tXt are martingales.) Se
ondly, the Brownianmartingale representation theorem says that any random variable whose value is knownat time T 
an be written as its expe
ted value plus a sto
hasti
 integral against Brownianmotion. In the Bla
k-S
holes market setting this translates into the result that any optionpayo� 
an be written as the pri
e plus the gains from trade from a dynami
 investmentstrategy in the underlying asset.In the previous se
tion we saw that the existen
e of a martingale measure is relatedto the question of whether a model makes e
onomi
 sense. In this se
tion we 
onsider therole of the martingale representation theorem, and espe
ially the situation in whi
h it isno longer possible to write every 
laim as the terminal value of a trading strategy.Re
all that RT , whi
h we no longer assume to be deterministi
, is the value of R0 unitsof 
ash invested in the bank a

ount. We say that a 
ontingent 
laim H is repli
able if it16




an be written H = RTR0 �v + Z T0 �sd ~Xs�for an admissible trading strategy �, or equivalently if the option payo� 
an be repli
atedvia a dynami
 hedging strategy. In this 
ase there is a unique fair repli
ation pri
e for theoption v = EQ �R0RT H� = E [�TH℄where Q is any martingale measure and �T is the related state-pri
e density. An optionwhi
h 
an be repli
ated in this way is said to be redundant in the sense that adding theoption to the (perfe
t fri
tionless) e
onomy has no impa
t sin
e its payo� 
an be 
reatedsyntheti
ally through dynami
 trading. If every 
laim is redundant then the market is
omplete.In an in
omplete market it is not possible to repli
ate every 
ontingent 
laim. For su
h
laims there is no repli
ation pri
e, and the Bla
k-S
holes theory we have introdu
ed hasnothing to say about the fair pri
e of the option. Instead we have rea
hed what Hakansson(1979) 
alls the \Cat
h 22 of option pri
ing": the 
laims we 
an pri
e are redundant, andthe 
laims that are not redundant we 
annot pri
e. The problem fa
ing e
onomists (and�nan
ial mathemati
ians) is to determine a method for pri
ing non-redundant optionswhi
h is 
onsistent with the Bla
k-S
holes methodology for those derivatives whi
h 
an berepli
ated.It is 
lear that if there is more than one state-pri
e density then there exists a 
laimfor whi
h it is possible to de�ne more than one pri
e (via expe
tation) and hen
e thatthat option 
annot be repli
ated. The 
onverse is also true, so that if there exists a uniqueequivalent lo
al martingale measure then the model is 
omplete and every 
laim 
an berepli
ated. This is the Se
ond Fundamental Theorem of Asset Pri
ing.In
ompleteness 
an arise from many sour
es, for example transa
tion 
osts, (Hodgesand Neuberger (1989), Davis et al (1993), Soner et al (1995)), jumpmodels (Merton (1976),Bardhan and Chao (1996)), 
onstraints on the trading strategies (Soner and Touzi (2001),Cvitani�
 and Karatzas (1993)) or sto
hasti
 volatility (Hull and White (1987), Hes-ton (1993), Fouque et al (2000)) and to some extent the best approa
h to pri
ing andhedging must depend on the 
ontext. However, fundamentally, one has to answer thequestion of how to pri
e and hedge a 
ontingent 
laim H whi
h is 
ompletely independentof the remainder of the model. Our goal is to analyse two simple models whi
h exhibitin
ompleteness.4.1 Non-traded AssetsAs a �rst and simple example of an in
omplete market (see Davis (2000), Henderson andHobson (2002a, 2002b), Henderson (2002)) 
onsider an e
onomy with a deterministi
 bondRt = R0ert and a single risky asset with dynami
sdXtXt = �(dWt + �dt) + rdt (23)For simpli
ity we assume that all parameters �, � and r are 
onstants. All 
ontingent
laims on X 
an be repli
ated. Now introdu
e a se
ond risky asset Yt with pri
e pro
essdYt = atdW 0t + btdt (24)17



where W 0 is 
orrelated to W with dWtdW 0t = �dt. Suppose that Y is not traded and
onsider the problem of pri
ing a 
ontingent 
laim H = H(YT ).The situation we are trying to model is one where an agent has a random endowmentH whose payo� depends on an asset Y , but that asset 
annot be used for hedging. Thismay be be
ause of legal reasons (
onsider an exe
utive who re
eives 
ompensation in theform of sto
k options, but who is 
ontra
tually forbidden from a
tively trading in sto
kon his own 
ompany (Henderson (2003)) or simply liquidity issues (trading in the asset Ymay be so thin as to make hedging with Y impra
ti
al). However the agent 
an use the
orrelated asset X for hedging.The Bla
k-S
holes theory tells us that for pri
ing purposes we should swit
h to amartingale measure under whi
h the dis
ounted pri
es of traded assets are martingales,but it does not tell us how to determine the drifts on non-traded assets.4.2 Sto
hasti
 Volatility ModelsConsider a market 
onsisting of a bond paying 
onstant rate of interest r and a single riskyasset with pri
e pro
ess Xt. Suppose that under the physi
al measure P the dynami
s ofthe risky asset are given bydXtXt = �(Yt; t)(dWt + �(Yt; t)dt) + rdt (25)where the pro
ess driving the volatility is an autonomous di�usion pro
essdYt = a(Yt; t)dW 0t + b(Yt; t)dt (26)where W 0 is 
orrelated to the Brownian motion W . The problem is to pri
e an optionwith payo� H = H(XT ).Sto
hasti
 volatility models were introdu
ed to model the empiri
al fa
t that histor-i
al time series for volatility reveals patterns whi
h indi
ate that volatility 
hanges ran-domly over time. Examples in
lude modeling the volatility �(Yt; t) as a shifted Ornstein-Uhlenbe
k pro
ess (Stein and Stein (1991)), a square-root or Cox-Ingersoll-Ross pro
ess(Hull andWhite (1988) and Heston (1993)) and an exponential Brownian motion (Hull andWhite (1987)). There are also jump models for Y , see for example the model popularisedby Barndor�-Nielsen and Shephard (2000).Whi
h model of sto
hasti
 volatility should one 
hoose? A good model should betra
table, realisti
 (for example a shifted Ornstein-Uhlenbe
k pro
ess 
an go negativewhi
h is an undesirable property) and it should be straightforward to estimate the pa-rameters. Moreover, as well as providing a �t to histori
 pri
e data the model should alsohave the ability to explain option pri
e smiles both over strike and over maturity. Finally,the model should give superior hedging performan
e to the Bla
k-S
holes model.4.3 In
omplete markets and martingale measuresIt is 
lear from the form of the models in both the non-traded asset and the sto
hasti
volatility 
ases that these models are in
omplete. In a fri
tionless di�usion model the ruleof thumb is that a model is in
omplete if the number of sour
es of randomness is greaterthan the number of traded assets.We begin by des
ribing the spa
e of equivalent martingale measures. It is 
onvenient tointrodu
e a Brownian motion B whi
h is independent ofW and su
h that W 0t = �Wt+��Bt18



where ��2 = 1� �2. De�neZt = exp��Z t0 �udWu � 12 Z t0 �2udu� Z t0 �udBu � 12 Z t0 �2udu� : (27)Provided that E [ZT ℄ = 1 we 
an de�ne a (lo
al) martingale measure Q via a pro
ess similarto (14), see Frey (1997). (The �rst moment 
ondition guarantees that Q is a probabilitymeasure). Then �t = e�rtZt is a state-pri
e density and �tXt is a P (lo
al) martingale.Under Q , WQt = Wt + R t0 �udu and BQt = Bt + R t0 �udu are Brownian motions. Note thatthe 
hange of drift onWt is enfor
ed by the requirement thatWt+R t0 �udu is a martingale,whereas the 
hange of drift on Bt is undetermined. The 
lass of 
hanges of measure isparameterised by the pro
ess �, and we write Q� and (WQ� ; BQ� ) � (W �; B�) to emphasisethis.It remains to 
he
k that Q� is equivalent to P, and hen
e that there exists an equivalent(lo
al) martingale measure and thus there is no arbitrage. The task of 
he
king that ageneral sto
hasti
 exponential su
h as (27) is a true martingale is a diÆ
ult one (theNovikov 
ondition rarely applies), but in the Markovian setting other approa
hes havere
ently been developed (see Hobson and Rogers (1998) and Heyde and Wong (2004))whi
h redu
e to 
he
king that 
ertain pro
esses are non-explosive.It remains to de
ide if the model is 
omplete. By the (multidimensional) Brownianmartingale representation theorem, given the measure Q� , the dis
ounted option payo�R0HT=RT 
an be written as a sto
hasti
 integral with respe
t to the two-dimensionalBrownian motion (W �t ; B�t ):R0RT HT = v + Z T0  �t dW �t + Z T0 ��tdB�t= v + Z T0  �t~X�(Yt; t)d ~Xt + Z T0 ���tdB�tThe �rst two terms 
orrespond to the initial wealth and dis
ounted gains from traderespe
tively, of a dynami
 hedging strategy involving investments in the traded asset andbank a

ount. However it is not possible to trade on the se
ond asset and in general the
laim 
annot be repli
ated.5 Option Pri
ing in In
omplete MarketsIn a 
omplete market the fair pri
es of options are uniquely determined by the repli
a-tion pri
e. These pri
es 
an be 
al
ulated as the dis
ounted expe
ted values under theequivalent martingale measure. In an in
omplete market there is no unique fair pri
e andno universal pri
ing algorithm. Instead there are several alternative methodologies whi
hhave been proposed as pri
ing me
hanisms.The �rst approa
h is to �nesse the problem by writing down the dynami
s of assetsunder a pri
ing measure. This approa
h bypasses the physi
al measure. A se
ond andrelated idea (see for example Heston (1993)) is to 
hoose (essentially arbitrarily) a marketpri
e of risk for the non-traded assets. For example, the F�ollmer-S
hweizer (1990) minimalmartingale measure 
orresponds to a 
hoi
e of a zero market pri
e of risk for the non-tradedBrownian motion, or equivalently in our setting � = 0.Another idea whi
h has sometimes been exploited in the sto
hasti
 volatility literature(see S
ott (1987)) is to assume that there is a 
all option whi
h is liquidly traded. The19



introdu
tion of a se
ond traded asset 
ompletes the market. Hen
e, given the traded pri
eof a 
all option it is possible to pri
e and hedge any other 
ontingent 
laim. Of 
oursethis approa
h does not explain the pri
e of the original traded 
all. This idea has beenextended by Dupire (1994) to 
reate an elegant (though not very robust) theory for thepri
ing of exoti
 options. Suppose that 
alls with all possible maturities and strikes aretraded on the market. Then, under the assumption that the pri
e pro
ess posesses theMarkov property, it is possible to infer the dynami
s of the underlying pro
ess. In thisapproa
h pri
es for vanilla options are taken from the market and then used to give pri
esfor path-dependent exoti
 options. For a more robust version of the idea see Brown et al(2001).The remaining approa
hes we shall dis
uss all a
knowledge the in
ompleteness of themarket and pri
e options a

ordingly. Respe
tively they involve pri
ing via a hedging 
rite-ria, super-repli
ation pri
ing, minimal distan
e martingale measures, 
onvex risk measuresand utility indi�eren
e pri
ing.5.1 Hedging 
riteriaIn an in
omplete market perfe
t hedging is impossible. Instead one might aim to minimisesome fun
tional of the hedging error. F�ollmer and Sondermann (1986) suggest minimisingE [(H � V v;�T )2℄over initial wealths v and trading strategies �. The resulting optimal values are the mean-varian
e pri
e and hedge respe
tively. It turns out that in markets with zero interest ratesv = E [H�(2)T ℄ where �(2)T is the varian
e-optimal state-pri
e density whi
h is independent ofthe 
hoi
e of derivative H, see S
hweizer (1996). For extensions of this idea see Gourierouxet al (1998, sto
hasti
 interest rates) and Grandits and Kraw
zyk (1998, Lp norms on thehedging error.)An alternative 
riterion is proposed by F�ollmer and Leukert (2000). They proposeminimising the shortfall E [(H �V v;�T )+℄. This over
omes the disadvantage of the quadrati
hedging 
ondition whi
h penalises super-repli
ation, but at the 
ost of tra
tability.5.2 Super-repli
ation pri
ingIn the dis
ussion on the 
omplete market we introdu
ed the idea of super-repli
ation. In anin
omplete market we 
an use the same notion to de�ne the super-repli
ation pri
e as thesmallest initial fortune whi
h is needed to super-hedge the option payo� with probabilityone. The super-repli
ation pri
e 
an be thought of as an extreme hedging 
riteria in whi
hthe agent is not willing to a

ept any risk.The super-repli
ation pri
e is the supremum of the possible pri
es whi
h are 
onsistentwith no-arbitrage. As su
h it often gives a pri
e whi
h is unrealisti
ally high. In the non-traded assets model the super-repli
ation pri
e of a 
all option on Y is in�nite (Hubalekand S
ha
hermayer, 2001) whilst in a sto
hasti
 volatility model the super-repli
ationpri
e of a 
all on X is the 
ost of buying one unit of the underlying (Frey and Sin, 1999).A key alternative 
hara
terisation of the super-repli
ation pri
e is given in El Karouiand Quenez (1995), see also Delbaen and S
ha
hermayer (1994), F�ollmer and Kramkov(1997) and F�ollmer and Kabanov (1998), assupQ EQ [R0H=RT ℄20



where the supremum is taken over the set of martingale measures. Thus the super-repli
ation pri
e is the pri
e under the worst 
ase martingale measure.5.3 Minimal Distan
e Martingale MeasuresRather than 
hoosing a state-pri
e density arbitrarily, one approa
h is to 
hoose the state-pri
e density whi
h is smallest in an appropriate sense. Given a 
onvex fun
tion f : R+ 7!R the problem is to minimise E [f(�T )℄ over 
hoi
es of state-pri
e-density. When interestrates are deterministi
 and f is homogeneous, this minimisation problem is equivalent to�nding the minimal distan
e martingale measure, the (lo
al) martingale measure Q whi
hminimises E [f(ZT )℄ (28)where ZT = dQ=dP. (Some 
are is needed in this minimisation pro
eedure as the optimis-ing element may not itself belong to the 
lass of equivalent martingale measures.)As we pointed out earlier the 
lass of martingale measures depends on the 
hoi
e ofnum�eraire. However, sin
e in
omplete markets involve unhedgeable risks, 
hoi
e of almostany pri
ing 
riterion involves a de
ision about the units to be used to measure these risks.It seems most natural to use 
ash for this purpose. Alternatively, if we minimise E [f(�T )℄then the problem is num�eraire independent, and this is another argument for fo
usingon the state-pri
e density. To date however the mathemati
al literature has 
on
entratedon the problem of minimising (28). In any 
ase, for the examples we 
onsider, interestrates are deterministi
 and there is no distin
tion between the problems of determiningthe minimal distan
e state-pri
e density and the minimal distan
e martingale measure fora 
ash num�eraire.The problem of �nding minimal distan
e measures has been studied by many authors,but see espe
ially Goll and R�us
hendorf (2001) who give various 
hara
terisations whi
hdetermine the optimal Q in terms of f . One minimal distan
e measure whi
h has been thesubje
t of parti
ular attention in the literature (for example Rouge and El Karoui (2000)and Fritelli (2000)) is the minimal entropy martingale measure.Consider now our 
anoni
al models of in
omplete markets. Suppose, following Hobson(2003a), that we have a representation of the mean-varian
e trade-o� pro
ess of the form12 Z T0 �2du = 
+ Z T0 �u(dWu + �u)du+ Z T0 �udBu + 12 Z T0 �2udu (29)Note that this is an identi�
ation of random variables and not of pro
esses, and that thesolution 
onsists of a 
onstant 
 and integrands � and �. This equation 
an be viewedas an example of a Ba
kward Sto
hasti
 Di�erential Equation (BSDE), see Mania et al(2003). BSDEs provide a general framework for many 
hara
terisation problems in �nan
e(El Karoui et al, 1997).Now 
onsider f(z) = z ln z, and E [f(Z�T )℄ for martingale measures Z�T given by (27).We have E [Z�T lnZ�T ℄ = EQ� [ln(dQ�=dP)℄and using the representation (27)ln(dQ�=dP) = �Z T0 �udW �u + 12 Z T0 �2du� Z T0 �udB�u + 12 Z T0 �2du= 
+ Z T0 (�u � �u)dW �u + Z T0 (�u � �u)dB�u + 12 Z T0 (�u � �u)2du (30)21



where we have used (29) and the fa
t that under Q� , W � given by dW �t = dWt+�tdt andB� given by dB�t = dBt + �tdt are Brownian motions. Then, assuming that the sto
hasti
integrals in (30) are true martingales we haveE [Z�T lnZ�T ℄ = 
+ 12EQ� �Z T0 (�u � �u)2du� � 
with equality for � = �. Hen
e the problem of �nding the minimal entropy martingalemeasure redu
es to �nding the solution of (29). More generally, (29) is the spe
ial 
ase,
orresponding to q = 1, of a more general formula whi
h 
overs distan
e metri
s of theform f(x) = xq=(q(q � 1)).In the non-traded assets model des
ribed in Se
tion 4.1 the left-hand side of (29) is
onstant, and there is a trivial solution 
orresponding to � � 0 � �. (In this 
ase allthe minimal distan
e measures are identi
al and equal to the F�ollmer-S
hweizer minimalmartingale measure.) Alternatively, in the sto
hasti
 volatility model, if � is 
onstant andY is an autonomous di�usion, then there is a sto
hasti
 representation of the solution to(29) given in Hobson (2003a).On
e a minimal distan
e martingale measure Q� has been identi�ed it 
an be used forpri
ing in the sense that we 
an de�ne the option pri
e to beEQ� �R0RT H� = E [��TH℄where ��T is the state-pri
e-density asso
iated to the pri
ing measure Q� . The resultingpri
es are linear in the number of units of 
laim sold, and as we shall see later they arerelated to the marginal pri
e of the 
laim for a utility maximising agent. Further, if we
an solve the analogue of (29) for a variety of q, then we 
an begin to 
ompare optionpri
es under di�erent martingale measures, see Henderson et al (2003).5.4 Convex risk measuresCoherent risk measures were introdu
ed by Artzner et al (1999), in an attempt to axioma-tise measures of risk (and also to prove that Value at Risk was `in
oherent'). In orderto be 
onsistent with the rest of this se
tion we talk about 
oherent pri
ing measures for
laims rather than measures of risks.Let H 2 H be a 
ontingent 
laim. Then � : H 7! R is a 
oherent pri
ing measure if ithas the propertiesSubadditivity �(H1 +H2) � �(H1) + �(H2)Positive homogeneity for � � 0; �(�H) = ��(H)Monotoni
ity H1 � H2 ) �(H1) � �(H2)Translation invarian
e �(H +m) = �(H) +mThe idea is that � represents the amount of 
ompensation whi
h an agent would demandin order to agree to sell the 
laim H (or the size of the reserves he should hold if he hasoutstanding obligations amounting to H). The key result of Artzner et al (1999) is that,at least for �nite sample spa
es, there is a representation of a 
oherent pri
ing measure ofthe form �(H) = supQ2Q EQ [H℄;22



where Q is a set of measures. For example the super-repli
ation pri
e is obtained by takingthe set Q to be the set of all martingale measures.Subsequently, F�ollmer and S
hied (2002) introdu
ed the notion of a 
onvex risk mea-sure. Convex risk measures attempt to model situations in whi
h the ask pri
e of a 
laimdepends on the number of units sold. The subadditivity and positive homogeneity prop-erties are repla
ed by a 
onvexity property; for � 2 [0; 1℄,�(�H1 + (1� �)H2) � ��(H1) + (1� �)�(H2):Convex pri
ing measures are asso
iated with a pri
ing me
hanism whi
h is non-linear inthe number of units of the 
laim. Again there is a representation of a 
onvex pri
ingmeasure of the form �(H) = supQ2P nEQ [H℄� �(Q)o ;where now P is the set of all probability measures, and � is a penalty fun
tion. Forexample, to re
over the super-repli
ation pri
e we may take �(Q) = 0 if Q is a martingalemeasure, and �(Q) =1 otherwise.5.5 Utility Indi�eren
e Pri
ingUtility indi�erent option pri
es (Hodges and Neuberger (1989)) 
an be 
onsidered as adynami
 version of the notion of a 
ertainty equivalent pri
e in e
onomi
s. The utilityindi�eren
e (ask) pri
e is the unique pri
e p at whi
h the agent is indi�erent (in the sensethat his expe
ted utility under optimal trading is un
hanged) between not selling the 
laimand re
eiving p now in return for agreeing to make the random payout H at time T .Consider the problem with k units of the 
laim. (We take k to be positive if the agentis buying units of 
laim, and k negative if the agent is short the 
ontingent 
laim.) Assumethat initially the agent has wealth v and zero endowment of the 
laim. De�neu(v; k) = sup E [U(VT + kHT )℄where the supremum is taken over attainable terminal wealths whi
h satisfy the budget
onstraint E [�T VT ℄ � v for all state-pri
e densities �T . Then the utility indi�eren
e pri
ep(k) is the solution to u(v; 0) = u(v � p(k); k)Note that if the 
laim 
an repli
ated then p(k) = kE [�TH℄ for any state-pri
e density �T .In order to solve for the utility indi�eren
e pri
e we need to solve the agent's utilitymaximisation problem both with and without the 
laim. In the absen
e of the 
laim, theproblem is the 
lassi
al Merton problem in an in
omplete market. By analogy with (20)we have an inequality, whi
h holds for all state-pri
e densities, of the formsupVT E [U(VT )℄ � inf� inf�T n�v + E Û (��T )o (31)where Û is the Legendre transform of U . There is quality in (31) (subje
t to regularity
onditions) if U 0(V 0T ) = �0�0T for some optimal target wealth V 0T , Lagrange multiplier �0and state-pri
e density �0T (the supers
ript zero 
orresponds to zero units of the 
laim).Note that if Û is a power law, then �0T 
orresponds to a minimal distan
e state-pri
e-density. 23



In the 
ase with the option, see Cvitani�
 et al (2001), we haveU(VT + kH)� �(�TVT � v) = U(VT + kH)� ��T (VT + kH) + �v + �k�TH� Û(��T ) + �(v + k�TH)and then u(v; k) = supVT E [U(VT + kH)℄ � inf� inf�T E [Û (��T ) + �(v + k�TH)℄: (32)It follows that if �0 and �0T are as aboveu(v � kE [�0TH℄; k) � E [Û (�0�0T ) + �0(v � kE [�0TH℄) + k�0�0TH℄ = u(v; 0) = u(v � p(k); k)and the bid pri
e for k units satis�es p(k) � kE [�0TH℄.With further work, and under further assumptions (see Henderson and Hobson (2002a)Hobson (2003b) and also Hugonnier et al (2004)) it is possible to show that for positive
laims limk#0 p(k)k = E [�0TH℄so that the marginal bid pri
e is the dis
ounted expe
ted payo� under a minimal distan
estate-pri
e density. For small 
laim amounts it is also possible to 
onsider the total pri
eas an expansion in k, see Henderson and Hobson (2002b) or Henderson (2002).As an expli
it example in the sto
hasti
 volatility model suppose r = 0 and U(v) =�e�v so that Û(y) = y ln y. Then, when we take the in�mum over � we �nd thatinf� inf�T E [Û (��T ) + �(v + k�TH)℄ = exp��1� v � inf�T fkE [�TH℄ + E [�T ln �T ℄g�and the option pri
e be
omes (see Delbaen et al (2002))p(k) = inf�T fkE [�TH℄ + E [�T ln �T ℄g � inf�T fE [�T ln �T ℄g : (33)The problem of minimising the entropy was dis
ussed in Se
tion 5.3, but in general theproblem of �nding the �rst in�mum in (33) is hard. There are however expli
it solutionsin the non-traded asset model, see Henderson and Hobson (2002a).The expression in (33) shows that the utility indi�eren
e pri
e for exponential utility
orresponds to a 
onvex risk measure. Note that exponential utility is unique in thatwealth fa
tors out of the problem, to leave option pri
es whi
h are independent of wealth.This is a ne
essary 
ondition for a risk measure.6 Interest rate modelingTo date we have 
on
entrated on markets in whi
h the underlying is a risky asset whi
h
an be modelled by a di�usion pro
ess. Now we want to 
onsider an interest rate marketin whi
h the 
hara
teristi
s of the traded assets are di�erent. Three 
anoni
al texts onthe subje
t are Musiela and Rutkowski (1997), Bj�ork (1998) and Cairns (2004).Consider a fri
tionless market in whi
h there is a bank a

ount and a family of zero-
oupon bonds. A zero-
oupon bond with maturity date T (a T -bond) is a 
ontra
t whi
h24



guarantees to make a unit payment to the holder at time T . A T -bond makes no inter-mediate payments and is typi
ally a mathemati
al ideal rather than a genuinely tradedinstrument. Let the time-t pri
e of the T -bond be denoted by p(t; T ), and then p(T; T ) = 1.From the bond pri
es it is possible to dedu
e the instantaneous forward rates f(t; T )whi
h solve f(t; T ) = �(�=�T ) ln p(t; T ) or equivalently p(t; T ) = expf� R Tt f(t; s)dsg,and the instantaneous short rate rt = f(t; t). The assumption is that the bank a

ountpays the instantaneous short rate as a sto
hasti
 rate of interest, and if so this this isequivalent to investing in a portfolio of `just maturing' bonds. Given the relationshipsbetween the short-rate, the bond pri
es and the forward pri
es we 
an 
hoose to modelany of these.6.1 Short rate modelsModels based on the short rate provide an important sub
lass of interest rate models. Wesuppose that the short rate rt follows dynami
s (under P)drt = �(t; rt)(dWt + �(t; rt)dt):Examples in
lude taking rt to be a shifted Ornstein-Uhlenbe
k pro
ess (Vasi
ek, 1977) orthe sum of squares of OU pro
esses (Cox et al, 1985). In a short rate model a zero-
ouponbond plays the role of a derivative whi
h is to be pri
ed.In the light of our previous dis
ussion it is useful to know if the model is arbitrage-freeand 
omplete. In fa
t the dis
ounted pri
e of the traded asset isR0RtRt = R0whi
h is 
onstant under any equivalent measure. Thus there exist equivalent martingalemeasures and every equivalent measure is an equivalent martingale measure. To put thisanother way, if we �x an equivalent measure Q , then we 
an de�ne bond pri
es viap(t; T ) = EQ [e� R Tt rsdsjFt℄;but these pri
es are not the only ones 
onsistent with no-arbitrage.We return to the problem we fa
ed in the previous se
tion: how do we 
hoose anappropriate measure Q . The two most popular solutions are to �nesse the issue by writingdown the dynami
s under Q , or to 
hoose a market risk premium 
t, when
e, under Qdrt = �(t; rt)(dWt + (�(t; rt)� 
t)dt):Given a martingale measure Q we 
an pri
e bonds and more 
ompli
ated derivatives su
has options on bonds and interest rate swaps, and in simple 
ases we 
an often �nd analyti
alformulae for these quantities. However these instruments 
annot be repli
ated, although,as in a sto
hasti
 volatility model, on
e it is assumed that one bond is traded, all otherzero-
oupon bonds with shorter maturity 
an be hedged through dynami
 trading in thatbond.6.2 Forward rate modelsShort rate models have the feature that the entire interest rate market is governed by asingle explanatory variable. It is possible to over
ome this drawba
k, perhaps by in
luding25



other interest rates in the model su
h as the long rate. However short rate models havelargely been supplanted in the a
ademi
 literature and the industry by a paradigm shiftin whi
h the fundamental modeling obje
ts be
ome the forward rates. This leads tointeresting new mathemati
s, not least be
ause the state-variable is now a yield 
urvewhi
h is an in�nite-dimensional obje
t.The method we outline was �rst proposed by Heath, Jarrow and Morton (1992). LetW be a d-dimensional Brownian motion and suppose that for ea
h �xed T the forwardrates satisfy df(t; T ) = �(t; T )(dWt + �(t; T )dt): (34)The initial 
ondition ff(0; T )gT�0 
an be spe
i�ed by the initial market of bond pri
esand forward rates.When we swit
h to the martingale measure Q , under whi
h the dis
ounted tradedquantities (the dis
ounted T -bonds) are martingales, we �nd that the forward rates satisfydf(t; T ) = �(t; T )�dWQt +�Z Tt �(s; T )ds� dt�and that, although the no-arbitrage 
onditions �x the drifts in (34) there is almost 
ompletefreedom in modeling the volatility stru
ture. On
e the volatility 
o-eÆ
ients have beenspe
i�ed under P or Q the market is 
omplete and any derivative 
an be pri
ed andrepli
ated using d zero-
oupon bonds as hedging instruments.6.3 Market ModelsA more tra
table alternative to the 
lass of forward-rate models are the market modelsof Miltersen, Sandmann and Sondermann (1997) and Bra
e, Gatarek and Musiela (1997).Instead of 
on
entrating upon the unobservable forward rates a market model takes quotedinterest rates su
h as Libor as the fundamental modelling obje
ts. Morever, these keyobje
ts are assumed to have a log-normal distribution. One of the main bene�ts of thisassumption is that it is possible to derive 
losed form expressions for simple derivativessu
h as 
aps and 
oors.7 Credit and Default RiskFinan
ial risks o

ur in many forms. To date in this arti
le we have been 
on
erned withmarket risk | the adverse e�e
ts of 
hanges in the values of underlying assets or interestrates on the market value of a portfolio. But there are other risks fa
ing agents in �nan
ialmarkets in
luding 
redit risk, the risk that a 
ounterparty will fail to meet its obligations.Given the re
ent high pro�le failures of Enron and WorldCom, these risks have 
laimed aprominent position in the market psy
he.In a fairly general setting the issue of 
redit risk 
an be synthesised into the pri
ing ofbonds issued by a 
ompany. In this 
ase the valuation problems inherent in interest rateprodu
ts are 
ompounded by the risk of default by the issuing 
ompany.There are two main 
lasses of models for 
redit risk. The �rst 
lass of models, 
alledstru
tural models, were introdu
ed by Merton (1974) in an attempt to model default viaa mi
roe
onomi
 des
ription of the assets and liabilities of the �rm. The �rm defaultsthe �rst time that the assets fall below some threshold. If the assets are des
ribed bya di�usion pro
ess then this means that default is a predi
table event, and it follows26



that 
redit spreads of very short term bonds should be 
lose to zero. Unfortunately thisproperty is not a feature of 
redit data. There have been various attempts to modify the
lass of stru
tural models to over
ome this failing, for instan
e by making the pri
e pro
essa jump-di�usion (Zhou, 2001), or allowing for imperfe
t information (DuÆe and Lando,2001).The se
ond 
lass of 
redit risk models are the redu
ed form or intensity based models.In this 
lass 
redit events are spe
i�ed exogenously and default arrives a

ording to aPoisson pro
ess with intensity 
t. These models are somewhat arbitrary, but they providea good mat
h to data, they are 
exible and tra
table, and they 
an be made to �t smoothlyinto an interest rate framework. For example, if default events happen at rate 
t then theprobability of no default by time t is exp(� R t0 
udu) and the value of a T -bond (assumingzero re
overy on default) is given byEQ he� R T0 (ru+
u)dui ;where expe
tations are taken with respe
t to an equivalent martingale measure.The above des
riptions have 
on
entrated on the modeling of default events for a single
ompany, but one of the main problems in 
redit is to pri
e portfolios of 
orporate debt, inwhi
h 
ase it is ne
essary to model 
orrelated and dependent default. S
h�onbu
her (2003)gives a full review of 
redit modeling.8 Final ThoughtsMathemati
al �nan
e is 
on
erned with the related problems of quantifying risk, pri
ingrisk and mitigating the impa
t of risk via hedging. In general we think of these risks asarising from 
hanges in the pri
es of underlying assets | sto
k pri
es, ex
hange rates,interest rates | whi
h are spe
i�ed exogenously to the model. (But one 
an ask wherethese pri
es 
ome from, see for example Bi
k (1987) or Cox et al (1985), and what, ifany, are the rational explanations of bubbles and market 
rashes.) Given the pri
es ofunderlyings the beautiful Bla
k-S
holes-Merton theory gives powerful insights into theway derivatives are pri
ed, and leads us to the 
on
lusion that in perfe
t markets thepri
es of derivatives are fully determined.In imperfe
t markets option pri
es are not fully determined. Market imperfe
tions
an arise in many ways, some of whi
h we have dis
ussed in the arti
le above, and the�rst 
hallenge fa
ing mathemati
ians is to model these imperfe
tions in a way whi
h isamenable to analysis. In some markets, su
h as energy or weather derivatives (Brody etal, 2002), exponential Brownian motion is a poor des
riptor of the pri
e pro
ess. In somemarkets liquidity issues mean that delta-hedging is infeasible (Cetin et al, 2004). In somemarkets agents may have di�erential information (Amendinger et al (1998), F�ollmer etal (1999)). In all markets the ways that agents intera
t and their relative market power(Cvitani�
 and Ma (1996), Platen and S
hweizer (1998), Bank and Baum (2004)) 
an havea fundamental impa
t. These problems require 
areful and sympatheti
 modeling.The se
ond 
hallenge fa
ing �nan
ial mathemati
s is to the relate the 
on
lusionsfrom these models to real world �nan
ial pra
ti
e. This means that questions of model �tand parameter estimation be
ome 
ru
ial together with an a
knowledgement that oftenthe behaviour of agents is as mu
h in
uen
ed by fa
tors outside the model, su
h as tax
onsiderations or regulatory issues, as the predi
tions of a sophisti
ated mathemati
altheory. 27
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hasti
 Cal
ulusIn this se
tion we review, brie
y, the essentials of sto
hasti
 
al
ulus that are needed forthe derivation of the Bla
k-S
holes formula. Standard texts on Itô pro
esses in
lude Revuzand Yor (1998) and Rogers and Williams (2000), or for more basi
 treatments motivatedsolely by the appli
ations to �nan
e 
onsider Mikos
h (1998) or Steele (2001).If Zt = f(Wt; t) then Itô's formula (Rogers and Williams, 2000, IV.32.8) tells us that(provided the various derivatives exist)Zt = Z0 + Z t0 f 0(Ws; s)dWs + Z t0 �12f 00(Ws; s) + _f(Ws; s)� ds (35)where the �rst integral is an Itô sto
hasti
 integral and the se
ond is Lebesgue-Stieltjes.Sometimes it is 
onvenient to abbreviate this expression to a sto
hasti
 di�erential equationdZt = df(Wt; t) = f 0(Wt; t)dWt + �12f 00(Wt; t) + _f(Wt; t)� dt (36)but this di�erential version should be interpreted via the sto
hasti
 integral representation(35). Itô's formula 
an be extended to 
over fun
tions of semi-martingales Zt = f(Yt; t)and to fun
tions of more than one sto
hasti
 variable Zt = f(Y 1t ; Y 2t ; t).The Cameron-Martin-Girsanov theorem (Rogers and Williams, 2000, IV.38.5) saysthat if (
;F ;P) is the 
anoni
al probability spa
e supporting a Brownian motionW (su
hthat the �ltration Ft satis�es the usual 
onditions), and if (Zt)0�t�T de�ned viaZt = exp�Z t0 �sdWs � 12 Z t0 �2sds� (37)is a uniformly integrable martingale then Q de�ned viadQdP ����FT = ZT (38)is equivalent to P and under Q , Bs = Ws � R s0 �udu is a Brownian motion. Moreover the
onverse is also true, in the sense that if Q is equivalent to P, then Q has a representationvia (38) and (37).The Brownian martingale representation theorem (Rogers andWilliams, 2000, IV.36.5)says that if Mt is a martingale with respe
t to a �ltration Ft generated by a Brownianmotion Wt then Mt 
an be writtenMt =M0 + Z t0  sdWsfor some integrand  . 28
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