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Abstract

Finance is one of the fastest growing areas in mathematics. In some senses it is not
a discipline in its own right, but rather an application area in which mathematicians
with backgrounds in probability theory, statistics, optimal control, convex and functional
analysis and partial differential equations can bring to bear experiences and results from
their own fields to problems of real world interest.

In this survey we begin with the simplest possible financial model, and then give
an account of the Black-Scholes option pricing formula, in which the key ideas are the
replication of option payoffs and pricing under the risk-neutral measure. Then we move
on to discuss other important problems in finance, including the general theory for semi-
martingale price processes, pricing in incomplete markets, interest rate models and credit
risk. The emphasis is on techniques and methodologies from stochastic processes.

Keywords and Phrases: Derivative pricing, Black-Scholes, incomplete markets, stochas-
tic calculus, martingale measures.



1 Preamble

Despite the comparatively recent origins of the subject, mathematical finance is one of the
most important application areas of mathematics today. Three decades ago the subject
barely registered as a research area, but when in the early 1970s Fisher Black, Myron
Scholes and Robert Merton linked the well developed notions of Brownian motion and It
calculus to the problems of derivative pricing and hedging, a new and vibrant discipline
was created. The celebrated Black-Scholes option pricing formula (the discovery and de-
velopment of which earned Nobel prizes in 1997 for Scholes and Merton, Black having
died a couple of years previously) revolutionised the finance industry, facilitating the sub-
sequent rapid expansion in the trading of financial derivatives. The growth in volume of
trading of these instruments has been matched by the growth of mathematical finance as
a research endeavour. This has helped create new topics for mathematical inquiry, rein-
vigorating many existing areas, and developing bridges between previously unconnected
subjects. Now many mathematics departments in the United Kingdom and throughout
the world are developing research and teaching programmes in finance, and the output of
these programmes, both in terms of the research and the graduates, provides an important
resource for the City of London and elsewhere.

Mathematician’s Brownian motion was first introduced by Bachelier (1900) who was
motivated by an attempt to model the fluctuations of asset prices and to price deriva-
tives. Although he was the first researcher to characterise Brownian motion and his work
was well known to Kolmogorov and Doob, the impact of his work was not recognised by
the Finance community for many years. (His name is, however, honoured by the main
international Mathematical Finance society.) Indeed it was much later that Samuelson
(1965) suggested using exponential Brownian motion to model stock prices. In the ex-
ponential Brownian model the proportional price changes are generated by a Brownian
motion. Over a small time interval the proportional price changes are Gaussian random
variables with a variance proportional to the length of the interval, and price changes over
disjoint intervals are uncorrelated. The exponential Brownian model reflects the limited
liability (non-negativity) property of share prices and whilst it is not appropriate for all
financial assets in all market conditions, it remains the reference model against which any
alternative dynamics are judged.

It was in a model with exponential Brownian assets that Black and Scholes (1973) con-
structed a replicating portfolio and with it proposed a ‘fair’ price for a financial derivative.
(A derivative security or contingent claim is a financial instrument whose payoff is derived
from, or contingent upon, the behaviour of some other underlying asset. For example a
call option on a stock or share gives the option holder the right, but not the obligation,
to purchase one unit of the stock at a prespecified price called the strike.) Their ideas
were quickly advanced by Merton (1973). The key insight was that if it was possible to
replicate the payoff of the derivative as the gains from trade from a dynamic, self-financing
hedging strategy, then the initial fortune required to finance that strategy was exactly the
arbitrage-free price for the option. Furthermore, since all the risks associated with the
option were removed by hedging, the price is independent of the risk preferences of the
agent.

This argument was developed into a mathematical theory by Harrison and Kreps (1979)
and Harrison and Pliska (1981). These authors emphasised the central role of probability
theory and martingales (a martingale is a random process which is as likely to go up
as down, on average) and it is their stochastic theory that we explain here, and which



provides the foundation for much of the subsequent development of the subject. Their key
conclusion is that option prices are given by expectations — but not expectations with
respect to the real world or physical measure. Instead prices are expectations with respect
to the risk neutral measure under which the discounted price of the underlying asset is a
martingale.

In this survey we concentrate on the problems of derivative pricing. We begin with an
analysis of option pricing in the simplest possible one-period binomial model, the conclu-
sions from which — including the fact that there is a unique, preference independent, fair
option price — are subsequently mirrored in the Black-Scholes world. We then investigate
the extent to which the Black-Scholes model can be generalised without destroying these
key features.

When all options can be priced via replication the model is complete. Otherwise the
model is incomplete. In this situation there is no universal scheme for pricing options.
Instead we compare and contrast some of the possible alternatives, and this topic is the
main theme of the article. In particular we discuss in some simple but canonical settings
how options can be priced and hedged under various investment criteria.

No survey of mathematical finance can cover all areas of the subject in equal depth,
and any summary inevitably reflects the background and interests of the author. The
fact that this article stresses stochastic methods for derivative pricing in complete and
incomplete markets is a case in point. In the final few sections we cover, briefly, some of
the other important topics in finance, including interest rate models and credit risk.

2 Derivative Pricing: A First Pass

Consider the following model of a financial market. There is a single risky asset whose
price is given by (X;)o<;<7 and a risk-less bank account. The market in these assets is
perfect, by which we mean that there are no transaction costs or taxes, the risky and
risk-less assets can be bought in arbitrary quantities and agents are price takers.

A derivative security, or contingent claim, is a financial security whose value is con-
tingent upon the value of the risky asset. For example a call option (with strike K, and
maturity T') gives the holder the right, but not the obligation, to buy one unit of the risky
asset at time T for price K. If X7 > K then the option holder can exercise this right, and
(perhaps by selling the asset) make a profit of (Xp — K), whereas if X < K the option
matures worthless. At maturity the call option is worth (X7 — K)*.

The fundamental problem in mathematical finance is to give a fair price for the random
payoff of a derivative security given a stochastic model for the behaviour of the underlying.

2.1 The simplest case: the binomial model.

Suppose Xy = x and that at time T, Xt takes one of the values xu and xd where u > d.
(More formally we let Q = {w,,wy} and define X (w,) = 2u, Xr(wg) = xd and we
suppose 0 < P({w,}) < 1.) There is also a bank account which pays a fixed and constant
rate of interest r over the period [0, 7] so that one unit invested in the account at time 0
is worth R = (1 4 r) at time 7. We assume R € (d,u) to prevent simple arbitrages.

The problem is to price a derivative security which pays off h, = h(xu) in a year when
the price has moved ‘up’, and hy = h(xd) otherwise.

Suppose we can find 6, ¢ which solve

hy, = 6fxu+ ¢R, (1)
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hy = Oxd+ ¢R. (2)

Then the agent is indifferent between receiving the derivative and holding an initial port-
folio of # units of risky asset and investing ¢ units in the bank. Hence the time-zero fair
value for the option is C' = fx + ¢, the cost of financing the strategy implicit in the right-
hand-side of (1) and (2). This is our first example of pricing by arbitrage; if the derivative
trades at any price other than C' then there are risk-free profits to be made, either by sell-
ing the derivative and purchasing the portfolio (0, ¢) or by following the reverse strategy.
Since this cannot happen in any sensible market — there would be infinite demand for
the derivative if it traded for a price below C, and infinite supply if it traded above C' —
the derivative must trade for the arbitrage free price C.

In this simple binary model the values of # and ¢ can be calculated from (1) and (2).
We find 6 = (hy — hg)/(z(u — d)) and ¢ = (uhg — dhy)/(R(u — d)), so that an expression

for the derivative price is
1 (R—d u—R
E{u—dhu—i_u—dhd} 3)

There are two key observations to be made in this simple model which will inspire our
future analysis.

The first is that the key to option pricing is the concept of replication; the fact that
the fair price is determined by a trading strategy which creates the same payoff as the
option. In the binomial model it is always possible to find 6 and ¢ to solve (1) and (2) so
that replication is possible for all contingent claim payoffs h.

The second key observation relates to the concept of martingale pricing. If we write
qg=(R—d)/(u—d) then g € (0,1) and the derivative price (3) can be written as

S Aahu+ (1= q)ha} = B h(Xr)

so that the option price is the discounted expected payoff of the option, where the expec-
tation is taken with respect to the risk-neutral probabilities (q,1 — ¢). The probability ¢
has the special property that the expected value of the discounted asset price under the
probabilities (¢,1 — ¢) is the initial value; ie ¢ satisfies

r = % (gzru+ (1 — q)zd).
The discounted asset price is a martingale if we take expectations using the ¢-probabilities.
Note that we have completed a full analysis of the problem without reference to the
probabilities of the various events under the real-world measure P.
Rather than focusing on the measure or probabilities, we can consider instead the state
price density. Let p = P({w,}) and define ¢ via {y = 1 and

_ g _ 1 (R—-d),
) = R TR @)
o) = =9 1R

1-pR (A-pR(u-d)

Then ((;X¢)i—o.1 is a martingale, and the fair price of the option is E[(7h(X7)].
The above model, which is essentially due to Cox et al (1979) can be made more realistic
by extending it to cover several time-steps. (Indeed, since a random walk converges to



Brownian motion, the suitably scaled limit will be the continuous-time model of the next
section.) The contingent claim pricing problem can be solved by backward induction and
the derivative price is precisely the discounted expected payoff where the probabilities
have been modified to make the discounted prices of traded assets into martingales.

Note that if it is possible for the risky asset to take on more than two price values at
the end of the time-step then the replication argument fails. For example in a trinomial
model in which X7 may take the values zu, xR, xzd say, then the analogue to (1) and (2)
is a triple of simultaneous equations in two unknowns for which there is no solution in
general. Conversely there are many choices of probabilities which make the price process
into a martingale.

2.2 The Black-Scholes model: Pricing and hedging

We now consider the derivative pricing problem in continuous time. Following Samuel-
son (1965) the model is based on a Brownian motion or a Wiener process W;. The
stochastic process W, is not finite variation and so the standard rules of calculus do not
apply. Instead we use stochastic calculus. For a very brief introduction to the key concepts
see the appendix, or one of the many introductory (Mikosch (1998), Steele (2001)) or more
specialist texts (Revuz and Yor (1998), Rogers and Williams (2000)).

We suppose that we have a perfect frictionless model (as before, zero transaction costs,
zero taxes and dividends, the same interest rate for both borrowing and lending, agents
as price takers) in which trading takes place in continuous time. The economy consists of
a single risky asset with price process (X¢)o<i<7 which follows an exponential Brownian
motion, and a bank account which pays a constant rate of interest r. The dynamics for
the risky asset are specified under the physical measure P and are exogenous to the model.
This reflects the fact that agents are taken to be small investors, and their actions do
not affect the market price. The risky asset price and the value of Ry units of currency
invested in the bank account are given by

1
X; = Xgexp {O’Wt + <1/ — 502> t} , R; = Ryexp {rt},

or, in differential notation (using It6’s formula (36))
dXt = Xt(O'th + th), th == Ttht. (4)

Here the parameters o > 0,v and r (respectively the volatility and drift of the risky
asset and the interest rate) are taken to be constants. The value of monies invested in
the bank account R; obeys standard Newtonian calculus and the ordinary differential
equation for R; in (4) might more usually be written dR(t)/dt = rR(t). We use the form
dR; = rR:dt as an analogy to a stochastic differential equation, and to remind us that
in a more complicated model the interest rate may itself be stochastic. We call the asset
with price R; a bond.

Our goal, as in the binomial model, is to consider the wealth process which results
from holding a portfolio consisting of 8; units of the risky asset and ¢; units of the bond.
The elements of the portfolio #; and ¢; must be chosen based on information available at
time ¢. We assume this information set or filtration is generated by the price process X,
which means in our current context that it is the Brownian filtration generated by Wi.
The value of the portfolio is then given by

Vi = 0:X; + ¢ Ry (5)
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We further assume that the dynamics of the portfolio value satisfy

t t
Vt=vo+/ ests+/ 65dR, (6)
0 0

or, in differential notation,

dm = thXt + ¢tht- (7)

It should be emphasised that (7) is not obtained by taking the It derivative of the products
in (5). Instead it is postulated as a modelling assumption, motivated by the situation in
discrete time. See the remarks in Section 3 for a further discussion of this issue.

A value process V; which satisfies (7) is said to be self-financing. The term captures
the idea that no inputs or outputs of cash are needed to create V;; instead all fluctuations
in value come from the investment in the risky asset and bond. Further, if V; solves (5)
then once #; has been chosen, ¢; is determined via the relationship ¢:R; = V; — 0; X;. In
particular, we do not need to model ¢ explicitly; ¢; merely represents the number of bonds
we can buy with the cash surplus after we purchase 6; units of X;. Sometimes we write
V? to stress the dependence of the self-financing value process on the strategy 6, or V'
if we also wish to stress the starting wealth. It follows that we can rewrite (7) as

AVl = 0,(dX, — rX,dt) + rVidt, (8)
which, given the stochastic dynamics of X; is equivalent to
AV = 6, X0 (dW; + \dt) + rVdt, (9)

where A = (v — r) /o is the Sharpe ratio of the risky asset. It turns out to be much more
convenient to work with the Sharpe ratio A rather than the drift v, so that v will not be
mentioned again.

Consider now the problem of pricing a contingent claim with non-negative payoff h(Xr)
at time 7.

Define a super-replicating strategy to be a pair (v, ) such that the wealth process V",
defined via V"’ = v and V"¢ solves (8), satisfies V;"? > 0 and V2% > h(X7), P-almost
surely. A replicating strategy has V%”e = h(X7). The key idea is that if there exists a
super-replicating strategy for initial wealth v, then an agent would be at least as happy to
receive initial fortune v and to follow trading strategy 6, as to receive the option. Hence
the no-arbitrage principle gives us that v is an upper bound on the fair price of the claim.

Consider X’t = RoX/R;. We will use the notation ~ to denote a discounted quantity.
We have

. RoX, (dX
dX; = d(RoX:/R;) = ;t : <7tt - rdt)

which in our case can be simplified to
dX; = Xyo(dW, + \dt). (10)

Now consider the discounted process V¥ = RoV,? /R;. If V¥ is self-financing then V? solves
(8) and, in terms of discounted quantities,

d‘;’to = gtd)?t (11)



or equivalently, dV; = 6,X,0(dW, + A\dt). The simplicity of this equation shows the
advantage we gain from switching to discounted variables. Now suppose V¥ is the value
process associated with a replicating strategy (v, ). Then

Roh Ry o e /T -

—h(X7)=—V," =V" =v+ 0:d Xy (12)
RT RT 0

P-almost surely.

Suppose for a brief moment, that A = 0 and X, is a martingale. Then we can take
expectations in (12) and provided that fOT 0,dX; is a true martingale and not just a local
martingale, we can deduce a value for v. This value represents the replication price for
the contingent claim.

Now remove the assumption that A = 0, so that the discounted price is not a martin-
gale. Suppose, however, that we can find a new probability measure Q, equivalent to P,
such that the stochastic integral in (12) is a martingale under Q. Then the identities in
(12) hold Q-almost surely and taking expectations under Q we have the formula

v=H° [%h(XT)} . (13)

This gives us the fair price of the option. The measure Q is a computational device, but
it is extremely powerful in that it leads us to the option price.

Motivated by the above analysis, our goal is to find a measure @Q under which the
price process is a martingale, or to use a language more familiar to economists, to find a
state-price density process (; such that (;X; is a martingale.

Define the change of measure density Z; via

1
Zt = exp <—/\Wt — 5/\225)
and let Q and (; be given by
Q(A) = E[Zr14] and Gt =52 (14)

Then the probability measure Q is equivalent to P and by the Cameron-Martin-Girsanov
formula, see the appendix, wa defined via Wt@ = W;+ At is a Q-Brownian motion. Hence,
see (10), dX; = aXtthQ and X is a Q-martingale. Alternatively

A Xy) = d(ZXy) = (0 — A)(GX)dW;

so that (;X; is a P-martingale. The above result is a example of the simple proposition
that for any process Y;, we have that Y; is a (local) martingale under Q if and only if (;Y;
is a (local) martingale under P.

Now suppose that V" is the value process of a super-replicating strategy for h(Xr).
Then, from (11), V% is a local Q-martingale. Further V?*?, and hence V??, is non-
negative and we conclude that V is a Q-supermartingale. Thus

v > EC[V%] > E®[Roh(X7)/Rr] = E[(Th(X7)]

In particular E[¢(7h(X7)] is a lower bound on the fair price of the derivative.



If E[{rh(X7)] = oo then there is no super-replicating strategy corresponding to a finite
initial price. Henceforth we exclude this case.

Now we want to show that there is a super-replicating strategy with initial fortune
v = E[{rh(X7)]. Define the martingale
R

“h(Xr)

i, = B2 o

where E; denotes expectation given information available at time ¢t. Observe that I, > 0,
and II7 = Roh(X7)/Rr Qalmost surely (and hence P-almost surely since P and Q are
equivalent). By the Brownian martingale representation theorem (recall that the filtration
is generated by W;) we can write any Q-martingale II; as a stochastic integral with respect
to the Q-Brownian motion W<, We have

t t
HtZU—l—/ zpdeg@:er/ oldX, (15)
0 0

where 91 = wt/af(t and dX, = )~(SadWsQ. Then II; defined via II; = Rtht/Ro satisfies
Iy = v, II; > 0 and Iy = h(X7), P-almost surely, with dynamics

dll, = 0 (dX; — rX;dt) + r1l,dt.

Hence TI; defines the value process of a self-financing, super-replicating (and indeed repli-
cating) strategy with initial value v = E[Ryh(X7)/Rr] and it follows that v is the fair
price for the derivative. The associated hedging strategy is given by 6.

Note that, in exact parallel with the binomial model, the key ideas are the replication
of the option payoff and the idea of finding a change of measure under which the discounted
price process is a martingale. That measure is then used for pricing. The Sharpe ratio
A in the original model is irrelevant for pricing (as is the drift), and instead volatility o
is the crucial parameter. The fact that we price the option by replication means that an
agent who sells the option for its fair price can remove all the risk via a hedging strategy.
This explains why the risk preferences of the agent do not enter into the pricing formula.

To date we have identified the fair price of the option, but not the replicating strategy
;. To do this in general we need to know how to represent a martingale as a stochastic
integral in a Brownian filtration. This can be done by Clark’s Theorem which is a special
case of Malliavan calculus. Alternatively, for payoffs which are a function of X alone (or
perhaps a function of X7 and a small number of other path-dependent state variables —
see the examples below) we can exploit the Markov property to give an explicit form for
the hedging strategy 6.

Suppose the option payoff depends only on the value of the underlying asset at time
T. By the Markov property we can represent the time-¢ value V; of the contingent claim
via

Vi = V(X t) = B2 {%h(XT)} . (16)

Recall that dX; = aXtthQ—l—rXtdt. Then, by It6’s formula, assuming that V' is sufficiently
smooth,

1 .
v, = V(X t)dX; + ivll(Xtat)(dXt)Z + V (X, t)dt
1 .
= V(X4 ) XiodW? + {V’(Xt, trX; + §V”(Xt’ o2 X2+ V (X, t)| dt
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Conversely, if V is self-financing then from (9)
AV = 0, X;0dW 2 + Virdt.

If V is the value function of a self-financing replicating portfolio then these representations
must be almost surely identical, and for (almost every) path realisation we must have
0, = V'(Xy,t) (for Lebesgue almost surely all ¢ € [0, T]). Further, when we equate finite
variation terms we find that the value function must solve

LV =0 subject to V(z,T) = h(x), (17)

where

LF(ert) = raf'(e.t) + 0% (0, t) + fla,0) = rf ), (13)

The partial differential equation (17) for V' can be shown to be equivalent to the stochastic
pricing formula (16) using the Feynman-Kac formula and is sometimes called the Black-
Scholes pricing pde. The hedging strategy 6; = V'(Xy,t) is known as the delta-hedge.

2.3 Vanilla and Exotic Options

In the setting of the Samuelson-Black-Scholes exponential Brownian motion model for
option pricing we have shown that it is possible to derive a unique fair price for contingent
claims. The key mathematical tools that we used were 1t6’s formula, the Cameron-Martin-
Girsanov change of measure and the Brownian martingale representation theorem. In later
sections we discuss in more detail the class of admissible trading strategies and the extent
to which the conclusions of the above analysis are robust to changes in the underlying
model. We also consider the impact that the failure of the model assumptions has on
hedging and pricing. However in the rest of this section we assume that the model holds
and investigate the implications for the pricing of some common traded options.

The advantage of working with a simple model, albeit an overly simplistic one, is
that it gives insights into the behaviour of derivative prices which might be hidden in a
more realistic situation. For example, it allows us to investigate the comparative statics
of the option price and to understand how prices depend on the key parameters such
as volatility (Bergman al (1996), Renault and Touzi (1997), Hobson (1998a)). The true
test of a model is partly how well does it explain option prices in the market (but as
Figlewski (2002) argues one does not need the full power of the Black-Scholes call pricing
function for that), and partly how well do the theoretical hedges perform.

2.3.1 Call options

Traditionally the first, simplest and most widely traded options are put and call options.
A call option with maturity 7" and strike K has payoff (X7 — K)™. The time-t price of
the call option is

V(X t) = e "TUEE (X7 — K)Y] = X;®(dy) — Ke T 98(d)
where @ is the cumulative Normal distribution function and

g In(X,/Ke " T=Y) + 0*(T — t)/2
T oI —t '




The delta-hedging strategy is given by 0; = ®(d. ).

A put option gives the holder the right to sell the risky asset for price K. Since
(X7 — K)=(Xr - K)" — (K — X7)", there is a put-call parity result; namely that the
price of a call option minus that of a put option equals X; — e "7~V

2.4 American Options

If a claim is European in style then it is exercised at a fixed predetermined time T
American style options can be exercised at any (stopping) time 7 up to the, possibly
infinite, maturity 7'. The price becomes (see Myneni (1992))

ess Sup'rST]EQ [eirTh(XT)]v

where the esssup is taken over all stopping times 7 with ¢t <7 < T. If h(z) = (x — K)™*
(an American call) then provided there are no dividends it is never optimal to exercise the
option early and the American call has the same price as a European call. However for
an American put option with h(x) = (K — )™ the benefits of the convexity of the payoff
can sometimes be outweighed by the losses associated with the fact that the undiscounted
prices increase on average over time and the payoff function is decreasing. The pricing
problem becomes an optimal stopping problem in which the optimal exercise strategy has
to be determined.

One fruitful approach to this problem is to consider it as a dynamic programming
problem. The martingale optimality principle allows us to write down a Hamilton-Jacobi-
Bellman equation. The pricing function solves V' (z,t) > h(x) and LV =0 on I, = {z :
V(xz,t) > h(x)} where, as before,

1 .
Lf =goa® f +raf' —rf +f,

together with a smooth fit condition on dI;. This is a free boundary problem for which
there is no closed form solution. It is related to the Stefan problem from fluid dynamics
(Friedman 2000).

The natural explanation for the European/American nomenclature would be that op-
tions of appropriate style were traded in the relevant geographical markets. However there
is no strong evidence for this proposition. (Instead there is an anecdote which claims that
the adjectives were coined by an American researcher who wanted to appropriate the
more sophisticated and challenging option for his own continent.) Whatever the origins
of the terminology, it began a trend for naming options after regions or countries — Asia,
Bermuda, Paris, Russia and Israel each have an option named after them.

Puts and calls have simple payoffs and are sometimes called vanilla options in honour
of the most basic flavour of ice cream. Options with more complicated payoffs are said to
be exotic.

2.5 Exotic Options

2.5.1 Barrier Options

An example of an exotic option is an option whose payoff is contingent upon both the
value of the underlying at maturity and the value of the maximum price attained by
the underlying over some period. For example a knock-out call option has payoff (X7 —
K)*I (Xr<B) where X7 is the maximum price attained by the underlying and B is the
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barrier level. The option becomes worthless if ever the underlying exceeds the barrier. In
the Black-Scholes model there are closed form expressions for the prices and associated
hedging strategies for barrier options which involve the cumulative Normal distribution
function.

In practice barrier options can be difficult instruments to hedge. The classical delta-
hedge can involve very large positions, especially when the underlying asset is near the
barrier and the time to maturity is small. In these cases practical issues tend to dominate
(for example it can be useful to hedge using the call as well as the underlying, see Andersen
and Andreasen (2000), Brown et al (2001)) and an alternative pricing rule and hedging
strategy is needed, perhaps aiming to super-replicate the payoff rather than aiming to
replicate exactly.

Barrier options are closely related to digital and lookback options. A digital option
pays one if ever the underlying crosses the barrier, whilst the payoff of a lookback is
contingent upon the maximum price attained by the underlying over the lifetime of the
option. In the Black-Scholes model there are formulae for all of these, see for example
Goldman et al (1979).

2.5.2 Asian Options

An Asian fixed-strike call has payoff (Ar — K)* where Ar = (1/T) fOT Xydu. (Of course
this is an idealised mathematical version of the real contract which is based upon discrete
averaging.) Asian options are options on the average rate and were introduced partly to
meet the need for commodity producers who sold their output at a constant rate over
time, and partly to negate the effects of price manipulation.

The Asian pricing problem is to calculate the distribution of Ap = fOT eoWat(r—o?/2)s g
in such a way that it is possible to give a simple representation formula for the price of
the Asian call. In general there are no closed form solutions but the pricing problem
motivated several attempts to give a stochastic characterisation of the distribution, see
Geman and Yor (1993), as well as various ideas for the pricing of Asian options via Monte-
Carlo methods (with carefully chosen control variates, see Rogers and Shi (1995)) or pdes
(Vecer (2001)).

2.5.3 Passport Options

The Passport option (introduced by Hyer et al (1997)) is an example of an exotic op-
tion which was not widely traded, but which generated some novel research problems in
mathematics. In the symmetric passport option problem the aim is to evaluate

sup E2[(GY)*]
10:1<1

where G? is the discounted gains from trade using a self-financing strategy 0. In particular
~ T ~
Gl =g+ / 0,dX,.
0

It turns out (see for example Andersen et al (1998)) that the optimal strategy is to take

0s = —sgn(Gs). Moreover, the price is related via the Skorokhod Problem and local times
to that of a lookback option (Henderson and Hobson (2000), Delbaen and Yor (2002)).
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2.6 Numéraires

We saw in the analysis of the Black-Scholes model that it is convenient to work with
discounted prices. This switch can be described as a change of numéraire from cash to
bond, and the fundamental and very sound economic principle upon which it is based is
that the prices of contingent claims should not depend on the units in which they are
denominated.

As well as cash and bond it is sometimes useful to use a risky asset, or the gains from
trade of a portfolio of risky assets as numéraire, see Geman et al (1995) and Gouriéroux
et al (1998). For example, consider pricing an exchange option (Margrabe (1978)) with
payoff (X7 — Y7)*, where the price processes X; and Y; are given by correlated Brownian
motions. Then a change of numéraire from cash to Y; reduces the pricing problem to that
of pricing a standard call in the Black-Scholes model on the single underlying X;/Y;.

In general the form of a martingale measure Q depends on the choice of numéraire N
(see Branger (2004)), and for clarity one should consider the pair (N7, Q" ). Alternatively
we can fix attention on the state-price-density

_ Mo dQ"

Cr = Np dP

which is numéraire independent.

2.7 Optimal consumption and investment problems

Consider an agent who can trade in a market as in Section 2.2. Suppose that, rather than
trying to price a derivative, the aim of this agent is to maximise his utility of terminal
wealth, or alternatively to maximise his utility of consumption over time.

Let U : RT (orR) — R be an increasing (to reflect the fact that agents prefer more
to less) and concave (to reflect the law of diminishing marginal returns) utility function.
Examples include power-law utilities U(x) = #'=%/(1 — R), for R > 0, logarithmic util-
ity U(z) = Inz and exponential utility U(x) = —e™", together with various other less
tractable families such as

U(x) =r~" (1 + Kk — 1+ /<;23:2> k> 0.

The classical Merton problem (Merton, 1969) is to find the optimal trading strategy
which maximises the expected utility of terminal wealth EU (V) where Vi is given by (6).
In the Black-Scholes model there is a full solution to this optimal control problem. In the
primal approach it is possible to write down a Hamilton-Jacobi-Bellman (HJB) equation
for the value function of an agent, and then, at least for the case of power law, logarithmic
and exponential utilities, to conjecture the form of the solution. In simple cases a standard
verification theorem gives that indeed we have a solution of the HJB equation, and the
optimal strategy. (In less simple cases the solution of the HIB equation may only exist in
the sense of a viscosity solution see Duffie et al (1997).)

There is an alternative approach, called the dual method, which gives very powerful
insights, see Karatzas (1989) for a survey. The problem is to maximise the expected utility
of terminal wealth Vr subject to the wealth satisfying a budget constraint. If we write
this in Lagrangian form

E[U(Vr) — u(¢rVr — v)]
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and introduce the Legendre transform U(y) = sup,{U(v) — vy} of U then

E[U(Vr) — u(CrVr — 2)] < pv + EU (uCr), (19)

with equality when U'(Vy) = u¢r almost surely. This inequality holds for all admissible
strategies, and all (positive) Lagrange multipliers so we have

supE[U(Vy)] < inf { o + B0 (uCr) } (20)
Vo M

Further, in standard cases (when the asymptotic elasticity of utility is less than one, see
Kramkov and Schachermayer (1999)), there is no duality gap and there is equality between
the expressions in (20). The optimal solution given by a target wealth V;: and a Lagrange
multiplier * is such that V3 = I(p*(r) where I is the inverse to the derivative of U. (In
fact p* is the value of the Lagrange multiplier such that E[(r V] = E[(r I(p*(r)] = v.)

In the analysis of the Merton problem for the Black-Scholes model presented here, the
dual problem is simpler than the primal problem since the minimisation takes place over
a single real-valued Lagrange multiplier rather than a random-variable valued space of
terminal wealths. If we think of the dual problem then it is natural to look for utilities
whose Legendre transform U takes a simple form. For example, consider the class of
dual functions given by ﬁ”(y) = Ay?2 for ¢ € R and A a positive constant. The class
of associated utility functions is exactly the class of HARA utilities, which includes the
power, logarithmic and exponential utilities as special cases, see Merton (1990, p137).

Instead of aiming to maximise expected utility of terminal wealth it is also natural to
consider agents who wish to maximise expected discounted utility of consumption over
time. Let the wealth process be described by the equation

d% = atht + (T - QtXt>dt - Ctdt

where ¢; is the consumption rate. Then the problem facing the agent is to maximise

E [/000 U(t,ct)dt] , (21)

or more especially to determine optimal investment and consumption pairs (6, ¢;)i>0.
Again this problem can be attacked via primal or dual methods.

It should be noted that (21) is an unsatisfactory formulation in a couple of ways. Firstly
(21) does not arise as the continuous time limit of a realistic situation in which consumption
occurs in discrete lumps, and secondly, the value function depends only on the marginal
distributions of the consumption process (¢;)¢>0, and not on the joint distribution. Duffie
and Epstein (1992) introduced stochastic differential utilities to address this second issue.

2.8 The successes and failures of the Black-Scholes model

The Black-Scholes model has the property that it is possible to define a unique fair price,
the replication price, for any contingent claim. This price is given as the discounted
expectation of the option payoff under the unique risk-neutral or martingale measure.
The model can be extended to include dividends and to other types of underlyings, such
as forwards, futures, indices and foreign exchange rates. Above all the Black-Scholes
model has provided a language for the pricing of derivatives and a reference against which
modifications of the model can be compared.
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In principle, in the Black-Scholes paradigm the option pricing problem is solved, and
the solution given in (13), but on occasion it may be difficult to evaluate this stochastic
expression and give an analytic pricing formula. Instead practitioners sometimes resort to
solving the pde (17), or approximate the price via Monte-Carlo simulation or even solve
a multi-period extension of the Cox-Ross-Rubinstein binomial model. In such cases the
issue is to execute any of these approaches efficiently and accurately, particularly in high
dimensions.

Unfortunately the assumptions of the Black-Scholes model are never satisfied, a theme
we return to in Section 4. (It is clear that something must be wrong since the traded
prices of different derivatives are frequently, by which we mean invariably, consistent with
different values of the volatility parameter.) Continuous trading is impossible, there are
taxes, interest rates differ for borrowing and lending, agents are never price takers and face
a bid/ask spread, and the prices of underlyings never quite follow exponential Brownian
motion with constant known parameters. Understanding and accommodating some of
these market frictions and imperfections is one of the main remaining goals of mathematical
finance and one of the subjects of the remaining sections.

3 The General Theory

Our aim in this section is to review the analysis we gave in the Samuelson-Black-Scholes
exponential Brownian case and to consider the extent to which the results and conclusions
generalise to a wider class of models. At first sight it might appear that such generalisations
are issues of idle mathematical curiosity. In fact, since the assumptions of the Black-Scholes
model clearly fail in practice, it is crucial to understand which results are robust to model
misspecification. Our brief survey is based on the discussion in Schachermayer (2003),
and the reader who wishes to learn more about the background to the “théorie générale”
is referred to that very readable text.

We begin with a filtered probability space (2, F, (F¢)o<t<T.. ), P) where T, is a fixed
horizon time which is greater than the maturity of any options of interest. We suppose
that the discounted price process of the risky asset X is a (locally bounded, cadlag)
semi-martingale which is adapted to the filtration F; satisfying the usual conditions. The
filtration F; captures the information available at time ¢. The process X; may be vector
valued, although our notation will not emphasise this. We have chosen to work with
discounted price processes (in part this is just a choice of numéraire), so that although
there is a bank account in the model, it does not appear in the analysis.

Already the perceptive reader may wonder whether it is necessary to assume that
the price X; of the risky asset is a semi-martingale. This assumption is very convenient
because the well developed theory of stochastic integration is based upon semi-martingales.
Further, according to Theorem 7.2 of Delbaen and Schachermayer (1994) if the model is to
be consistent with no-arbitrage then the price process must be a semi-martingale, at least
when the set of admissible trading strategies is sufficiently large. This rules out certain
candidate families of models very quickly. For example fractional Brownian motion is not
a semi-martingale. Rogers (1997) gives a direct proof that fractional Brownian motion
models admit arbitrage. On the other hand, we cannot take models which are too simple:
if the discounted price process is of finite variation then there is also arbitrage.

Our first task is to define the class of admissible portfolios and the associated value
functions. Let #; be an adapted process which represents the purchases of the risky asset
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and define V?, the associated self-financing value process with initial wealth Vj, via
t
V=", +/ 0,dX,. (22)
0

As before the investment ¢ in the bank account is implicit rather than explicit.

The integral on the right-hand-side of (22) is an It6 stochastic integral. In one sense the
choice of the It6 integral is arbitrary — we could equally use the Stratanovich integral, for
example, provided we include all the appropriate correction terms. But in another sense
the It stochastic integral is the only stochastic integral which makes economic sense. To
see this observe that if the portfolio #; is a simple (piecewise constant) strategy then the
discounted gains from trade from investment in the risky asset are given by

G = Z 01 (Xt 1 nt — Xtiat)-
2
In particular the gains process is obtained by multiplying the increments of the price
process by the number of units of risky asset held at the beginning of the relevant time
interval. The It integral shares this non-anticipatory property — it is the integral of the
integrand against the forward increments of the integrator.

We now define an admissible strategy as an adapted portfolio process 6; for which the
associated value function is such that the Ttd stochastic integral fOT 0,dX; is well defined
and V! defined via (22) is bounded below: VY > —M for some constant M. This definition
is sufficient to rule out doubling strategies, but does not prevent suicide strategies.

The key idea which underpinned pricing in the Black-Scholes model was the notion
of an equivalent martingale measure. In general it is too much to expect the underlying
to become a martingale under a change of measure, and all we really need is that the
discounted traded asset process, and hence the discounted wealth process, becomes a local
martingale. We have the following tautological but important definition: a measure Q,
equivalent to P, under which the discounted asset price is a local martingale is called an
equivalent local martingale measure.

Before we discuss option pricing in general we would like to know whether the model
we have makes economic sense, and in particular whether it is consistent with no-arbitrage.
(If there are arbitrage opportunities in the model — loosely described to be ways of making
profits at zero risk — then the model is unsustainable. Some or indeed all agents would
want to follow these profit making strategies and the current market prices would not
survive in equilibrium.) It turns out that the ‘right’ concept to work with is the idea of
‘no-free-lunch with vanishing-risk’ (NFLVR). Roughly speaking there is a free lunch with
vanishing risk if, when you look at the class of contingent claims which can be replicated
by an admissible portfolio, and then look at the limits of sequences of such claims, there
is a limit random variable which is non-negative almost surely and positive with positive
probability. The key result is due to Delbaen and Schachermayer (1994, Corollary 1.2),
but see also Harrison and Pliska (1981) for the finite case, Kreps (1981) and Delbaen and
Schachermayer (1998).

Theorem 3.1 (First Fundamental Theorem of Asset Pricing.) Suppose X is a lo-
cally bounded semi-martingale. Then there exists an equivalent local martingale measure

if and only if the model satisfies NFLVR.

This theorem is one of the triumphs of the theory of mathematical finance in the
abstract semi-martingale setting. It was clear that one side of the if and only if condition
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should be the existence of an equivalent (local) martingale measure, since this is a powerful
assumption from which many natural and useful properties follow easily. Thus the difficult
part of the theorem involved finding the appropriate definitions of admissible strategy
and no-arbitrage which would give the martingale measure condition an economically
meaningful interpretation.

Since we want to work with economically meaningful models we assume that the model
satisfies NFLVR. Hence we are entitled to assume that there exists an equivalent local
martingale measure. Set Zr = dQ/dP and Z; = E;[Z7]. Then Z; and Z;X; are both
P-local martingales.

In the general setting we say that a pair (v, ) is a super-replicating strategy for H if
the strategy is admissible and if the associated value process Vvl satisfies (22) subject to
1700 = v and f/%;,o > H, the discounted payoff of the claim. Then by the same analysis as
before, if (v,0) is a super-replicating strategy, then th/ta is a P-super-martingale and

v > E[Zr V] > B[ Zr H).

Hence E[Z7 H | is a lower bound on the replication price of the option.

This raises the question as to whether there is a super-replicating strategy for the
option with initial wealth v. In the one-dimensional Brownian context we have seen how
the Brownian martingale representation theorem can be used to produce a replicating
strategy. In general it is not always the case that this is possible. The condition under
which replicating strategies can be found for all options can again be related to a condition
on the equivalent martingale measures, and is again given in Delbaen and Schachermayer
(1994).

Theorem 3.2 (Second Fundamental Theorem of Asset Pricing.) Every bounded claim
can be replicated if and only if there is only one equivalent local martingale measure.

This is the subject of the next section.

4 Incomplete markets

Our analysis of the Samuelson-Black-Scholes model relied on two results from the the-
ory of stochastic processes and Brownian motion. Firstly, the Cameron-Martin-Girsanov
Theorem guarantees the existence of an equivalent martingale measure Q under which the
discounted price process X; is a martingale (or equivalently the existence of a state-price-
density ¢; with the property that (; R; and (; X; are martingales.) Secondly, the Brownian
martingale representation theorem says that any random variable whose value is known
at time T' can be written as its expected value plus a stochastic integral against Brownian
motion. In the Black-Scholes market setting this translates into the result that any option
payoff can be written as the price plus the gains from trade from a dynamic investment
strategy in the underlying asset.

In the previous section we saw that the existence of a martingale measure is related
to the question of whether a model makes economic sense. In this section we consider the
role of the martingale representation theorem, and especially the situation in which it is
no longer possible to write every claim as the terminal value of a trading strategy.

Recall that R, which we no longer assume to be deterministic, is the value of Ry units
of cash invested in the bank account. We say that a contingent claim H is replicable if it
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can be written

i (v [ %)
H=—1{v+ 0,d X
Ry 0

for an admissible trading strategy 6, or equivalently if the option payoff can be replicated
via a dynamic hedging strategy. In this case there is a unique fair replication price for the
option

v=F2 |2H

T

= E[¢r H]

where QQ is any martingale measure and (7 is the related state-price density. An option
which can be replicated in this way is said to be redundant in the sense that adding the
option to the (perfect frictionless) economy has no impact since its payoff can be created
synthetically through dynamic trading. If every claim is redundant then the market is
complete.

In an incomplete market it is not possible to replicate every contingent claim. For such
claims there is no replication price, and the Black-Scholes theory we have introduced has
nothing to say about the fair price of the option. Instead we have reached what Hakansson
(1979) calls the “Catch 22 of option pricing”: the claims we can price are redundant, and
the claims that are not redundant we cannot price. The problem facing economists (and
financial mathematicians) is to determine a method for pricing non-redundant options
which is consistent with the Black-Scholes methodology for those derivatives which can be
replicated.

It is clear that if there is more than one state-price density then there exists a claim
for which it is possible to define more than one price (via expectation) and hence that
that option cannot be replicated. The converse is also true, so that if there exists a unique
equivalent local martingale measure then the model is complete and every claim can be
replicated. This is the Second Fundamental Theorem of Asset Pricing.

Incompleteness can arise from many sources, for example transaction costs, (Hodges
and Neuberger (1989), Davis et al (1993), Soner et al (1995)), jump models (Merton (1976),
Bardhan and Chao (1996)), constraints on the trading strategies (Soner and Touzi (2001),
Cvitani¢ and Karatzas (1993)) or stochastic volatility (Hull and White (1987), Hes-
ton (1993), Fouque et al (2000)) and to some extent the best approach to pricing and
hedging must depend on the context. However, fundamentally, one has to answer the
question of how to price and hedge a contingent claim H which is completely independent
of the remainder of the model. Our goal is to analyse two simple models which exhibit
incompleteness.

4.1 Non-traded Assets

As a first and simple example of an incomplete market (see Davis (2000), Henderson and
Hobson (2002a, 2002b), Henderson (2002)) consider an economy with a deterministic bond
R; = Rye™ and a single risky asset with dynamics

ax,

= o(dW; + \dt) + rdt (23)
Xi

For simplicity we assume that all parameters o, A and r are constants. All contingent
claims on X can be replicated. Now introduce a second risky asset Y; with price process

dY; = adW/ + bydt (24)
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where W' is correlated to W with dWdW/ = pdt. Suppose that Y is not traded and
consider the problem of pricing a contingent claim H = H(Yr).

The situation we are trying to model is one where an agent has a random endowment
H whose payoff depends on an asset Y, but that asset cannot be used for hedging. This
may be because of legal reasons (consider an executive who receives compensation in the
form of stock options, but who is contractually forbidden from actively trading in stock
on his own company (Henderson (2003)) or simply liquidity issues (trading in the asset YV’
may be so thin as to make hedging with ¥ impractical). However the agent can use the
correlated asset X for hedging.

The Black-Scholes theory tells us that for pricing purposes we should switch to a
martingale measure under which the discounted prices of traded assets are martingales,
but it does not tell us how to determine the drifts on non-traded assets.

4.2 Stochastic Volatility Models

Consider a market consisting of a bond paying constant rate of interest r and a single risky
asset with price process X;. Suppose that under the physical measure P the dynamics of
the risky asset are given by

4,

= (Yo, ) (AW, + MYy, t)dt) + rdt (25)
t

where the process driving the volatility is an autonomous diffusion process
dY; = a(Yy, t)dW/ + b(Yy, t)dt (26)

where W' is correlated to the Brownian motion W. The problem is to price an option
with payoff H = H(X7).

Stochastic volatility models were introduced to model the empirical fact that histor-
ical time series for volatility reveals patterns which indicate that volatility changes ran-
domly over time. Examples include modeling the volatility o(Y;,¢) as a shifted Ornstein-
Uhlenbeck process (Stein and Stein (1991)), a square-root or Cox-Ingersoll-Ross process
(Hull and White (1988) and Heston (1993)) and an exponential Brownian motion (Hull and
White (1987)). There are also jump models for Y, see for example the model popularised
by Barndorff-Nielsen and Shephard (2000).

Which model of stochastic volatility should one choose? A good model should be
tractable, realistic (for example a shifted Ornstein-Uhlenbeck process can go negative
which is an undesirable property) and it should be straightforward to estimate the pa-
rameters. Moreover, as well as providing a fit to historic price data the model should also
have the ability to explain option price smiles both over strike and over maturity. Finally,
the model should give superior hedging performance to the Black-Scholes model.

4.3 Incomplete markets and martingale measures

It is clear from the form of the models in both the non-traded asset and the stochastic
volatility cases that these models are incomplete. In a frictionless diffusion model the rule
of thumb is that a model is incomplete if the number of sources of randomness is greater
than the number of traded assets.

We begin by describing the space of equivalent martingale measures. It is convenient to
introduce a Brownian motion B which is independent of W and such that W/ = pW,+ pB;
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where p? = 1 — p?. Define

t 1 t t 1 t
Zi=exp|— [ XdWy—= [ Ndu— [ &dB,—= [ &du). (27)
2 u 2 u
0 0 0 0

Provided that E[Z7] = 1 we can define a (local) martingale measure QQ via a process similar
to (14), see Frey (1997). (The first moment condition guarantees that Q is a probability
measure). Then (; = e "'Z; is a state-price density and (;X; is a P (local) martingale.
Under Q, Wt@ =W, + fUt Audu and B;@ = B; + fot &udu are Brownian motions. Note that

the change of drift on W; is enforced by the requirement that W; + fot Aydu is a martingale,
whereas the change of drift on B, is undetermined. The class of changes of measure is
parameterised by the process ¢, and we write Q¢ and (WQ€ , BQg) = (W¢, BY) to emphasise
this.

It remains to check that Q¢ is equivalent to P, and hence that there exists an equivalent
(local) martingale measure and thus there is no arbitrage. The task of checking that a
general stochastic exponential such as (27) is a true martingale is a difficult one (the
Novikov condition rarely applies), but in the Markovian setting other approaches have
recently been developed (see Hobson and Rogers (1998) and Heyde and Wong (2004))
which reduce to checking that certain processes are non-explosive.

It remains to decide if the model is complete. By the (multidimensional) Brownian
martingale representation theorem, given the measure Qf, the discounted option payoff
RoHr/Rr can be written as a stochastic integral with respect to the two-dimensional
Brownian motion (WS, BY):

RU T T
YHy = v+/ zpdeEJr/ xidBt
0 0

T wﬁ N T

= U+/ -t dXt+/ \:dBt
0o Xo(Y,t) 0

The first two terms correspond to the initial wealth and discounted gains from trade

respectively, of a dynamic hedging strategy involving investments in the traded asset and

bank account. However it is not possible to trade on the second asset and in general the
claim cannot be replicated.

5 Option Pricing in Incomplete Markets

In a complete market the fair prices of options are uniquely determined by the replica-
tion price. These prices can be calculated as the discounted expected values under the
equivalent martingale measure. In an incomplete market there is no unique fair price and
no universal pricing algorithm. Instead there are several alternative methodologies which
have been proposed as pricing mechanisms.

The first approach is to finesse the problem by writing down the dynamics of assets
under a pricing measure. This approach bypasses the physical measure. A second and
related idea (see for example Heston (1993)) is to choose (essentially arbitrarily) a market
price of risk for the non-traded assets. For example, the Féllmer-Schweizer (1990) minimal
martingale measure corresponds to a choice of a zero market price of risk for the non-traded
Brownian motion, or equivalently in our setting & = 0.

Another idea which has sometimes been exploited in the stochastic volatility literature
(see Scott (1987)) is to assume that there is a call option which is liquidly traded. The
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introduction of a second traded asset completes the market. Hence, given the traded price
of a call option it is possible to price and hedge any other contingent claim. Of course
this approach does not explain the price of the original traded call. This idea has been
extended by Dupire (1994) to create an elegant (though not very robust) theory for the
pricing of exotic options. Suppose that calls with all possible maturities and strikes are
traded on the market. Then, under the assumption that the price process posesses the
Markov property, it is possible to infer the dynamics of the underlying process. In this
approach prices for vanilla options are taken from the market and then used to give prices
for path-dependent exotic options. For a more robust version of the idea see Brown et al
(2001).

The remaining approaches we shall discuss all acknowledge the incompleteness of the
market and price options accordingly. Respectively they involve pricing via a hedging crite-
ria, super-replication pricing, minimal distance martingale measures, convex risk measures
and utility indifference pricing.

5.1 Hedging criteria

In an incomplete market perfect hedging is impossible. Instead one might aim to minimise
some functional of the hedging error. Féllmer and Sondermann (1986) suggest minimising

E[(H - V')’

over initial wealths v and trading strategies 6. The resulting optimal values are the mean-
variance price and hedge respectively. It turns out that in markets with zero interest rates
v=FE[H Cj(?)] where CJ(?) is the variance-optimal state-price density which is independent of
the choice of derivative H, see Schweizer (1996). For extensions of this idea see Gourieroux
et al (1998, stochastic interest rates) and Grandits and Krawczyk (1998, LP norms on the
hedging error.)

An alternative criterion is proposed by Follmer and Leukert (2000). They propose
minimising the shortfall E[(H — V;*?)*]. This overcomes the disadvantage of the quadratic
hedging condition which penalises super-replication, but at the cost of tractability.

5.2 Super-replication pricing

In the discussion on the complete market we introduced the idea of super-replication. In an
incomplete market we can use the same notion to define the super-replication price as the
smallest initial fortune which is needed to super-hedge the option payoff with probability
one. The super-replication price can be thought of as an extreme hedging criteria in which
the agent is not willing to accept any risk.

The super-replication price is the supremum of the possible prices which are consistent
with no-arbitrage. As such it often gives a price which is unrealistically high. In the non-
traded assets model the super-replication price of a call option on Y is infinite (Hubalek
and Schachermayer, 2001) whilst in a stochastic volatility model the super-replication
price of a call on X is the cost of buying one unit of the underlying (Frey and Sin, 1999).

A key alternative characterisation of the super-replication price is given in El Karoui
and Quenez (1995), see also Delbaen and Schachermayer (1994), Follmer and Kramkov
(1997) and Foéllmer and Kabanov (1998), as

sup EC[RoH/ Rt
Q
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where the supremum is taken over the set of martingale measures. Thus the super-
replication price is the price under the worst case martingale measure.

5.3 Minimal Distance Martingale Measures

Rather than choosing a state-price density arbitrarily, one approach is to choose the state-
price density which is smallest in an appropriate sense. Given a convex function f : Rt
R the problem is to minimise E[f({7)] over choices of state-price-density. When interest
rates are deterministic and f is homogeneous, this minimisation problem is equivalent to
finding the minimal distance martingale measure, the (local) martingale measure Q which
minimises

Elf (Zr)] (28)
where Z7 = dQ/dP. (Some care is needed in this minimisation proceedure as the optimis-
ing element may not itself belong to the class of equivalent martingale measures.)

As we pointed out earlier the class of martingale measures depends on the choice of
numéraire. However, since incomplete markets involve unhedgeable risks, choice of almost
any pricing criterion involves a decision about the units to be used to measure these risks.
It seems most natural to use cash for this purpose. Alternatively, if we minimise E[f({r)]
then the problem is numéraire independent, and this is another argument for focusing
on the state-price density. To date however the mathematical literature has concentrated
on the problem of minimising (28). In any case, for the examples we consider, interest
rates are deterministic and there is no distinction between the problems of determining
the minimal distance state-price density and the minimal distance martingale measure for
a cash numéraire.

The problem of finding minimal distance measures has been studied by many authors,
but see especially Goll and Riischendorf (2001) who give various characterisations which
determine the optimal QQ in terms of f. One minimal distance measure which has been the
subject of particular attention in the literature (for example Rouge and El Karoui (2000)
and Fritelli (2000)) is the minimal entropy martingale measure.

Consider now our canonical models of incomplete markets. Suppose, following Hobson
(2003a), that we have a representation of the mean-variance trade-off process of the form

1

T T T 1 (T
—/ Mdu = c+ / Nu(dWy + Ay)du + / XudBy + —/ Y2du (29)
2 Jo 0 0 2 Jo

Note that this is an identification of random variables and not of processes, and that the
solution consists of a constant ¢ and integrands n and &. This equation can be viewed
as an example of a Backward Stochastic Differential Equation (BSDE), see Mania et al
(2003). BSDEs provide a general framework for many characterisation problems in finance
(El Karoui et al, 1997).

Now consider f(z) = zInz, and E[f(Z%)] for martingale measures Z% given by (27).
We have

E[Z5 In Z5) = E%* [In(dQf /dP)]

and using the representation (27)
T 1 (T T 1 /T
In(dQF /dP) —/ AudWE + —/ A2y — / £udBS + —/ Y2du
0 2 Jo 0 2 Jo
T T 1 (T
= ¢ +/ (nu — Au)dWE +/ (Xu — &u)dBS + 5/ (Xu — &u)?du (30)
0 0 0
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where we have used (29) and the fact that under Q¢, W¢ given by de = dW; + \¢dt and
B¢ given by dBf = dB + £dt are Brownian motions. Then, assuming that the stochastic
integrals in (30) are true martingales we have

1 T
0

with equality for ¢ = y. Hence the problem of finding the minimal entropy martingale
measure reduces to finding the solution of (29). More generally, (29) is the special case,
corresponding to ¢ = 1, of a more general formula which covers distance metrics of the
form f(x) = x7/(q(q — 1)).

In the non-traded assets model described in Section 4.1 the left-hand side of (29) is
constant, and there is a trivial solution corresponding to n = 0 = y. (In this case all
the minimal distance measures are identical and equal to the Follmer-Schweizer minimal
martingale measure.) Alternatively, in the stochastic volatility model, if p is constant and
Y is an autonomous diffusion, then there is a stochastic representation of the solution to
(29) given in Hobson (2003a).

Once a minimal distance martingale measure * has been identified it can be used for
pricing in the sense that we can define the option price to be

EY [&H] = E[¢ H]
Ry

where (7 is the state-price-density associated to the pricing measure Q. The resulting

prices are linear in the number of units of claim sold, and as we shall see later they are

related to the marginal price of the claim for a utility maximising agent. Further, if we

can solve the analogue of (29) for a variety of ¢, then we can begin to compare option

prices under different martingale measures, see Henderson et al (2003).

5.4 Convex risk measures

Coherent risk measures were introduced by Artzner et al (1999), in an attempt to axioma-
tise measures of risk (and also to prove that Value at Risk was ‘incoherent’). In order
to be consistent with the rest of this section we talk about coherent pricing measures for
claims rather than measures of risks.

Let H € H be a contingent claim. Then ¢ : H +— R is a coherent pricing measure if it
has the properties

Subadditivity S(H1 + Ha) < 6(H1) + ¢(Ha)
Positive homogeneity for A > 0,0(AH) = \¢(H)

MOHOtOniCity H1 < H2 = qf)(Hl) < ¢(H2)
Translation invariance o(H+m)=0¢(H)+m

The idea is that ¢ represents the amount of compensation which an agent would demand
in order to agree to sell the claim H (or the size of the reserves he should hold if he has
outstanding obligations amounting to H). The key result of Artzner et al (1999) is that,
at least for finite sample spaces, there is a representation of a coherent pricing measure of
the form
6(H) = sup E°[H],
QeQ
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where Q is a set of measures. For example the super-replication price is obtained by taking
the set Q to be the set of all martingale measures.

Subsequently, Follmer and Schied (2002) introduced the notion of a convex risk mea-
sure. Convex risk measures attempt to model situations in which the ask price of a claim
depends on the number of units sold. The subadditivity and positive homogeneity prop-
erties are replaced by a convexity property; for p € [0, 1],

S(puHy + (1 — p)Hy) < pe(Hy) + (1 — p)o(Ha).

Convex pricing measures are associated with a pricing mechanism which is non-linear in
the number of units of the claim. Again there is a representation of a convex pricing
measure of the form
o(H) = sup {E°[H] - a(Q) }
QeP

where now P is the set of all probability measures, and « is a penalty function. For
example, to recover the super-replication price we may take a(Q) = 0 if Q is a martingale
measure, and a(Q) = oo otherwise.

5.5 Utility Indifference Pricing

Utility indifferent option prices (Hodges and Neuberger (1989)) can be considered as a
dynamic version of the notion of a certainty equivalent price in economics. The utility
indifference (ask) price is the unique price p at which the agent is indifferent (in the sense
that his expected utility under optimal trading is unchanged) between not selling the claim
and receiving p now in return for agreeing to make the random payout H at time 7.

Consider the problem with k units of the claim. (We take k to be positive if the agent
is buying units of claim, and k negative if the agent is short the contingent claim.) Assume
that initially the agent has wealth v and zero endowment of the claim. Define

u(v, k) = supE[U(Vr + kHr)]

where the supremum is taken over attainable terminal wealths which satisfy the budget
constraint E[(7Vr] < v for all state-price densities (7. Then the utility indifference price
p(k) is the solution to

u(v,0) = u(v — p(k), k)

Note that if the claim can replicated then p(k) = kE[(7 H] for any state-price density (7.

In order to solve for the utility indifference price we need to solve the agent’s utility
maximisation problem both with and without the claim. In the absence of the claim, the
problem is the classical Merton problem in an incomplete market. By analogy with (20)
we have an inequality, which holds for all state-price densities, of the form

sup E[U (V)] < inf inf {,,w + EU(MgT)} (31)
Vr HoCr

where U is the Legendre transform of U. There is quality in (31) (subject to regularity
conditions) if U'(V2) = pu°¢% for some optimal target wealth V2, Lagrange multiplier 1"
and state-price density §% (the superscript zero corresponds to zero units of the claim).
Note that if U is a power law, then §% corresponds to a minimal distance state-price-
density.
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In the case with the option, see Cvitani¢ et al (2001), we have

UVr +kH) — p(lrVr —v) = U(Vr+kH) — puCr(Vr + kH) + po + pk(rH
< U(ulr) + p(v + k¢rH)

and then

u(v, k) = S‘lflp EU(Vr + kH)] < irﬁf icr;fIE[U'(uCT) + p(v + k¢rH)]. (32)

It follows that if 1° and g‘% are as above
u(v — KE[C H), k) < BU (10¢3) + u(v — KEICSH]) + kp® C-H] = u(v,0) = u(v — p(k), k)

and the bid price for k units satisfies p(k) < KE[¢% H].

With further work, and under further assumptions (see Henderson and Hobson (2002a)
Hobson (2003b) and also Hugonnier et al (2004)) it is possible to show that for positive
claims ")

. D 0

tim 222 — Bich 1
so that the marginal bid price is the discounted expected payoff under a minimal distance
state-price density. For small claim amounts it is also possible to consider the total price
as an expansion in k, see Henderson and Hobson (2002b) or Henderson (2002).

As an explicit example in the stochastic volatility model suppose r = 0 and U(v) =
—e~? so that U(y) = ylny. Then, when we take the infimum over pu we find that

inf inf E[U (1¢r) + (v + k¢rH)) = exp <—1 —v—inf {KE[Cr H] + E[¢r In CT]}>
and the option price becomes (see Delbaen et al (2002))
(k) = inf {KEIGr 7] + Eir 1o Grl} — inf {Elgr I G} 33

The problem of minimising the entropy was discussed in Section 5.3, but in general the
problem of finding the first infimum in (33) is hard. There are however explicit solutions
in the non-traded asset model, see Henderson and Hobson (2002a).

The expression in (33) shows that the utility indifference price for exponential utility
corresponds to a convex risk measure. Note that exponential utility is unique in that
wealth factors out of the problem, to leave option prices which are independent of wealth.
This is a necessary condition for a risk measure.

6 Interest rate modeling

To date we have concentrated on markets in which the underlying is a risky asset which
can be modelled by a diffusion process. Now we want to consider an interest rate market
in which the characteristics of the traded assets are different. Three canonical texts on
the subject are Musiela and Rutkowski (1997), Bjork (1998) and Cairns (2004).

Consider a frictionless market in which there is a bank account and a family of zero-
coupon bonds. A zero-coupon bond with maturity date T' (a T-bond) is a contract which
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guarantees to make a unit payment to the holder at time 7. A T-bond makes no inter-
mediate payments and is typically a mathematical ideal rather than a genuinely traded
instrument. Let the time-t price of the T-bond be denoted by p(t,T), and then p(T,T) = 1.

From the bond prices it is possible to deduce the instantaneous forward rates f(t,T)
which solve f(¢,T) = —(9/9T)Inp(t,T) or equivalently p(¢t,T) = exp{— ftTf(t,s)ds},
and the instantaneous short rate r, = f(¢,¢). The assumption is that the bank account
pays the instantaneous short rate as a stochastic rate of interest, and if so this this is
equivalent to investing in a portfolio of ‘just maturing’ bonds. Given the relationships
between the short-rate, the bond prices and the forward prices we can choose to model
any of these.

6.1 Short rate models

Models based on the short rate provide an important subclass of interest rate models. We
suppose that the short rate r; follows dynamics (under P)

dry = o(t,re) (dWy + X(t,r)dt).

Examples include taking r; to be a shifted Ornstein-Uhlenbeck process (Vasicek, 1977) or
the sum of squares of OU processes (Cox et al, 1985). In a short rate model a zero-coupon
bond plays the role of a derivative which is to be priced.
In the light of our previous discussion it is useful to know if the model is arbitrage-free

and complete. In fact the discounted price of the traded asset is

Ry

—R; =R

R 0
which is constant under any equivalent measure. Thus there exist equivalent martingale
measures and every equivalent measure is an equivalent martingale measure. To put this
another way, if we fix an equivalent measure Q , then we can define bond prices via

T
p(t,T) = E%[e Ji 45| 7],

but these prices are not the only ones consistent with no-arbitrage.

We return to the problem we faced in the previous section: how do we choose an
appropriate measure Q. The two most popular solutions are to finesse the issue by writing
down the dynamics under @, or to choose a market risk premium ~;, whence, under Q

dry = o(t,re) (dWy + (Nt re) — y4)dt).

Given a martingale measure Q we can price bonds and more complicated derivatives such
as options on bonds and interest rate swaps, and in simple cases we can often find analytical
formulae for these quantities. However these instruments cannot be replicated, although,
as in a stochastic volatility model, once it is assumed that one bond is traded, all other
zero-coupon bonds with shorter maturity can be hedged through dynamic trading in that
bond.

6.2 Forward rate models

Short rate models have the feature that the entire interest rate market is governed by a
single explanatory variable. Tt is possible to overcome this drawback, perhaps by including
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other interest rates in the model such as the long rate. However short rate models have
largely been supplanted in the academic literature and the industry by a paradigm shift
in which the fundamental modeling objects become the forward rates. This leads to
interesting new mathematics, not least because the state-variable is now a yield curve
which is an infinite-dimensional object.
The method we outline was first proposed by Heath, Jarrow and Morton (1992). Let
W be a d-dimensional Brownian motion and suppose that for each fixed T' the forward
rates satisfy
df (¢, T) = o(t,T)(dW + a(t, T)dt). (34)

The initial condition {f(0,T")}r>0 can be specified by the initial market of bond prices
and forward rates.

When we switch to the martingale measure , under which the discounted traded
quantities (the discounted T-bonds) are martingales, we find that the forward rates satisfy

df (t,T) = o(t,T) <th@ + </tTa(s,T)ds> dt)

and that, although the no-arbitrage conditions fix the drifts in (34) there is almost complete
freedom in modeling the volatility structure. Once the volatility co-efficients have been
specified under P or Q the market is complete and any derivative can be priced and
replicated using d zero-coupon bonds as hedging instruments.

6.3 Market Models

A more tractable alternative to the class of forward-rate models are the market models
of Miltersen, Sandmann and Sondermann (1997) and Brace, Gatarek and Musiela (1997).
Instead of concentrating upon the unobservable forward rates a market model takes quoted
interest rates such as LIBOR as the fundamental modelling objects. Morever, these key
objects are assumed to have a log-normal distribution. One of the main benefits of this
assumption is that it is possible to derive closed form expressions for simple derivatives
such as caps and floors.

7 Credit and Default Risk

Financial risks occur in many forms. To date in this article we have been concerned with
market risk — the adverse effects of changes in the values of underlying assets or interest
rates on the market value of a portfolio. But there are other risks facing agents in financial
markets including credit risk, the risk that a counterparty will fail to meet its obligations.
Given the recent high profile failures of Enron and WorldCom, these risks have claimed a
prominent position in the market psyche.

In a fairly general setting the issue of credit risk can be synthesised into the pricing of
bonds issued by a company. In this case the valuation problems inherent in interest rate
products are compounded by the risk of default by the issuing company.

There are two main classes of models for credit risk. The first class of models, called
structural models, were introduced by Merton (1974) in an attempt to model default via
a microeconomic description of the assets and liabilities of the firm. The firm defaults
the first time that the assets fall below some threshold. If the assets are described by
a diffusion process then this means that default is a predictable event, and it follows
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that credit spreads of very short term bonds should be close to zero. Unfortunately this
property is not a feature of credit data. There have been various attempts to modify the
class of structural models to overcome this failing, for instance by making the price process
a jump-diffusion (Zhou, 2001), or allowing for imperfect information (Duffie and Lando,
2001).

The second class of credit risk models are the reduced form or intensity based models.
In this class credit events are specified exogenously and default arrives according to a
Poisson process with intensity +;. These models are somewhat arbitrary, but they provide
a good match to data, they are flexible and tractable, and they can be made to fit smoothly
into an interest rate framework. For example, if default events happen at rate ~; then the
probability of no default by time ¢ is exp(— fUt ~Yudu) and the value of a T-bond (assuming
zero recovery on default) is given by

EQ [e— foT(Tuﬂu)du} :
where expectations are taken with respect to an equivalent martingale measure.

The above descriptions have concentrated on the modeling of default events for a single
company, but one of the main problems in credit is to price portfolios of corporate debt, in
which case it is necessary to model correlated and dependent default. Schonbucher (2003)
gives a full review of credit modeling.

8 Final Thoughts

Mathematical finance is concerned with the related problems of quantifying risk, pricing
risk and mitigating the impact of risk via hedging. In general we think of these risks as
arising from changes in the prices of underlying assets — stock prices, exchange rates,
interest rates — which are specified exogenously to the model. (But one can ask where
these prices come from, see for example Bick (1987) or Cox et al (1985), and what, if
any, are the rational explanations of bubbles and market crashes.) Given the prices of
underlyings the beautiful Black-Scholes-Merton theory gives powerful insights into the
way derivatives are priced, and leads us to the conclusion that in perfect markets the
prices of derivatives are fully determined.

In imperfect markets option prices are not fully determined. Market imperfections
can arise in many ways, some of which we have discussed in the article above, and the
first challenge facing mathematicians is to model these imperfections in a way which is
amenable to analysis. In some markets, such as energy or weather derivatives (Brody et
al, 2002), exponential Brownian motion is a poor descriptor of the price process. In some
markets liquidity issues mean that delta-hedging is infeasible (Cetin et al, 2004). In some
markets agents may have differential information (Amendinger et al (1998), Follmer et
al (1999)). In all markets the ways that agents interact and their relative market power
(Cvitani¢ and Ma (1996), Platen and Schweizer (1998), Bank and Baum (2004)) can have
a fundamental impact. These problems require careful and sympathetic modeling.

The second challenge facing financial mathematics is to the relate the conclusions
from these models to real world financial practice. This means that questions of model fit
and parameter estimation become crucial together with an acknowledgement that often
the behaviour of agents is as much influenced by factors outside the model, such as tax
considerations or regulatory issues, as the predictions of a sophisticated mathematical
theory.
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A Stochastic Calculus

In this section we review, briefly, the essentials of stochastic calculus that are needed for
the derivation of the Black-Scholes formula. Standard texts on Itd processes include Revuz
and Yor (1998) and Rogers and Williams (2000), or for more basic treatments motivated
solely by the applications to finance consider Mikosch (1998) or Steele (2001).

If Z; = f(W,t) then Ito’s formula (Rogers and Williams, 2000, 1V.32.8) tells us that
(provided the various derivatives exist)

Zi= 2o+ [ POVeoWer [ 1500 + )] s )

where the first integral is an It6 stochastic integral and the second is Lebesgue-Stieltjes.
Sometimes it is convenient to abbreviate this expression to a stochastic differential equation

dZy = df (Wi, t) = f/(Wy, t)dW, + Ef”(Wt,t) + f(Wt,t)} dt (36)

but this differential version should be interpreted via the stochastic integral representation
(35). It6’s formula can be extended to cover functions of semi-martingales Z; = f(Y3, 1)
and to functions of more than one stochastic variable Z; = f(V;}, Y2, t).

The Cameron-Martin-Girsanov theorem (Rogers and Williams, 2000, IV.38.5) says
that if (2, F,P) is the canonical probability space supporting a Brownian motion W (such
that the filtration F; satisfies the usual conditions), and if (Z;)o<¢<7 defined via

t 1 t
Z; = exp (/ nsdWs — —/ n§d8> (37)
0 2 Jo

is a uniformly integrable martingale then QQ defined via

aQ
dP

- 7r (38)
Fr

is equivalent to P and under Q, B; = W, — st Nwdu is a Brownian motion. Moreover the
converse is also true, in the sense that if QQ is equivalent to P, then QQ has a representation
via (38) and (37).

The Brownian martingale representation theorem (Rogers and Williams, 2000, TV.36.5)
says that if M; is a martingale with respect to a filtration F; generated by a Brownian
motion W; then M; can be written

t
M = My +/ wdes
0

for some integrand .
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