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31. IntrodutionOptions on a basket of stoks are fundamental instruments in world �nanial mar-kets. Examples thereof are exhange traded instruments suh as equity index options,usually written on at least 15 stoks, and urreny basket options, written on twoor more assets. Curreny baskets are ustomized produts whih are traded over theounter.An index I on n underlying stoks Si; i = 1; � � � ; n is usually de�ned as a basket onthe n stoks with �xed weights wi, so that I = nPi=1wiSi. A European all option onthe index, struk at K, with maturity T has a payo� (I �K)+, and arbitrage priingtheory gives the value of this option at time zero asE� "e�rT  nXi=1 wiSi �K!+ d�(S1; : : : ; Sn)# ;where � is a risk neutral measure assoiated with the joint distribution of the under-lying pries of Si at time T . This prie is uniquely determined in a omplete marketfor in suh markets � is known unequivoally. In pratie, however, markets areinomplete and a myriad of possible risk neutral measures an be used to alulatethe option prie. The most standard setting in �nane, the Blak-Sholes setting,assumes the assets are driven by orrelated exponential Brownian motions so thatthe distribution under the risk-neutral measure at time T , assuming no dividends arepaid between 0 and T , isSi(T ) = Si(0) exp��iWt + (r � �2i2 )t� i = 1; � � � ; nwhere �i are onstants as are the orrelations �ij; i; j = 1; � � �n between the drivingBrownian motions.However, even for options written on one asset, the standard Blak-Sholes modelis not onsistent with the so-alled smile e�et in option pries, and a substantialamount of researh over the last deade has been devoted to priing and hedgingassuming the underlying evolves aording to alternative stohasti proesses. Amongthe most popular are level-dependent models, in whih the volatility is allowed todepend on spot and time, stohasti volatility models, unertain volatility models,and jump-di�usion or pure jump proesses. Suh models an be used to aount for



4the smile e�et in the observed market values of vanilla alls and puts. The plethoraof alternative models available for priing and hedging leave pratitioners with a widespetrum of models at their disposal, but little information about whih, if any, isthe orret model to use.In suh an environment a omplementary approah, useful both for risk manage-ment purposes and to provide a sanity hek for the pries and hedges obtained fromparametri models, is to derive distribution free no-arbitrage pries and hedges. Thisseond approah is less ambitious in sope in the sense that it does not aim to derivea unique fair prie, but more robust in the sense that it is not dependent on theeÆay of an underlying model. The aim is to provide bounds on the possible prieof the basket option whih are onsistent with no-arbitrage given the market pries ofvanilla puts and alls. In essene, rather than using a single model, we onsider thelass of all models whih are onsistent with the observed all pries, and rather thanquoting a single option prie we give the range of pries whih arise under modelsfrom this lass.In this paper this philosophy will be applied to basket options in the setting ofa one-period stati arbitrage model and we will fous on the ase of lower boundsfor baskets written on two assets. We will also assume that pries of all options onthe two underlying stoks with a ontinuum of strikes are known. In reality only adisrete number of strikes for eah maturity are traded. The ase of only a disretenumber of strikes is not a straightforward extension of the ontinuum of strikes ase.We onsider only lower bounds in this paper. The ase of upper bounds was solved,in the general n-asset ase, for both the ontinuum of strikes ase and for the disreteset of strikes ase, in our previous paper [18℄. (The upper bound problem is alsoonsidered in the ontinuous strike ase by Dhaene et al [12℄, Goovaerts et al [17℄and Kaas et al [21℄ using the theory of stohasti ordering.) It may seem surprisingthat one annot treat both upper and lower bounds by the same method. It turnsout however that deriving distribution-free lower bounds is far more omplex thenderiving distribution-free upper bounds. At the root of this diÆulty is the fat thatoptimal upper bounds turn out to be assoiated with superrepliating strategies forwhih the hedger takes long positions in all the underlying omponents and a zeroposition in ash and it then only remains to determine, among the strikes trading on



5the individual options, whih ones are assoiated with the heapest possible super-repliating portfolio2. In [18℄ we proved that the optimal superrepliating strategyinvolves the seletion of only two strikes per asset and we gave a simple and omputa-tionally eÆient way to determine these strikes. In the ase of lower bounds it turnsout that it is not in general suÆient, as illustrated in this paper in two asset ase,to onsider subrepliating strategies involving one or two strikes per asset and theoptimal strategy involves both long and short positions in alls as well as a ash om-ponent. The optimal subrepliating strategy may involve many strikes. These strikesare the zeros of a ertain funtion uniquely determined by the all prie funtions asfuntions of strike.Some insight into the added omplexity of optimal lower bounds may be useful andis gained by a review of earlier results in this diretion. Let us reall the �rst onederived in the ase of one underlying asset by Bertsimas and Popesu in [4℄:Given pries qi = q(Ki) = E[(X � Ki)+℄; i = 1; � � � ; n of all options with strikes0 � K1 � K2 � � � �Kn on a stok S, the range of all possible valid pries fora all option with strike prie K where K 2 (Kj; Kj+1) for some j = 0; � � � ; n is[q�(K); q+(K)℄ whereq�(K) = max�qjK �Kj�1K �Kj�1 + qj�1 Kj �KKj �Kj�1 ; qj+1 Kj+2 �KKj+2 �Kj+1 + qj+2 K �Kj+1Kj+2 �Kj+1�q+(K) = qj Kj+1 �KKj+1 �Kj + qj+1 K �KjKj+1 �KjHere K0 = 0, qn = qn+1 = qn+2 and Kn+2 > Kn+1 > Kn, although the preise valuesof these extra strikes does not matter. The situation is summarized in Figure 1.Laurene and Wang [23℄ established a lower bound for basket options in the 2-asset ase, under the assumption that there is only one traded asset and that, inaddition to an option on eah asset, the forward pries are presribed. The optimalhedging strategy assoiated to the lower bound depends in a ompliated way onthe input forward and option pries and involves in some ases, both long and shortpositions in options and long and short positions in ash. Let Fi = Si0�iKi and let2Even for a small index, suh as DJX, with 30 assets in the index and 8 to 13 options tradedon eah omponent asset, this entails hoosing among the order of 1030 possible ombinations, ifhoosing only one strike per asset is optimal and many more if it turned out to be more eÆient to"diversify" and selet more than one strike per asset.
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Figure 1: The �gure illustrates the range of pries for options whose strikes lie between 100 and 110. The partiularase of strike 105 is emphasized. q+ stands for the upper bound and the larger of q�1 and q�2 stands for the lowerbound.D = K � w1K1 � w2K2. If K > max(w1K1; w2K2) then the Laurene-Wang lowerbound is given by3� For D � 0,(1) max�A1 + w2K2F+; A2 + w1K1F+; A1 + A2 +KF+; 0	 ;� For D � 0,(2) max�A1 + (K � w1K1)F+; A2 + (K � w2K2)F+; A1 + A2 +KF+; 0	 ;where Ai = wii � (K � wiKiKi )(Si0 � i) for i = 1; 2;(3) F = F1 + F2 � 1;(4) F+ = maxfF; 0g:(5)3Laurene and Wang allow a non zero short rate, but here and throughout this paper we will taker = 0 for simpliity.



7A simpler lower bound exists for K � max(w1K1; w2K2), see [24℄.There are several open problems onerning the lower bound. Firstly, it is notknown, even when there are only two omponents in the basket, how to extend theabove bound to the ase when there are several strikes traded on eah omponent.Seondly, the best lower bound is not known even when there is only one optiontraded on eah asset, but n > 2. (It should be noted however than in an interestingpaper Aspremont and El Ghaoui [2℄ �nd optimal bounds in losed form when anoption on eah omponent is traded, but forwards on the omponent assets are not.)The results desribed above illustrate how muh more omplex the situation is inthe ase of lower bounds than for upper bounds. In this paper we are interested inlower bounds (when n = 2) and we assume knowledge of a ontinuum of strikes on eahof two assets. Breeden and Litzenberger's result [7℄ then implies that knowledge ofthe full marginals is easily dedued from the all pries (but we have no informationon the joint distribution of assets). Indeed Breeden and Litzenberger showed howto dedue the distribution of an asset from the �rst derivative of the option priewith respet to the strike. Applying this to eah of our stoks in turn, we thenreover knowledge of the full marginal of the stok from knowledge of the (assumed)ontinuum of strike pries.Now the problem of determining optimal joint distributions subjet to the on-straint of presribed marginals has a long history in mathematis. A omprehensiveand nearly up to date referene is the book by Joe [19℄. A tool that dates bak to thework by Fr�ehet [16℄ that has been used to attak suh problems is to use opulas.Indeed the elebrated Sklar theorem tells us that for any joint probability distributionF with margins F1; � � � ; Fn there exists an n-opula C suh that for all x 2 Rn wehave F (x1; : : : ; xn) = C (F1(x1); : : : ; Fn(xn))Thus, in seeking optimal joint distributions subjet to presribed marginals, themarginals have in e�et been "fatored out" and the remaining problem is to deter-mine the optimal opula. It was disovered by Dhaene and Goovaerts [11℄ that theoptimal opula for the basket options in the ase n = 2 is assoiated with the lowerFr�ehet bound. This result has been generalized to more general payo� funtionsof ontingent laims on two assets by Rapuh and Ronalli [27℄. To establish their



8result Rapuh and Ronalli also rely on a result of Muller and Sarsini onerningthe behaviour of onvex funtions under the onordane order [26℄. Sine their ap-proahes rely in a entral way on the lower Fr�ehet opula, their results are, as is ours,restrited to the two-asset ase. Indeed it is well known [19℄ that in general the lowerFr�ehet bound does not orrespond to a opula for n � 3. We omplement that resultin two ways: the �rst and main ontribution is to provide an optimal subrepliatingstrategy using what we refer to as STP portfolios. This striking lass of portfolios isexpressed as a series of long and short positions in all options of di�erent strikes anda long position in ash. An alternative more ompat desription in terms of longpositions in alls and short positions in puts is also given. A seond ontribution ofthis paper is that we obtain, as a orollary, a diret proof of the optimal lower boundthat is independent of the Fr�ehet bounds and of the Muller-Sarsini ordering result.Sine, as mentioned above, the Fr�ehet lower bound does not extend to n dimensionsfor n � 3, this opens up a roadmap to an n-dimensional generalization of the presentresults.We onlude this setion with a literature review. Most of the work on basket op-tions fouses on the Blak-Sholes setting. Due the high dimension of these options(most indies involve at least 17 assets) , their analytial and numerial valuation isvery hallenging even in the Blak-Sholes setting. Indeed, although an analytial for-mula for the all option does exist, see for example the text by Kwok, [22℄, the integralis diÆult to evaluate in pratie and one must resort to Monte-Carlo methods, toreursive methods, see Ware and Avelassani [29℄, or to methods using harateristifuntions, see Ju [20℄, moment mathing, see Brigo et al [5℄ and Dufresne [13℄. Alsoprogress in handling di�usion based models with non onstant volatility lose to expi-ration has been made in Avellaneda et al [3℄. Given the diÆulty of alulating exatpries several authors, inluding Deelstra et al [9℄ and Kaas et al [21℄, have lookedfor upper and lower bounds. In both of the papers a lever onditioning argument isused to give a lower bound on the prie of the basket option. However this methodassumes that the underlyings follow orrelated exponential Brownian motions, so thatthe lower bound is a model-based lower bound in the Blak-Sholes setting, and nota model-independent lower bound suh as we propose. Corresponding bounds for



9Asian options and in the ontext of atuarial siene are also onsidered in Dhaeneet al [10℄. 2. Problem formulationWe assume that a market exists in whih alls and puts of maturity T are traded onthe two omponent assets of the basket. We assume that options with a ontinuumof strikes are traded on eah omponent asset: we may also think of the underlyingassets themselves as all options with zero strike. Our goal is to prie a basket optionon the two assets whih is traded with the same maturity T .We address two problems whose solutions turn out to be dual to eah other in anappropriate variational formulation that will be desribed below: i) the problem of�nding the in�mum of all basket option pries when the joint distribution is on-strained by the (perfet) knowledge of the marginal distributions provided by theindividual all options, ii) The problem of �nding the optimal subrepliating strategyonsisting of alls, puts and ash. The ost of the optimal subrepliating strategyorresponds to the highest bid prie of an investor who is o�ered the opportunity tobe long the basket option, but is not prepared to aept any risk. It is the highestprie she is willing to pay, sine if she buys the basket at this prie and onstruts astati hedge by a portfolio of alls, puts and ash aording to the optimal portfolio,she is sure the payo� of the basket will be higher than the obligations arising fromher hedging portfolio in all states of the world. Moreover the portfolio (of alls, putsand ash) is the most expensive one she an sell whilst still guaranteeing that thebasket superrepliates her portfolio.A simple but important observation is that put-all parity ensures that any put isequivalent to a all and ash. Therefore, in hoosing optimal subrepliating strategiesand or in minimizing the basket option prie subjet to the onstraint of a ontinuumof all and put options of all strikes, we may redue the problem to one in whihonly alls and ash are the subrepliating instruments. Thus the problem will beformulated in this setting 4.4It will however turn out, as we will see in setion x 1.4 that the optimal subrepliating portfoliotakes a partiularly simple form when we use alls on one asset and puts on the other.



10 For expository reasons we begin by desribing the primal and dual variational prob-lems in a somewhat informal and intuitively appealing form. Their rigorous formula-tion is deferred to the next setion. Consider the following onstrained minimizationproblem inf� ZR2+(x+ y �K)+�(dx; dy)where � ranges over the spae of all risk neutral distributions on R2+ , subjet to theonstraints on the marginal distributionsZR+(x� k1)+�X(dx) = CX(k1);ZR+(y � k2)+d�Y (dy) = CY (k2);ZR2+ �(dx; dy) = 1:Here �X and �Y are the marginal distributions.Throughout this paper we have taken unit oeÆients (weights) in the basket andzero interest rates and assume that the assets pay no dividends. If the weights aredi�erent from one and interest rates are onstant we may redue to the present aseby a simple saling argument (see [24℄) .The dual problem for �nding optimal subrepliating strategies is given by(6) sup�;�1;�2 ZR+ CX(k1)�1(dk1) + ZR+ CY (k2)�2(dk2) + �subjet to the onstraints(x+ y �K)+ � ZR+(x� k1)+�1(dk1)� ZR+(y � k2)+�2(dk2)� � � 0;(7) 8x � 0 y � 0:2.1. A review of Dhaene and Goovaerts' result.Given knowledge of the all funtions CX(k1); CY (k2), Breeden and Litzenberger'sresult implies that ddk1CX = FX(k1)�1, ddk2CY = FY (k2)�1 where FX and FY are thedistribution funtions of X and Y respetively. As mentioned in the introdution, bySklar's theorem any joint distribution F (x; y) = P (X � x; Y � y) an be representedas C(FX(x); FY (y)) for some opula C.



11Reall the lower and upper Fr�ehet opula bounds: for any opula C(u1; u2) on[0; 1℄2 we have C�(u1; u2) � C(u1; u2) � C+(u1; u2);where C+ = min(u1; u2);C� = max(u1 + u2 � 1; 0):Therefore, for any distribution funtion F with presribed marginals FX ; FY , we haveC�(FX(x); FY (y)) � F (x; y) � C+(FX(x); FY (y)):From this Dhaene and Goovaerts [11℄ (Theorem 3, p.206) dedue the following:Proposition 1. The prie of a all option on a basket CB on X and Y whose marginaldistributions are FX and FY satis�es the boundsC�B � CB � C+Bwhere C+B and C�B orrespond to the upper and lower Fr�ehet bounds respetively,that is, the joint distributions of (X; Y ) are given respetively by C+(FX ; FY ) andC�(FX ; FY ).The result has been generalized to supermodular payo� by Rapuh and Ronalli [27℄from a result of Muller and Sarsini [26℄.When the distribution funtions FX and FY are ontinuous, we haveC = C� , Y = F�1Y (1� FX(X);C = C+ , Y = F�1Y (FX(X)):For the lower bound note this means that(8) C�B = ZR+[x + F�1Y (1� FX(x))�K℄+dFX(x):2.2. A preise formulation of primal and dual problems.In this setion we state the primal and dual problems in an appropriate in�nite di-mensional setting. Our approah is adapted from that in Anderson and Nash [1℄. Forthe reader's onveniene we summarize the bakdrop of these results in an Appendix,see Setion 6. LetM denote the linear spae of all �nite signed measures on R2+ whihdeay at least linearly at in�nity in the sense that, for � 2 M, �(Br(�)) � o(1=r)



12as r goes to in�nity for every � 2 R2+ , where Br(�) = f� 2 R2+ : j� � �j > rg.Let � be the linear spae generated by the funtions p1(x; y; k1) := (x � k1)+,p2(x; y; k2) := (y � k2)+ and pB(x; y;K) := (x + y � K)+ de�ned on R2+ . De�nethe pairing h; i between M and � by integration, i.e.,h�; fi = ZR2+ f(x; y)�(dxdy)Denote by M+ the onvex one in M of all �nite positive measures on R2+ . Weonsider the following onstrained minimization problem(9) inf�2M+ h�; pB(�;K)isubjet to the onstraints on the marginal distributionsh�; p1(�; k1)i = CX(k1);(10) h�; p2(�; k2)i = CY (k2);(11) h�; 1i = 1;(12)where CX and CY are given all prie funtions whih are neessarily nonnegative,dereasing and onvex. Let H be the set of all nonnegative, dereasing and onvexfuntions de�ned on R+ , S be the set of all �nite signed measures over R+ and thepairing h; i between H and S is given by integration. Consequently, the dual problemof primal problem (9-12) is the following onstrained maximization problem(13) sup�1;�2;� hCX ; �1i+ hCY ; �2i+ �subjet to the onstraintsh�; pB � hp1; �1i� hp2; �2i� �i � 0; 8� 2 M+;(14) �1; �2 2 S; � 2 R:(15)As a matter of fat, (14) an be further realized as(16) pB � hp1; �1i� hp2; �2i� � � 0; 8x � 0 y � 0:Hene we have the dual problem in the form desribed as (6-7). Here we remark that(6) is an expression for the most expensive value among subrepliating portfolios and(7) is the ondition for subrepliation.



13The omplementary slakness ondition (38) in the Appendix, written out in oursetting therefore readsh�; pB(�;K)i = h�; hp1(�; k1); �1i+ hp2(�; k2); �2i+ �iRepresenting the inner produt in integral form and exhanging the order of integra-tion on the right hand side yieldsZ pB(�;K)d� = Z �Z p1(�; k1)d�� �1(dk1) + Z �Z p2(�; k2)d�� �2(dk2) + �= Z CX(k1)�1(dk1) + Z CY (k2)�2(dk2) + �:(17)Therefore, in order to prove optimality by applying the omplementary slaknessondition, we need to �nd feasible measures �, �1, �2 and a real number � suh thatthe equality (17) holds.2.3. A family of optimal subrepliating portfolios.In this setion we introdue a family of subrepliating portfolios we all STPs5. Anintuitive derivation of the STPs from lower Fr�ehet opula is postponed until Setion3. Let C 0+ denote the right derivative of the all prie funtion, and C 0� the leftderivative. De�ne the auxiliary funtion�(x) := C 0X+(x) + C 0Y �(K � x) + 1:(18)By onstrution �, whih is only de�ned on [0; K℄, is right-ontinuous. We also set�(K) = C 0X+(K). Clearly � is the di�erene of two inreasing funtions and it's totalvariation is bounded by the onstant 2. De�ne(19) A = fx : �(x) > 0g:Then A is a ountable union of disjoint intervals A = [jAj. For the rest of this setionwe make the assumption: A is a union of a �nite number n of intervals. Indeed thease that A onsists of in�nitely many intervals is degenerate. A disussion on thisassumption is given in Setion 3.2.Suppose that the intervals (Aj)1�j�n are plaed in their natural order, and that theboundary of Aj is given by the points fK2j�11 ; K2j1 g. De�ne Kj2 = K �K2n�j+11 and5"STP" is short for "sheep-trak portfolios" sine the graph of suh a portfolio is reminisent ofsuh traks on British hillsides. A piture thereof is ontained in Figure 2 below.



14onsider the dual variables de�ned by��1(dk1) = Æ0(k1)dk1 + 2nXi=1 (�1)iÆKi1(k1)dk1;(20) ��2(dk2) = Æ0(k2)dk2 + 2nXi=1 (�1)iÆKi2(k2)dk2;(21) �� = nXi=1 (K2i1 �K2i�11 )�K = nXi=1 (K2i2 �K2i�12 )�K:(22)These dual variables are shown to be feasible in the next setion.Remark 2. In the speial ase that � is C1 in [0; K℄, the determination of the strikesKi1's in the dual variables given above redues to �nd the zeros fx : �(x) = 0g of �.For the �niteness of the zeros for C1 funtions, we add the following observation thatshows that the �niteness will hold exept in ertain (unavoidable) degenerate ases.Let I � R be a bounded open interval, h 2 C1(I) and p be a regular value of h, i.e.,h0(x) 6= 0 for every x 2 h�1(p). Then h�1(p) is �nite. In our ase this means that�(x) has only �nite number of zeros in (0; K) provided that whenever x is suh thatC 0X(x) = �C 0Y (K � x)� 1, then C 00X(x) 6= C 00Y (K � x), i.e., the densities of X and Yare di�erent at suh points.Given the dual measures as in (20) and (21) the payo� of the the assoiated portfolioan be expressed by integrating (x� ki) against �i(dki). Partition R2+ into (2n+ 1)2piees denoted by Ri;jusing the de�nitionsR2+ = 2n+1[i;j=1Ri;j; where Ri;j = f(x; y) 2 R2+ : Ki�11 � x < Ki1; K2j�1 � y < K2jg:Here we have used the onvention that K01 = K20 = 0 and K2n+11 = K22n+1 = 1.The assoiated portfolio may be expressed in eah region Ri;j as x + iXa=1(�1)a(x�Ka1 )!+ y + jXb=1 (�1)b(y �Kb2)!+ ��:or in the following more ompat form, whih applies simultaneously aross all regionsf1(x) + f2(y) + ��;(23)



15where the funtions fi are de�ned by(24) fi(z) = z+ + nXa=1f(z �K2ai )+ � (z �K2a�1i )+g:Note that eah of f1(x) and f2(y) has an immediate interpretation in terms of ahedging strategy involving all options. Moreover, a few lines of algebra show thatf1(K � z) + f2(z) + �� = 0;so that (23) simpli�es to(25) f1(x)� f1(K � y):Thus the hedging portfolio for basket all may be expressed as a portfolio of alls heldlong and short on x and a portfolio of puts held long and short on y. The advantageof this representation is that it does not involve ash.The funtions fi will be referred to as STP funtions. The measures (20) and (21)are in one to one orrespondene with the STP portfolio. We will refer to them asthe STP measures. An illustration of STP funtion f is given in Figure 2.
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162.4. Feasibility of dual variables.Feasibility is equivalent to establishing the following subrepliation propertyf1(x)� f1(K � y) � (x+ y �K)+:(26)Sine f1 is pieewise linear with alternately slopes 0 and 1, by the mean value theoremwe learly have f1(z + u)� f1(z) � u+(27)so we have (26). Feasibility is assured for our hedging portfolios provided they satisfy(27).2.5. A geometri onstrution of optimal bivariate proesses using STP.Notie that equality is ahieved in (26) provided that one of the following 3 asesholds:x = K � y(28) x > K � y and f1(x) = f1(K � y) + x+ y �K; i.e., x;K � y 2 (K2j1 ; K2j+11 )(29) x < K � y and f1(x) = f1(K � y); i.e., x;K � y 2 (K2j�11 ; K2j1 )(30)as is illustrated by Figure 3 below.Suppose that X and Y are ontinuous random variables with stritly positive den-sities on [0; K℄. In order to onstrut a bivariate proess (X; Y ) ahieving equalityin the inequality (26) it suÆes to hoose a ountermonoti proess Y = G(X) withG a non-inreasing funtion in suh a way that the support of (X; Y ) is onen-trated on plaes where the onditions given in (28), (29) and (30) above hold. Sinein this ase FX and F�1Y are ontinuous funtions this is ahieved by the hoieG(X) := F�1Y (1 � FX(X)). Note that the set (G(x) < K � x) is preisely the set�(x) > 0, so that the points where G rosses the line x + y = K are exatly theboundary points of the set A.More generally, if U � U [0; 1℄ and we de�ne X = F�1X (U) and Y = F�1Y (1 � U)then X and Y have the desired marginals, and moreover the joint law of (X; Y ) issuh that all the mass is plaed at o-ordinates where equality holds in (26).This is illustrated graphially in Figure 3.
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Figure 3: Joint distribution is optimal if supported in the shaded region.
2.6. Optimality.Having established that there is equality in the relations E [(X+Y �K)+℄ = E [f1(X)�f1(K � Y )℄ when (X; Y ) is an anti-monotoni proess with support hosen as above,we an easily dedue the following theorem:Theorem 1. Suppose the all funtions CX(x) and CY (y) are suh that the set Ade�ned in (19) is a union of �nitely many intervals. Let 0 � K10 � � � �K2n1 � K bethe endpoints of these intervals, and let fi be de�ned as at (24).Let U be a random variable with a standard uniform distribution. De�ne �X =F�1X (U) and �Y = F�1Y (1� U). Then� The joint distribution funtion �� assoiated to the bivariate proess ( �X; �Y )is a minimizer for the primal problem for the all on a two asset basket withstrike K;� the portfolio de�ned via f1(x)+f2(y)+ �� is feasible and the optimal measures��1; ��2 given by the formulas (20) and (21), together with �� form a triple thatis optimal for the dual problem (6), (7) .



18Proof. In essene, all that remains to be proved is that the dual variables we haveonstruted are optimal not only among measures of the form given in (20) and (21),but also amongst all measures in the original dual problem. The following hainof inequalities makes this lear: sine ( �X; �Y ) is feasible for the primal problem and(��; ��1; ��2) is feasible for the dual problem, we havehCX ; ��1i+ hCY ; ��2i+ �� = sup(�1;�2;�) hCX ; �1i+ hCY ; �2i+ �� sup�1;�2;� veri�es (14);(15) hCX ; �1i+ hCY ; �2i+ �� inf�2M+; � veri�es (10);(11);(12) ZR2+(x+ y �K)+�(dx; dy)� ZR2+(x + y �K)+��(dx; dy)The �rst and the last elements in the above hain are equal and hene the otherinequalities are equalities. Hene �� and (��; ��1; ��2) respetively are also optimal forthe original primal and dual problem and the values of the primal and dual funtionalsevaluated on these funtions are equal. �2.7. Optimal subrepliating portfolio for basket put.Using put-all parity for the basket we also have lower bound for the prie PB ofbasket put and the orresponding subrepliating portfolio. Note that the prie PB isgiven by PB = CB � (x + y) +K (reall we have redued to the ase of zero interestrates). Thus one immediately obtains the lower bound for PB by subtrating the lowerbound for the prie of basket all by a forward prie. Moreover, sine the stoks x; ymay be thought of as options with strike zero, we may use this relation to determinethe STP type portfolio that subrepliates PB. In other words we have thatThe hedging portfolio for the basket put option is equal to the hedgingportfolio for a basket all option ombined with a portfolio whih isshort both assets and long K units of ash.Using the expliit form (23) for the hedging portfolio on the basket and (22) wetherefore get that the hedging portfolio for the put of the form(31) f1(x)� f1(K � y)� (K � y � x) = ~f(K � y)� ~f(x)



19where ~f(z) = z � f1(z), or equivalently,~f(x) = nXa=1f(x�K2a�11 )+ � (x�K2a1 )+g:(32)As for (25), the hedging portfolio for the basket put is expressed as a portfolio of putsheld long and short on y and a portfolio of alls held long and short on x. Also theadvantage of the representation (31) is that it does not involve ash.3. A derivation of optimal dual from optimal opulaWe omplement the treatment in the previous setion by outlining how the STPportfolio an be derived from the lower Fr�ehet opula. Indeed it is this approahthat �rst led us to the form of these portfolios. The seond part of the setion onsistsof a disussion on the �niteness assumption on the set A de�ned by (19).3.1. Optimal dual measures. Consider the following joint distribution of X andY given byF (x; y) = maxfFX(x) + FY (y)� 1; 0g = �C 0X+(x) + C 0Y +(y) + 1�+ :This joint distribution of X and Y an also be haraterized as: X is distributedas F�1X (U) and Y is distributed as F�1Y (1 � U), where U is a random variable uni-formly distributed in (0; 1) and F�1X , F�1Y are the generalized inverse of FX and FYrespetively de�ned by F�1X (u) = inffx : FX(x) > ug;F�1Y (u) = inffy : FY (y) > ug:Now the joint distribution assoiated with the lower Fr�ehet opula is feasible for theprimal problem and yields the primal valueE [(X + Y �K)+℄ = Z 10 (F�1X (u) + F�1Y (1� u)�K)+du= ZE(F�1X (u) + F�1Y (1� u)�K)du= ZE(F�1X (u)�K)du+ ZE F�1Y (1� u)du;



20where E = fu 2 (0; 1) : F�1X (u) + F�1Y (1 � u) � K > 0g. Computing these twointegrals we arrive at the formula6E [(X + Y �K)+℄ =(33)CX(0) + CY (0)�K + Xx2�(AÆ)(�1)�(x)CX(x) + Xy2�(AÆ)(�1)�(y)+1CY (K � y) + jAj:at least under the assumption that A is a �nite union of intervals. Here � is de�nedas �(x) = � 1 if x is a left endpoint in �(AÆ);�1 if x is a right endpoint in �(AÆ);If we now, for an intuitive derivation, assume strong duality we haveZR+ CX(k1)�1(dk1) + ZR+ CY (k2)�2(dk2) + �= CX(0) + Xx2�(AÆ)(�1)�(x)CX(x) + CY (0) + Xy2�(AÆ)(�1)�(y)+1CY (K � y)+ jf0 < x < K : �(x) > 0gj �K:Hene the optimal dual variables are (by omparing the oeÆients)�1(dk1) = Æ0(k1)dk1 � Xx2�(AÆ)(�1)�(x)Æx(k1)dk1�2(dk2) = Æ0(k2)dk2 + Xy2�(AÆ)(�1)�(y)ÆK�y(k2)dk2� = jf0 < x < K : �(x) > 0gj �K;and these are the dual variables (20), (21) and (22) that we desribed in x2.3.We an reverse the last stage of the above reasoning to give a seond proof ofstrong duality. I.e., if we de�ne dual variables via (20), (21) and (22), where theKi1's are assoiated with the endpoints of the level set of fx : �(x) > 0g, then theabove derivation shows that the omplementary slakness ondition (17) is satis�edand hene strong duality holds.3.2. Finiteness assumption on the set A. In this setion we show that althoughit is perfetly possible for A to onsist of in�nitely many intervals, this is a degeneratease, in a sense of "measure zero".6Details of derivation are provided in Setion 7.



21Lemma 3. Let E be a measurable subset of an bounded open interval I. Then itsharateristi funtion �E is of bounded variation if and only if E onsists of �nitelymany intervals.Proof. The intuition is that sine the harateristi funtion �E is either 0 or 1, thetotal variation is the number of times it hanges from 0 to 1 and from 1 to 0. Thuswe are left with a simple ounting argument. We refer to Volpert and Hudjaev [28℄for bakground material on funtions of bounded variation. �The following lemma is a one dimensional version of a theorem in Evans and Gariepy[14℄. We refer to their book (see Theorem 1, page 185) for details.Lemma 4. Let f be a funtion of bounded variation de�ned on an open interval I.Denote by Et the level set fx 2 I : f(x) > tg for f . Then, for almost every t 2 R,the harateristi funtion �Et of Et is of bounded variation.Hene, by Lemma 4 (sine � is of bounded variation), for almost every t the har-ateristi funtion of set �t := f� > tg is of bounded variation and therefore a �niteunion of intervals by Lemma 3. Thus the ase that A = �0 fails to be �nite union ofintervals is degenerate.4. Extending beyond the finite union ase.In this setion we show that even in the degenerate ase, i.e., �A is not of boundedvariation, the joint distribution of X and Y onstruted in Setion 2.6, i.e, X �F�1X (U) and Y � F�1Y (1 � U) where U is a random variable uniformly distributedin [0; 1℄, is still primal optimal. However, on the other hand, in this ase the dualvariables given by (20), and (21) involve in�nite sums and therefore are no longer�nite signed measures. Clearly in pratie it is not realisti to onsider portfolioswhih involve going long and/or short an in�nite number of alls. Instead we showthat, for any � > 0, there exists an expliit �-optimal subrepliating portfolio in thesense that will be lari�ed in the rest of the setion.Let �t denote the super level set fx 2 (0; K) : �(x) > tg. By Lemma 4, theharateristi funtion ��t of �t is of bounded variation for almost every t. Supposenow that we are in the ase that �A (reall that �0 = A) is not of bounded variation.Then, given any � > 0, there exists a positive t� < �=K with ��t� of bounded variation(hene �t� is a �nite union of intervals by Lemma 3). We shall denote �t� by ��



22hereafter for notational onveniene. We an then form a portfolio (��1; ��2; ��) as theone in (20), (21) and (22) by replaing the set A by ��. We shall refer to suh portfoliodetermined by �� as an �-optimal subrepliating portfolio for the reason whih willbe lear in the following alulation. Reall that in this ase �� = j��j�K. The prieof suh portfolio satis�esZ CX(k1)d��1(k1) + Z CY (k2)d��2(k2) + ��= CX(0) + CY (0) + Z K0 ���(x)dCX(x)� Z K0 ���(y)dCY (K � y) + j��j �K= CX(0) + CY (0) + Z�� FX(x)dx� Z�� FY (K � y)d(K � y) + Z�� d(K � y)�K= Z��(x�K)dFX(x) + ZfK�y2��g ydFY (y)� t�j��j= ZE�(F�1X (u) + F�1Y (1� u+ t�)�K)du� t�j��j� ZE(F�1X (u) + F�1Y (1� u)�K)du� �= E [(X + Y �K)+℄� �where E� := fu 2 (0; 1) : F�1X (u) + F�1Y (1� u + t�)�K > 0g. Here we note that inthe inequality we have used that E := fu 2 (0; 1) : F�1X (u) + F�1Y (1� u)�K > 0g isontained in E� (sine F�1Y is nondereasing and t� > 0), that the integrand is positivein E� and that F�1Y (1� u+ t�) � F�1Y (1� u) (again sine F�1Y is nondereasing andt� > 0). Therefore, the prie of the portfolio (��1; ��2; ��) onstruted from the superlevel set �� is higher than, within an � error, the primal value E [(X + Y � K)+)℄.This is explains the term "�-optimality".Combing the above �-optimal inequality with the weak duality between primal anddual, we obtainE [(X + Y �K)+℄� � � hCX ; d��1i+ hCY ; d��2i+ �� � E [(X + Y �K)+℄for any � > 0. In this sense, we say that the primal value E [(X +Y �K)+℄ with jointdistribution onstruted in Setion 2.6 is optimal.



235. Numerial ResultsIn this setion we illustrate the hedging strategy in the ontext of the Blak-Sholesmodel. We determine the optimal hedging strategy, by determining numerially thezeroes of � (see (18) in Setion 2.3).Let us therefore assume thatS1t = S10 exp(�1W1t � 12�21t);(34) S2t = S20 exp(�2W2t � 12�22t);(35)where �i; i = 1; 2, are onstants and where W1t;W2t are standard Brownian motions.In order to simulate the anti-monotoni ase orresponding to the optimal lowerbound, we assume the following relation between the driving Brownian motionsW2t = �W1t:As is well known, the distribution funtions F iST (x) for stok i, i = 1; 2, at maturity Tare given by 1�N(d(i)2 ), where N is the distribution funtion of the standard normalrandom variable and d(i)2 , whih appears in the Blak-Sholes formula, is given (whenr = 0) by the expression d(i)2 (x) = log(Si0x )� �2i2 T�ipT :Thus the funtion � whose zeroes we seek to determine is given in our setting by�(x) = �N(d(1)2 (x))�N(d(2)2 (K � x)) + 1:In the paper, we have assumed for simpliity that the weights wi; i = 1; 2, in theportfolio are equal to 1. Adapting the results in this paper to positive weights thatare di�erent from 1 involves only trivial adjustments. In Table 1 below we showresults when both weights are equal to :5. We have assumed geometri Brownianmotions for both stoks. We took T = :5, S10 = S20 = 100 and �1 = :355; �2 = :2and w1 = w2 = :5. In the �rst olumn the basket strike KB is shown. In the seondolumn is the Monte Carlo prie of the basket in the ase where stok S1 and S2 areanti-monotoni with the presribed marginals. In the third olumn is the prie of theoptimal hedging portfolio. In the next two olumns is part of the optimal hedgingportfolio that onerns stok S1 and involves a short w1 and a long w1 position in a



24 KB MC Value Hedging Portfolio's Long w1 Call Short w1 CallValue with Strike K11 with Strike K2181.5 18.52 18.50 absent absent84 16.03 16.00 absent absent86.5 13.55 13.50 absent absent89 11.02 11.00 absent absent91.5 8.5 8.50 absent absent94 5.97 6.00 absent absent96.5 3.98 3.99 51.24 89.4099 2.73 2.69 44.47 101.61100 2.28 2.29 42.50 105.76102.5 1.54 1.54 38.52 115.19105 1.02 1.03 35.41 123.73107.5 0.69 0.69 32.83 131.73110 0.45 0.46 30.65 139.30112.5 0.32 0.31 28.78 146.59115 0.21 0.21 27.12 153.64117.5 0.14 0.14 25.64 160.48Table 1: The hedging portfolio and optimal lower bound for primal and dual problemall with the indiated strikes K11 and K21 . To this we must always add a long w1position in the underlying stok S1 and a omplementary position in three w2 putson S2: a short w2 position on a put with strike 2KB � K11 , a long w2 position in aput with strike 2KB �K21 and a short w2 position in a put with strike 2KB. We areassuming, as we do throughout this paper, that a ontinuum of strikes are tradedon eah asset. For the parameters onsidered, the funtion � has either two zeroesor none. When there are none (indiated by "absent" in fourth and �fth olumn),the optimal hedging portfolio onsists only of a long position in stok 1 and a shortposition in a put on S2, struk at the basket strike.6. Appendix I - Infinite Dimensional Linear ProgrammingIn this setion we quote some results for linear programming in in�nite dimensionalspae. Please refer to Anderson and Nash [1℄ for details.Let (X;X 0) and (Y; Y 0) be two dual pairs of linear spaes and denote by h; i forboth of their pairings. A linear programming problem is a onstrained optimization



25problem of the form(36) minimize hx; isubjet to Ax = bx � 0where b and  are given elements of Y and X 0 respetively, A is a ontinuous linearmap from X to Y . The dual problem to (36) is given as(37) maximize hb; y0isubjet to �A�y0 +  2 P �y0 2 Y 0where P � is the dual one of P de�ned byP � = fx0 2 X 0 : hx; x0i � 0 for all x 2 Pg;and A� is the adjoint of A de�ned by hAx; y0i = hx;A�y0i for all x 2 X and y0 2 Y 0.The following two theorems are essential in our following analysis. Reall that aprogram is alled onsistent if it has a feasible solution and the value of a onsistentprogram (36) is de�ned as the in�mum over feasible x of hx; i.Theorem 5. (Weak duality) If both (36) and (37) are both onsistent, then the valueof (36) is greater than or equal to the value of (37) and both values are �nite.Theorem 6. (Complementary slakness) If x is primal feasible and y0 is dual feasibleand(38) hx; � A�y0i = 0;then x is primal optimal and y0 is dual optimal.7. Appendix IIIn this setion we provide the details of the derivation for the equality (33) inSetion 3.1. Reall thatE [(X + Y �K)+℄ = ZE(F�1X (u)�K)du+ ZE F�1Y (1� u)du;where E = fu 2 (0; 1) : F�1X (u) + F�1Y (1 � u) � K > 0g. Now we ompute these 2integrals out as follows.



26 (1) By applying a hange of variables formula (by making u = FX(x)) to the �rstintegral and notie thatF�1X (E) = fx : x+ F�1Y (1� FX(x))�K > 0g= fx 2 [0; K℄ : FX(x) + FY (K � x)� 1 � 0g[(K;1)= fx 2 [0; K℄ : C 0X(x) + C 0Y (K � x) + 1 � 0g[(K;1)we have ZE[F�1X (u)�K℄du = ZF�1X (E)[x�K℄dFX(x)= Z 10 [x�K℄dFX(x)� ZA[x�K℄dFX(x)= CX(0)�K � (x�K)FX(x)j�A + ZA FX(x)dx= CX(0)�K � (x�K)FX(x)j�A + ZA C 0X(x)dx + jAjwhere A = fx 2 (0; K) : C 0X(x)+C 0Y (K�x)+1 > 0g and jAj is the Lebesguemeasure of A.(2) Similarly for the seond integral, we make the hange of variable 1�u = FY (y)and notie thatfy : 1� FY (y) 2 Eg = fy : F�1X (1� FY (y)) + y �K > 0g= fy 2 [0; K℄ : FX(K � y) + FY (y)� 1 � 0g[(K;1)= fy 2 [0; K℄ : C 0X(K � y) + C 0Y (y) + 1 � 0g[(K;1)then we have ZE F�1Y (1� u)du = � Zfy:1�F�1Y (y)2Eg ydFY (y)= CY (0)� yFY (y)j�B + ZB C 0Y (y)dy + jBjwhere B = fy 2 (0; K) : C 0X(K� y)+C 0Y (y)+1 > 0g and jBj is the Lebesguemeasure of B.



27Now we haveE [(X + Y �K)+℄ = CX(0) + CY (0)�K � (x�K)FX(x)j�A � yFY (y)j�B+ ZAC 0X(x)dx + ZB C 0Y (y)dy + jAj+ jBj:By applying the symmetry x 2 A() K � x 2 B we obtain� (K � x)FX(x)j�A + yFY (y)j�B = yFX(K � y)j�B + yFY (y)j�B = yj�B = jBj;here in the seond equality we have used the relation FX(K � y)+FY (y) = 1 on �B.Hene, under the assumption that A is a �nite union of intervals, we obtainE [(X + Y �K)+℄ = CX(0) + CY (0)�K + ZA C 0X(x)dx + ZB C 0Y (y)dy + jAj= CX(0) + CY (0)�K + Z K0 �A(x)C 0X(x)dx + Z K0 �B(y)C 0Y (y)dy + jAj= CX(0) + CY (0)�K + Xx2�(AÆ)(�1)�(x)CX(x) + Xy2�(AÆ)(�1)�(y)+1CY (K � y) + jAj;where in the last equality we have again used the symmetry x 2 A() K � x 2 B.AÆ denotes the interior of A and � is de�ned as�(x) = � 1 if x is a left endpoint in �(AÆ);�1 if x is a right endpoint in �(AÆ):AknowledgementThe authors wish to thank the anonymous referees for their helpful omments.Referenes[1℄ Anderson, E. J. and Nash, P., 1987. Linear programming in in�nte-dimensional spaes,Wiley & Sons, 1987.[2℄ Aspremont, A. and El Ghaoui, L., 2003. Stati arbitrage bounds on basket option pries,Preprint, University of California, Berkeley, 2003.[3℄ Avellaneda, M., Boyer-Olsen, D., Busa, J. and Friz, P., 2002. Restruturing volatility,Risk Magazine, Otober, 91-95, 2002.[4℄ Bertsimas, D. and Popesu, I., 2002. On the relation between option and stok pries: Aonvex optimization approah, Operations Researh, 2002, 50(2), 358-374.[5℄ Brigo, D., Merurio, F., Rapisarda, F. and Sotti, R., 2004. Approximated moment-mathing dynamis for basket options priing, Quantitative Finane, 4, 1-16, 2004.[6℄ Brown, H.M., Hobson, D.G. and Rogers, L.C.G., 2001. Robust hedging of barrier options.Mathematial Finane, 11, 285-314, 2001.[7℄ Breeden, D.T. and Litzenberger, R.H., 1978. Pries of state-ontingent laims impliitin option pries, J. of Business, 51, 621{651, 1978.
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