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ABSTRACT

In this paper we investigate the possible values of basket options.
Instead of postulating a model and pricing the basket option using that model, we
consider the set of all models which are consistent with the observed prices of vanilla

options of all strikes. In the case of basket options on two components we find, within
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this class, the model for which the price of the basket option is smallest. This price,

as discovered by Rapuch and Roncalli, is associated to the lower Fréchet copula. We
complement their result in this paper by describing an optimal subreplicating strategy.

This strategy is associated with an explicit portfolio which consists of being long and
short a series of calls with strikes chosen as the zeros of an auxiliary function.
Keywords and Phrases: Basket Options; Anti-monotonicity; Sub-replication; Arbitrage-
free bounds; Copula.
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1. Introduction

Options on a basket of stocks are fundamental instruments in world financial mar-
kets. Examples thereof are exchange traded instruments such as equity index options,
usually written on at least 15 stocks, and currency basket options, written on two
or more assets. Currency baskets are customized products which are traded over the
counter.

An index I on n underlying stocks S;,i =1, - - n is usually defined as a basket on

the n stocks with fixed weights w;, so that I = )  w;S;. A European call option on
i=1
the index, struck at K, with maturity 7" has a payoff (I — K)+, and arbitrage pricing

theory gives the value of this option at time zero as

n +
e "7’ (Z w;S; — K) dp(St, - . -, S“)] ’

i=1

E,

where p is a risk neutral measure associated with the joint distribution of the under-
lying prices of S; at time 7T'. This price is uniquely determined in a complete market
for in such markets p is known unequivocally. In practice, however, markets are
incomplete and a myriad of possible risk neutral measures can be used to calculate
the option price. The most standard setting in finance, the Black-Scholes setting,
assumes the assets are driven by correlated exponential Brownian motions so that
the distribution under the risk-neutral measure at time 7', assuming no dividends are

paid between 0 and T, is
o2
Si(T) = S;(0) exp <02~Wt + (r — é)t) i=1,-,n

where o; are constants as are the correlations p;;,7,j = 1,---n between the driving
Brownian motions.

However, even for options written on one asset, the standard Black-Scholes model
is not consistent with the so-called smile effect in option prices, and a substantial
amount of research over the last decade has been devoted to pricing and hedging
assuming the underlying evolves according to alternative stochastic processes. Among
the most popular are level-dependent models, in which the volatility is allowed to
depend on spot and time, stochastic volatility models, uncertain volatility models,

and jump-diffusion or pure jump processes. Such models can be used to account for
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the smile effect in the observed market values of vanilla calls and puts. The plethora
of alternative models available for pricing and hedging leave practitioners with a wide
spectrum of models at their disposal, but little information about which, if any, is
the correct model to use.

In such an environment a complementary approach, useful both for risk manage-
ment purposes and to provide a sanity check for the prices and hedges obtained from
parametric models, is to derive distribution free no-arbitrage prices and hedges. This
second approach is less ambitious in scope in the sense that it does not aim to derive
a unique fair price, but more robust in the sense that it is not dependent on the
efficacy of an underlying model. The aim is to provide bounds on the possible price
of the basket option which are consistent with no-arbitrage given the market prices of
vanilla puts and calls. In essence, rather than using a single model, we consider the
class of all models which are consistent with the observed call prices, and rather than
quoting a single option price we give the range of prices which arise under models
from this class.

In this paper this philosophy will be applied to basket options in the setting of
a one-period static arbitrage model and we will focus on the case of lower bounds
for baskets written on two assets. We will also assume that prices of call options on
the two underlying stocks with a continuum of strikes are known. In reality only a
discrete number of strikes for each maturity are traded. The case of only a discrete
number of strikes is not a straightforward extension of the continuum of strikes case.

We consider only lower bounds in this paper. The case of upper bounds was solved,
in the general n-asset case, for both the continuum of strikes case and for the discrete
set of strikes case, in our previous paper [18]. (The upper bound problem is also
considered in the continuous strike case by Dhaene et al [12], Goovaerts et al [17]
and Kaas et al [21] using the theory of stochastic ordering.) It may seem surprising
that one cannot treat both upper and lower bounds by the same method. It turns
out however that deriving distribution-free lower bounds is far more complex then
deriving distribution-free upper bounds. At the root of this difficulty is the fact that
optimal upper bounds turn out to be associated with superreplicating strategies for
which the hedger takes long positions in all the underlying components and a zero

position in cash and it then only remains to determine, among the strikes trading on
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the individual options, which ones are associated with the cheapest possible super-
replicating portfolio?. In [18] we proved that the optimal superreplicating strategy
involves the selection of only two strikes per asset and we gave a simple and computa-
tionally efficient way to determine these strikes. In the case of lower bounds it turns
out that it is not in general sufficient, as illustrated in this paper in two asset case,
to consider subreplicating strategies involving one or two strikes per asset and the
optimal strategy involves both long and short positions in calls as well as a cash com-
ponent. The optimal subreplicating strategy may involve many strikes. These strikes
are the zeros of a certain function uniquely determined by the call price functions as
functions of strike.

Some insight into the added complexity of optimal lower bounds may be useful and
is gained by a review of earlier results in this direction. Let us recall the first one
derived in the case of one underlying asset by Bertsimas and Popescu in [4]:

Given prices ¢; = ¢(K;) = E[(X — K;)™],i = 1,--- ,n of call options with strikes
0 < Ky < Ky < ---K, on a stock S, the range of all possible valid prices for
a call option with strike price K where K € (K, K;i,) for some j = 0,---,n is
[¢ (K),q" (K)] where

] KK, K-K KK K - K

K _ K-K;j, '_ j ) 7+ . —H

¢ (K) = max <qJK “K, +q; lKj — Kj—l,qj+1Kj+2 K +QJ+2Kj+2 - Kjy
K- K K- K;

HEK) =g, =2t T

q ( ) q]Kj+1—K]’ q]+1Kj+1_Kj

Here Ky =0, ¢ = @ni1 = Qnye and K, 5 > K,, .1 > K,,, although the precise values
of these extra strikes does not matter. The situation is summarized in Figure 1.
Laurence and Wang [23] established a lower bound for basket options in the 2-
asset case, under the assumption that there is only one traded asset and that, in
addition to an option on each asset, the forward prices are prescribed. The optimal
hedging strategy associated to the lower bound depends in a complicated way on
the input forward and option prices and involves in some cases, both long and short

positions in options and long and short positions in cash. Let F; = SO;C and let

2Even for a small index, such as DJX, with 30 assets in the index and 8 to 13 options traded
on each component asset, this entails choosing among the order of 103° possible combinations, if
choosing only one strike per asset is optimal and many more if it turned out to be more efficient to
”diversify” and select more than one strike per asset.
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Figure 1: The figure illustrates the range of prices for options whose strikes lie between 100 and 110. The particular
case of strike 105 is emphasized. ¢t stands for the upper bound and the larger of g; and g, stands for the lower
bound.

D =K — w Ky —wyK,. If K > max(w; Ky, wsK,) then the Laurence-Wang lower

bound is given by?

e For D <0,
(].) maX{Al+w2K2F+,A2+w1K1F+,A1+A2—|—KF+,O},
e For D > 0,

(2)  max {4+ (K —w K1)F", Ay + (K — wyKo)F ", A; + Ay + KF*,0},

where

(3) A; = wie; — (%)(SfJ —¢) for 1=1,2,
(4) F=F+F -1, Z

(5) F™ = max{F,0}.

3Laurence and Wang allow a non zero short rate, but here and throughout this paper we will take
r = 0 for simplicity.



A simpler lower bound exists for K < max(w; K;, wyKs), see [24].

There are several open problems concerning the lower bound. Firstly, it is not
known, even when there are only two components in the basket, how to extend the
above bound to the case when there are several strikes traded on each component.
Secondly, the best lower bound is not known even when there is only one option
traded on each asset, but n > 2. (It should be noted however than in an interesting
paper Aspremont and El Ghaoui [2] find optimal bounds in closed form when an
option on each component is traded, but forwards on the component assets are not.)

The results described above illustrate how much more complex the situation is in
the case of lower bounds than for upper bounds. In this paper we are interested in
lower bounds (when n = 2) and we assume knowledge of a continuum of strikes on each
of two assets. Breeden and Litzenberger’s result [7] then implies that knowledge of
the full marginals is easily deduced from the call prices (but we have no information
on the joint distribution of assets). Indeed Breeden and Litzenberger showed how
to deduce the distribution of an asset from the first derivative of the option price
with respect to the strike. Applying this to each of our stocks in turn, we then
recover knowledge of the full marginal of the stock from knowledge of the (assumed)
continuum of strike prices.

Now the problem of determining optimal joint distributions subject to the con-
straint of prescribed marginals has a long history in mathematics. A comprehensive
and nearly up to date reference is the book by Joe [19]. A tool that dates back to the
work by Fréchet [16] that has been used to attack such problems is to use copulas.
Indeed the celebrated Sklar theorem tells us that for any joint probability distribution
F with margins Fi,- .-, F, there exists an n-copula C such that for all x € R* we

have
F(z1,...,2n) = C(Fi(z1),..., Fu(z,))

Thus, in seeking optimal joint distributions subject to prescribed marginals, the
marginals have in effect been ”factored out” and the remaining problem is to deter-
mine the optimal copula. It was discovered by Dhaene and Goovaerts [11] that the
optimal copula for the basket options in the case n = 2 is associated with the lower
Fréchet bound. This result has been generalized to more general payoff functions

of contingent claims on two assets by Rapuch and Roncalli [27]. To establish their
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result Rapuch and Roncalli also rely on a result of Muller and Scarsini concerning
the behaviour of convex functions under the concordance order [26]. Since their ap-
proaches rely in a central way on the lower Fréchet copula, their results are, as is ours,
restricted to the two-asset case. Indeed it is well known [19] that in general the lower
Fréchet bound does not correspond to a copula for n > 3. We complement that result
in two ways: the first and main contribution is to provide an optimal subreplicating
strategy using what we refer to as STP portfolios. This striking class of portfolios is
expressed as a series of long and short positions in call options of different strikes and
a long position in cash. An alternative more compact description in terms of long
positions in calls and short positions in puts is also given. A second contribution of
this paper is that we obtain, as a corollary, a direct proof of the optimal lower bound
that is independent of the Fréchet bounds and of the Muller-Scarsini ordering result.
Since, as mentioned above, the Fréchet lower bound does not extend to n dimensions
for n > 3, this opens up a roadmap to an n-dimensional generalization of the present
results.

We conclude this section with a literature review. Most of the work on basket op-
tions focuses on the Black-Scholes setting. Due the high dimension of these options
(most indices involve at least 17 assets) , their analytical and numerical valuation is
very challenging even in the Black-Scholes setting. Indeed, although an analytical for-
mula for the call option does exist, see for example the text by Kwok, [22], the integral
is difficult to evaluate in practice and one must resort to Monte-Carlo methods, to
recursive methods, see Ware and Avelassani [29], or to methods using characteristic
functions, see Ju [20], moment matching, see Brigo et al [5] and Dufresne [13]. Also
progress in handling diffusion based models with non constant volatility close to expi-
ration has been made in Avellaneda et al [3]. Given the difficulty of calculating exact
prices several authors, including Deelstra et al [9] and Kaas et al [21], have looked
for upper and lower bounds. In both of the papers a clever conditioning argument is
used to give a lower bound on the price of the basket option. However this method
assumes that the underlyings follow correlated exponential Brownian motions, so that
the lower bound is a model-based lower bound in the Black-Scholes setting, and not

a model-independent lower bound such as we propose. Corresponding bounds for



9

Asian options and in the context of actuarial science are also considered in Dhaene
et al [10].

2. Problem formulation

We assume that a market exists in which calls and puts of maturity 7" are traded on
the two component assets of the basket. We assume that options with a continuum
of strikes are traded on each component asset: we may also think of the underlying
assets themselves as call options with zero strike. Our goal is to price a basket option
on the two assets which is traded with the same maturity 7.

We address two problems whose solutions turn out to be dual to each other in an
appropriate variational formulation that will be described below: i) the problem of
finding the infimum of all basket option prices when the joint distribution is con-
strained by the (perfect) knowledge of the marginal distributions provided by the
individual call options, ii) The problem of finding the optimal subreplicating strategy
consisting of calls, puts and cash. The cost of the optimal subreplicating strategy
corresponds to the highest bid price of an investor who is offered the opportunity to
be long the basket option, but is not prepared to accept any risk. It is the highest
price she is willing to pay, since if she buys the basket at this price and constructs a
static hedge by a portfolio of calls, puts and cash according to the optimal portfolio,
she is sure the payoff of the basket will be higher than the obligations arising from
her hedging portfolio in all states of the world. Moreover the portfolio (of calls, puts
and cash) is the most expensive one she can sell whilst still guaranteeing that the
basket superreplicates her portfolio.

A simple but important observation is that put-call parity ensures that any put is
equivalent to a call and cash. Therefore, in choosing optimal subreplicating strategies
and or in minimizing the basket option price subject to the constraint of a continuum
of call and put options of all strikes, we may reduce the problem to one in which
only calls and cash are the subreplicating instruments. Thus the problem will be

formulated in this setting .

41t will however turn out, as we will see in section § 1.4 that the optimal subreplicating portfolio
takes a particularly simple form when we use calls on one asset and puts on the other.
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For expository reasons we begin by describing the primal and dual variational prob-
lems in a somewhat informal and intuitively appealing form. Their rigorous formula-
tion is deferred to the next section. Consider the following constrained minimization

problem

inf/ (z+y— K) p(dz, dy)
R

7 2
+
where y ranges over the space of all risk neutral distributions on R2 , subject to the

constraints on the marginal distributions

/R (2 — k) px(dz) = Cx (),
/R (v — ko) dpay (dy) = Cy (k).

/ p(dz, dy) = 1.
Ry
Here pux and py are the marginal distributions.

Throughout this paper we have taken wunit coefficients (weights) in the basket and
zero interest rates and assume that the assets pay no dividends. If the weights are
different from one and interest rates are constant we may reduce to the present case
by a simple scaling argument (see [24]) .

The dual problem for finding optimal subreplicating strategies is given by
(6) sup / Ci (ks Yo (k) + / Cy (ko )wa(dks) + A

A JR, R4
subject to the constraints

M ry-K) - [

R4

(2 — ky)Fon (dly) — / (y — ko) o (dhs) — A > 0,

Ry
Ve>0 y>0.

2.1. A review of Dhaene and Goovaerts’ result.

Given knowledge of the call functions Cx(k;), Cy(k2), Breeden and Litzenberger’s
result implies that d;;leX = Fx (ki) —1, (%C’y = Fy(ky) —1 where Fx and Fy are the
distribution functions of X and Y respectively. As mentioned in the introduction, by
Sklar’s theorem any joint distribution F'(z,y) = P(X < z,Y < y) can be represented

as C(Fx(z), Fy(y)) for some copula C.
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Recall the lower and upper Fréchet copula bounds: for any copula C(u;,uz) on
[0, 1]? we have
C (uy,ug) < C(uy,us) < CT(uy, us),
where
C* = min(uy, uy),
C~ = max(u; + uz — 1,0).
Therefore, for any distribution function F' with prescribed marginals Fx, Fy, we have
C™(Fx(2), Fy(y)) < F(z,y) < C"(Fx(z), Fy(y))-
From this Dhaene and Goovaerts [11] (Theorem 3, p.206) deduce the following:
Proposition 1. The price of a call option on a basket Cz on X andY whose marginal
distributions are Fx and Fy satisfies the bounds

Cp <Cs<Cf

where Cp and Cy correspond to the upper and lower Fréchet bounds respectively,
that is, the joint distributions of (X,Y) are given respectively by C*(Fx, Fy) and
C~(Fx, Fy).

The result has been generalized to supermodular payoff by Rapuch and Roncalli [27]
from a result of Muller and Scarsini [26].

When the distribution functions F'x and Fy are continuous, we have
C=C &Y =F"'Y1-Fx(X),
C=C"&Y =F"(Fx(X)).
For the lower bound note this means that

®) ;5 = / &+ Fy'(1— Fx(2)) — K]*dFx ()

2.2. A precise formulation of primal and dual problems.

In this section we state the primal and dual problems in an appropriate infinite di-
mensional setting. Our approach is adapted from that in Anderson and Nash [1]. For
the reader’s convenience we summarize the backdrop of these results in an Appendix,
see Section 6. Let M denote the linear space of all finite signed measures on R? which
decay at least linearly at infinity in the sense that, for p € M, u(B:(€)) ~ o(1/r)
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as r goes to infinity for every ¢ € R2, where BS(§) = {n € R : |[n—¢&| > r}.
Let T be the linear space generated by the functions p;(z,y; k1) = (z — ki)™,
pa(x,y; ko) := (y — k2)* and pp(z,y; K) := (z + y — K)* defined on R%. Define
the pairing (,) between M and I' by integration, i.e.,

)= [ $(avn(dady

Denote by M the convex cone in M of all finite positive measures on R%. We
consider the following constrained minimization problem

9 inf , oK

(9) ok (s, pa( K)

subject to the constraints on the marginal distributions

(10) <M,P1(‘;k1)> = CX(kl)a
(11) <M,P2(‘;k2)> = CY(k2),
(12) <:u’ 1> =1,

where C'x and Cy are given call price functions which are necessarily nonnegative,
decreasing and convex. Let H be the set of all nonnegative, decreasing and convex
functions defined on R, § be the set of all finite signed measures over R, and the
pairing (, ) between # and S is given by integration. Consequently, the dual problem
of primal problem (9-12) is the following constrained maximization problem
(13) sup)\ (Cx,11) + (Cy,va) + A

v1,va,

subject to the constraints

(14) (s pB — (P1,v1) — (P2, 12) — A) >0, Vue My,
(15) v, €S, AeER

As a matter of fact, (14) can be further realized as

(16) pe — (p1, 1) — (pa,1n) —A >0, V>0 y>0.

Hence we have the dual problem in the form described as (6-7). Here we remark that
(6) is an expression for the most expensive value among subreplicating portfolios and

(7) is the condition for subreplication.
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The complementary slackness condition (38) in the Appendix, written out in our

setting therefore reads

(i, pB( K)) = (u, (P15 k1), 1) + (D2 (-5 k), v2) + A)

Representing the inner product in integral form and exchanging the order of integra-

tion on the right hand side yields

/pB(-;K)du _ /(/pl(-;kl)du> ul(dk1)+/ </p2(-;k2)du> va(dhs) + A
(a7) _ /CX(kl)yl(dk1)+/CY(kQ)VQ(dk2)+)\.

Therefore, in order to prove optimality by applying the complementary slackness
condition, we need to find feasible measures u, vy, v5 and a real number A such that
the equality (17) holds.

2.3. A family of optimal subreplicating portfolios.

In this section we introduce a family of subreplicating portfolios we call STPs®>. An
intuitive derivation of the STPs from lower Fréchet copula is postponed until Section
3. Let C'" denote the right derivative of the call price function, and C'~ the left

derivative. Define the auxiliary function
(18) p(z) = C% " (z) + Oy (K — ) + 1.

By construction ¢, which is only defined on [0, K], is right-continuous. We also set
¢(K) = C%*(K). Clearly ¢ is the difference of two increasing functions and it’s total

variation is bounded by the constant 2. Define
(19) A={z:¢(x) >0}

Then A is a countable union of disjoint intervals A = U;A;. For the rest of this section
we make the assumption: A is a union of a finite number n of intervals. Indeed the
case that A consists of infinitely many intervals is degenerate. A discussion on this
assumption is given in Section 3.2.

Suppose that the intervals (A4;)i<;<n are placed in their natural order, and that the
boundary of A; is given by the points {K;’ "' K’}. Define Kj = K — K;" /"' and

5STP” is short for "sheep-track portfolios” since the graph of such a portfolio is reminiscent of
such tracks on British hillsides. A picture thereof is contained in Figure 2 below.
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consider the dual variables defined by

(20) 1 (dky) = 6o (ky)dky + Z )i (1)dk,
i=1
2n
(21) Da(dka) = S0 (ka)dky + Y _(—1)"6; (ko) dka,
i=1
(22) A= (KPP - KPP -K=> (K3 - K3 ') - K.
i=1 i=1

These dual variables are shown to be feasible in the next section.

Remark 2. In the special case that ¢ is C* in [0, K], the determination of the strikes
Ki’s in the dual variables given above reduces to find the zeros {z : ¢(z) = 0} of ¢.
For the finiteness of the zeros for C! functions, we add the following observation that
shows that the finiteness will hold except in certain (unavoidable) degenerate cases.
Let I C R be a bounded open interval, h € C*(I) and p be a regular value of h, i.e.,
h'(z) # 0 for every x € h™'(p). Then h~!(p) is finite. In our case this means that
¢(z) has only finite number of zeros in (0, K') provided that whenever z is such that
C(z) = —Cy (K — z) — 1, then C%(z) # Cy (K — z), i.e., the densities of X and Y

are different at such points.

Given the dual measures as in (20) and (21) the payoff of the the associated portfolio
can be expressed by integrating (z — k;) against v;(dk;). Partition R} into (2n + 1)?
pieces denoted by R; jusing the definitions

2n+1
= U R;;, where R;; = {(z,y) e B2 1 K] ' <2 < K, Ky’7' <y < Ky}

ij=1

Here we have used the convention that K? = K, = 0 and K" = K,>"™ = oo

The associated portfolio may be expressed in each region R;; as

<x+z a:—K“) <y+z )+/\

or in the following more compact form, which applies simultaneously across all regions

(23) fi@) + fa(y) + A
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where the functions f; are defined by
(24) Fil2) = 2+ S {(z — K2yt — (2 — K214,
a=1

Note that each of fi(z) and f»(y) has an immediate interpretation in terms of a

hedging strategy involving call options. Moreover, a few lines of algebra show that
fi(K = 2) + fa2) + X =0,

so that (23) simplifies to

(25) filz) = f1(K —y).

Thus the hedging portfolio for basket call may be expressed as a portfolio of calls held
long and short on x and a portfolio of puts held long and short on y. The advantage
of this representation is that it does not involve cash.

The functions f; will be referred to as STP functions. The measures (20) and (21)
are in one to one correspondence with the STP portfolio. We will refer to them as

the STP measures. An illustration of ST P function f is given in Figure 2.

STP Portfolio

Figure 2: The figure illustrates an STP portfolio which, starting at zero, is piecewise linear with alternating slopes
one and zero. The points of transition define K} for odd and even i.
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2.4. Feasibility of dual variables.

Feasibility is equivalent to establishing the following subreplication property
(26) fz) = A(K —y) < (z+y— K)".

Since f; is piecewise linear with alternately slopes 0 and 1, by the mean value theorem

we clearly have
(27) filz +u) = fi(z) <u’

so we have (26). Feasibility is assured for our hedging portfolios provided they satisfy
(27).

2.5. A geometric construction of optimal bivariate processes using STP.

Notice that equality is achieved in (26) provided that one of the following 3 cases
holds:

(28) 2 =K —y
(29) > K —yand fi(z) = i(K —y) +z+y— K, ie, 2, K —yc (K, K
(30) = < K —yand fi(z) = fi(K —y), ie, 2, K —y e (K, K})

as is illustrated by Figure 3 below.

Suppose that X and Y are continuous random variables with strictly positive den-
sities on [0, K]. In order to construct a bivariate process (X,Y’) achieving equality
in the inequality (26) it suffices to choose a countermonotic process Y = G(X) with
G a non-increasing function in such a way that the support of (X,Y") is concen-
trated on places where the conditions given in (28), (29) and (30) above hold. Since
in this case Fx and Fy,' are continuous functions this is achieved by the choice
G(X) := Fy'(1 — Fx(X)). Note that the set (G(r) < K — ) is precisely the set
é(z) > 0, so that the points where G crosses the line x +y = K are exactly the
boundary points of the set A.

More generally, if U ~ U[0,1] and we define X = Fy'(U) and Y = Fy'(1 — U)
then X and Y have the desired marginals, and moreover the joint law of (X,Y) is
such that all the mass is placed at co-ordinates where equality holds in (26).

This is illustrated graphically in Figure 3.
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y
K=K - K] .
K=K - K,? 2
K: K- K>, :
KE K- K : _ -
Kl K 2 K3 K4 X

Figure 3: Joint distribution is optimal if supported in the shaded region.

2.6. Optimality.
Having established that there is equality in the relations E[( X +Y —K)*] = E[f; (X)—

fi(K —Y)] when (X,Y) is an anti-monotonic process with support chosen as above,

we can easily deduce the following theorem:

Theorem 1. Suppose the call functions Cx(z) and Cy(y) are such that the set A
defined in (19) is a union of finitely many intervals. Let 0 < K} < --- K" < K be
the endpoints of these intervals, and let f; be defined as at (24).

Let U be a random variable with a standard uniform distribution. Define X =
Fi'(U) and Y = Fy'(1 — U). Then

e The joint distribution function i associated to the bivariate process (X,Y)
is a minimizer for the primal problem for the call on a two asset basket with
strike K;

e the portfolio defined via fi(z) + fo(y) + X is feasible and the optimal measures
71, Uy given by the formulas (20) and (21), together with A form a triple that
is optimal for the dual problem (6), (7) .
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Proof. In essence, all that remains to be proved is that the dual variables we have
constructed are optimal not only among measures of the form given in (20) and (21),
but also amongst all measures in the original dual problem. The following chain
of inequalities makes this clear: since (X,Y) is feasible for the primal problem and

(A, 71, %) is feasible for the dual problem, we have

<C’Xa171>—i_<CYYaDZ>—i_A = (Sup)<CXaV1>+<CYaV2>+)\
Vlv”Zv)‘
S sup <CXaV1>+<CYaV2>+)\
v1,v2,\ verifies (14),(15)
< inf r+y— K)" u(de,d
T pEM, pverifies (10),(11),(12) /Ri( y ) M( y)

< [ @y-K) s, dy)
RZ
+
The first and the last elements in the above chain are equal and hence the other
inequalities are equalities. Hence i and (), 71, i) respectively are also optimal for
the original primal and dual problem and the values of the primal and dual functionals

evaluated on these functions are equal. O

2.7. Optimal subreplicating portfolio for basket put.

Using put-call parity for the basket we also have lower bound for the price Pz of
basket put and the corresponding subreplicating portfolio. Note that the price Pg is
given by Ps = Cp — (z + y) + K (recall we have reduced to the case of zero interest
rates). Thus one immediately obtains the lower bound for Pg by subtracting the lower
bound for the price of basket call by a forward price. Moreover, since the stocks z,y
may be thought of as options with strike zero, we may use this relation to determine

the STP type portfolio that subreplicates Pg. In other words we have that

The hedging portfolio for the basket put option is equal to the hedging
portfolio for a basket call option combined with a portfolio which is

short both assets and long K units of cash.

Using the explicit form (23) for the hedging portfolio on the basket and (22) we
therefore get that the hedging portfolio for the put of the form

(31) file) = (K —y)— (K —y—z) = f(K —y) — f()
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where f(z) = z — fi(2), or equivalently,

(32) fl@)=) Az = K" = (@ - K'Y

As for (25), the hedging portfolio for the basket put is expressed as a portfolio of puts
held long and short on y and a portfolio of calls held long and short on z. Also the

advantage of the representation (31) is that it does not involve cash.

3. A derivation of optimal dual from optimal copula

We complement the treatment in the previous section by outlining how the STP
portfolio can be derived from the lower Fréchet copula. Indeed it is this approach
that first led us to the form of these portfolios. The second part of the section consists

of a discussion on the finiteness assumption on the set A defined by (19).
3.1. Optimal dual measures. Consider the following joint distribution of X and
Y given by
+
F(z,y) = max{Fx(z) + Fy(y) — 1,0} = (Cx () + Cy " (y) + 1) .

This joint distribution of X and Y can also be characterized as: X is distributed
as Fx'(U) and Y is distributed as F} '(1 — U), where U is a random variable uni-
formly distributed in (0,1) and Fy', F}' are the generalized inverse of Fx and Fy

respectively defined by

Fy'(u) = inf{z : Fx(z) > u},
Fy'(u) = inf{y : Fy(y) > u}.

Now the joint distribution associated with the lower Fréchet copula is feasible for the

primal problem and yields the primal value
1
E[(X +Y — K)*] = / (F=\(u) + F' (1 — u) — K)*du
0
— [P+ R -0 - K)d
E

= /E(F);l(u) — K)du +/ Fyh (1 — u)du,

E
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where £ = {u € (0,1) : Fx'(u) + F;'(1 — u) — K > 0}. Computing these two
integrals we arrive at the formula®
(BE[(X +Y — K)T] =
Cx(0)+Cy(0) =K+ Y (~1)"®Cx(x)+ Y (~1) WOy (K —y) +|4].
zEA(A°) y€eO(A°)
at least under the assumption that A is a finite union of intervals. Here o is defined

as

(z) = 1 if z is a left endpoint in 9(A°);
T =1 =1 if z is a right endpoint in 9(A°),

If we now, for an intuitive derivation, assume strong duality we have
/ C)((kl)l/l(dkl) + / Cy(kg)l/g(dkg) + )\
Ry Ry
= Ox(0)+ Y (-1)°®Cx(2) + Oy (0)+ Y (~1)°WCy (K —y)
zEA(A°) y€eO(A°)
+{0<z < K:¢(x)>0} —K.
Hence the optimal dual variables are (by comparing the coefficients)
vi(dky) = bo(k1)dky — > (=1)7@8,(ky)dky
zEA(A°)
VQ(de) = (50(k2)d]€2 + Z (—1)U(y)(5K_y(k2)dk2

y€(A°)
A=|{0<z<K:¢)>0} —-K,

and these are the dual variables (20), (21) and (22) that we described in §2.3.

We can reverse the last stage of the above reasoning to give a second proof of
strong duality. Le., if we define dual variables via (20), (21) and (22), where the
Ki’s are associated with the endpoints of the level set of {z : ¢(z) > 0}, then the
above derivation shows that the complementary slackness condition (17) is satisfied

and hence strong duality holds.

3.2. Finiteness assumption on the set A. In this section we show that although
it is perfectly possible for A to consist of infinitely many intervals, this is a degenerate

case, in a sense of "measure zero”.

6Details of derivation are provided in Section 7.
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Lemma 3. Let E be a measurable subset of an bounded open interval I. Then its
characteristic function xg is of bounded variation if and only if E consists of finitely

many intervals.

Proof. The intuition is that since the characteristic function xg is either 0 or 1, the
total variation is the number of times it changes from 0 to 1 and from 1 to 0. Thus
we are left with a simple counting argument. We refer to Volpert and Hudjaev [2§]

for background material on functions of bounded variation. O

The following lemma is a one dimensional version of a theorem in Evans and Gariepy
[14]. We refer to their book (see Theorem 1, page 185) for details.

Lemma 4. Let f be a function of bounded variation defined on an open interval I.
Denote by E; the level set {x € I : f(x) > t} for f. Then, for almost every t € R,

the characteristic function xg, of Ey is of bounded variation.

Hence, by Lemma 4 (since ¢ is of bounded variation), for almost every ¢ the char-
acteristic function of set ®; := {¢ > t} is of bounded variation and therefore a finite
union of intervals by Lemma 3. Thus the case that A = ®, fails to be finite union of

intervals is degenerate.

4. EXTENDING BEYOND THE FINITE UNION CASE.

In this section we show that even in the degenerate case, i.e., x4 is not of bounded
variation, the joint distribution of X and Y constructed in Section 2.6, i.e, X ~
Fi'(U) and Y ~ Fy'(1 — U) where U is a random variable uniformly distributed
in [0, 1], is still primal optimal. However, on the other hand, in this case the dual
variables given by (20), and (21) involve infinite sums and therefore are no longer
finite signed measures. Clearly in practice it is not realistic to consider portfolios
which involve going long and/or short an infinite number of calls. Instead we show
that, for any € > 0, there exists an explicit e-optimal subreplicating portfolio in the
sense that will be clarified in the rest of the section.

Let ®; denote the super level set {z € (0,K) : ¢(z) > t}. By Lemma 4, the
characteristic function xs, of ®; is of bounded variation for almost every t. Suppose
now that we are in the case that x4 (recall that ®; = A) is not of bounded variation.
Then, given any € > 0, there exists a positive t. < ¢/K with xs, of bounded variation

(hence ®;, is a finite union of intervals by Lemma 3). We shall denote ®; by &,
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hereafter for notational convenience. We can then form a portfolio (v§, v§, A¢) as the
one in (20), (21) and (22) by replacing the set A by ®.. We shall refer to such portfolio
determined by ®. as an e-optimal subreplicating portfolio for the reason which will
be clear in the following calculation. Recall that in this case A = |®.| — K. The price

of such portfolio satisfies

/C)((kl)dl/f(kl) + /Cy(kg)dyg(kg) + A€
— Ox(0) + Oy (0) + / o, (2)dCx (z) — / vo. (0)dCy (K — y) + |8, — K

= Cx(0)+ Cy(0) + /

P

FX(x)dx_A FY(K—y)d(K—y)+/I> dK —y) — K

_ / (o= K)dFx(s) + ydFy (y) — 1./2.]

{K-yedc}°

_ / (Fx'(u) + Fy (1 — u+ ) — K)du — 1,3,

> [ (AW R -0 - K)du—e
= E[(X+Y-—K)"—e¢

where E. := {u € (0,1) : Fy'(u) + F,' (1 —u +t.) — K > 0}. Here we note that in
the inequality we have used that E := {u € (0,1) : Fg'(u) + Fy''(1 —u) — K > 0} is
contained in E, (since Fy ' is nondecreasing and ¢, > 0), that the integrand is positive
in E. and that Fy,'(1 —u+t.) > Fy'(1 — u) (again since Fy,' is nondecreasing and
te > 0). Therefore, the price of the portfolio (v, v§, A°) constructed from the super
level set ®, is higher than, within an € error, the primal value E[(X +Y — K)*)].
This is explains the term ”e-optimality”.

Combing the above e-optimal inequality with the weak duality between primal and

dual, we obtain
E(X +Y — K)'] —e < (Cx,dvf) + (Cy,dvs) + X <E[(X +Y — K)7]

for any € > 0. In this sense, we say that the primal value E[(X +Y — K)*] with joint

distribution constructed in Section 2.6 is optimal.
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5. NUMERICAL RESULTS

In this section we illustrate the hedging strategy in the context of the Black-Scholes
model. We determine the optimal hedging strategy, by determining numerically the
zeroes of ¢ (see (18) in Section 2.3).

Let us therefore assume that

1

(34) Slt = Sé exp(let — §O'ft),
1

(35) Sy = S5 exp(o9Way — iagt),

where o;,1 = 1, 2, are constants and where Wy;, Wy are standard Brownian motions.
In order to simulate the anti-monotonic case corresponding to the optimal lower

bound, we assume the following relation between the driving Brownian motions
Wa = =W

As is well known, the distribution functions FgT(x) for stock 7, ¢ = 1,2, at maturity T

are given by 1 — N(dgi)), where N is the distribution function of the standard normal

random variable and dgi), which appears in the Black-Scholes formula, is given (when
r = 0) by the expression
S¢ o?
40 (g — 108(5) — 3T
2 (z) = :
O'z'\/?
Thus the function ¢ whose zeroes we seek to determine is given in our setting by
é(x) = =N (dy" (2)) — N(d” (K —2)) + 1.

In the paper, we have assumed for simplicity that the weights w;,7 = 1,2, in the
portfolio are equal to 1. Adapting the results in this paper to positive weights that
are different from 1 involves only trivial adjustments. In Table 1 below we show
results when both weights are equal to .5. We have assumed geometric Brownian
motions for both stocks. We took T = .5, S} = Sz = 100 and oy = .355,05 = .2
and w; = wy = .5. In the first column the basket strike K5 is shown. In the second
column is the Monte Carlo price of the basket in the case where stock S; and Sy are
anti-monotonic with the prescribed marginals. In the third column is the price of the
optimal hedging portfolio. In the next two columns is part of the optimal hedging

portfolio that concerns stock S; and involves a short w; and a long w; position in a
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Kg MC Value Hedging Portfolio’s  Long w; Call Short w; Call

Value with Strike K| with Strike K7

81.5 18.52 18.50 absent absent
84 16.03 16.00 absent absent
86.5 13.55 13.50 absent absent
89 11.02 11.00 absent absent
91.5 8.5 8.50 absent absent
94 5.97 6.00 absent absent
96.5 3.98 3.99 51.24 89.40
99 2.73 2.69 44.47 101.61
100 2.28 2.29 42.50 105.76
102.5 1.54 1.54 38.52 115.19
105 1.02 1.03 35.41 123.73
107.5 0.69 0.69 32.83 131.73
110 0.45 0.46 30.65 139.30
112.5 0.32 0.31 28.78 146.59
115 0.21 0.21 27.12 153.64
117.5 0.14 0.14 25.64 160.48

Table 1: The hedging portfolio and optimal lower bound for primal and dual problem

call with the indicated strikes K} and K?. To this we must always add a long w;
position in the underlying stock S; and a complementary position in three wsy puts
on Sy: a short wy position on a put with strike 2Kp — K|, a long w, position in a
put with strike 2K — K? and a short w, position in a put with strike 2Kp. We are
assuming, as we do throughout this paper, that a continuum of strikes are traded
on each asset. For the parameters considered, the function ¢ has either two zeroes
or none. When there are none (indicated by ”absent” in fourth and fifth column),
the optimal hedging portfolio consists only of a long position in stock 1 and a short

position in a put on Sy, struck at the basket strike.

6. Appendix I - INFINITE DIMENSIONAL LINEAR PROGRAMMING

In this section we quote some results for linear programming in infinite dimensional
space. Please refer to Anderson and Nash [1] for details.
Let (X, X') and (Y,Y") be two dual pairs of linear spaces and denote by (,) for

both of their pairings. A linear programming problem is a constrained optimization
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problem of the form

minimize (z,c)
(36) subject to Az =b
x>0

where b and ¢ are given elements of Y and X' respectively, A is a continuous linear

map from X to Y. The dual problem to (36) is given as

maximize (b, y')
(37) subject to —A*y' + ¢ € P*
yl 6 YI

where P* is the dual cone of P defined by
P*={z' e X": (z,2') > 0 for all z € P},

and A* is the adjoint of A defined by (Az,y') = (x, A*y') for all z € X and ¢’ € Y.
The following two theorems are essential in our following analysis. Recall that a
program is called consistent if it has a feasible solution and the value of a consistent

program (36) is defined as the infimum over feasible = of (z, ¢).

Theorem 5. (Weak duality) If both (36) and (37) are both consistent, then the value
of (36) is greater than or equal to the value of (37) and both values are finite.

Theorem 6. (Complementary slackness) If x is primal feasible and y' is dual feasible

and
(38) (z,c— A*y') =0,

then x is primal optimal and y' is dual optimal.

7. ApPENDIX I

In this section we provide the details of the derivation for the equality (33) in
Section 3.1. Recall that

E[(X +V — K)*] :/

E

(FXl(u)—K)du+/Fyl(l—u)du,

B
where E = {u € (0,1) : Fx'(u) + Fy,'(1 — u) — K > 0}. Now we compute these 2

integrals out as follows.
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(1) By applying a change of variables formula (by making u = Fx(x)) to the first

integral and notice that
F U E)={z:2+F,'(1 - Fx(z)) — K > 0}
= {z€[0,K]: Fx(z) + Fy(K — 2) = 1 < 0} J(K, )
= {z€[0,K]: C%(z) + Cy(K —z) +1 <0} U(K, )

we have

/E [Fyl(u) — K]du = / [« — K]dFy(z)

Fl(B)
- /Ooo[x ~ K]dFy(z) - /A[a: — K|dFy(a)
— Ox(0) = K — (2 — K)Fx ()], + /AFX(az)da:

— Cx(0) = K — (2 — K)Fx ()], + /AC}((x)dx 4]

where A= {z € (0,K) : C%(z)+ Cy (K —z)+1 > 0} and |A| is the Lebesgue
measure of A.
Similarly for the second integral, we make the change of variable 1 —u = Fy (y)

and notice that
{y:1— Fy(y) 6E}:{y:Fil(l—Fy(y))+y—K>0}

= {y€[0,K]: Fx(K —y) + Fy(y) — 1 < 0} J(K, o0)
= {ye0,K]: Cx(K —y) + Cy(y) +1 < 0} (K, 0)

then we have

/EF;1(1 — u)du = —/ ydFy(y)

{y:1-Fy ' (y)€E}

0y (0) = yFr(y)],p + / Oy (y)dy + | B]

where B = {y € (0,K) : Cx(K —y)+Cy(y) +1 > 0} and |B| is the Lebesgue
measure of B.
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Now we have
E(X +Y - K)"] = Cx(0)+Cy(0) — K — (z = K)Fx(2)lo4 — yF¥(¥) o5
+/AC’§((az)d:1:+/BC’§,(y)dy+A|+|B.

By applying the symmetry ¢ € A <= K — x € B we obtain

— (K —2)Fx(2)|y4 + vFy(y) o5 = ¥Fx (K = y)|op + vFy (¥)log = Ylss = | B,

here in the second equality we have used the relation Fx(K —y)+ Fy(y) = 1 on 0B.

Hence, under the assumption that A is a finite union of intervals, we obtain

E[(X +Y — K)*] = Cx(0) + Cy(0) — K + /Ao;((x)dx 4 /B L (y)dy + | Al

= Cx(0) + Cy(0) —K+/0 xA(r)CS((r)err/O x8(y)Cy (y)dy + | Al

= Cx(0)+Cy(0) - K+ (~1)"Cx(2) + Y (~1)7WHCy (K —y) + 4],
2€8(4°) yeo(A°)

where in the last equality we have again used the symmetry ¢ € A <— K — x € B.
A° denotes the interior of A and o is defined as

(z) = 1 if z is a left endpoint in 9(A°);
W)=\ =1 ifxis a right endpoint in d(A°).
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