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31. Introdu
tionOptions on a basket of sto
ks are fundamental instruments in world �nan
ial mar-kets. Examples thereof are ex
hange traded instruments su
h as equity index options,usually written on at least 15 sto
ks, and 
urren
y basket options, written on twoor more assets. Curren
y baskets are 
ustomized produ
ts whi
h are traded over the
ounter.An index I on n underlying sto
ks Si; i = 1; � � � ; n is usually de�ned as a basket onthe n sto
ks with �xed weights wi, so that I = nPi=1wiSi. A European 
all option onthe index, stru
k at K, with maturity T has a payo� (I �K)+, and arbitrage pri
ingtheory gives the value of this option at time zero asE� "e�rT  nXi=1 wiSi �K!+ d�(S1; : : : ; Sn)# ;where � is a risk neutral measure asso
iated with the joint distribution of the under-lying pri
es of Si at time T . This pri
e is uniquely determined in a 
omplete marketfor in su
h markets � is known unequivo
ally. In pra
ti
e, however, markets arein
omplete and a myriad of possible risk neutral measures 
an be used to 
al
ulatethe option pri
e. The most standard setting in �nan
e, the Bla
k-S
holes setting,assumes the assets are driven by 
orrelated exponential Brownian motions so thatthe distribution under the risk-neutral measure at time T , assuming no dividends arepaid between 0 and T , isSi(T ) = Si(0) exp��iWt + (r � �2i2 )t� i = 1; � � � ; nwhere �i are 
onstants as are the 
orrelations �ij; i; j = 1; � � �n between the drivingBrownian motions.However, even for options written on one asset, the standard Bla
k-S
holes modelis not 
onsistent with the so-
alled smile e�e
t in option pri
es, and a substantialamount of resear
h over the last de
ade has been devoted to pri
ing and hedgingassuming the underlying evolves a

ording to alternative sto
hasti
 pro
esses. Amongthe most popular are level-dependent models, in whi
h the volatility is allowed todepend on spot and time, sto
hasti
 volatility models, un
ertain volatility models,and jump-di�usion or pure jump pro
esses. Su
h models 
an be used to a

ount for



4the smile e�e
t in the observed market values of vanilla 
alls and puts. The plethoraof alternative models available for pri
ing and hedging leave pra
titioners with a widespe
trum of models at their disposal, but little information about whi
h, if any, isthe 
orre
t model to use.In su
h an environment a 
omplementary approa
h, useful both for risk manage-ment purposes and to provide a sanity 
he
k for the pri
es and hedges obtained fromparametri
 models, is to derive distribution free no-arbitrage pri
es and hedges. Thisse
ond approa
h is less ambitious in s
ope in the sense that it does not aim to derivea unique fair pri
e, but more robust in the sense that it is not dependent on theeÆ
a
y of an underlying model. The aim is to provide bounds on the possible pri
eof the basket option whi
h are 
onsistent with no-arbitrage given the market pri
es ofvanilla puts and 
alls. In essen
e, rather than using a single model, we 
onsider the
lass of all models whi
h are 
onsistent with the observed 
all pri
es, and rather thanquoting a single option pri
e we give the range of pri
es whi
h arise under modelsfrom this 
lass.In this paper this philosophy will be applied to basket options in the setting ofa one-period stati
 arbitrage model and we will fo
us on the 
ase of lower boundsfor baskets written on two assets. We will also assume that pri
es of 
all options onthe two underlying sto
ks with a 
ontinuum of strikes are known. In reality only adis
rete number of strikes for ea
h maturity are traded. The 
ase of only a dis
retenumber of strikes is not a straightforward extension of the 
ontinuum of strikes 
ase.We 
onsider only lower bounds in this paper. The 
ase of upper bounds was solved,in the general n-asset 
ase, for both the 
ontinuum of strikes 
ase and for the dis
reteset of strikes 
ase, in our previous paper [18℄. (The upper bound problem is also
onsidered in the 
ontinuous strike 
ase by Dhaene et al [12℄, Goovaerts et al [17℄and Kaas et al [21℄ using the theory of sto
hasti
 ordering.) It may seem surprisingthat one 
annot treat both upper and lower bounds by the same method. It turnsout however that deriving distribution-free lower bounds is far more 
omplex thenderiving distribution-free upper bounds. At the root of this diÆ
ulty is the fa
t thatoptimal upper bounds turn out to be asso
iated with superrepli
ating strategies forwhi
h the hedger takes long positions in all the underlying 
omponents and a zeroposition in 
ash and it then only remains to determine, among the strikes trading on



5the individual options, whi
h ones are asso
iated with the 
heapest possible super-repli
ating portfolio2. In [18℄ we proved that the optimal superrepli
ating strategyinvolves the sele
tion of only two strikes per asset and we gave a simple and 
omputa-tionally eÆ
ient way to determine these strikes. In the 
ase of lower bounds it turnsout that it is not in general suÆ
ient, as illustrated in this paper in two asset 
ase,to 
onsider subrepli
ating strategies involving one or two strikes per asset and theoptimal strategy involves both long and short positions in 
alls as well as a 
ash 
om-ponent. The optimal subrepli
ating strategy may involve many strikes. These strikesare the zeros of a 
ertain fun
tion uniquely determined by the 
all pri
e fun
tions asfun
tions of strike.Some insight into the added 
omplexity of optimal lower bounds may be useful andis gained by a review of earlier results in this dire
tion. Let us re
all the �rst onederived in the 
ase of one underlying asset by Bertsimas and Popes
u in [4℄:Given pri
es qi = q(Ki) = E[(X � Ki)+℄; i = 1; � � � ; n of 
all options with strikes0 � K1 � K2 � � � �Kn on a sto
k S, the range of all possible valid pri
es fora 
all option with strike pri
e K where K 2 (Kj; Kj+1) for some j = 0; � � � ; n is[q�(K); q+(K)℄ whereq�(K) = max�qjK �Kj�1K �Kj�1 + qj�1 Kj �KKj �Kj�1 ; qj+1 Kj+2 �KKj+2 �Kj+1 + qj+2 K �Kj+1Kj+2 �Kj+1�q+(K) = qj Kj+1 �KKj+1 �Kj + qj+1 K �KjKj+1 �KjHere K0 = 0, qn = qn+1 = qn+2 and Kn+2 > Kn+1 > Kn, although the pre
ise valuesof these extra strikes does not matter. The situation is summarized in Figure 1.Lauren
e and Wang [23℄ established a lower bound for basket options in the 2-asset 
ase, under the assumption that there is only one traded asset and that, inaddition to an option on ea
h asset, the forward pri
es are pres
ribed. The optimalhedging strategy asso
iated to the lower bound depends in a 
ompli
ated way onthe input forward and option pri
es and involves in some 
ases, both long and shortpositions in options and long and short positions in 
ash. Let Fi = Si0�
iKi and let2Even for a small index, su
h as DJX, with 30 assets in the index and 8 to 13 options tradedon ea
h 
omponent asset, this entails 
hoosing among the order of 1030 possible 
ombinations, if
hoosing only one strike per asset is optimal and many more if it turned out to be more eÆ
ient to"diversify" and sele
t more than one strike per asset.
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Figure 1: The �gure illustrates the range of pri
es for options whose strikes lie between 100 and 110. The parti
ular
ase of strike 105 is emphasized. q+ stands for the upper bound and the larger of q�1 and q�2 stands for the lowerbound.D = K � w1K1 � w2K2. If K > max(w1K1; w2K2) then the Lauren
e-Wang lowerbound is given by3� For D � 0,(1) max�A1 + w2K2F+; A2 + w1K1F+; A1 + A2 +KF+; 0	 ;� For D � 0,(2) max�A1 + (K � w1K1)F+; A2 + (K � w2K2)F+; A1 + A2 +KF+; 0	 ;where Ai = wi
i � (K � wiKiKi )(Si0 � 
i) for i = 1; 2;(3) F = F1 + F2 � 1;(4) F+ = maxfF; 0g:(5)3Lauren
e and Wang allow a non zero short rate, but here and throughout this paper we will taker = 0 for simpli
ity.



7A simpler lower bound exists for K � max(w1K1; w2K2), see [24℄.There are several open problems 
on
erning the lower bound. Firstly, it is notknown, even when there are only two 
omponents in the basket, how to extend theabove bound to the 
ase when there are several strikes traded on ea
h 
omponent.Se
ondly, the best lower bound is not known even when there is only one optiontraded on ea
h asset, but n > 2. (It should be noted however than in an interestingpaper Aspremont and El Ghaoui [2℄ �nd optimal bounds in 
losed form when anoption on ea
h 
omponent is traded, but forwards on the 
omponent assets are not.)The results des
ribed above illustrate how mu
h more 
omplex the situation is inthe 
ase of lower bounds than for upper bounds. In this paper we are interested inlower bounds (when n = 2) and we assume knowledge of a 
ontinuum of strikes on ea
hof two assets. Breeden and Litzenberger's result [7℄ then implies that knowledge ofthe full marginals is easily dedu
ed from the 
all pri
es (but we have no informationon the joint distribution of assets). Indeed Breeden and Litzenberger showed howto dedu
e the distribution of an asset from the �rst derivative of the option pri
ewith respe
t to the strike. Applying this to ea
h of our sto
ks in turn, we thenre
over knowledge of the full marginal of the sto
k from knowledge of the (assumed)
ontinuum of strike pri
es.Now the problem of determining optimal joint distributions subje
t to the 
on-straint of pres
ribed marginals has a long history in mathemati
s. A 
omprehensiveand nearly up to date referen
e is the book by Joe [19℄. A tool that dates ba
k to thework by Fr�e
het [16℄ that has been used to atta
k su
h problems is to use 
opulas.Indeed the 
elebrated Sklar theorem tells us that for any joint probability distributionF with margins F1; � � � ; Fn there exists an n-
opula C su
h that for all x 2 Rn wehave F (x1; : : : ; xn) = C (F1(x1); : : : ; Fn(xn))Thus, in seeking optimal joint distributions subje
t to pres
ribed marginals, themarginals have in e�e
t been "fa
tored out" and the remaining problem is to deter-mine the optimal 
opula. It was dis
overed by Dhaene and Goovaerts [11℄ that theoptimal 
opula for the basket options in the 
ase n = 2 is asso
iated with the lowerFr�e
het bound. This result has been generalized to more general payo� fun
tionsof 
ontingent 
laims on two assets by Rapu
h and Ron
alli [27℄. To establish their



8result Rapu
h and Ron
alli also rely on a result of Muller and S
arsini 
on
erningthe behaviour of 
onvex fun
tions under the 
on
ordan
e order [26℄. Sin
e their ap-proa
hes rely in a 
entral way on the lower Fr�e
het 
opula, their results are, as is ours,restri
ted to the two-asset 
ase. Indeed it is well known [19℄ that in general the lowerFr�e
het bound does not 
orrespond to a 
opula for n � 3. We 
omplement that resultin two ways: the �rst and main 
ontribution is to provide an optimal subrepli
atingstrategy using what we refer to as STP portfolios. This striking 
lass of portfolios isexpressed as a series of long and short positions in 
all options of di�erent strikes anda long position in 
ash. An alternative more 
ompa
t des
ription in terms of longpositions in 
alls and short positions in puts is also given. A se
ond 
ontribution ofthis paper is that we obtain, as a 
orollary, a dire
t proof of the optimal lower boundthat is independent of the Fr�e
het bounds and of the Muller-S
arsini ordering result.Sin
e, as mentioned above, the Fr�e
het lower bound does not extend to n dimensionsfor n � 3, this opens up a roadmap to an n-dimensional generalization of the presentresults.We 
on
lude this se
tion with a literature review. Most of the work on basket op-tions fo
uses on the Bla
k-S
holes setting. Due the high dimension of these options(most indi
es involve at least 17 assets) , their analyti
al and numeri
al valuation isvery 
hallenging even in the Bla
k-S
holes setting. Indeed, although an analyti
al for-mula for the 
all option does exist, see for example the text by Kwok, [22℄, the integralis diÆ
ult to evaluate in pra
ti
e and one must resort to Monte-Carlo methods, tore
ursive methods, see Ware and Avelassani [29℄, or to methods using 
hara
teristi
fun
tions, see Ju [20℄, moment mat
hing, see Brigo et al [5℄ and Dufresne [13℄. Alsoprogress in handling di�usion based models with non 
onstant volatility 
lose to expi-ration has been made in Avellaneda et al [3℄. Given the diÆ
ulty of 
al
ulating exa
tpri
es several authors, in
luding Deelstra et al [9℄ and Kaas et al [21℄, have lookedfor upper and lower bounds. In both of the papers a 
lever 
onditioning argument isused to give a lower bound on the pri
e of the basket option. However this methodassumes that the underlyings follow 
orrelated exponential Brownian motions, so thatthe lower bound is a model-based lower bound in the Bla
k-S
holes setting, and nota model-independent lower bound su
h as we propose. Corresponding bounds for



9Asian options and in the 
ontext of a
tuarial s
ien
e are also 
onsidered in Dhaeneet al [10℄. 2. Problem formulationWe assume that a market exists in whi
h 
alls and puts of maturity T are traded onthe two 
omponent assets of the basket. We assume that options with a 
ontinuumof strikes are traded on ea
h 
omponent asset: we may also think of the underlyingassets themselves as 
all options with zero strike. Our goal is to pri
e a basket optionon the two assets whi
h is traded with the same maturity T .We address two problems whose solutions turn out to be dual to ea
h other in anappropriate variational formulation that will be des
ribed below: i) the problem of�nding the in�mum of all basket option pri
es when the joint distribution is 
on-strained by the (perfe
t) knowledge of the marginal distributions provided by theindividual 
all options, ii) The problem of �nding the optimal subrepli
ating strategy
onsisting of 
alls, puts and 
ash. The 
ost of the optimal subrepli
ating strategy
orresponds to the highest bid pri
e of an investor who is o�ered the opportunity tobe long the basket option, but is not prepared to a

ept any risk. It is the highestpri
e she is willing to pay, sin
e if she buys the basket at this pri
e and 
onstru
ts astati
 hedge by a portfolio of 
alls, puts and 
ash a

ording to the optimal portfolio,she is sure the payo� of the basket will be higher than the obligations arising fromher hedging portfolio in all states of the world. Moreover the portfolio (of 
alls, putsand 
ash) is the most expensive one she 
an sell whilst still guaranteeing that thebasket superrepli
ates her portfolio.A simple but important observation is that put-
all parity ensures that any put isequivalent to a 
all and 
ash. Therefore, in 
hoosing optimal subrepli
ating strategiesand or in minimizing the basket option pri
e subje
t to the 
onstraint of a 
ontinuumof 
all and put options of all strikes, we may redu
e the problem to one in whi
honly 
alls and 
ash are the subrepli
ating instruments. Thus the problem will beformulated in this setting 4.4It will however turn out, as we will see in se
tion x 1.4 that the optimal subrepli
ating portfoliotakes a parti
ularly simple form when we use 
alls on one asset and puts on the other.



10 For expository reasons we begin by des
ribing the primal and dual variational prob-lems in a somewhat informal and intuitively appealing form. Their rigorous formula-tion is deferred to the next se
tion. Consider the following 
onstrained minimizationproblem inf� ZR2+(x+ y �K)+�(dx; dy)where � ranges over the spa
e of all risk neutral distributions on R2+ , subje
t to the
onstraints on the marginal distributionsZR+(x� k1)+�X(dx) = CX(k1);ZR+(y � k2)+d�Y (dy) = CY (k2);ZR2+ �(dx; dy) = 1:Here �X and �Y are the marginal distributions.Throughout this paper we have taken unit 
oeÆ
ients (weights) in the basket andzero interest rates and assume that the assets pay no dividends. If the weights aredi�erent from one and interest rates are 
onstant we may redu
e to the present 
aseby a simple s
aling argument (see [24℄) .The dual problem for �nding optimal subrepli
ating strategies is given by(6) sup�;�1;�2 ZR+ CX(k1)�1(dk1) + ZR+ CY (k2)�2(dk2) + �subje
t to the 
onstraints(x+ y �K)+ � ZR+(x� k1)+�1(dk1)� ZR+(y � k2)+�2(dk2)� � � 0;(7) 8x � 0 y � 0:2.1. A review of Dhaene and Goovaerts' result.Given knowledge of the 
all fun
tions CX(k1); CY (k2), Breeden and Litzenberger'sresult implies that ddk1CX = FX(k1)�1, ddk2CY = FY (k2)�1 where FX and FY are thedistribution fun
tions of X and Y respe
tively. As mentioned in the introdu
tion, bySklar's theorem any joint distribution F (x; y) = P (X � x; Y � y) 
an be representedas C(FX(x); FY (y)) for some 
opula C.



11Re
all the lower and upper Fr�e
het 
opula bounds: for any 
opula C(u1; u2) on[0; 1℄2 we have C�(u1; u2) � C(u1; u2) � C+(u1; u2);where C+ = min(u1; u2);C� = max(u1 + u2 � 1; 0):Therefore, for any distribution fun
tion F with pres
ribed marginals FX ; FY , we haveC�(FX(x); FY (y)) � F (x; y) � C+(FX(x); FY (y)):From this Dhaene and Goovaerts [11℄ (Theorem 3, p.206) dedu
e the following:Proposition 1. The pri
e of a 
all option on a basket CB on X and Y whose marginaldistributions are FX and FY satis�es the boundsC�B � CB � C+Bwhere C+B and C�B 
orrespond to the upper and lower Fr�e
het bounds respe
tively,that is, the joint distributions of (X; Y ) are given respe
tively by C+(FX ; FY ) andC�(FX ; FY ).The result has been generalized to supermodular payo� by Rapu
h and Ron
alli [27℄from a result of Muller and S
arsini [26℄.When the distribution fun
tions FX and FY are 
ontinuous, we haveC = C� , Y = F�1Y (1� FX(X);C = C+ , Y = F�1Y (FX(X)):For the lower bound note this means that(8) C�B = ZR+[x + F�1Y (1� FX(x))�K℄+dFX(x):2.2. A pre
ise formulation of primal and dual problems.In this se
tion we state the primal and dual problems in an appropriate in�nite di-mensional setting. Our approa
h is adapted from that in Anderson and Nash [1℄. Forthe reader's 
onvenien
e we summarize the ba
kdrop of these results in an Appendix,see Se
tion 6. LetM denote the linear spa
e of all �nite signed measures on R2+ whi
hde
ay at least linearly at in�nity in the sense that, for � 2 M, �(B
r(�)) � o(1=r)



12as r goes to in�nity for every � 2 R2+ , where B
r(�) = f� 2 R2+ : j� � �j > rg.Let � be the linear spa
e generated by the fun
tions p1(x; y; k1) := (x � k1)+,p2(x; y; k2) := (y � k2)+ and pB(x; y;K) := (x + y � K)+ de�ned on R2+ . De�nethe pairing h; i between M and � by integration, i.e.,h�; fi = ZR2+ f(x; y)�(dxdy)Denote by M+ the 
onvex 
one in M of all �nite positive measures on R2+ . We
onsider the following 
onstrained minimization problem(9) inf�2M+ h�; pB(�;K)isubje
t to the 
onstraints on the marginal distributionsh�; p1(�; k1)i = CX(k1);(10) h�; p2(�; k2)i = CY (k2);(11) h�; 1i = 1;(12)where CX and CY are given 
all pri
e fun
tions whi
h are ne
essarily nonnegative,de
reasing and 
onvex. Let H be the set of all nonnegative, de
reasing and 
onvexfun
tions de�ned on R+ , S be the set of all �nite signed measures over R+ and thepairing h; i between H and S is given by integration. Consequently, the dual problemof primal problem (9-12) is the following 
onstrained maximization problem(13) sup�1;�2;� hCX ; �1i+ hCY ; �2i+ �subje
t to the 
onstraintsh�; pB � hp1; �1i� hp2; �2i� �i � 0; 8� 2 M+;(14) �1; �2 2 S; � 2 R:(15)As a matter of fa
t, (14) 
an be further realized as(16) pB � hp1; �1i� hp2; �2i� � � 0; 8x � 0 y � 0:Hen
e we have the dual problem in the form des
ribed as (6-7). Here we remark that(6) is an expression for the most expensive value among subrepli
ating portfolios and(7) is the 
ondition for subrepli
ation.



13The 
omplementary sla
kness 
ondition (38) in the Appendix, written out in oursetting therefore readsh�; pB(�;K)i = h�; hp1(�; k1); �1i+ hp2(�; k2); �2i+ �iRepresenting the inner produ
t in integral form and ex
hanging the order of integra-tion on the right hand side yieldsZ pB(�;K)d� = Z �Z p1(�; k1)d�� �1(dk1) + Z �Z p2(�; k2)d�� �2(dk2) + �= Z CX(k1)�1(dk1) + Z CY (k2)�2(dk2) + �:(17)Therefore, in order to prove optimality by applying the 
omplementary sla
kness
ondition, we need to �nd feasible measures �, �1, �2 and a real number � su
h thatthe equality (17) holds.2.3. A family of optimal subrepli
ating portfolios.In this se
tion we introdu
e a family of subrepli
ating portfolios we 
all STPs5. Anintuitive derivation of the STPs from lower Fr�e
het 
opula is postponed until Se
tion3. Let C 0+ denote the right derivative of the 
all pri
e fun
tion, and C 0� the leftderivative. De�ne the auxiliary fun
tion�(x) := C 0X+(x) + C 0Y �(K � x) + 1:(18)By 
onstru
tion �, whi
h is only de�ned on [0; K℄, is right-
ontinuous. We also set�(K) = C 0X+(K). Clearly � is the di�eren
e of two in
reasing fun
tions and it's totalvariation is bounded by the 
onstant 2. De�ne(19) A = fx : �(x) > 0g:Then A is a 
ountable union of disjoint intervals A = [jAj. For the rest of this se
tionwe make the assumption: A is a union of a �nite number n of intervals. Indeed the
ase that A 
onsists of in�nitely many intervals is degenerate. A dis
ussion on thisassumption is given in Se
tion 3.2.Suppose that the intervals (Aj)1�j�n are pla
ed in their natural order, and that theboundary of Aj is given by the points fK2j�11 ; K2j1 g. De�ne Kj2 = K �K2n�j+11 and5"STP" is short for "sheep-tra
k portfolios" sin
e the graph of su
h a portfolio is reminis
ent ofsu
h tra
ks on British hillsides. A pi
ture thereof is 
ontained in Figure 2 below.
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onsider the dual variables de�ned by��1(dk1) = Æ0(k1)dk1 + 2nXi=1 (�1)iÆKi1(k1)dk1;(20) ��2(dk2) = Æ0(k2)dk2 + 2nXi=1 (�1)iÆKi2(k2)dk2;(21) �� = nXi=1 (K2i1 �K2i�11 )�K = nXi=1 (K2i2 �K2i�12 )�K:(22)These dual variables are shown to be feasible in the next se
tion.Remark 2. In the spe
ial 
ase that � is C1 in [0; K℄, the determination of the strikesKi1's in the dual variables given above redu
es to �nd the zeros fx : �(x) = 0g of �.For the �niteness of the zeros for C1 fun
tions, we add the following observation thatshows that the �niteness will hold ex
ept in 
ertain (unavoidable) degenerate 
ases.Let I � R be a bounded open interval, h 2 C1(I) and p be a regular value of h, i.e.,h0(x) 6= 0 for every x 2 h�1(p). Then h�1(p) is �nite. In our 
ase this means that�(x) has only �nite number of zeros in (0; K) provided that whenever x is su
h thatC 0X(x) = �C 0Y (K � x)� 1, then C 00X(x) 6= C 00Y (K � x), i.e., the densities of X and Yare di�erent at su
h points.Given the dual measures as in (20) and (21) the payo� of the the asso
iated portfolio
an be expressed by integrating (x� ki) against �i(dki). Partition R2+ into (2n+ 1)2pie
es denoted by Ri;jusing the de�nitionsR2+ = 2n+1[i;j=1Ri;j; where Ri;j = f(x; y) 2 R2+ : Ki�11 � x < Ki1; K2j�1 � y < K2jg:Here we have used the 
onvention that K01 = K20 = 0 and K2n+11 = K22n+1 = 1.The asso
iated portfolio may be expressed in ea
h region Ri;j as x + iXa=1(�1)a(x�Ka1 )!+ y + jXb=1 (�1)b(y �Kb2)!+ ��:or in the following more 
ompa
t form, whi
h applies simultaneously a
ross all regionsf1(x) + f2(y) + ��;(23)



15where the fun
tions fi are de�ned by(24) fi(z) = z+ + nXa=1f(z �K2ai )+ � (z �K2a�1i )+g:Note that ea
h of f1(x) and f2(y) has an immediate interpretation in terms of ahedging strategy involving 
all options. Moreover, a few lines of algebra show thatf1(K � z) + f2(z) + �� = 0;so that (23) simpli�es to(25) f1(x)� f1(K � y):Thus the hedging portfolio for basket 
all may be expressed as a portfolio of 
alls heldlong and short on x and a portfolio of puts held long and short on y. The advantageof this representation is that it does not involve 
ash.The fun
tions fi will be referred to as STP fun
tions. The measures (20) and (21)are in one to one 
orresponden
e with the STP portfolio. We will refer to them asthe STP measures. An illustration of STP fun
tion f is given in Figure 2.
y

KK1 1K 1K 1K 1 K

STP   Portfolio

| |

K

| | ||

1 2 3 4 5
1
6 xFigure 2: The �gure illustrates an STP portfolio whi
h, starting at zero, is pie
ewise linear with alternating slopesone and zero. The points of transition de�ne Ki1 for odd and even i.



162.4. Feasibility of dual variables.Feasibility is equivalent to establishing the following subrepli
ation propertyf1(x)� f1(K � y) � (x+ y �K)+:(26)Sin
e f1 is pie
ewise linear with alternately slopes 0 and 1, by the mean value theoremwe 
learly have f1(z + u)� f1(z) � u+(27)so we have (26). Feasibility is assured for our hedging portfolios provided they satisfy(27).2.5. A geometri
 
onstru
tion of optimal bivariate pro
esses using STP.Noti
e that equality is a
hieved in (26) provided that one of the following 3 
asesholds:x = K � y(28) x > K � y and f1(x) = f1(K � y) + x+ y �K; i.e., x;K � y 2 (K2j1 ; K2j+11 )(29) x < K � y and f1(x) = f1(K � y); i.e., x;K � y 2 (K2j�11 ; K2j1 )(30)as is illustrated by Figure 3 below.Suppose that X and Y are 
ontinuous random variables with stri
tly positive den-sities on [0; K℄. In order to 
onstru
t a bivariate pro
ess (X; Y ) a
hieving equalityin the inequality (26) it suÆ
es to 
hoose a 
ountermonoti
 pro
ess Y = G(X) withG a non-in
reasing fun
tion in su
h a way that the support of (X; Y ) is 
on
en-trated on pla
es where the 
onditions given in (28), (29) and (30) above hold. Sin
ein this 
ase FX and F�1Y are 
ontinuous fun
tions this is a
hieved by the 
hoi
eG(X) := F�1Y (1 � FX(X)). Note that the set (G(x) < K � x) is pre
isely the set�(x) > 0, so that the points where G 
rosses the line x + y = K are exa
tly theboundary points of the set A.More generally, if U � U [0; 1℄ and we de�ne X = F�1X (U) and Y = F�1Y (1 � U)then X and Y have the desired marginals, and moreover the joint law of (X; Y ) issu
h that all the mass is pla
ed at 
o-ordinates where equality holds in (26).This is illustrated graphi
ally in Figure 3.
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Figure 3: Joint distribution is optimal if supported in the shaded region.
2.6. Optimality.Having established that there is equality in the relations E [(X+Y �K)+℄ = E [f1(X)�f1(K � Y )℄ when (X; Y ) is an anti-monotoni
 pro
ess with support 
hosen as above,we 
an easily dedu
e the following theorem:Theorem 1. Suppose the 
all fun
tions CX(x) and CY (y) are su
h that the set Ade�ned in (19) is a union of �nitely many intervals. Let 0 � K10 � � � �K2n1 � K bethe endpoints of these intervals, and let fi be de�ned as at (24).Let U be a random variable with a standard uniform distribution. De�ne �X =F�1X (U) and �Y = F�1Y (1� U). Then� The joint distribution fun
tion �� asso
iated to the bivariate pro
ess ( �X; �Y )is a minimizer for the primal problem for the 
all on a two asset basket withstrike K;� the portfolio de�ned via f1(x)+f2(y)+ �� is feasible and the optimal measures��1; ��2 given by the formulas (20) and (21), together with �� form a triple thatis optimal for the dual problem (6), (7) .



18Proof. In essen
e, all that remains to be proved is that the dual variables we have
onstru
ted are optimal not only among measures of the form given in (20) and (21),but also amongst all measures in the original dual problem. The following 
hainof inequalities makes this 
lear: sin
e ( �X; �Y ) is feasible for the primal problem and(��; ��1; ��2) is feasible for the dual problem, we havehCX ; ��1i+ hCY ; ��2i+ �� = sup(�1;�2;�) hCX ; �1i+ hCY ; �2i+ �� sup�1;�2;� veri�es (14);(15) hCX ; �1i+ hCY ; �2i+ �� inf�2M+; � veri�es (10);(11);(12) ZR2+(x+ y �K)+�(dx; dy)� ZR2+(x + y �K)+��(dx; dy)The �rst and the last elements in the above 
hain are equal and hen
e the otherinequalities are equalities. Hen
e �� and (��; ��1; ��2) respe
tively are also optimal forthe original primal and dual problem and the values of the primal and dual fun
tionalsevaluated on these fun
tions are equal. �2.7. Optimal subrepli
ating portfolio for basket put.Using put-
all parity for the basket we also have lower bound for the pri
e PB ofbasket put and the 
orresponding subrepli
ating portfolio. Note that the pri
e PB isgiven by PB = CB � (x + y) +K (re
all we have redu
ed to the 
ase of zero interestrates). Thus one immediately obtains the lower bound for PB by subtra
ting the lowerbound for the pri
e of basket 
all by a forward pri
e. Moreover, sin
e the sto
ks x; ymay be thought of as options with strike zero, we may use this relation to determinethe STP type portfolio that subrepli
ates PB. In other words we have thatThe hedging portfolio for the basket put option is equal to the hedgingportfolio for a basket 
all option 
ombined with a portfolio whi
h isshort both assets and long K units of 
ash.Using the expli
it form (23) for the hedging portfolio on the basket and (22) wetherefore get that the hedging portfolio for the put of the form(31) f1(x)� f1(K � y)� (K � y � x) = ~f(K � y)� ~f(x)



19where ~f(z) = z � f1(z), or equivalently,~f(x) = nXa=1f(x�K2a�11 )+ � (x�K2a1 )+g:(32)As for (25), the hedging portfolio for the basket put is expressed as a portfolio of putsheld long and short on y and a portfolio of 
alls held long and short on x. Also theadvantage of the representation (31) is that it does not involve 
ash.3. A derivation of optimal dual from optimal 
opulaWe 
omplement the treatment in the previous se
tion by outlining how the STPportfolio 
an be derived from the lower Fr�e
het 
opula. Indeed it is this approa
hthat �rst led us to the form of these portfolios. The se
ond part of the se
tion 
onsistsof a dis
ussion on the �niteness assumption on the set A de�ned by (19).3.1. Optimal dual measures. Consider the following joint distribution of X andY given byF (x; y) = maxfFX(x) + FY (y)� 1; 0g = �C 0X+(x) + C 0Y +(y) + 1�+ :This joint distribution of X and Y 
an also be 
hara
terized as: X is distributedas F�1X (U) and Y is distributed as F�1Y (1 � U), where U is a random variable uni-formly distributed in (0; 1) and F�1X , F�1Y are the generalized inverse of FX and FYrespe
tively de�ned by F�1X (u) = inffx : FX(x) > ug;F�1Y (u) = inffy : FY (y) > ug:Now the joint distribution asso
iated with the lower Fr�e
het 
opula is feasible for theprimal problem and yields the primal valueE [(X + Y �K)+℄ = Z 10 (F�1X (u) + F�1Y (1� u)�K)+du= ZE(F�1X (u) + F�1Y (1� u)�K)du= ZE(F�1X (u)�K)du+ ZE F�1Y (1� u)du;



20where E = fu 2 (0; 1) : F�1X (u) + F�1Y (1 � u) � K > 0g. Computing these twointegrals we arrive at the formula6E [(X + Y �K)+℄ =(33)CX(0) + CY (0)�K + Xx2�(AÆ)(�1)�(x)CX(x) + Xy2�(AÆ)(�1)�(y)+1CY (K � y) + jAj:at least under the assumption that A is a �nite union of intervals. Here � is de�nedas �(x) = � 1 if x is a left endpoint in �(AÆ);�1 if x is a right endpoint in �(AÆ);If we now, for an intuitive derivation, assume strong duality we haveZR+ CX(k1)�1(dk1) + ZR+ CY (k2)�2(dk2) + �= CX(0) + Xx2�(AÆ)(�1)�(x)CX(x) + CY (0) + Xy2�(AÆ)(�1)�(y)+1CY (K � y)+ jf0 < x < K : �(x) > 0gj �K:Hen
e the optimal dual variables are (by 
omparing the 
oeÆ
ients)�1(dk1) = Æ0(k1)dk1 � Xx2�(AÆ)(�1)�(x)Æx(k1)dk1�2(dk2) = Æ0(k2)dk2 + Xy2�(AÆ)(�1)�(y)ÆK�y(k2)dk2� = jf0 < x < K : �(x) > 0gj �K;and these are the dual variables (20), (21) and (22) that we des
ribed in x2.3.We 
an reverse the last stage of the above reasoning to give a se
ond proof ofstrong duality. I.e., if we de�ne dual variables via (20), (21) and (22), where theKi1's are asso
iated with the endpoints of the level set of fx : �(x) > 0g, then theabove derivation shows that the 
omplementary sla
kness 
ondition (17) is satis�edand hen
e strong duality holds.3.2. Finiteness assumption on the set A. In this se
tion we show that althoughit is perfe
tly possible for A to 
onsist of in�nitely many intervals, this is a degenerate
ase, in a sense of "measure zero".6Details of derivation are provided in Se
tion 7.



21Lemma 3. Let E be a measurable subset of an bounded open interval I. Then its
hara
teristi
 fun
tion �E is of bounded variation if and only if E 
onsists of �nitelymany intervals.Proof. The intuition is that sin
e the 
hara
teristi
 fun
tion �E is either 0 or 1, thetotal variation is the number of times it 
hanges from 0 to 1 and from 1 to 0. Thuswe are left with a simple 
ounting argument. We refer to Volpert and Hudjaev [28℄for ba
kground material on fun
tions of bounded variation. �The following lemma is a one dimensional version of a theorem in Evans and Gariepy[14℄. We refer to their book (see Theorem 1, page 185) for details.Lemma 4. Let f be a fun
tion of bounded variation de�ned on an open interval I.Denote by Et the level set fx 2 I : f(x) > tg for f . Then, for almost every t 2 R,the 
hara
teristi
 fun
tion �Et of Et is of bounded variation.Hen
e, by Lemma 4 (sin
e � is of bounded variation), for almost every t the 
har-a
teristi
 fun
tion of set �t := f� > tg is of bounded variation and therefore a �niteunion of intervals by Lemma 3. Thus the 
ase that A = �0 fails to be �nite union ofintervals is degenerate.4. Extending beyond the finite union 
ase.In this se
tion we show that even in the degenerate 
ase, i.e., �A is not of boundedvariation, the joint distribution of X and Y 
onstru
ted in Se
tion 2.6, i.e, X �F�1X (U) and Y � F�1Y (1 � U) where U is a random variable uniformly distributedin [0; 1℄, is still primal optimal. However, on the other hand, in this 
ase the dualvariables given by (20), and (21) involve in�nite sums and therefore are no longer�nite signed measures. Clearly in pra
ti
e it is not realisti
 to 
onsider portfolioswhi
h involve going long and/or short an in�nite number of 
alls. Instead we showthat, for any � > 0, there exists an expli
it �-optimal subrepli
ating portfolio in thesense that will be 
lari�ed in the rest of the se
tion.Let �t denote the super level set fx 2 (0; K) : �(x) > tg. By Lemma 4, the
hara
teristi
 fun
tion ��t of �t is of bounded variation for almost every t. Supposenow that we are in the 
ase that �A (re
all that �0 = A) is not of bounded variation.Then, given any � > 0, there exists a positive t� < �=K with ��t� of bounded variation(hen
e �t� is a �nite union of intervals by Lemma 3). We shall denote �t� by ��



22hereafter for notational 
onvenien
e. We 
an then form a portfolio (��1; ��2; ��) as theone in (20), (21) and (22) by repla
ing the set A by ��. We shall refer to su
h portfoliodetermined by �� as an �-optimal subrepli
ating portfolio for the reason whi
h willbe 
lear in the following 
al
ulation. Re
all that in this 
ase �� = j��j�K. The pri
eof su
h portfolio satis�esZ CX(k1)d��1(k1) + Z CY (k2)d��2(k2) + ��= CX(0) + CY (0) + Z K0 ���(x)dCX(x)� Z K0 ���(y)dCY (K � y) + j��j �K= CX(0) + CY (0) + Z�� FX(x)dx� Z�� FY (K � y)d(K � y) + Z�� d(K � y)�K= Z�
�(x�K)dFX(x) + ZfK�y2��g
 ydFY (y)� t�j��j= ZE�(F�1X (u) + F�1Y (1� u+ t�)�K)du� t�j��j� ZE(F�1X (u) + F�1Y (1� u)�K)du� �= E [(X + Y �K)+℄� �where E� := fu 2 (0; 1) : F�1X (u) + F�1Y (1� u + t�)�K > 0g. Here we note that inthe inequality we have used that E := fu 2 (0; 1) : F�1X (u) + F�1Y (1� u)�K > 0g is
ontained in E� (sin
e F�1Y is nonde
reasing and t� > 0), that the integrand is positivein E� and that F�1Y (1� u+ t�) � F�1Y (1� u) (again sin
e F�1Y is nonde
reasing andt� > 0). Therefore, the pri
e of the portfolio (��1; ��2; ��) 
onstru
ted from the superlevel set �� is higher than, within an � error, the primal value E [(X + Y � K)+)℄.This is explains the term "�-optimality".Combing the above �-optimal inequality with the weak duality between primal anddual, we obtainE [(X + Y �K)+℄� � � hCX ; d��1i+ hCY ; d��2i+ �� � E [(X + Y �K)+℄for any � > 0. In this sense, we say that the primal value E [(X +Y �K)+℄ with jointdistribution 
onstru
ted in Se
tion 2.6 is optimal.



235. Numeri
al ResultsIn this se
tion we illustrate the hedging strategy in the 
ontext of the Bla
k-S
holesmodel. We determine the optimal hedging strategy, by determining numeri
ally thezeroes of � (see (18) in Se
tion 2.3).Let us therefore assume thatS1t = S10 exp(�1W1t � 12�21t);(34) S2t = S20 exp(�2W2t � 12�22t);(35)where �i; i = 1; 2, are 
onstants and where W1t;W2t are standard Brownian motions.In order to simulate the anti-monotoni
 
ase 
orresponding to the optimal lowerbound, we assume the following relation between the driving Brownian motionsW2t = �W1t:As is well known, the distribution fun
tions F iST (x) for sto
k i, i = 1; 2, at maturity Tare given by 1�N(d(i)2 ), where N is the distribution fun
tion of the standard normalrandom variable and d(i)2 , whi
h appears in the Bla
k-S
holes formula, is given (whenr = 0) by the expression d(i)2 (x) = log(Si0x )� �2i2 T�ipT :Thus the fun
tion � whose zeroes we seek to determine is given in our setting by�(x) = �N(d(1)2 (x))�N(d(2)2 (K � x)) + 1:In the paper, we have assumed for simpli
ity that the weights wi; i = 1; 2, in theportfolio are equal to 1. Adapting the results in this paper to positive weights thatare di�erent from 1 involves only trivial adjustments. In Table 1 below we showresults when both weights are equal to :5. We have assumed geometri
 Brownianmotions for both sto
ks. We took T = :5, S10 = S20 = 100 and �1 = :355; �2 = :2and w1 = w2 = :5. In the �rst 
olumn the basket strike KB is shown. In the se
ond
olumn is the Monte Carlo pri
e of the basket in the 
ase where sto
k S1 and S2 areanti-monotoni
 with the pres
ribed marginals. In the third 
olumn is the pri
e of theoptimal hedging portfolio. In the next two 
olumns is part of the optimal hedgingportfolio that 
on
erns sto
k S1 and involves a short w1 and a long w1 position in a



24 KB MC Value Hedging Portfolio's Long w1 Call Short w1 CallValue with Strike K11 with Strike K2181.5 18.52 18.50 absent absent84 16.03 16.00 absent absent86.5 13.55 13.50 absent absent89 11.02 11.00 absent absent91.5 8.5 8.50 absent absent94 5.97 6.00 absent absent96.5 3.98 3.99 51.24 89.4099 2.73 2.69 44.47 101.61100 2.28 2.29 42.50 105.76102.5 1.54 1.54 38.52 115.19105 1.02 1.03 35.41 123.73107.5 0.69 0.69 32.83 131.73110 0.45 0.46 30.65 139.30112.5 0.32 0.31 28.78 146.59115 0.21 0.21 27.12 153.64117.5 0.14 0.14 25.64 160.48Table 1: The hedging portfolio and optimal lower bound for primal and dual problem
all with the indi
ated strikes K11 and K21 . To this we must always add a long w1position in the underlying sto
k S1 and a 
omplementary position in three w2 putson S2: a short w2 position on a put with strike 2KB � K11 , a long w2 position in aput with strike 2KB �K21 and a short w2 position in a put with strike 2KB. We areassuming, as we do throughout this paper, that a 
ontinuum of strikes are tradedon ea
h asset. For the parameters 
onsidered, the fun
tion � has either two zeroesor none. When there are none (indi
ated by "absent" in fourth and �fth 
olumn),the optimal hedging portfolio 
onsists only of a long position in sto
k 1 and a shortposition in a put on S2, stru
k at the basket strike.6. Appendix I - Infinite Dimensional Linear ProgrammingIn this se
tion we quote some results for linear programming in in�nite dimensionalspa
e. Please refer to Anderson and Nash [1℄ for details.Let (X;X 0) and (Y; Y 0) be two dual pairs of linear spa
es and denote by h; i forboth of their pairings. A linear programming problem is a 
onstrained optimization



25problem of the form(36) minimize hx; 
isubje
t to Ax = bx � 0where b and 
 are given elements of Y and X 0 respe
tively, A is a 
ontinuous linearmap from X to Y . The dual problem to (36) is given as(37) maximize hb; y0isubje
t to �A�y0 + 
 2 P �y0 2 Y 0where P � is the dual 
one of P de�ned byP � = fx0 2 X 0 : hx; x0i � 0 for all x 2 Pg;and A� is the adjoint of A de�ned by hAx; y0i = hx;A�y0i for all x 2 X and y0 2 Y 0.The following two theorems are essential in our following analysis. Re
all that aprogram is 
alled 
onsistent if it has a feasible solution and the value of a 
onsistentprogram (36) is de�ned as the in�mum over feasible x of hx; 
i.Theorem 5. (Weak duality) If both (36) and (37) are both 
onsistent, then the valueof (36) is greater than or equal to the value of (37) and both values are �nite.Theorem 6. (Complementary sla
kness) If x is primal feasible and y0 is dual feasibleand(38) hx; 
� A�y0i = 0;then x is primal optimal and y0 is dual optimal.7. Appendix IIIn this se
tion we provide the details of the derivation for the equality (33) inSe
tion 3.1. Re
all thatE [(X + Y �K)+℄ = ZE(F�1X (u)�K)du+ ZE F�1Y (1� u)du;where E = fu 2 (0; 1) : F�1X (u) + F�1Y (1 � u) � K > 0g. Now we 
ompute these 2integrals out as follows.



26 (1) By applying a 
hange of variables formula (by making u = FX(x)) to the �rstintegral and noti
e thatF�1X (E) = fx : x+ F�1Y (1� FX(x))�K > 0g= fx 2 [0; K℄ : FX(x) + FY (K � x)� 1 � 0g[(K;1)= fx 2 [0; K℄ : C 0X(x) + C 0Y (K � x) + 1 � 0g[(K;1)we have ZE[F�1X (u)�K℄du = ZF�1X (E)[x�K℄dFX(x)= Z 10 [x�K℄dFX(x)� ZA[x�K℄dFX(x)= CX(0)�K � (x�K)FX(x)j�A + ZA FX(x)dx= CX(0)�K � (x�K)FX(x)j�A + ZA C 0X(x)dx + jAjwhere A = fx 2 (0; K) : C 0X(x)+C 0Y (K�x)+1 > 0g and jAj is the Lebesguemeasure of A.(2) Similarly for the se
ond integral, we make the 
hange of variable 1�u = FY (y)and noti
e thatfy : 1� FY (y) 2 Eg = fy : F�1X (1� FY (y)) + y �K > 0g= fy 2 [0; K℄ : FX(K � y) + FY (y)� 1 � 0g[(K;1)= fy 2 [0; K℄ : C 0X(K � y) + C 0Y (y) + 1 � 0g[(K;1)then we have ZE F�1Y (1� u)du = � Zfy:1�F�1Y (y)2Eg ydFY (y)= CY (0)� yFY (y)j�B + ZB C 0Y (y)dy + jBjwhere B = fy 2 (0; K) : C 0X(K� y)+C 0Y (y)+1 > 0g and jBj is the Lebesguemeasure of B.



27Now we haveE [(X + Y �K)+℄ = CX(0) + CY (0)�K � (x�K)FX(x)j�A � yFY (y)j�B+ ZAC 0X(x)dx + ZB C 0Y (y)dy + jAj+ jBj:By applying the symmetry x 2 A() K � x 2 B we obtain� (K � x)FX(x)j�A + yFY (y)j�B = yFX(K � y)j�B + yFY (y)j�B = yj�B = jBj;here in the se
ond equality we have used the relation FX(K � y)+FY (y) = 1 on �B.Hen
e, under the assumption that A is a �nite union of intervals, we obtainE [(X + Y �K)+℄ = CX(0) + CY (0)�K + ZA C 0X(x)dx + ZB C 0Y (y)dy + jAj= CX(0) + CY (0)�K + Z K0 �A(x)C 0X(x)dx + Z K0 �B(y)C 0Y (y)dy + jAj= CX(0) + CY (0)�K + Xx2�(AÆ)(�1)�(x)CX(x) + Xy2�(AÆ)(�1)�(y)+1CY (K � y) + jAj;where in the last equality we have again used the symmetry x 2 A() K � x 2 B.AÆ denotes the interior of A and � is de�ned as�(x) = � 1 if x is a left endpoint in �(AÆ);�1 if x is a right endpoint in �(AÆ):A
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