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Abstract

We consider a special class of financial models with both traded and non-traded assets and show
that the utility indifference (bid) price of a contingent claim on a non-traded asset is bounded above
by the expectation under the minimal martingale measure. This bound also represents the marginal
bid price for the claim.

The key conclusion is that the bound and the marginal bid price are independent of both the
utility function and initial wealth of the agent. Thus all utility maximising agents charge the same
marginal price for the claim. This conclusion is in some sense the opposite conclusion to that of
Hubalek and Schachermayer (2001), who show that any price is consistent with some equivalent

martingale measure.
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1 Introduction

The key insights of the Black-Scholes option pricing methodology are firstly, that in a complete market
it is possible to replicate a contingent claim, and secondly, that the initial fortune which is required to
finance the replicating strategy is the fair price of the option. In particular, the price of a contingent claim
is determined unambiguously by the principles of no-arbitrage, and is independent of the risk preferences
of agents.

The conclusion that there are unique option prices in the Black-Scholes model is lost as soon in-
completeness is introduced into the model. This can happen in many ways, for example following the
introduction of transaction costs, or if the assumptions of the model do not allow the agent to follow the
replicating strategy. In these cases any non-attainable contingent claim carries risk, and any pricing rule
makes implicit or explicit assumptions about utilities and preferences.

The typical problem we have in mind (see Hubalek and Schachermayer (2001), Davis (1998), Hen-
derson and Hobson (2002a, 2002b)) is as follows. There are two risky assets, one of which is traded, but
the second is not. Although the price processes for the assets may be driven by correlated Brownian
motions, the coefficients of the dynamics for the traded asset do not depend on the untraded asset. An
agent is due to receive a claim which is contingent on the non-traded asset. How much is that random
claim worth? This is the situation in real options, see Dixit and Pindyck (1994). An illustration from
Hubalek and Schachermayer (2001) is when the two assets are different brands of crude oil, only one of
which is liquidly traded.

This problem is an example of the problem of pricing a claim in an incomplete market, and is similar to
those considered in Féllmer and Sondermann (1986), Follmer and Schweizer (1991), Duffie and Richardson
(1991) and many others. In common with Duffie and Richardson (1991) and Davis (1998) we model our
agents as maximisers of expected utility. An alternative approach is to select a martingale measure (for
example the minimal martingale measure) and to use that for pricing.

The utility maximisation problem is a basic problem in finance and was first studied in a continuous
time model by Merton (1969). A powerful approach to this problem is the dual variational method,
see, for example, Karatzas et al (1991), Kramkov and Schachermayer (1999) and Schachermayer (2001).
These papers provide a complete solution of the optimal investment problem in an incomplete market.
The paper by Karatzas et al (1991), provides the foundations for both the notation and style of arguments
in this paper.

In order to address the question of the pricing of contingent claims in an incomplete market, Hodges
and Neuberger (1989) introduced the notion of the utility indifference price. The utility indifference

bid price is the amount the agent is prepared to pay which leaves him indifferent between paying for,
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and receiving the claim, and not paying for, and not receiving the claim. In order to derive this price
we need to solve the utility maximisation problem both without the claim (see the references in the
previous paragraph) and in the case with a random endowment. Cvitanic at al (2001) have made some
steps towards a solution of the random endowment problem in a general setting. For the exponential
utility function, Delbaen et al (2002) characterise the solution to the pricing problem and determine the
associated dual problem.

The goal of this paper is to compare the utility indifference price across different choices of utility
function. Such comparisons are very rare in the literature, although there have been some studies which
investigate the impact of changing the risk aversion within a parametric family of utility functions, see
Sircar and Zariphopoulou (2005) (stochastic volatility models and exponential utility), Henderson et al
(2005) (stochastic volatility models and power-law utilities) and Bouchard et al (2001) (transactions
costs and exponential utility). In general, the bid price offered by an agent must depend on her choice of
utility function, and there is a wide range of prices which can be realised as the utility indifference price.
However, in our specific non-traded asset setting, we show that there is a simple, non-trivial upper bound
on the bid price for the option which is independent of the choice of utility. This bound is the price of
the claim under the minimal martingale measure. Further, this bound represents the marginal price, or
equivalently the unit price she would be prepared to pay for an infinitesimal quantity of the option.

The rest of this paper is structured as follows. In the next section we describe the model and the main
concepts in an abstract setting. We state the results, both purely in terms of probability, and in terms
of their financial interpretation. In Section 3 we prove the main theorems. The key observation is that
the bounds we derive are independent of the choice of utility function. There is a set of analogous results
for ask prices which we give in Section 4. In Section 5 we show how the non-traded assets model fits
into this framework and Section 6 describes the results for certain common parametric families of utility
functions for which explicit calculations are sometimes possible. In Section 7 we consider a fundamentally
different model, which is a special case of a stochastic volatility model, and which also fits into the general

framework of Section 2. Section 8 concludes.

2 The main results and the associated financial model

We suppose that we are given a probability space (2, F,P) with a fixed o-algebra G C F, together
with a convex function U : R — [—00, 00), which is strictly increasing, strictly concave and continuously

differentiable on its domain, with derivative tending to zero at infinity.

Assumption 2.1. (a) Suppose that the probability space supports a non-negative G-measurable random
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variable ( satisfying 0 < E[¢] < oc.

(b) Define Ag(z) = {X € mG : E[(X] < z}, where m@G is the set of G-measurable functions, and let
Ar be defined similarly, but with respect to the o-algebra F. Suppose we are given an increasing family
{A(z)}zecr, where A(z) is the set of admissible random variables for a given constraint level z, with

Ag(z) C A(z) C Ax(z), and with the property that
cA(z') + (1 —c)A(z") C A(cz' + (1 — ¢)z") Ve € (0,1).

Let H be an element of mF*, the set of non-negative F-measurable random variables. We consider
an optimal control problem involving U and H. Set V(z) = supx¢ 4(,) E[U(X)]. To avoid trivialities we

assume that V(z) < oo, for some, and then all z. Define

V(z,k) = sup E[U(X + kH)], (1)
XeA(z)
so that V(z,0) = V(z), and
p(k) = inf{g: V(2 — ¢, k) > V(z)}. (2)

We now make a technical assumption, see also Karatzas et al (1991, Equation 6.2),
Assumption 2.2. Suppose that for all w > 0 we have E[|¢(U") ! (w()|] < .

Then, the main results of this paper are that, provided V(z—) > —oo,

Theorem A. p(k) < kE[H(], and

Theorem B. D, p|y—o = E[H(], where D denotes the right derivative.

In particular, both the bound for p(k) and the derivative of p(k) near zero depend on the random
variable {, but not on the function U, or the constraint level x.

Let us now try to motivate these results by explaining why they are important and relevant in the
theory of mathematical finance.

Suppose that (Q, F,P) is a stochastic basis for a financial market, where P is the real world probability
measure for an agent. The o-algebra F represents all possible events in this model. We suppose that
there is also a sub-o-algebra G which corresponds to the events associated with a complete market which
is embedded within the larger financial model. The random variable ¢ plays the role of the (unique)
state-price density in the complete market model, and one of many state-price densities in the larger

model.
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The analysis of this paper is based on this rather special assumption that there exists the complete
market model contained within the larger financial market. We do not claim that this assumption is
appropriate in a general financial model, but rather that it is appropriate in certain contexts, and that
then some strong conclusions about the utility indifference pricing of derivatives follow.

We focus on a single agent in this model who is assumed to have a concave utility function U. By
tradition the agent is female. She is assumed to be a maximiser of expected utility of wealth. We assume
that the agent begins with initial wealth z and that the set of candidate or admissible target wealths for
the agent is the set A(z). It is natural to assume that A(z) includes all terminal wealths which can be
generated in the complete sub-market (hence the assumption A(z) D Ag(z)), and conversely that every
admissible wealth must satisfy a budget constraint relative to each state-price density in the incomplete

model. Let Z denote the set of state-price densities in the incomplete model. Then we might define
A(z) = Ar(z) = {X € mF : sup E[¢X] < z},
{ez

and more generally other restrictions on trading strategies may be imposed such that A(z) C Ax(z). In
either case we have A(z) C Ar(z) = {X € mF : E[(X] < z}.

Karatzas et al (1991) restrict the set of admissible random variables further to include only those
elements for which E[U(X)™] < co. However, as we argue in Remark 3.6, this restriction is not necessary,
since our assumptions guarantee that E[U(X)"] < oo for all z € A(z), and hence E[U(X)] is always well
defined, even if it may equal minus infinity.

The recent literature (Schachermayer (2001), Strasser (2004)) also contains a discussion of the appro-
priate definition of admissibility, with special reference to utility functions defined on the real line. In a
dynamic setting the budget constraint is usually augmented by a further condition which ensures that
the discounted gains from trade is a supermartingale. However in our special setting it turns out that
Ag(z) C A(z) C Ax(z) is both a sufficient and appropriate definition of admissibility, not least because
we do not want to declare inadmissible to the agent operating in the full market any strategies which
would normally be declared admissible in the complete sub-market corresponding to G.

Our aim in this paper is to consider the problem where the agent is to receive & > 0 units of a random
non-negative payout H. We take the claim H as fixed throughout. The agent’s value function, now a
function of initial wealth and endowment £k, is given by (1).

We want to decide how much the agent is prepared to pay for the claim H. The utility indifference
(bid) price (Hodges and Neuberger (1989)) is the amount of money the agent could pay now which would
leave her indifferent between paying and receiving the random claim H, and not paying, and not receiving

the claim. Stated mathematically, if there is a unique ¢ with V(z — ¢, k) = V() then ¢ = p(k) and we
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say that p(k) is the utility indifference price. More generally, it may be that this quantity is not well
defined so we define the bid price p(k) for k units of the claim to be as in (2). We can also define the
marginal bid price for the agent to be D, p|r—o assuming this derivative exists. This definition is related
to the definition of the fair price of a derivative given in Davis (1998). Davis defines the fair price to be
Dp|r=0, provided that D plr—0 = D_p|r=0.

The existence of the marginal price in a general incomplete market is the subject of a recent paper by
Hugonnier et al (2005). For a fixed utility defined on RT, these authors are interested in the conditions
under which a marginal price exists and is unique (although it will depend on the choice of utility).
Their definition of marginal price corresponds to the fair price of Davis. Loosely stated the result is that
the marginal price is well defined for all bounded contingent claims provided that the solution to the
dual problem defines an equivalent local martingale measure. This later condition plays a similar role to
Assumption 2.2.

The main results of this paper can be translated into the following statements. Under Assumptions 2.1

and 2.2,

Theorem Aa. If h = E[H(] then kh is an upper bound on the bid price for k units of the claim H, and

Theorem Ba. The marginal bid price for the non-negative claim H is given by h.

Note that A is independent of both the wealth of the agent and her particular utility function. It is
also independent of the set Z of state-price densities.

We can also show that kh is a lower bound on the ask price for £ units of the claim, where the ask
price is defined in the natural fashion. If H is bounded then A is also the marginal ask price.

The results of this section have been described in a general setting, subject to Assumption 2.1 on
the existence of a G-measurable state-price-density, and the definition of admissible strategies. We now
describe the type of situation where this assumption is satisfied. The key example we have in mind is a
model of non-traded assets. Suppose there are two risky assets given by correlated (constant parameter)
exponential Brownian motions. Suppose that only one of these assets is traded and consider the problem of
trying to price an option on the second asset. The financial sub-market consisting of the traded asset alone
is a standard Black-Scholes model, is complete, and has a unique state-price density. Assumption 2.1(a)
is satisfied in this example, and under some natural assumptions on the set of admissible strategies

Assumption 2.1(b) also holds. We return to this example in Section 5.
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3 Proofs

The aim of this section is to prove Theorems A and B under Assumptions 2.1 and 2.2. We begin by
stating some easy properties of the value function which follow immediately from the properties of A and

the fact that U is concave.

Lemma 3.1. (i) V(z, k) is increasing in the first argument. If —oo < V(z,k) < U(oo) < oo then V is
strictly increasing.

(ii) V is concave in the (z,k) plane.

Let z. = inf{z : U(z) > —oo} and let y. = D,U(z.). For most commonly used utility functions
Yy« = 00. Let the inverse to the derivative of U be denoted by I. The assumptions on U ensure that [ is a
well-defined, continuous, strictly decreasing function on (0,y.). Let I(y) = I(y.) for y > y. if necessary.

Let & = z/E[{]. Note that X = Z is an admissible element of A(z).
Lemma 3.2. U(Z) > —oo if and only if V(z) > —oo.

Proof. Clearly, V(z) > U(Z). Conversely, if X € A(z) then P(X < %) > 0, and if U(Z) = —oco then
E[U(X)] = —oco and hence V(z) = —o0. O
The next result, adapted from Karatzas et al (1991), describes the form of the optimal random variable

Xr. Note that if V(z—) > —oo then U(3—) > —oo.

Lemma 3.3. Suppose that V(z—) > —oo. Then the optimal admissible element X = X is given by
X% = I(x(), where x is a Lagrange multiplier chosen to satisfy = = E[¢CI(x()].

Proof. For w > 0 define y(w) = E[¢(I(w()]. Then y(w) is a continuous, decreasing function, which is
well defined by Assumption 2.2. On {w : y(w) > 2.E[(]} the function 7 is strictly decreasing, and we
can define an inverse I' defined on (z.E[(],00). It is simple to show that v(co) = E[{]I(c0) so that if
V(z—) > —oo or equivalently U/(Z—) > —oo then I'(z) < oco. If we define X = I(I'(z)¢) then X € mg
and satisfies E[¢X] = y(I'(z)) = =, so that X € Ag(z) C A(z).
It remains to show that X is optimal. Observe that for any a and b, U(b) > U(a) + (b — a)U’(b). For
any X € A(z)
U(X) > UX) + (X - X)U'(X) = U(X) + (X = X)T(2)¢ 3)

and this last term has non-negative expectation under P. Hence E[U(X)] > E[U(X)). O
Corollary 3.4. For z > 0, Xo+z > Xz, almost surely.

Remark 3.5. Assumption 2.2 is used to show that the functions v and T" are well defined and hence that

X is optimal. This assumption can be weakened, see for example Kramkov and Schachermayer (1999),
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where the notion of ‘reasonable asymptotic utility’ is introduced and used to show that X = I(x() is still

optimal.

Remark 3.6. In Karatzas et al (1991) the domain of admissible strategies is restricted to the class for
which E[U(X) "] < co. In fact this is not necessary. If X € A(z), then by definition E[(X{)"] < oo, and
from (3), U(X) < U(X) + (X — X)T'(z)¢. It follows that

UX)T <UX)" +D(2)¢X T +T(2)¢X~
and we conclude that E[U(X)™"] is necessarily finite for all X € A(z), and E[U(X)] is well defined.
Now we can prove the first main result.
Theorem 3.7. Suppose —oo < V(z—). The quantity p(k) is bounded above by kh, where h = E[(H].

Proof. If h = oo then there is nothing to prove.

Otherwise consider z such that V(z—) > —oo. Let X7 denote the optimal solution to the control
problem when k£ = 0. Suppose z > kh and consider the optimal control problem (1) but with admissible
random variables constrained to lie in A(z — 2). Then, using U(b) < U(a) + (b — a)U'(a),

E[U(X*™% + kH)] - E[U(X®)] < E[(X**+kH — X*)U'(X®)]
= E[(X*"% +kH — X*)['(z)(]

< I(z)(z—2z+kE[(H]—2) < O

Optimising over admissible random variables we find V(z — z,k) < V(z). In particular p(k) < z. Since
z > kh is arbitrary, it follows that p(k) < kh. O

Now we wish to investigate the way in which p(k) depends on k. Clearly, if V(z—) > —oo and if
h < oo then p(k) is finite. More generally, it is possible to show that provided V (z—) > —oo, then p(k)
exits in [0, 00) as long as V(z, k) < U(oo). For the rest of this section we will be interested in p(k) when

k is small.

Lemma 3.8. For k > 0, p(k) is non-decreasing and p(k)/k is non-increasing. In particular, if p(k)
exists in (0,00) for any k, then 0 < p(k) < oo for all k. Furthermore limg o4 p(k)/k = (D4p)|k=0 exists

in (0, o).

Proof. The first statement is obvious. For the statement about p(k)/k fix 0 < k < k', and assume
p(k) < oo and p(k') > 0, else there is nothing to prove. Choose z > p(k) and u < p(k'). Then, by the
concavity of ¥V

(K — k)
kl

V(z —z,k) < V(z,0) < gV(z —u, k') + V(z,0) < V(z — ku/k', k).
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Hence z > ku/k’, and since z and u are arbitrary it follows that p(k)/k > p(k')/k'. O
The next result shows that if & is sufficiently small then p(k) is well defined.

Lemma 3.9. If —oco < V(z—) < V(z) < U(0) < 00, and h = E[H({] < oo then for sufficiently small k,
V(z —p(k), k) = V(z).
Proof. First note that for any X* € A(z),

E[U(X® 4+ kH)] < E[U(X?) + (kH + X* — X*)U'(X?)] = V(z) + ['(z)hk

Hence V(z,k) < U(oo) for sufficiently small .
Again for sufficiently small k, V (z — 2kh) > —oo and hence

—o00 < V(z —2kh) < V(z — 2kh, k) < V(z — kh,k) < V(z) < V(z,k) < U(0).

By Lemma 3.1 V(z, k) is concave and strictly increasing in its first argument for z € [z — 2kh, z] so that
V(z — ¢, k) = V(z) has a unique solution in the interval [z — kh, z]. O

By Lemma 3.8 we know that D p exists at £ = 0, and by Theorem 3.7 we know that (Dp)|x—o is
bounded above by h, and that this bound is independent of the concave function U and the level z. We
want to show that (Dyp)|r=0 = h.

Theorem 3.10. Suppose —oco < V(z—) < V(z) < U(c0). Then
(D+p)|k=0 = h = E[CH] (4)

Proof. By assumption U’ is continuous, which implies in turn that both I and ~ are strictly decreasing,
at least over suitable ranges, and hence T is continuous at x.

Suppose first that H is bounded. Consider the optimal control problem for fixed k£ and X € A(z—kz).
By concavity of U, U(b) < U(a) + (b — a)U’'(a) and for any admissible element

U(Xszz + kH) _ U(X'z) < (Xszz + kH — XI)UI(Xm)
= (X** 4 kH — X*)D(2)¢

Taking expectations, optimising over admissible random variables and dividing by k& we find

V(z — kz,k) — V(z)
k

Conversely U(b) > U(a) + (b— a)U’(b) and X?** is admissible, so

< T(z){E[¢CH] - z}. (5)

V(e —kz,k)—V(z) > EUX** +kH)] - E[U(X?)

E[(X*% + kH — X*)U'(X*~% + kH))

v

= E[(X* % - X)U'(X*** + kH)] + kE[HU' (X% + kH)). (6)
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Now U’ is a decreasing function so that U'(X? %2 + kH) < U'(X? **) = D(z — kz)¢. Note that
I'(z — kz) < oo for sufficiently small k£ by the assumption that V (z—) > —oo. Further, by Corollary 3.4
X#=kz _ X* < 0, so that the first term in (6) is bounded below by I'(z — kz)E[¢(X*~F* — X*)] =
—kzT'(x — kz). Now consider the term E[HU'(X*~** 4 kH)]. If H is bounded then by the continuity of
I' and the dominated convergence theorem as k | 0 this converges to I'(z)E[( H]. Collecting together our
analysis of the two terms in (6) we deduce that

lim V(z — 2k, k) — V(x)
klO+ k

> T'(2){E[CH] — z}.

Combining this result with (5) we have

lim
ELO+

By Lemma 3.9, for sufficiently small k, V (z)

=V
(—8’(;—(:),1> VY =0

z — p(k), k) and so

provided the various quantities exist. By Lemma 3.8, (D,p)|r—o exists, and so, given (7), we deduce (4).
Now suppose that H is not bounded. Let H, = H An and let p,(k) denote the solution of (2) for &k

units of the claim H,. We have
Dipli=0 > Dypnli—o = E[CH,] T E[CH].
But p(k) < kE[CH] by Theorem 3.7 and so we deduce (4) for unbounded non-negative claims H.

Remark 3.11. The key result that makes the theorem work is the fact that I' is a continuous function.
In the proof this was achieved by assuming that U had a continuous first derivative. However, this is not
a necessary assumption and if the state price density ( is a continuous random variable then I' may still

be continuous even if the derivative of U has jumps.

4 Ask prices

In the previous section we defined and proved results for the solution of (1) and (2) for positive k. In
economic terms these quantities give the bid price for the claim H. Now we consider negative k, which
correspond to ask prices.

Firstly observe that we can trivially extend the definition of V(z, k) given in (1) to include negative

k. Given this extension we can define ¢(l) via ¢(I) = inf{q : V(z + ¢, —1) > V(z)}. Alternatively we can
set g(1) = —p(~1).
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Since V is concave it is easy to deduce that ¢(I) > p(I). Furthermore, the arguments leading to
Theorem 3.7 still hold, so that under our main assumptions we have that /4 is a lower bound on ¢(1).

The corresponding results on the D q|y—o = D_p|r—o require additional assumptions on the random
variable H. For example, in Lemma 3.9 additional conditions are needed on H to ensure that g(l) is
finite. Essentially some condition is needed to ensure that V(z,—I) > —oo. As we show in Example 6.1,
E[(H] < oo is not sufficient. However, if H is bounded, then lim; o4 ¢(1)/l = D4qli=0 = E[(H]. The
proof of this result proceeds almost exactly as in the proof of Theorem 3.10, apart from the fact that it
is not possible to extend from bounded claims to unbounded claims.

In the case where the marginal bid and ask prices both exist and agree with each other, then the

marginal price is sometimes called the Davis price.

5 The non-traded assets problem

Having defined various concepts and stated the main results we now wish to describe the fundamental
example that we have in mind. This example is a model with a non-traded asset, sometimes called a
model with basis risk. In its simplest version the financial market consists of a bond with price B growing
in deterministic fashion at rate r, and two further assets with prices S and Y described by exponential

Brownian motions. The dynamics are given by
dB; = Byrdt, dS; = Si(cdW + pudt), dY: = Yi(adZ + Bdt), (8)

with By = b, Sy = s, and Yy = y. The Brownian motions W and Z are correlated with correlation p, and
we write dZ = pdW + pdW ' where 5 = /1 — p? and W is a Brownian motion which is orthogonal to
w.

The problem facing our agent is to price a contingent claim on the non-traded asset Y, payable at
some fixed time-horizon T', given that she is only able to hedge using the traded asset S and the bond B.
We need to describe the state-price densities and admissible trading strategies for the problem. We begin
by describing the o-algebras. Let F = (F;)o<t<r be the filtration generated by the pair of Brownian
motions W and W, and let F = Fr. Let G = (Gt)o<t<T and G = Gr be generated by W alone.

The filtration G is generated by the asset S. In isolation the asset S and bond B form a Black-Scholes
market. If the other perfect market assumptions of the Black-Scholes model are satisfied then this market
is complete and there are unique preference independent prices for options on the asset S. FKach option
can be replicated by a dynamic hedging strategy.

The asset Y plays the role of a non-traded asset. The fundamental problem is to price a contingent

claim on Y. If hedging on Y is allowed then the market is again complete and there are unique preference
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independent prices for all 77 measurable claims. We are interested instead in the situation where hedging
using Y is not possible.
Since Y is not traded there are many martingale measures for this problem. Let A = (u — r)/o and

1
et ) . L
ff’ = exp(—7t) exp (—)\Wt — 5)\275) exp (/ z/)ude‘ — 5/ 1p5du>
0 0

for some F;-adapted process ¢ such that fOT ¥2du < oo, and such that the final exponential is a mar-
tingale. If we identify ¢ with &% then Z = {¢¥} is the set of state-price densities. Finally let ¢ = ¢°
(both as processes and random variables on Fr). Then ¢ € mG™ and Assumption 2.1(a) is satisfied. The
quantity ¢ plays the role of the unique state price density in the reduced complete model (Q, G, P). Note
that (;S; is a P-martingale.

We call ¢ the minimal state price density. This is because ( is related to the minimal martingale
measure of Féllmer and Schweizer (1991). The minimal martingale measure changes the drifts of the
Brownian motions driving the traded assets to make the discounted prices of the traded assets into
martingales. It leaves unchanged the drifts of any Brownian motions which are orthogonal to the Brownian
motions driving the traded assets. Hence in our setting W; + A\t and W+ are Brownian motions under the
minimal martingale measure. Note that under Assumption 2.1, ( is also the minimal entropy measure
and, more generally, the minimal distance martingale measure in the sense of Goll and Ruschendorff
(2001).

Now we consider the space of admissible strategies. In the absence of any contingent claim the agent
seeks to maximise the expected utility of wealth at time T. The space Ag(z) = {X € mGr : E[X(] < z}

of attainable wealths satisfying the budget constraint in the reduced model can be rewritten as
T
Ag(z) ={X : X =Xr - C;C e mG},X; = Gt <ac -|-/ z/)tth) ; (+X: a martingale , ¢, € mG;}.
0

This is the space of terminal wealths with can be generated using a dynamic trading strategy involving
investments in S alone. (Note that dW; = d((;S:)/(c — A), so that the integral in the above definition is
a discounted gains from trade.) The dynamic strategy is adapted to the filtration generated by S, and
chosen such that the discounted gains from trade are a martingale. This rules out doubling strategies.
At the final time-point some wealth may be discarded.

It remains to specify the space of admissible wealths .4(z). The concept that we wish to represent is
the idea that an agent should not be allowed to trade on Y, but she should be allowed to use information
about the current value (and past history of Y) in determining how much to invest in the asset S. This

means that the integrand driving the gains from trade need not be adapted to G;, but rather should be
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Fi-adapted. Given the representation of Ag(z) it is natural to define
T
Alz) ={X: X =Xr-C;CemF X, =¢ ' | = -|-/ idWy | 5 (X a martingale, ¥y € mF;}.
0

With this representation it follows that Assumption 2.1(b) is satisfied.

Remark 5.1. It is also possible to view the model (8) as a restriction of a complete market model in
which both S and Y are traded assets. (The restriction is that the class of strategies is reduced from
investments in both risky assets to investments in S alone.) Under market completion (i.e. if trading in
Y is allowed) there is a unique state-price density given by 5113 where ) = —(B8—r)/a and the unique fair

price of a European contingent claim with payoff H(St,Yr) at T is given by
E[H (ST, Yr)E"].

There are no general relationships comparing the utility indifference price p(k) (defined in the non-traded
assets model where Y is not traded) with KE[H (ST, YT)S*;] (the complete market price when Y is traded).
For example, if H = Y7 then E[Yr 5113] = y whereas

lklﬁ]l@ = E[YTe—TTe—)\WT_)\ZT/2] — ye_ka”T.

Thus the marginal utility indifference price in the non-traded assets model can be larger or smaller than
the unit price under market completion, depending on the sign of Aap. In contrast, the main results of
this paper refer to the complete market generated by S alone which exists as a subset of the incomplete

model.

Remark 5.2. The definition of admissible wealths we give above is perfectly natural, and ideally suited
to providing the proofs of the main results, but is not the only definition of an admissible strategy used
in the literature on incomplete markets. Consider for example the notion of an acceptable strategy from
Delbaen and Schachermayer (1997). In the complete market setting their definition is slightly more
restrictive than the one used here, in that the space of random variables C' which may be discarded at
time T is not necessarily the set of all positive random variables. (The reason for this is that Delbaen
and Schachermayer want to be able to consider holding the same strategies long and short.)

Essentially the definition of an acceptable strategy in Delbaen and Schachermayer (1997) is that it
should generate a wealth process which dominates as a process a maximal admissible strategy where
a maximal admissible strategy is a gains from trade process which is a true martingale under some
equivalent martingale measure. In contrast, the definition we give above is related to the idea that our
admissible strategies dominate gains from trade processes which are true martingales under the minimal

martingale measure. Note that in the complete market setting these two definitions are equivalent.
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6 Examples

6.1 Exponential Utility

Consider the family of utility functions with constant absolute risk aversion. These utilities are defined

for negative wealth and take the form
1 —fz
U(z) = Uy(z) = g€ z € R,

with 6 a positive parameter. For the dynamics given in Section 5 we find that the value function of the
agent is given by

1 2T
Viz) = —g eXP (—O:beTT - AT) , z€eR

For this utility U'(z) = e =7 is continuous and tends to zero for large z. The inverse function I is given
by I(y) = —(Iny)/0. It follows that Assumption 2.2 is satisfied and y(w) = (=1/0)E[{(Inw + In{)] =
—e "T(Inw — rT + N2T/2) /6. We find T'(z) = exp(—0ze"T +rT — \2T/2).

Suppose the claim takes the form g = g(Y7). Then the utility indifference bid price for k units of the

claim is given in Henderson and Hobson (2002b) or Henderson (2002) as

p(k) = - InE [¢exp (—kO(1 — p*)g(Y7))] - (9)

.
61— 2
Note that the price does not depend on z since wealth factors out of this problem. For g a non-negative
claim, and k > 0, it follows from Jensen’s inequality that p(k) < kE[Cg(YT)]. Further, on differentiation
we find

Dpli=o = E[¢g(Yr)].

Hence E[¢g(Y7)], which is independent of the risk aversion parameter 6, is both an upper bound on the
bid price for the claim and the marginal bid price.

Now suppose that we are interested in the ask price. A formula for the ask price is obtained by
replacing k with —k in the right hand side of (9) and multiplying by —1. However if g(Y7) = Y7 then
the exponential moment is infinite, and the utility indifference ask price is also infinite. Hence, trivially,

E[{Y7] is a lower bound on the ask price for the claim, but it does not represent the marginal ask price.

6.2 Power Law Utility

For a positive risk aversion parameter R consider the utility function

U(CC) = UR(ac) =

z >0, (10)
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with U(z) = —oo for negative z. The value function for the agent with no endowment is given by

1-R_(1-R)rT _p)y2
V(m):m e exp{(l R)A T}’

1-R 2R
with V(z) = —oo for z < 0.

The inverse to U’ is given by I(y) = y /% and y(w) = w Y/ EE[(1~ (/B = o1/ B0 -F)rT/R exp (1~
R)A\?/(2R?%)} and for each R, Assumption 2.2 holds.

In general there are no closed form expressions for options prices. However Henderson (2002, Theorem
4.2) gives an expansion for the price in powers of the number of options bought. Suppose the wealth x
is positive. If the claim is units of the non-traded asset, then for £ > 0 the price is given as

p(k) = KE[CYr] k267TT§a2R(21A_ p2)e2(,67ap)\)/a)T[6AT — 1]+ 00k

2pa
R

KE[¢Cg(Yr)] + O(k?). In either case the marginal bid price is E[Cg(Y7)] which is independent of the risk

where A = a? — + 1’\%—22. For a more general claim g = g(Yr) the price to leading order is p(k) =
aversion parameter R. As for exponential utility the marginal ask price can be infinite for unbounded
claims.

Note that if we take R = 1 then we recover the formula for logarithmic utility.

6.3 A counterexample for which the bounds are not attained.

Consider an agent with power-law utility function given by (10) with R < 1. Suppose that this agent has
zero initial wealth and » = 0. We consider the bid price of this agent for k£ units of the claim Yr where
Yr = exp(aZr + (B — a?/2)T), where for simplicity Z is independent of the Brownian motion driving
the traded asset.

In this case V(0) = 0. If the agent bids any positive amount p for the claim then there is a positive
probability that the agent has negative final wealth, and therefore her utility is —oo. However, even if

the agent follows the strategy of investing zero in the traded asset, her value function is

1-R —
E[U (k exp(aBr + (8 — a?/2)T))] = f_ 7 €XP (ﬂ(l —R)T — oz2wT> > 0.

Hence there is no solution to the equation V(—p, k) = 0. For this problem the bid price for the claim is
zero, as is the marginal bid price, which is not equal to h = E[(Yr]. The utility indifference price is not

defined. However in this case V(0—) = —oo so that the hypotheses of the theorems are not satisfied.
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7 ‘Almost complete’ stochastic volatility models

In this section we consider a completely different situation to the main example of Section 5. Here we
suppose that the triple (B,S,Y) consists of a bond, a traded asset, and a process which governs the
stochastic volatility of that asset.

Consider the model

ds;

dB; = Byrdt —_—
t trat, St

= o(Y;, )dW + (r + Ao (Y3, 1))dt, dY; = a(Y;, t)dZ + B(Yy, t)dt,  (11)

where, as before, dZ; = pdW; + p~dW . This is a standard stochastic volatility model, see, for example,
Hobson (1998) for a review and a list of popular parametric forms for «, 3 etc. As written, the process Y’
driving the volatility is an autonomous diffusion, but the results below remain valid even if a, 3, p and o
are arbitrary adapted functions. The drift of the traded asset is (r + A;o (Y%, t)) so we have parameterised
the dynamics of S in terms of the Sharpe ratio A;.

Again S plays the role of a traded asset. This time Y is associated with the volatility of S rather
than being a second financial asset, but again Y is not traded. The state-price densities for the model

take the form

T 1 T T 1 T
¢4 =eTexp —/ ApdWy — —/ Ajdt | exp / b dWy- — _/ widt | .
0 2 0 0 2 0

The model is incomplete and there are no unique preference-independent option prices. Indeed Frey and
Sin (1999) show that in general there are no non-trivial bounds on the prices of call options in this model.
In other words the set of prices which are consistent with some risk neutral pricing measure is the interval
(0, So).

In general, in a stochastic volatility model there is no non-trivial utility-independent bound on the
utility indifference bid price of an option. However, suppose that the Sharpe ratio is deterministic,
At = A(t). (In the mathematical literature, a stochastic volatility model with this property is said to be
‘almost complete’, see Pham et al (1998).) Then we can verify that Assumption 2.1(a) is satisfied, and
under appropriate modeling assumptions we can conclude that Theorems Aa and Ba hold. In particular,
the marginal utility indifference bid price for a contingent claim H does not depend on the utility function

of the agent and is given by E[(H|, where { = £.

8 Concluding Remarks

In an incomplete market there are no unique, preference independent option prices. Instead it is necessary

either to choose a pricing measure from the family of equivalent martingale measures, or to model the
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the preferences directly. Utility indifference option pricing is a consistent pricing scheme which reduces
to Black-Scholes option pricing in a complete market. Prices are non-linear, so that in general agents
will pay a lower unit price for larger quantities of a financial asset. These larger quantities are associated
with higher risk.

The perceived disadvantage of the utility based option pricing approach is that since the price depends
on the choice of utility function, it seems unlikely that there are any general pricing principles which hold
uniformly across all utility functions, and for all initial wealths. In our non-traded asset model we have
shown that this is not the case, and that there is a bound for the utility indifference bid and ask price
for the option which is valid for all sufficiently regular utility choices. Furthermore, this bound also acts
as the marginal price.

If the bid price for every agent is below the ask price for every agent then under no circumstances
would any trading occur. Hence if all agents have zero initial endowment of Y, and all agents have
the same physical measure P, then no trading in a claim with payoff H(Y) would occur, even if the
agents have different initial wealths or utility functions. Trading only occurs if the agents have initial
endowments of non-traded asset, or if they have different expectations of Y.

The results of this paper should be contrasted with the results of Hubalek and Schachermayer (2001).
They consider the specific example we introduced in Section 5, and conclude that for a call option on
the non-traded asset, every positive price is consistent with some equivalent martingale measure. The
reason for this is that although a change of measure leaves the discounted price of a traded asset as a
martingale, the drift on the non-traded asset is undetermined: there are martingale measures for which
the non-traded asset has arbitrarily large drift (positive or negative). As a consequence the expected
payoff of the call option can be made arbitrarily large or small with a judicious choice of pricing measure,
and no-arbitrage arguments give only trivial bounds on the price of a contingent claim.

We reach an opposite conclusion: for an agent who seeks to maximise expected utility, the marginal bid
price for a claim on the non-traded asset is uniquely specified. One reason why we get this uniqueness is
that we assume that the agent has zero initial endowment of the non-traded asset. If we were to relax this
assumption then the uniqueness would be lost. Note that there is no role in the no-arbitrage arguments
of Hubalek and Schachermayer for the agent’s initial endowment of the non-traded asset, and hence they
must obtain wider bounds. However, when the assumption of zero initial endowment is appropriate, our
conclusion is very strong, and the only candidate for the marginal utility indifference price of the claim

is the discounted expected value under the minimal martingale measure.
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