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Bounds for Utility Pri
es on Non-traded Assets 21 Introdu
tionThe key insights of the Bla
k-S
holes option pri
ing methodology are �rstly, that in a 
omplete marketit is possible to repli
ate a 
ontingent 
laim, and se
ondly, that the initial fortune whi
h is required to�nan
e the repli
ating strategy is the fair pri
e of the option. In parti
ular, the pri
e of a 
ontingent 
laimis determined unambiguously by the prin
iples of no-arbitrage, and is independent of the risk preferen
esof agents.The 
on
lusion that there are unique option pri
es in the Bla
k-S
holes model is lost as soon in-
ompleteness is introdu
ed into the model. This 
an happen in many ways, for example following theintrodu
tion of transa
tion 
osts, or if the assumptions of the model do not allow the agent to follow therepli
ating strategy. In these 
ases any non-attainable 
ontingent 
laim 
arries risk, and any pri
ing rulemakes impli
it or expli
it assumptions about utilities and preferen
es.The typi
al problem we have in mind (see Hubalek and S
ha
hermayer (2001), Davis (1998), Hen-derson and Hobson (2002a, 2002b)) is as follows. There are two risky assets, one of whi
h is traded, butthe se
ond is not. Although the pri
e pro
esses for the assets may be driven by 
orrelated Brownianmotions, the 
oeÆ
ients of the dynami
s for the traded asset do not depend on the untraded asset. Anagent is due to re
eive a 
laim whi
h is 
ontingent on the non-traded asset. How mu
h is that random
laim worth? This is the situation in real options, see Dixit and Pindy
k (1994). An illustration fromHubalek and S
ha
hermayer (2001) is when the two assets are di�erent brands of 
rude oil, only one ofwhi
h is liquidly traded.This problem is an example of the problem of pri
ing a 
laim in an in
omplete market, and is similar tothose 
onsidered in F�ollmer and Sondermann (1986), F�ollmer and S
hweizer (1991), DuÆe and Ri
hardson(1991) and many others. In 
ommon with DuÆe and Ri
hardson (1991) and Davis (1998) we model ouragents as maximisers of expe
ted utility. An alternative approa
h is to sele
t a martingale measure (forexample the minimal martingale measure) and to use that for pri
ing.The utility maximisation problem is a basi
 problem in �nan
e and was �rst studied in a 
ontinuoustime model by Merton (1969). A powerful approa
h to this problem is the dual variational method,see, for example, Karatzas et al (1991), Kramkov and S
ha
hermayer (1999) and S
ha
hermayer (2001).These papers provide a 
omplete solution of the optimal investment problem in an in
omplete market.The paper by Karatzas et al (1991), provides the foundations for both the notation and style of argumentsin this paper.In order to address the question of the pri
ing of 
ontingent 
laims in an in
omplete market, Hodgesand Neuberger (1989) introdu
ed the notion of the utility indi�eren
e pri
e. The utility indi�eren
ebid pri
e is the amount the agent is prepared to pay whi
h leaves him indi�erent between paying for,



Bounds for Utility Pri
es on Non-traded Assets 3and re
eiving the 
laim, and not paying for, and not re
eiving the 
laim. In order to derive this pri
ewe need to solve the utility maximisation problem both without the 
laim (see the referen
es in theprevious paragraph) and in the 
ase with a random endowment. Cvitani
 at al (2001) have made somesteps towards a solution of the random endowment problem in a general setting. For the exponentialutility fun
tion, Delbaen et al (2002) 
hara
terise the solution to the pri
ing problem and determine theasso
iated dual problem.The goal of this paper is to 
ompare the utility indi�eren
e pri
e a
ross di�erent 
hoi
es of utilityfun
tion. Su
h 
omparisons are very rare in the literature, although there have been some studies whi
hinvestigate the impa
t of 
hanging the risk aversion within a parametri
 family of utility fun
tions, seeSir
ar and Zariphopoulou (2005) (sto
hasti
 volatility models and exponential utility), Henderson et al(2005) (sto
hasti
 volatility models and power-law utilities) and Bou
hard et al (2001) (transa
tions
osts and exponential utility). In general, the bid pri
e o�ered by an agent must depend on her 
hoi
e ofutility fun
tion, and there is a wide range of pri
es whi
h 
an be realised as the utility indi�eren
e pri
e.However, in our spe
i�
 non-traded asset setting, we show that there is a simple, non-trivial upper boundon the bid pri
e for the option whi
h is independent of the 
hoi
e of utility. This bound is the pri
e ofthe 
laim under the minimal martingale measure. Further, this bound represents the marginal pri
e, orequivalently the unit pri
e she would be prepared to pay for an in�nitesimal quantity of the option.The rest of this paper is stru
tured as follows. In the next se
tion we des
ribe the model and the main
on
epts in an abstra
t setting. We state the results, both purely in terms of probability, and in termsof their �nan
ial interpretation. In Se
tion 3 we prove the main theorems. The key observation is thatthe bounds we derive are independent of the 
hoi
e of utility fun
tion. There is a set of analogous resultsfor ask pri
es whi
h we give in Se
tion 4. In Se
tion 5 we show how the non-traded assets model �tsinto this framework and Se
tion 6 des
ribes the results for 
ertain 
ommon parametri
 families of utilityfun
tions for whi
h expli
it 
al
ulations are sometimes possible. In Se
tion 7 we 
onsider a fundamentallydi�erent model, whi
h is a spe
ial 
ase of a sto
hasti
 volatility model, and whi
h also �ts into the generalframework of Se
tion 2. Se
tion 8 
on
ludes.2 The main results and the asso
iated �nan
ial modelWe suppose that we are given a probability spa
e (
;F ;P) with a �xed �-algebra G � F , togetherwith a 
onvex fun
tion U : R ! [�1;1), whi
h is stri
tly in
reasing, stri
tly 
on
ave and 
ontinuouslydi�erentiable on its domain, with derivative tending to zero at in�nity.Assumption 2.1. (a) Suppose that the probability spa
e supports a non-negative G-measurable random



Bounds for Utility Pri
es on Non-traded Assets 4variable � satisfying 0 < E [�℄ <1.(b) De�ne AG(x) = fX 2 mG : E [�X ℄ � xg, where mG is the set of G-measurable fun
tions, and letAF be de�ned similarly, but with respe
t to the �-algebra F . Suppose we are given an in
reasing familyfA(x)gx2R, where A(x) is the set of admissible random variables for a given 
onstraint level x, withAG(x) � A(x) � AF (x), and with the property that
A(x0) + (1� 
)A(x00) � A(
x0 + (1� 
)x00) 8
 2 (0; 1):Let H be an element of mF+, the set of non-negative F-measurable random variables. We 
onsideran optimal 
ontrol problem involving U and H . Set V (x) = supX2A(x) E [U(X)℄. To avoid trivialities weassume that V (x) <1, for some, and then all x. De�neV(x; k) = supX2A(x)E[U(X + kH)℄; (1)so that V(x; 0) = V (x), and p(k) = inffq : V(x� q; k) � V (x)g: (2)We now make a te
hni
al assumption, see also Karatzas et al (1991, Equation 6.2),Assumption 2.2. Suppose that for all w > 0 we have E [j�(U 0 )�1(w�)j℄ <1.Then, the main results of this paper are that, provided V (x�) > �1,Theorem A. p(k) � kE [H�℄, andTheorem B. D+pjk=0 = E [H�℄, where D+ denotes the right derivative.In parti
ular, both the bound for p(k) and the derivative of p(k) near zero depend on the randomvariable �, but not on the fun
tion U , or the 
onstraint level x.Let us now try to motivate these results by explaining why they are important and relevant in thetheory of mathemati
al �nan
e.Suppose that (
;F ;P) is a sto
hasti
 basis for a �nan
ial market, where P is the real world probabilitymeasure for an agent. The �-algebra F represents all possible events in this model. We suppose thatthere is also a sub-�-algebra G whi
h 
orresponds to the events asso
iated with a 
omplete market whi
his embedded within the larger �nan
ial model. The random variable � plays the role of the (unique)state-pri
e density in the 
omplete market model, and one of many state-pri
e densities in the largermodel.



Bounds for Utility Pri
es on Non-traded Assets 5The analysis of this paper is based on this rather spe
ial assumption that there exists the 
ompletemarket model 
ontained within the larger �nan
ial market. We do not 
laim that this assumption isappropriate in a general �nan
ial model, but rather that it is appropriate in 
ertain 
ontexts, and thatthen some strong 
on
lusions about the utility indi�eren
e pri
ing of derivatives follow.We fo
us on a single agent in this model who is assumed to have a 
on
ave utility fun
tion U . Bytradition the agent is female. She is assumed to be a maximiser of expe
ted utility of wealth. We assumethat the agent begins with initial wealth x and that the set of 
andidate or admissible target wealths forthe agent is the set A(x). It is natural to assume that A(x) in
ludes all terminal wealths whi
h 
an begenerated in the 
omplete sub-market (hen
e the assumption A(x) � AG(x)), and 
onversely that everyadmissible wealth must satisfy a budget 
onstraint relative to ea
h state-pri
e density in the in
ompletemodel. Let Z denote the set of state-pri
e densities in the in
omplete model. Then we might de�neA(x) = ~AF (x) = fX 2 mF : sup�2Z E [�X ℄ � xg;and more generally other restri
tions on trading strategies may be imposed su
h that A(x) � ~AF (x). Ineither 
ase we have A(x) � AF (x) = fX 2 mF : E [�X ℄ � xg.Karatzas et al (1991) restri
t the set of admissible random variables further to in
lude only thoseelements for whi
h E [U(X)� ℄ <1. However, as we argue in Remark 3.6, this restri
tion is not ne
essary,sin
e our assumptions guarantee that E [U(X)+ ℄ <1 for all x 2 A(x), and hen
e E [U(X)℄ is always wellde�ned, even if it may equal minus in�nity.The re
ent literature (S
ha
hermayer (2001), Strasser (2004)) also 
ontains a dis
ussion of the appro-priate de�nition of admissibility, with spe
ial referen
e to utility fun
tions de�ned on the real line. In adynami
 setting the budget 
onstraint is usually augmented by a further 
ondition whi
h ensures thatthe dis
ounted gains from trade is a supermartingale. However in our spe
ial setting it turns out thatAG(x) � A(x) � AF (x) is both a suÆ
ient and appropriate de�nition of admissibility, not least be
ausewe do not want to de
lare inadmissible to the agent operating in the full market any strategies whi
hwould normally be de
lared admissible in the 
omplete sub-market 
orresponding to G.Our aim in this paper is to 
onsider the problem where the agent is to re
eive k > 0 units of a randomnon-negative payout H . We take the 
laim H as �xed throughout. The agent's value fun
tion, now afun
tion of initial wealth and endowment k, is given by (1).We want to de
ide how mu
h the agent is prepared to pay for the 
laim H . The utility indi�eren
e(bid) pri
e (Hodges and Neuberger (1989)) is the amount of money the agent 
ould pay now whi
h wouldleave her indi�erent between paying and re
eiving the random 
laimH , and not paying, and not re
eivingthe 
laim. Stated mathemati
ally, if there is a unique q with V(x � q; k) = V (x) then q = p(k) and we



Bounds for Utility Pri
es on Non-traded Assets 6say that p(k) is the utility indi�eren
e pri
e. More generally, it may be that this quantity is not wellde�ned so we de�ne the bid pri
e p(k) for k units of the 
laim to be as in (2). We 
an also de�ne themarginal bid pri
e for the agent to be D+pjk=0 assuming this derivative exists. This de�nition is relatedto the de�nition of the fair pri
e of a derivative given in Davis (1998). Davis de�nes the fair pri
e to beDpjk=0, provided that D+pjk=0 = D�pjk=0.The existen
e of the marginal pri
e in a general in
omplete market is the subje
t of a re
ent paper byHugonnier et al (2005). For a �xed utility de�ned on R+ , these authors are interested in the 
onditionsunder whi
h a marginal pri
e exists and is unique (although it will depend on the 
hoi
e of utility).Their de�nition of marginal pri
e 
orresponds to the fair pri
e of Davis. Loosely stated the result is thatthe marginal pri
e is well de�ned for all bounded 
ontingent 
laims provided that the solution to thedual problem de�nes an equivalent lo
al martingale measure. This later 
ondition plays a similar role toAssumption 2.2.The main results of this paper 
an be translated into the following statements. Under Assumptions 2.1and 2.2,Theorem Aa. If h = E [H�℄ then kh is an upper bound on the bid pri
e for k units of the 
laim H, andTheorem Ba. The marginal bid pri
e for the non-negative 
laim H is given by h.Note that h is independent of both the wealth of the agent and her parti
ular utility fun
tion. It isalso independent of the set Z of state-pri
e densities.We 
an also show that kh is a lower bound on the ask pri
e for k units of the 
laim, where the askpri
e is de�ned in the natural fashion. If H is bounded then h is also the marginal ask pri
e.The results of this se
tion have been des
ribed in a general setting, subje
t to Assumption 2.1 onthe existen
e of a G-measurable state-pri
e-density, and the de�nition of admissible strategies. We nowdes
ribe the type of situation where this assumption is satis�ed. The key example we have in mind is amodel of non-traded assets. Suppose there are two risky assets given by 
orrelated (
onstant parameter)exponential Brownianmotions. Suppose that only one of these assets is traded and 
onsider the problem oftrying to pri
e an option on the se
ond asset. The �nan
ial sub-market 
onsisting of the traded asset aloneis a standard Bla
k-S
holes model, is 
omplete, and has a unique state-pri
e density. Assumption 2.1(a)is satis�ed in this example, and under some natural assumptions on the set of admissible strategiesAssumption 2.1(b) also holds. We return to this example in Se
tion 5.



Bounds for Utility Pri
es on Non-traded Assets 73 ProofsThe aim of this se
tion is to prove Theorems A and B under Assumptions 2.1 and 2.2. We begin bystating some easy properties of the value fun
tion whi
h follow immediately from the properties of A andthe fa
t that U is 
on
ave.Lemma 3.1. (i) V(x; k) is in
reasing in the �rst argument. If �1 < V(x; k) < U(1) � 1 then V isstri
tly in
reasing.(ii) V is 
on
ave in the (x; k) plane.Let z� = inffz : U(z) > �1g and let y� = D+U(z�). For most 
ommonly used utility fun
tionsy� =1. Let the inverse to the derivative of U be denoted by I . The assumptions on U ensure that I is awell-de�ned, 
ontinuous, stri
tly de
reasing fun
tion on (0; y�). Let I(y) = I(y�) for y � y� if ne
essary.Let ~x = x=E [� ℄. Note that X = ~x is an admissible element of A(x).Lemma 3.2. U(~x) > �1 if and only if V (x) > �1.Proof. Clearly, V (x) � U(~x). Conversely, if X 2 A(x) then P(X � ~x) > 0, and if U(~x) = �1 thenE [U(X)℄ = �1 and hen
e V (x) = �1.The next result, adapted from Karatzas et al (1991), des
ribes the form of the optimal random variableX̂T . Note that if V (x�) > �1 then U(~x�) > �1.Lemma 3.3. Suppose that V (x�) > �1. Then the optimal admissible element X̂ � X̂x is given byX̂x � I(��), where � is a Lagrange multiplier 
hosen to satisfy x � E [�I(��)℄.Proof. For w > 0 de�ne 
(w) = E [�I(w�)℄: Then 
(w) is a 
ontinuous, de
reasing fun
tion, whi
h iswell de�ned by Assumption 2.2. On fw : 
(w) > z�E [�℄g the fun
tion 
 is stri
tly de
reasing, and we
an de�ne an inverse � de�ned on (z�E [�℄;1). It is simple to show that 
(1) = E [�℄I(1) so that ifV (x�) > �1 or equivalently U(~x�) > �1 then �(x) < 1. If we de�ne X̂ � I(�(x)�) then X̂ 2 mGand satis�es E [�X̂ ℄ = 
(�(x)) = x, so that X̂ 2 AG(x) � A(x).It remains to show that X̂ is optimal. Observe that for any a and b, U(b) � U(a) + (b� a)U 0(b). Forany X 2 A(x) U(X̂) � U(X) + (X̂ �X)U 0(X̂) = U(X) + (X̂ �X)�(x)� (3)and this last term has non-negative expe
tation under P. Hen
e E [U(X̂ )℄ � E [U(X)℄.Corollary 3.4. For z > 0, X̂x+z � X̂x, almost surely.Remark 3.5. Assumption 2.2 is used to show that the fun
tions 
 and � are well de�ned and hen
e thatX̂ is optimal. This assumption 
an be weakened, see for example Kramkov and S
ha
hermayer (1999),



Bounds for Utility Pri
es on Non-traded Assets 8where the notion of `reasonable asymptoti
 utility' is introdu
ed and used to show that X̂ = I(��) is stilloptimal.Remark 3.6. In Karatzas et al (1991) the domain of admissible strategies is restri
ted to the 
lass forwhi
h E [U(X)� ℄ <1. In fa
t this is not ne
essary. If X 2 A(x), then by de�nition E [(X�)+ ℄ <1, andfrom (3), U(X) � U(X̂) + (X � X̂)�(x)�. It follows thatU(X)+ � U(X̂)+ + �(x)�X+ + �(x)�X̂�and we 
on
lude that E [U(X)+ ℄ is ne
essarily �nite for all X 2 A(x), and E [U(X)℄ is well de�ned.Now we 
an prove the �rst main result.Theorem 3.7. Suppose �1 < V (x�). The quantity p(k) is bounded above by kh, where h = E [�H ℄.Proof. If h =1 then there is nothing to prove.Otherwise 
onsider x su
h that V (x�) > �1. Let X̂x denote the optimal solution to the 
ontrolproblem when k = 0. Suppose z > kh and 
onsider the optimal 
ontrol problem (1) but with admissiblerandom variables 
onstrained to lie in A(x� z). Then, using U(b) � U(a) + (b� a)U 0(a),E [U(Xx�z + kH)℄� E [U(X̂x )℄ � E [(Xx�z + kH � X̂x)U 0(X̂x)℄= E [(Xx�z + kH � X̂x)�(x)�℄� �(x)(x � z + kE [�H ℄ � x) < 0Optimising over admissible random variables we �nd V(x � z; k) < V (x): In parti
ular p(k) � z. Sin
ez > kh is arbitrary, it follows that p(k) � kh.Now we wish to investigate the way in whi
h p(k) depends on k. Clearly, if V (x�) > �1 and ifh < 1 then p(k) is �nite. More generally, it is possible to show that provided V (x�) > �1, then p(k)exits in [0;1) as long as V(x; k) < U(1). For the rest of this se
tion we will be interested in p(k) whenk is small.Lemma 3.8. For k > 0, p(k) is non-de
reasing and p(k)=k is non-in
reasing. In parti
ular, if p(k)exists in (0;1) for any k, then 0 < p(k) <1 for all k. Furthermore limk#0+ p(k)=k = (D+p)jk=0 existsin (0;1℄.Proof. The �rst statement is obvious. For the statement about p(k)=k �x 0 < k < k0, and assumep(k) < 1 and p(k0) > 0, else there is nothing to prove. Choose z > p(k) and u < p(k0). Then, by the
on
avity of VV(x� z; k) < V(x; 0) � kk0V(x� u; k0) + (k0 � k)k0 V(x; 0) � V(x� ku=k0; k):



Bounds for Utility Pri
es on Non-traded Assets 9Hen
e z > ku=k0, and sin
e z and u are arbitrary it follows that p(k)=k � p(k0)=k0.The next result shows that if k is suÆ
iently small then p(k) is well de�ned.Lemma 3.9. If �1 < V (x�) � V (x) < U(1) � 1, and h = E [H�℄ <1 then for suÆ
iently small k,V(x� p(k); k) = V (x).Proof. First note that for any Xx 2 A(x),E [U(Xx + kH)℄ � E [U(X̂x) + (kH +Xx � X̂x)U 0(X̂x)℄ = V (x) + �(x)hkHen
e V(x; k) < U(1) for suÆ
iently small k.Again for suÆ
iently small k, V (x � 2kh) > �1 and hen
e�1 < V (x � 2kh) < V(x� 2kh; k) < V(x� kh; k) � V (x) < V(x; k) < U(1):By Lemma 3.1 V(z; k) is 
on
ave and stri
tly in
reasing in its �rst argument for z 2 [x� 2kh; x℄ so thatV(x� q; k) = V (x) has a unique solution in the interval [x� kh; x℄.By Lemma 3.8 we know that D+p exists at k = 0, and by Theorem 3.7 we know that (D+p)jk=0 isbounded above by h, and that this bound is independent of the 
on
ave fun
tion U and the level x. Wewant to show that (D+p)jk=0 = h.Theorem 3.10. Suppose �1 < V (x�) � V (x) < U(1). Then(D+p)jk=0 = h = E [�H ℄ (4)Proof. By assumption U 0 is 
ontinuous, whi
h implies in turn that both I and 
 are stri
tly de
reasing,at least over suitable ranges, and hen
e � is 
ontinuous at x.Suppose �rst that H is bounded. Consider the optimal 
ontrol problem for �xed k and X 2 A(x�kz).By 
on
avity of U , U(b) � U(a) + (b� a)U 0(a) and for any admissible elementU(Xx�kz + kH)� U(X̂x) � (Xx�kz + kH � X̂x)U 0(X̂x)= (Xx�kz + kH � X̂x)�(x)�Taking expe
tations, optimising over admissible random variables and dividing by k we �ndV(x� kz; k)� V (x)k � �(x)fE [�H ℄ � zg: (5)Conversely U(b) � U(a) + (b� a)U 0(b) and X̂x�kz is admissible, soV(x� kz; k)� V (x) � E [U(X̂x�kz + kH)℄� E [U(X̂x)℄� E [(X̂x�kz + kH � X̂x)U 0(X̂x�kz + kH)℄= E [(X̂x�kz � X̂x)U 0(X̂x�kz + kH)℄ + kE [HU 0(X̂x�kz + kH)℄: (6)



Bounds for Utility Pri
es on Non-traded Assets 10Now U 0 is a de
reasing fun
tion so that U 0(X̂x�kz + kH) � U 0(X̂x�kz) = �(x � kz)�. Note that�(x � kz) <1 for suÆ
iently small k by the assumption that V (x�) > �1. Further, by Corollary 3.4X̂x�kz � X̂x � 0, so that the �rst term in (6) is bounded below by �(x � kz)E [�(X̂x�kz � X̂x)℄ =�kz�(x� kz). Now 
onsider the term E [HU 0 (X̂x�kz + kH)℄. If H is bounded then by the 
ontinuity of� and the dominated 
onvergen
e theorem as k # 0 this 
onverges to �(x)E [�H ℄. Colle
ting together ouranalysis of the two terms in (6) we dedu
e thatlimk#0+ V(x� zk; k)� V (x)k � �(x)fE [�H ℄ � zg:Combining this result with (5) we havelimk#0+ V(x� zk; k)� V (x)k = �(x)fE [�H ℄ � zg: (7)By Lemma 3.9, for suÆ
iently small k, V (x) = V(x� p(k); k) and so���p(k)�k ; 1� � rV = 0provided the various quantities exist. By Lemma 3.8, (D+p)jk=0 exists, and so, given (7), we dedu
e (4).Now suppose that H is not bounded. Let Hn = H ^ n and let pn(k) denote the solution of (2) for kunits of the 
laim Hn. We haveD+pjk=0 � D+pnjk=0 = E [�Hn ℄ " E [�H ℄:But p(k) � kE [�H ℄ by Theorem 3.7 and so we dedu
e (4) for unbounded non-negative 
laims H .Remark 3.11. The key result that makes the theorem work is the fa
t that � is a 
ontinuous fun
tion.In the proof this was a
hieved by assuming that U had a 
ontinuous �rst derivative. However, this is nota ne
essary assumption and if the state pri
e density � is a 
ontinuous random variable then � may stillbe 
ontinuous even if the derivative of U has jumps.4 Ask pri
esIn the previous se
tion we de�ned and proved results for the solution of (1) and (2) for positive k. Ine
onomi
 terms these quantities give the bid pri
e for the 
laim H . Now we 
onsider negative k, whi
h
orrespond to ask pri
es.Firstly observe that we 
an trivially extend the de�nition of V(x; k) given in (1) to in
lude negativek. Given this extension we 
an de�ne q(l) via q(l) = inffq : V(x + q;�l) � V (x)g. Alternatively we 
anset q(l) = �p(�l).
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e V is 
on
ave it is easy to dedu
e that q(l) � p(l). Furthermore, the arguments leading toTheorem 3.7 still hold, so that under our main assumptions we have that lh is a lower bound on q(l).The 
orresponding results on the D+qjk=0 � D�pjk=0 require additional assumptions on the randomvariable H . For example, in Lemma 3.9 additional 
onditions are needed on H to ensure that q(l) is�nite. Essentially some 
ondition is needed to ensure that V(x;�l) > �1. As we show in Example 6.1,E [�H ℄ < 1 is not suÆ
ient. However, if H is bounded, then liml#0+ q(l)=l = D+qjl=0 = E [�H ℄: Theproof of this result pro
eeds almost exa
tly as in the proof of Theorem 3.10, apart from the fa
t that itis not possible to extend from bounded 
laims to unbounded 
laims.In the 
ase where the marginal bid and ask pri
es both exist and agree with ea
h other, then themarginal pri
e is sometimes 
alled the Davis pri
e.5 The non-traded assets problemHaving de�ned various 
on
epts and stated the main results we now wish to des
ribe the fundamentalexample that we have in mind. This example is a model with a non-traded asset, sometimes 
alled amodel with basis risk. In its simplest version the �nan
ial market 
onsists of a bond with pri
e B growingin deterministi
 fashion at rate r, and two further assets with pri
es S and Y des
ribed by exponentialBrownian motions. The dynami
s are given bydBt = Btrdt; dSt = St(�dW + �dt); dYt = Yt(�dZ + �dt); (8)with B0 = b; S0 = s, and Y0 = y. The Brownian motionsW and Z are 
orrelated with 
orrelation �, andwe write dZ = �dW + �dW? where � =p1� �2 and W? is a Brownian motion whi
h is orthogonal toW .The problem fa
ing our agent is to pri
e a 
ontingent 
laim on the non-traded asset Y , payable atsome �xed time-horizon T , given that she is only able to hedge using the traded asset S and the bond B.We need to des
ribe the state-pri
e densities and admissible trading strategies for the problem. We beginby des
ribing the �-algebras. Let F = (Ft)0�t�T be the �ltration generated by the pair of Brownianmotions W and W?, and let F = FT . Let G = (Gt)0�t�T and G = GT be generated by W alone.The �ltration G is generated by the asset S. In isolation the asset S and bond B form a Bla
k-S
holesmarket. If the other perfe
t market assumptions of the Bla
k-S
holes model are satis�ed then this marketis 
omplete and there are unique preferen
e independent pri
es for options on the asset S. Ea
h option
an be repli
ated by a dynami
 hedging strategy.The asset Y plays the role of a non-traded asset. The fundamental problem is to pri
e a 
ontingent
laim on Y . If hedging on Y is allowed then the market is again 
omplete and there are unique preferen
e
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es for all FT measurable 
laims. We are interested instead in the situation where hedgingusing Y is not possible.Sin
e Y is not traded there are many martingale measures for this problem. Let � = (� � r)=� andlet � t = exp(�rt) exp���Wt � 12�2t� exp�Z t0  udW?u � 12 Z t0  2udu�for some Ft-adapted pro
ess  su
h that R T0  2udu < 1, and su
h that the �nal exponential is a mar-tingale. If we identify � with � T then Z = f� g is the set of state-pri
e densities. Finally let � = �0(both as pro
esses and random variables on FT ). Then � 2 mG+ and Assumption 2.1(a) is satis�ed. Thequantity � plays the role of the unique state pri
e density in the redu
ed 
omplete model (
;G;P). Notethat �tSt is a P-martingale.We 
all � the minimal state pri
e density. This is be
ause � is related to the minimal martingalemeasure of F�ollmer and S
hweizer (1991). The minimal martingale measure 
hanges the drifts of theBrownian motions driving the traded assets to make the dis
ounted pri
es of the traded assets intomartingales. It leaves un
hanged the drifts of any Brownianmotions whi
h are orthogonal to the Brownianmotions driving the traded assets. Hen
e in our settingWt+�t andW?t are Brownian motions under theminimal martingale measure. Note that under Assumption 2.1, � is also the minimal entropy measureand, more generally, the minimal distan
e martingale measure in the sense of Goll and Rus
hendor�(2001).Now we 
onsider the spa
e of admissible strategies. In the absen
e of any 
ontingent 
laim the agentseeks to maximise the expe
ted utility of wealth at time T . The spa
e AG(x) = fX 2 mGT : E [X�℄ � xgof attainable wealths satisfying the budget 
onstraint in the redu
ed model 
an be rewritten asAG(x) = fX : X = XT � C;C 2 mG+T ; Xt = ��1t  x+ Z T0  tdWt! ; �tXt a martingale ;  t 2 mGtg:This is the spa
e of terminal wealths with 
an be generated using a dynami
 trading strategy involvinginvestments in S alone. (Note that dWt = d(�tSt)=(� � �), so that the integral in the above de�nition isa dis
ounted gains from trade.) The dynami
 strategy is adapted to the �ltration generated by S, and
hosen su
h that the dis
ounted gains from trade are a martingale. This rules out doubling strategies.At the �nal time-point some wealth may be dis
arded.It remains to spe
ify the spa
e of admissible wealths A(x). The 
on
ept that we wish to represent isthe idea that an agent should not be allowed to trade on Y , but she should be allowed to use informationabout the 
urrent value (and past history of Y ) in determining how mu
h to invest in the asset S. Thismeans that the integrand driving the gains from trade need not be adapted to Gt, but rather should be



Bounds for Utility Pri
es on Non-traded Assets 13Ft-adapted. Given the representation of AG(x) it is natural to de�neA(x) = fX : X = XT � C;C 2 mF+; Xt = ��1t  x+ Z T0  tdWt! ; �tXt a martingale,  t 2 mFtg:With this representation it follows that Assumption 2.1(b) is satis�ed.Remark 5.1. It is also possible to view the model (8) as a restri
tion of a 
omplete market model inwhi
h both S and Y are traded assets. (The restri
tion is that the 
lass of strategies is redu
ed frominvestments in both risky assets to investments in S alone.) Under market 
ompletion (i.e. if trading inY is allowed) there is a unique state-pri
e density given by � ̂ where  ̂ = �(�� r)=� and the unique fairpri
e of a European 
ontingent 
laim with payo� H(ST ; YT ) at T is given byE [H(ST ; YT )� ̂ ℄:There are no general relationships 
omparing the utility indi�eren
e pri
e p(k) (de�ned in the non-tradedassets model where Y is not traded) with kE [H(ST ; YT )� ̂℄ (the 
omplete market pri
e when Y is traded).For example, if H = YT then E [YT � ̂ ℄ � y whereaslimk#0 p(k)k = E [YT e�rT e��WT��2T=2℄ = ye����T :Thus the marginal utility indi�eren
e pri
e in the non-traded assets model 
an be larger or smaller thanthe unit pri
e under market 
ompletion, depending on the sign of ���. In 
ontrast, the main results ofthis paper refer to the 
omplete market generated by S alone whi
h exists as a subset of the in
ompletemodel.Remark 5.2. The de�nition of admissible wealths we give above is perfe
tly natural, and ideally suitedto providing the proofs of the main results, but is not the only de�nition of an admissible strategy usedin the literature on in
omplete markets. Consider for example the notion of an a

eptable strategy fromDelbaen and S
ha
hermayer (1997). In the 
omplete market setting their de�nition is slightly morerestri
tive than the one used here, in that the spa
e of random variables C whi
h may be dis
arded attime T is not ne
essarily the set of all positive random variables. (The reason for this is that Delbaenand S
ha
hermayer want to be able to 
onsider holding the same strategies long and short.)Essentially the de�nition of an a

eptable strategy in Delbaen and S
ha
hermayer (1997) is that itshould generate a wealth pro
ess whi
h dominates as a pro
ess a maximal admissible strategy wherea maximal admissible strategy is a gains from trade pro
ess whi
h is a true martingale under someequivalent martingale measure. In 
ontrast, the de�nition we give above is related to the idea that ouradmissible strategies dominate gains from trade pro
esses whi
h are true martingales under the minimalmartingale measure. Note that in the 
omplete market setting these two de�nitions are equivalent.
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es on Non-traded Assets 146 Examples6.1 Exponential UtilityConsider the family of utility fun
tions with 
onstant absolute risk aversion. These utilities are de�nedfor negative wealth and take the formU(x) = U�(x) = �1� e��x; x 2 R;with � a positive parameter. For the dynami
s given in Se
tion 5 we �nd that the value fun
tion of theagent is given by V (x) = �1� exp���xerT � �2T2 � ; x 2 R:For this utility U 0(x) = e��x is 
ontinuous and tends to zero for large x. The inverse fun
tion I is givenby I(y) = �(ln y)=�. It follows that Assumption 2.2 is satis�ed and 
(w) = (�1=�)E [�(ln w + ln �)℄ =�e�rT (lnw � rT + �2T=2)=�. We �nd �(x) = exp(��xerT + rT � �2T=2).Suppose the 
laim takes the form g = g(YT ). Then the utility indi�eren
e bid pri
e for k units of the
laim is given in Henderson and Hobson (2002b) or Henderson (2002) asp(k) = � 1�(1� �2) ln E �� exp ��k�(1� �2)g(YT )�� : (9)Note that the pri
e does not depend on x sin
e wealth fa
tors out of this problem. For g a non-negative
laim, and k > 0, it follows from Jensen's inequality that p(k) � kE [�g(YT )℄. Further, on di�erentiationwe �nd D+pjk=0 = E [�g(YT )℄:Hen
e E [�g(YT )℄, whi
h is independent of the risk aversion parameter �, is both an upper bound on thebid pri
e for the 
laim and the marginal bid pri
e.Now suppose that we are interested in the ask pri
e. A formula for the ask pri
e is obtained byrepla
ing k with �k in the right hand side of (9) and multiplying by �1. However if g(YT ) = YT thenthe exponential moment is in�nite, and the utility indi�eren
e ask pri
e is also in�nite. Hen
e, trivially,E [�YT ℄ is a lower bound on the ask pri
e for the 
laim, but it does not represent the marginal ask pri
e.6.2 Power Law UtilityFor a positive risk aversion parameter R 
onsider the utility fun
tionU(x) = UR(x) = x1�R1�R; x � 0; (10)
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es on Non-traded Assets 15with U(x) = �1 for negative x. The value fun
tion for the agent with no endowment is given byV (x) = x1�Re(1�R)rT1�R exp� (1�R)�2T2R � ;with V (x) = �1 for x < 0.The inverse to U 0 is given by I(y) = y�1=R and 
(w) = w�1=RE [�1�(1=R) ℄ = w�1=Re(1�R)rT=R expf(1�R)�2=(2R2)g and for ea
h R, Assumption 2.2 holds.In general there are no 
losed form expressions for options pri
es. However Henderson (2002, Theorem4.2) gives an expansion for the pri
e in powers of the number of options bought. Suppose the wealth xis positive. If the 
laim is units of the non-traded asset, then for k � 0 the pri
e is given asp(k) = kE [�YT ℄� k2e�rT y2x �2R(1� �2)2� e2(�����)=�)T [e�T � 1℄ +O(k3)where � = �2 � 2���R + �2R2 . For a more general 
laim g = g(YT ) the pri
e to leading order is p(k) =kE [�g(YT )℄ + O(k2): In either 
ase the marginal bid pri
e is E [�g(YT )℄ whi
h is independent of the riskaversion parameter R. As for exponential utility the marginal ask pri
e 
an be in�nite for unbounded
laims.Note that if we take R = 1 then we re
over the formul� for logarithmi
 utility.6.3 A 
ounterexample for whi
h the bounds are not attained.Consider an agent with power-law utility fun
tion given by (10) with R < 1. Suppose that this agent haszero initial wealth and r = 0. We 
onsider the bid pri
e of this agent for k units of the 
laim YT whereYT = exp(�ZT + (� � �2=2)T ), where for simpli
ity Z is independent of the Brownian motion drivingthe traded asset.In this 
ase V (0) = 0. If the agent bids any positive amount p for the 
laim then there is a positiveprobability that the agent has negative �nal wealth, and therefore her utility is �1. However, even ifthe agent follows the strategy of investing zero in the traded asset, her value fun
tion isE [U(k exp(�BT + (� � �2=2)T ))℄ = k1�R1�R exp��(1�R)T � �2R(1�R)2 T� > 0:Hen
e there is no solution to the equation V(�p; k) = 0: For this problem the bid pri
e for the 
laim iszero, as is the marginal bid pri
e, whi
h is not equal to h = E [�YT ℄. The utility indi�eren
e pri
e is notde�ned. However in this 
ase V (0�) = �1 so that the hypotheses of the theorems are not satis�ed.
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es on Non-traded Assets 167 `Almost 
omplete' sto
hasti
 volatility modelsIn this se
tion we 
onsider a 
ompletely di�erent situation to the main example of Se
tion 5. Here wesuppose that the triple (B;S; Y ) 
onsists of a bond, a traded asset, and a pro
ess whi
h governs thesto
hasti
 volatility of that asset.Consider the modeldBt = Btrdt; dStSt = �(Yt; t)dW + (r + �t�(Yt; t))dt; dYt = �(Yt; t)dZ + �(Yt; t)dt; (11)where, as before, dZt = �dWt+ �?dW?t . This is a standard sto
hasti
 volatility model, see, for example,Hobson (1998) for a review and a list of popular parametri
 forms for �, � et
. As written, the pro
ess Ydriving the volatility is an autonomous di�usion, but the results below remain valid even if �; �; � and �are arbitrary adapted fun
tions. The drift of the traded asset is (r+�t�(Yt; t)) so we have parameterisedthe dynami
s of S in terms of the Sharpe ratio �t.Again S plays the role of a traded asset. This time Y is asso
iated with the volatility of S ratherthan being a se
ond �nan
ial asset, but again Y is not traded. The state-pri
e densities for the modeltake the form� T = e�rT exp � Z T0 �tdWt � 12 Z T0 �2t dt! exp Z T0  tdW?t � 12 Z T0  2t dt! :The model is in
omplete and there are no unique preferen
e-independent option pri
es. Indeed Frey andSin (1999) show that in general there are no non-trivial bounds on the pri
es of 
all options in this model.In other words the set of pri
es whi
h are 
onsistent with some risk neutral pri
ing measure is the interval(0; S0).In general, in a sto
hasti
 volatility model there is no non-trivial utility-independent bound on theutility indi�eren
e bid pri
e of an option. However, suppose that the Sharpe ratio is deterministi
,�t = �(t). (In the mathemati
al literature, a sto
hasti
 volatility model with this property is said to be`almost 
omplete', see Pham et al (1998).) Then we 
an verify that Assumption 2.1(a) is satis�ed, andunder appropriate modeling assumptions we 
an 
on
lude that Theorems Aa and Ba hold. In parti
ular,the marginal utility indi�eren
e bid pri
e for a 
ontingent 
laimH does not depend on the utility fun
tionof the agent and is given by E [�H ℄, where � = �0T .8 Con
luding RemarksIn an in
omplete market there are no unique, preferen
e independent option pri
es. Instead it is ne
essaryeither to 
hoose a pri
ing measure from the family of equivalent martingale measures, or to model the
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es dire
tly. Utility indi�eren
e option pri
ing is a 
onsistent pri
ing s
heme whi
h redu
esto Bla
k-S
holes option pri
ing in a 
omplete market. Pri
es are non-linear, so that in general agentswill pay a lower unit pri
e for larger quantities of a �nan
ial asset. These larger quantities are asso
iatedwith higher risk.The per
eived disadvantage of the utility based option pri
ing approa
h is that sin
e the pri
e dependson the 
hoi
e of utility fun
tion, it seems unlikely that there are any general pri
ing prin
iples whi
h holduniformly a
ross all utility fun
tions, and for all initial wealths. In our non-traded asset model we haveshown that this is not the 
ase, and that there is a bound for the utility indi�eren
e bid and ask pri
efor the option whi
h is valid for all suÆ
iently regular utility 
hoi
es. Furthermore, this bound also a
tsas the marginal pri
e.If the bid pri
e for every agent is below the ask pri
e for every agent then under no 
ir
umstan
eswould any trading o

ur. Hen
e if all agents have zero initial endowment of Y , and all agents havethe same physi
al measure P, then no trading in a 
laim with payo� H(Y ) would o

ur, even if theagents have di�erent initial wealths or utility fun
tions. Trading only o

urs if the agents have initialendowments of non-traded asset, or if they have di�erent expe
tations of Y .The results of this paper should be 
ontrasted with the results of Hubalek and S
ha
hermayer (2001).They 
onsider the spe
i�
 example we introdu
ed in Se
tion 5, and 
on
lude that for a 
all option onthe non-traded asset, every positive pri
e is 
onsistent with some equivalent martingale measure. Thereason for this is that although a 
hange of measure leaves the dis
ounted pri
e of a traded asset as amartingale, the drift on the non-traded asset is undetermined: there are martingale measures for whi
hthe non-traded asset has arbitrarily large drift (positive or negative). As a 
onsequen
e the expe
tedpayo� of the 
all option 
an be made arbitrarily large or small with a judi
ious 
hoi
e of pri
ing measure,and no-arbitrage arguments give only trivial bounds on the pri
e of a 
ontingent 
laim.We rea
h an opposite 
on
lusion: for an agent who seeks to maximise expe
ted utility, the marginal bidpri
e for a 
laim on the non-traded asset is uniquely spe
i�ed. One reason why we get this uniqueness isthat we assume that the agent has zero initial endowment of the non-traded asset. If we were to relax thisassumption then the uniqueness would be lost. Note that there is no role in the no-arbitrage argumentsof Hubalek and S
ha
hermayer for the agent's initial endowment of the non-traded asset, and hen
e theymust obtain wider bounds. However, when the assumption of zero initial endowment is appropriate, our
on
lusion is very strong, and the only 
andidate for the marginal utility indi�eren
e pri
e of the 
laimis the dis
ounted expe
ted value under the minimal martingale measure.
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