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Abstract

Peskir, (and also Meilijson and Ob lój) considered the following optimal stopping problem: find,

for an increasing function F and a positive function λ,

sup
τ

E

[

F (Sτ ) −
∫ τ

0

λ(Bu)du

]

, (1)

where S is the maximum process of Brownian motion. In this article we are interested in the

converse: find, for an increasing function F and a suitable function λ,

sup
τ

E

[
∫ τ

0

λ(Bu)du − F (Sτ )

]

.

In the non-degenerate cases the optimal stopping rule is of the form stop the first time that St

reaches γ or Bt falls below g(St) where γ, a positive constant, and g, a negative function, are both

to be chosen. The optimal function g is characterised as the solution to non-linear differential

equation, which is very similar to that used by Peskir to characterise the solution to (1), however

we derive this differential equation in a completely different way.

1 Introduction

Given a one-dimensional time-homogeneous diffusion X , Peskir [9] (see also Meilijson [5] and

Ob lój [6]) studies the problem of finding

sup
τ

E

[

F (SX
τ ) −

∫ τ

0

λ(Xs)ds

]

(2)

where SX
u = sups≤u{Xs}, F is an increasing reward function, λ is a positive cost function, and

the supremum is taken over a suitable class of stopping times for which the expected value is well

defined. By a change of scale and a time-change, the problem can be reduced to the Brownian

case X ≡ B, whence we write S as shorthand for SB . Peskir finds that the optimal stopping rule
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is the first exit time of the bivariate process (Bt, St) from a region, and that this region can be

characterised by its boundary function which is the solution to a first-order ordinary differential

equation. The optimal stopping rule is a member of the Azéma-Yor class of stopping times (see

Azéma-Yor [1]). This is not unexpected since amongst the stopping rules for which the law of Bτ

is fixed, the Azéma-Yor stopping rule maximises (the law of) the maximum.

In this article we consider a converse to (2): we wish to find, for F an increasing continuous

function,

sup
τ

E

[
∫ τ

0

λ(Bs)ds − F (Sτ )

]

. (3)

(We show in Section 4.2 how the solution to this problem can be extended to the diffusion case.) If

λ is non-positive then clearly τ = 0 is optimal. Conversely, if λ is non-negative then it would never

be optimal to stop when Bt < St, and the optimal stopping rule, if any, would be to set τ equal to

the first hitting time of some judiciously chosen positive level. Instead, to get an interesting class

of non-degenerate problems we assume that λ is positive on the positive half-line, and negative

of the negative half-line. Clearly one case of interest is when λ is anti-symmetric. At first sight,

given that there is an additional cost associated with the maximum process, it looks as if the

anti-symmetry must imply that the optimal stopping rule must be to stop instantly — however

this need not always be the case, and the option to stop can lead to positive value.

In solving (2) for X = B and with F (s) = s and λ > 0, Peskir finds that the optimising

stopping rule is of the form τ = infu{Bu ≤ g(Su)} for some increasing function g which solves the

ordinary differential equation
d

ds
g(s) =

1

2λ(g(s))(s − g(s))
. (4)

It remains to determine the initial point g(0). Peskir determines this point by the maximality

principle, namely that the optimal stopping rule is characterised by the largest g(0) such that

g(s) < s for all s. As Peskir observes, the maximality principle is a convenient reformulation of

the notion that the value function is associated with the smallest superharmonic majorant of the

payoff.

In contrast, our solution of (3) takes the form τ = infu{Bu ≤ g(Su) or Su ≥ γ} for some

negative function g and non-negative γ. Here g solves the same differential equation (4), except

that now g is decreasing, since λ is negative on the negative real line. Again, it is necessary to

make an appropriate choice from the family of solutions to (4). On this occasion each solution

is associated with a level γ at which stopping occurs at the maximum, and the problem is to

choose the optimal γ. Whereas the stopping rules for the problem (2) can be identified with the

Azéma-Yor solution to the Skorokhod embedding problem, our solution to (3) can be related to

the Perkins [8] solution of the Skorokhod problem, in the sense that as for the Perkins embedding

the optimal stopping rule involves stopping only when the process reaches a new maximum, or a

new minimum. However the parallel is imprecise, and not all Perkins-style embeddings can arise

from solutions to (3).

Our method of solution and general approach is different to that in Peskir [9]. Peskir writes

down the Hamilton-Jacobi-Bellman equation for the value function and invokes the principle of

smooth fit to derive the equation (4) which characterises the optimal stopping rule. The proof

is completed via a verification argument. Instead, we use excursion theoretic arguments to write

down the value function for a class of stopping rules, we then find the maximum value via calculus
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of variations. Again this gives us a candidate optimal stopping strategy. Our arguments could also

be applied to the original problem (2) and vice-versa. A third approach would be to use duality

and Azéma martingales.

The first solution of a problem of the type (2) was given by Dubins and Schwarz [3] in the case

X ≡ B, F (s) = s and λ(x) = λ > 0. This was extended to Bessel processes in Dubins et al [4],

and to more general diffusions by Peskir [9]. Peskir restricts attention to the case F (s) = s, and

continuous non-negative functions λ, but his results extend to more general increasing continuous

functions F by a suitable transformation. Meilijson [5] treats the case of drifting Brownian motion

and fixed positive costs λ > 0, but allows for discontinuous functions F . Ob lój [6] combines and

extends these two frameworks to give a solution for a general increasing reward function F and

fairly general cost functions λ.

The remainder of the paper is organised as follows. In the next section we discuss the intuition

behind the choice of the problem, and the form of the optimal solution. We show that it is possible

to write down the value function for a certain class of strategies, and that it is possible to find the

form of the optimal solution by considering a perturbation about this optimum. In Section 3 we

verify that the candidate solution discovered in this way is indeed optimal, and in the final Section

we give some examples and extensions.

2 Calculus of variations and the optimal stopping rule.

In this section we describe a class of stopping rules, and give the intuition as to why the optimal

rule should belong to this class. For each element of this class we can write down the associated

value function, and then using the calculus of variations we can find the optimal element of the

class.

Our problem is to find

sup
τ

E

[
∫ τ

0

λ(Bs)ds − F (Sτ )

]

(5)

for suitable functions λ and F . Alternatively we can consider the objective function in (3) but

with the supremum replaced by an infimum.

Assumption 2.1 λ is a bounded measurable function such that xλ(x) ≥ 0, such that λ(x) < 0

for x < 0 and such that
∫ 0

x yλ(y)dy increases to infinity as x tends to minus infinity. F is a

continuously differentiable, increasing function F (s) =
∫ s

0
f(y)dy, where f is bounded.

Write r(x) = λ+(x) and c(x) = λ−(x) and define Rt =
∫ t

0 λ(Bs)I{Bs>0}ds =
∫ t

0 r(Bs)ds

and Ct = −
∫ t

0
λ(Bs)I{Bs<0}ds =

∫ t

0
c(Bs)ds. Then Rt and Ct are increasing (reward and cost)

functions and the problem becomes to find

sup
τ :E[Cτ+F (Sτ )]<∞

E [Rτ − Cτ − F (Sτ )] , (6)

where we restrict attention to stopping times τ such that E[Cτ + F (Sτ )] < ∞ to ensure that the

expression is well defined.

If 0 < Bt < St then Ru−Cu−F (Su) is non-decreasing, at least until B first hits zero or reaches

its current maximum. For this reason it is never optimal to stop if B is positive but strictly below

its maximum (unless r is identically zero on the interval (0, St)). Now suppose Bt = St. If we
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Bt
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g(s)Bτg,γ

s

Figure 1: Representation of the general stopping rule τ g,γ .

continue then the risk that the maximum will increase is counterbalanced by the fact that there is

a non-negative reward from continuing. Hence, depending on the current value of B ≡ S, and also

on λ it may or may not be optimal to stop. By the strong Markov property, at such a moment it

is optimal to stop with probability zero or one, and the optimal stopping rule never depends on

the path-history to date except through the current maximum. Thus, for B > 0 it is optimal to

stop the first time B hits some level γ, where γ, possibly infinite, is to be determined.

Now suppose B < 0. Then λ < 0, so in the short term Ru − Cu − F (Su) is decreasing. This

suggests that stopping immediately may be advantageous. The reason why this may not be optimal

is that in the future B will return to the positive half-space where the rewards are positive and the

functional is increasing, at least until B reaches a new maximum. When B < 0, the expected cost

until B hits 0 is decreasing in the current value, and hence it is clear that for fixed S the optimal

strategy must be of the form: stop if Bt < g for some threshold g ≡ g(St). Finally, if we compare

the location of this threshold for different values of the current maximum, we see that when S is

large, the costs associated with expected increases in S will be small, and so there is less incentive

to stop. In particular g should be a decreasing function of S.

The above discussion is motivation to consider stopping rules of the form

τ(g, γ) ≡ τg,γ = inf{u : Bu ≤ g(Su)} ∧ Hγ . (7)

where γ > 0, g is a decreasing negative function and H denotes the first hitting time: Hs = inf{u :

Bu = s}. Let W g,γ = E[
∫ τ(g,γ)

0 λ(Bs)ds − F (Sτ(g,γ))], and define

V g,γ(x, s) = E
x,s

[

∫ τ(g,γ)

0

λ(Bs)ds − F (Sτ(g,γ))

]

, (8)

where the superscript (x, s) is the initial value of the two-dimensional Markov process (Bu, Su).

Let T be the set of all stopping times for which E[Cτ + F (Sτ )] < ∞. For s > 0 let Ts be the

subset of T for which τ ≤ Hs. Finally, let Ss be the subset of Ts consisting of those stopping times

for which (τ < Hs) ≡ (Bτ < 0). Thus for τ ∈ Ss stopping is only allowed when the Brownian

motion takes a negative value, or when the Brownian motion first hits s.
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For fixed positive γ we begin by finding the optimal rule in (5) when the infimum is calculated

over stopping rules which are elements of Sγ . We then show how to choose the best γ = γ∗, and

extend the result to the set of admissible stopping rules Tγ∗ . Finally, we show that this stopping

rules leads to a solution which is globally optimal in T .

2.1 The value function for a stopping rule of the given form.

Suppose g and γ are fixed, and define Γg(s) =
∫ s

0 dz/(z − g(z)). In this section, since g is fixed,

we abbreviate Γg to Γ.

Lemma 2.2 (i) For 0 < x < γ, P(τ(g, γ) > Hx) = e−Γ(x).

(ii)

W g,γ =

∫ γ

0

e−Γ(y) dy

y − g(y)

{

2

∫ y

g(y)

λ(z)(z − g(y))dz − F (y)

}

− F (γ)e−Γ(γ). (9)

(iii) For s ≤ γ and x ≤ g(s), we have V g,γ(x, s) = −F (s). For s ≤ γ and x > g(s),

V g,γ(x, s) =
(x − g(s))

s − g(s)
eΓ(s)

[

∫ γ

s

e−Γ(y) dy

y − g(y)

{

2

∫ y

g(y)

λ(z)(z − g(y))dz − F (y)

}

− F (γ)e−Γ(γ)

]

−F (s)(s − x)

s − g(s)
+ 2

∫ s

g(s)

λ(y)
(x ∧ y − g(s))(s − x ∨ y)

s − g(s)
dy.

Proof: (i) By Lévy’s identification of the pair (Lt, |Bt|) with (St, St−Bt) and the fact that the

excursions of Brownian motion form a Poisson process, we deduce that the excursions of Brownian

motion down below the maximum also form a Poisson process; the proof is completed using the

fact that the local-time rate of excursions which hit ±a is a−1. See Rogers [12] or Rogers and

Williams [13, VI.42-59] for further details.

(ii) From the above representation we have

E[F (Sτ(g,γ))] =

∫ γ

0

P(τ(g, γ) > Hs)F (s)P(Sτ(g,γ) ∈ ds|τ(g, γ) > Hs) + F (γ)P(τ(g, γ) ≥ Hγ)

=

∫ γ

0

e−Γ(s)F (s)
ds

s − g(s)
+ F (γ)e−Γ(γ)

Also, if L(y, t) is the local time at y at time t of Brownian motion, then for y, w ∈ (x, z), and

Brownian motion started at w

E
w[L(y, Hx ∧ Hz)] = 2

(z − w ∨ y)(w ∧ y − x)

z − x
.

Then, for y ≤ z

E
z [L(y, Hx ∧ Hz+∆) − L(y, Hx ∧ Hz)] = 2∆

y − x

z − x
+ O(∆2).

Taking x = g(z) and integrating against z we have

E[L(y, τ(g, γ))] =

∫ γ

0

P(τ(g, γ) > Hs)E[L(y, Hg(s) ∧ Hs+ds) − L(y, Hg(s) ∧ Hs)]

=

∫ γ

0

e−Γ(s)2
y − g(s)

s − g(s)
I{g(s)<y<s}ds
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Finally, by the representation of local time as an occupation measure, we have that (Revuz and

Yor [11, VI.1.6]), E[
∫ τ(g,γ)

0
λ(Bs)ds] =

∫

R
λ(y)E[L(y, τ(g, γ))].

(iii) A straightforward extension of part (ii) gives that for s ≤ γ,

E
s,s[F (Sτ(g,γ))] =

∫ γ

s

P(τg,γ > Hw|τg,γ > Hs)F (w)P(Sτ(g,γ) ∈ dw|τg,γ > Hw)

+F (γ)P(τg,γ ≥ Hγ |τg,γ > Hs)

=

∫ γ

s

e−(Γ(w)−Γ(s))F (w)
dw

w − g(w)
+ F (γ)e−(Γ(γ)−Γ(s)).

Similarly

E
s,s[L(y, τ(g, γ))] = eΓ(s)

∫ γ

s

e−Γ(w)2
y − g(w)

w − g(w)
I{g(w)<y<w}dw

and we have

V g,γ(s, s) = eΓ(s)

[

∫ γ

s

e−Γ(w)2dw

∫ w

g(w)

λ(y)
y − g(w)

w − g(w)
dy −

∫ γ

s

e−Γ(w)F (w)
dw

w − g(w)
− F (γ)e−Γ(γ)

]

.

The expression in the statement of the Lemma follows from the identity

V g,γ(x, s) =
(x − g(s))

s − g(s)
V g,γ(s, s) +

(s − x)

s − g(s)
V g,γ(g(s), s) − E

x,s

[

∫ Hs∧Hg(s)

0

λ(Bu)du

]

.

�

We collect some important properties of V which will be used in the sequel. These properties

are easily verified by calculation.

Lemma 2.3 For g(s) < x < s and s < γ, V g,γ is such that: (i) V g,γ(γ, γ) = −F (γ), (ii)

V g,γ(g(s), s) = −F (s), (iii) (∂/∂s)V g,γ(s, s) = 0, (iv) (∂2/∂x2)V g,γ(x, s) = −2λ(x).

2.2 Optimisation via calculus of variations.

For fixed γ, and for stopping times in Sγ , we want to deduce the optimal form of the function g via

calculus of variations. This optimum will depend on γ, so that we should (and later shall) write

g∗γ for the optimal function. However, since γ is fixed for the present we suppress the subscript.

Suppose that the optimal g∗ exists, and for a general g write g(s) = g∗(s) + εη(s). If g∗ ≡ g∗γ
is optimal , then W g∗+εη,γ − W g∗,γ ≤ 0 and by considering the first order term in an expansion

with respect to ε we have

0 =

∫ γ

0

Λ(s)

[

−
∫ s

0

η(u)du

(u − g∗(u))2
+

η(s)

(s − g∗(s))
−

2η(s)
∫ s

g∗(s)
λ(y)dy

2
∫ s

g∗(s)
λ(y)(y − g∗(s))dy − F (s)

]

ds

+F (γ)

∫ γ

0

η(u)du

(u − g∗(u))2
e−Γ∗(γ) (10)

where Γ∗ is shorthand for Γg∗

and

Λ(s) = e−Γ∗(s) 1

s − g∗(s)

{

2

∫ s

g∗(s)

λ(y)(y − g∗(s))dy − F (s)

}

.
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Define Ξ(s) =
∫ s

0 (η(u)/(u − g∗(u))2)du, so that η(s) = Ξ′(s)(s − g∗(s))2. Then (10) can be

rewritten as

0 =

∫ γ

0

Λ(s)Ξ(s)ds − F (γ)e−Γ∗(γ)Ξ(γ) +

∫ γ

0

Ξ′(s)e−Γ∗(s)

(

F (s) + 2

∫ s

g∗(s)

λ(y)(s − y)dy

)

ds.

Integrating this last term by parts

0 =

[

Ξ(s)e−Γ∗(s)

(

F (s) + 2

∫ s

g∗(s)

λ(y)(s − y)dy

)]γ

0

− F (γ)Ξ(γ)e−Γ∗(γ)

+

∫ γ

0

Ξ(s)ds

[

Λ(s) − d

ds

(

e−Γ∗(s)

(

F (s) + 2

∫ s

g∗(s)

λ(y)(s − y)dy

))]

.

Since the above equality must hold for all η we have that Ξ(s) and Ξ(γ) are arbitrary, and it follows

that we must have both
∫ γ

g∗(γ)

λ(y)(γ − y)dy = 0 (11)

and

Λ(s) − d

ds

(

e−Γ∗(s)

(

F (s) + 2

∫ s

g∗(s)

λ(y)(s − y)dy

))

= 0,

this second condition being equivalent to

d

ds
g∗(s) =

f(s)

2λ(g∗(s))(s − g∗(s))
=

−f(s)

2c(g∗(s))(s − g∗(s))
. (12)

Thus, for each fixed γ we have a conjectured optimal stopping time amongst the class of rules of

the form (7), namely the associated function g∗ must satisfy the ordinary differential equation (12)

subject to the terminal value condition (11).

Assumption 2.4 Assume that on each subinterval I of (0,∞), c is bounded below by a positive

constant cI . Assume further that the positive functions f and c are sufficiently regular that for

each K > 0, and for every starting point (s0, g(s0)) ∈ [0, K] × R
− (where by convention 0 ∈ R

−)

the ordinary differential equation (12) has a unique non-explosive solution defined in the domain

0 ≤ s ≤ K and g∗ ≤ 0, and that such solutions are continuous in the starting point.

Let h be the inverse function to g∗. Then h solves

d

dx
h(x) =

−2c(x)(h(x) − x)

f(h(x))
. (13)

If F (s) = s, so that f ≡ 1 then we can write down solutions to (13). We have

h(x) = h(β)e−2
R

x

β
c(z)dz +

∫ x

β

2yc(y)e−2
R

x

y
c(z)dzdy,

= x + (h(β) − β)e−2
R

x

β
c(z)dz −

∫ x

β

e−2
R

x

y
c(z)dzdy. (14)

It is clear that h exists, and is a decreasing function (provided we only consider the domain

h > 0 > x) which increases to infinity as x tends to minus infinity under our assumption that
∫ 0

x |y|c(y)dy ↑ ∞. Hence g∗ is also well defined for all positive s, as long as g∗ < 0.
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Figure 2: Representation of the function α and some of the family of solu-

tions g∗γ .

3 Constructing the optimal solutions.

In this section we use the intuition and the candidate stopping rule constructed in the previous

section to find the optimal stopping rule. The proof proceeds by considering the problem (6) over

increasing families of stopping rules.

3.1 Optimality for τ ∈ Sγ.

For s ≤ γ define α(s) to be the solution in R
− to

∫ s

α(s)

λ(y)(s − y)dy = 0. (15)

The rationale behind the definition of α is that E
α(s),s

∫ Hα(s)−∆∧Hs

0 λ(Bu)du = O(∆2), so that to

first order the expected reward minus expected cost at (α, s) from continuing until the Brownian

motion reaches α − ∆ or s is zero.

It follows from the Assumption 2.1 that α exists and is unique. Further, provided
∫ s

0
r(y)dy > 0,

s

∫ s

0

r(y)dy >

∫ s

0

(s − y)r(y)dy =

∫ 0

α(s)

c(y)(s − y)dy > s

∫ 0

α(s)

c(y)dy

and hence it follows from differentiating (15) that α is decreasing.

Lemma 3.1 Let g∗ solve (12) on s ≤ γ subject to the terminal value condition g∗(γ) = α(γ).

Hence (11) is satisfied. Suppose that this solution has g∗(0) < 0.

Then, for all s ≤ γ, (∂/∂x)V g∗,γ(g∗(s), s) = 0, and for s ≤ γ and x ≤ 0, V g∗,γ(x, s) ≥ −F (s).

Further, W g∗,γ = −2
∫ 0

g∗(0) yc(y)dy > 0 and V g∗,γ(s, s) = 2
∫ α(s)

g∗(s)(s − y)c(y)dy − F (s).

Proof:

For the duration of the proof we write V for V g∗,γ . We have that

∂V

∂x
=

F (s)

s − g∗(s)
− 2

s − g∗(s)

∫ x

g∗(s)

λ(y)(y − g∗(s))dy +
2

s − g∗(s)

∫ s

x

λ(y)(s − y)dy +
V (s, s)

s − g∗(s)
.
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In particular, using the fact that V (γ, γ) = −F (γ) and g∗(γ) = α(γ),

∂V

∂x

∣

∣

∣

∣

α(γ),γ

=
2

γ − α(γ)

∫ γ

g∗(γ)

λ(y)(s − y)dy = 0.

Now define

U(s) =
∂V

∂x

∣

∣

∣

∣

g∗(s),s

=
F (s)

s − g∗(s)
+

2

s − g∗(s)

∫ s

g∗(s)

λ(y)(s − y)dy +
V (s, s)

s − g∗(s)
. (16)

Then U(γ) = 0 and

dU

ds
=

f(s)

s − g∗(s)
+

dg∗

ds

(

2c(g∗(s)) +
U(s)

s − g∗(s)

)

=
dg∗

ds

U(s)

s − g∗(s)
.

It follows that U(s) ≡ 0, for s ≥ 0.

From Lemma 2.3 we have that V is convex in x on R
−. Given the derivative condition at g∗(s)

it follows that V is increasing in x on (g∗(s), 0) and hence V (x, s) ≥ −F (s) for x < 0. Finally,

from (16)

0 = (s − g∗(s))
∂V

∂x

∣

∣

∣

∣

g∗(s),s

= F (s) + V (s, s) + 2

∫ s

g∗(s)

λ(y)(s − y)dy

so that, using (15) and the fact that λ(x) = −c(x) for x < 0, V (s, s) = 2
∫ α(s)

g∗(s) c(y)(s−y)dy−F (s).

The expression for W g∗,γ follows on setting s = 0. �

Remark 3.2 The condition (∂/∂x)V g∗,γ(g∗(s), s) = 0 is the smooth fit condition, and arises from

the optimality property of the boundary g.

Proposition 3.3 Suppose that g∗ defined via the differential equation (12), and subject to g∗(γ) =

α(γ), is such that g∗(0) < 0. Define Mt = V g∗,γ(Bt∧Hγ
, St∧Hγ

) +
∫ t∧Hγ

0
λ(Bs)ds. Then Mt is a

supermartingale, and a martingale for t ≤ τ g∗,γ.

Further, for all τ ∈ Sγ

W g∗,γ ≥ E

[
∫ τ

0

λ(Bs)ds − F (Sτ )

]

,

with equality for τ = τ(g∗, γ).

Proof:

Let

Nt = V g∗,γ(Bt∧Hγ
, St∧Hγ

) +

∫ t∧Hγ

0

λ(Bu)I{g∗(Su)≤Bu≤Su}du.

Then Mt = Nt −
∫ t∧Hγ

0
c(Bu)I{Bu<g∗(Su)}du and the supermartingale property for M will follow if

Nt is a martingale. But it is easy to see from Itô’s Lemma and the properties of V g∗,γ derived in

Lemmas 2.3 and 3.1 that Nt is a local martingale. The true martingale property follows from the

fact that V g∗,γ is bounded and, for example,

Rt∧Hγ
=

∫ t∧Hγ

0

r(Bs)ds ≤
∫ γ

0

r(y)L(y, Hγ)dy.

This last quantity has finite expectation since r is bounded.

9



Using the supermartingale property we have that for any τ ≤ Hγ ,

W g∗,γ = V g∗,γ(0, 0) = M0 ≥ E[Mτ ] = E

[

V (Bτ , Sτ ) +

∫ τ

0

λ(Bu)du

]

≥ E [Rτ − Cτ − F (Sτ )] .

Here we use the fact that V g∗,γ(x, s) ≥ −F (s) for x ≤ 0 and s ≤ γ. In particular, the validity of

the proof relies on the fact that we are searching over τ ∈ Sγ . �

In summary, provided we restrict attention to τ such that τ ≤ Hγ and such that on τ < Hγ

we must have Bτ < 0 then

sup
τ∈Sγ

E [Rτ − Cτ − F (Sτ )] = W g∗,γ .

However, in general τ(g∗
γ , γ) is not optimal for τ ∈ Tγ because it may be optimal to choose to stop

at some earlier moment when Bt = St. Our task is to choose the optimal γ and then to show that

for this γ the restriction to stopping times with Bτ < 0 on τ < Hγ is redundant.

3.2 Optimality for τ ∈ Tγ∗.

Fix K with 0 < K < ∞. (Later we will let K ↑ ∞, but the case K < ∞ is of independent

interest in the study of transient diffusions, see Section 4.2.) The immediate goal is to consider

the maximisation problem (5) over stopping times τ ∈ TK , firstly by choosing a key level γ∗ and

proving optimality over Tγ∗ , and then by extending the result to TK .

Let GK = {γ ≤ K : g∗
γ(0) ≤ 0}. Note that 0 ∈ GK so that GK is non-empty. Let γ∗

K =

arg min{g∗
γ(0); γ ≤ K}. More precisely, to cover the case where the arg min is not uniquely defined

we set

γ∗ ≡ γ∗
K = sup{γ ≤ K : g∗

γ(0) = min
ξ≤K

g∗ξ (0)}. (17)

If γ∗ = 0 then τ = 0 is the only element of T0 and therefore optimal. The choice of γ∗ and

subsequently g∗
γ∗ plays the same role as the choice of a particular function g∗ via the maximality

principle in Peskir [9].

We write g∗
∗ as shorthand for g∗

γ∗

K
. Until further notice, since K is fixed we omit it from the

notation. Note that to date g∗
γ(s) has been defined on (s ≤ γ), but we can extend the definition

to (γ < s ≤ K), by assuming that g∗
γ continues to satisfy (12) on (γ, K).

Lemma 3.4 For 0 ≤ s ≤ K, g∗
∗(s) ≤ α(s).

Proof:

It follows from Assumption 2.4 that if both g∗
γ1

(s) and g∗γ2
(s) solve (12) and g∗

γ1
(s) < g∗γ2

(s) for

some s, then g∗
γ1

(s) < g∗γ1
(s) for all s.

Now suppose g∗
∗(s) > α(s) for some s. Then g∗

s (s) = α(s) < g∗
∗(s) and thus g∗

s (0) < g∗∗(0),

contradicting the choice of γ∗. �

Lemma 3.5 For s ≤ γ∗ we have V g∗

∗
,γ∗

(x, s) ≥ −F (s).

Proof:

By the concavity in x of V g,γ(x, s) for 0 < x < s (Lemma 2.3) and the fact that V g∗,γ(0, s) ≥ −F (s)

(Lemma 3.1) it is sufficient to show that V g∗

∗
,γ∗

(s, s) ≥ −F (s).

10



PSfrag replacements

St

Bt

γ∗

g∗

∗
(s)

g∗

∗
(0) g∗

γ(0)

γ

K

α(γ)

Figure 3: The optimal choice of γ∗ minimises g∗γ(0).

But, again by Lemma 3.1,

V g∗

∗
,γ∗

(s, s) = 2

∫ α(s)

g∗

∗
(s)

c(y)(s − y)dy − F (s)

and the integral in this expression is positive by Lemma 3.4. �

Corollary 3.6 τg∗

γ∗ ,γ∗

is optimal in Tγ∗ and

sup
τ∈Tγ∗

E

[
∫ τ

0

λ(Bs)ds − F (Sτ )

]

= W g∗

∗
,γ∗

.

Proof:

The proof proceeds exactly as in the proof of Proposition 3.3, except that now V g∗

∗
,γ∗

(x, s) ≥ −F (s)

for all x ≤ s, so that W g∗

∗
,γ∗ ≥ E[Rτ − Cτ − F (Sτ )] for all τ ≤ Hγ∗ .

�

3.3 Optimality for τ ∈ TK.

The extension to TK relies on the following existence lemma concerning the functions α and g, the

proof of which is delayed until the appendix.

Lemma 3.7 Suppose γ∗ < K. Then there exists a positive function r̃ defined on [0, K] such that

r̃ ≥ r and r̃(x) = r(x) for x ≤ γ∗ and such that α̃ defined via

∫ s

0

r̃(y)(s − y)dy =

∫ 0

α̃(s)

c(y)(s − y)dy

is such that g∗
∗(s) ≤ α̃(s) ≤ α(s) and g∗

∗(K) = α̃(K).

11
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Theorem 3.8 τ(g∗
∗ , γ∗) is optimal in TK and

sup
τ∈TK

E

[
∫ τ

0

λ(Bs)ds − F (Sτ )

]

= W g∗

∗
,γ∗

.

Proof:

Let r̃ be as given in Lemma 3.7 and define R̃t =
∫ t

0
r̃(Bu)du and

W̃ = sup
τ∈TK

E[R̃τ − Cτ − F (Sτ )].

Observe that using r̃ in place of r changes the definition of α, and hence changes the boundary

conditions on the functions g∗
γ , but leaves the differential equation (12) unchanged.

Then, with γ̃∗ denoting the optimal choice of γ for the modified problem and with g̃∗
∗ the

associated stopping boundary, γ̃∗ = K and g̃∗
∗(0) = g̃∗

K(0) = g̃∗
γ∗(0) = g∗γ∗(0) = g∗∗(0). In particular,

by Corollary 3.6

W̃ = −2

∫ 0

g̃∗

∗
(0)

yc(y)dy = −2

∫ 0

g∗

∗
(0)

yc(y)dy = W g∗

∗
,γ

and

W g∗

∗
,γ = W̃ = sup

τ∈TK

E[R̃τ − Cτ − Sτ ] ≥ sup
τ∈TK

E[Rτ − Cτ − Sτ ] ≥ sup
τ∈T ∗

γ

E[Rτ − Cτ − Sτ ] = W g∗

∗
,γ

and the theorem is proved. �

3.4 Optimality for τ ∈ T .

Theorem 3.9 Let γ∗
∞ = limK↑∞ γ∗

K , and let g∗
γ∗

∞

(0) = limK↑∞ g∗γ∗

K
(0). Then

sup
τ∈T

E[Rτ − Cτ − F (Sτ )] = −2

∫ 0

g∗

γ∗

∞

(0)

yc(y)dy.

Furthermore, if g∗
γ∗

∞

(0) > −∞ then τ
g∗

γ∗

∞

,γ∗

∞ is the optimal stopping rule.

12



Observe that, even if γ∗
∞ = ∞, it may be the case that g∗

γ∗

∞

(0) > −∞, whence g∗
γ∗

∞

can be

defined as the initial value problem solution to (12).

Proof:

For τ ∈ T , let τK = τ ∧ HK . Then, by monotone convergence, and the definition of T

E[Rτ − Cτ − F (Sτ )] = lim
K↑∞

E[RτK
− CτK

− F (SτK
)]

≤ lim
K↑∞

sup
τ∈TK

E[Rτ − Cτ − F (Sτ )]

= − lim
K↑∞

2

∫ 0

g∗

γ∗

K
(0)

yc(y)dy

= −2

∫ 0

g∗

γ∗

∞

(0)

yc(y)dy.

If γ∗
∞ < ∞, then W

g∗

γ∗

∞

,γ∗

∞ = 2
∫ 0

g∗

γ∗

∞

(0)
yc(y)dy so that τ(g∗

γ∗

∞

, γ∗
∞) is optimal.

Otherwise it is possible to find a sequence γ∗
K increasing to infinity such that g∗

γ∗

K
(0) ↓ g∗γ∗

∞

(0)

and then, with τ∗
K = τ(g∗γ∗

K
, γ∗

K),

E[Rτ∗

K
− Cτ∗

K
− F (Sτ∗

K
)] → 2

∫ 0

g∗

γ∗

∞

(0)

yc(y)dy.

�

4 Examples and Extensions

4.1 Examples

We give two examples. In the first example the optimal stopping rule is to stop immediately if

τ is constrained to satisfy τ ≤ HK for sufficiently small K. If there is no constraint then even

though the reward/cost function is antisymmetric, stopping rules can be designed for which the

value function is arbitrarily large.

For the second example, the optimal stopping problem (6) has a finite well-defined solution,

even when the stopping times are unconstrained.

Example 4.1 Suppose F (s) = s and λ(x) = ξsgn(x) with ξ > 0.

It is easy to see that α(s) = −(
√

2−1)s. Further, using (13) the family of functions g∗
γ are given the

inverses of the functions h(x) = h(0)e−2ξx + {e−2ξx − (1 − 2ξx)}/2ξ restricted to the appropriate

domain h ≥ 0, x ≤ 0.

Suppose we consider stopping rules τ ≤ HK for K < ∞. Let ẑ be the positive solution of

e2(
√

2−1)z − 2
√

2z − 1 = 0. (Then y = ẑ/ξ is the y-coordinate of the intersection in the top-left

quadrant of the plane between the functions h0(x) = {e−2ξx−(1−2ξx)}/2ξ and β(x) = −(
√

2+1)x.

Here β is the inverse to α. See Figure 5.) If K ≥ ẑ/ξ, then τ = τ g∗

K ,K is optimal. Conversely,

if K ≤ ẑ/ξ, we have that GK = {0} and τ = 0 is optimal. The optimality of τ ≡ 0 over TK is

guaranteed by Theorem 3.8.
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Figure 5: Schematic representation of the functions β(x) and the family

h(x) for Example 4.1. Also shown is the point of intersection between β(x)

and h0(x).

Example 4.2 Suppose F (s) = s and c(x) = 1/(1 + |x|). Let b(y) = (|y|3 + |y|)/3 for y < 0. Then

b(y) > 0. Let a : R
+ → R

− be the inverse to b. Finally, set

r(x) =
3

(1 + 3a(x)2)(1 − a(x))
+

3

(1 + 3a(x)2)

d

da

a(a2 + 4)

(1 − a)(1 + 3a2)

∣

∣

∣

∣

a=a(x)

The choice of c has been made so that the family of solutions h to (13) has a simple form. At the

same time we choose a simple form for β, the inverse to α. In this case β is chosen to equal b.

Finally, we use c and β to identify the reward function r using the identity

∫ β(x)

0

r(y)(β(x) − y)dy =

∫ 0

x

c(y)(β(x) − y)dy.

In this case we have h(x) = x2 + (1−x)2h(0), and α(s) = a(s). We can now solve for g∗
∗ by finding

the initial value h0 < 0 for which the curve h0(x) = x2+(1−x)2h0 just touches b(x) = −(x+x3)/3.

See Figure 6.

4.2 Extension to Diffusion Processes

Suppose Xt is a regular time-homogeneous diffusion, and consider the problem of finding

sup
τ

E

[
∫ τ

0

λX(Xu)du − F X(SX
τ )

]

. (18)

Then, as we shall show, it is possible to reduce the problem to one concerning Brownian motion.

The idea has been used many times before, including in the Skorokhod embedding context by

Azéma and Yor [1], Pedersen and Peskir [7] and Cox and Hobson [2].

Let Ψ be the scale function of X (chosen to be increasing and to satisfy Ψ(X0) = 0) so that

Yt = Ψ(Xt) is a local martingale, and indeed a time-change of Brownian motion, perhaps on a

14
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Example 4.2.

suitably enriched probability space. Then dYt = σ(Yt)dWt and Yt = BAt
for an increasing process

At =
∫ t

0
σ(Yu)2du.

Let SY
t = Ψ(SX

t ) be the maximum process of Yt, and let St be the maximum process for

B. Define λY (y) = λX (Ψ−1(y)), λ(y) = λY (y)/σ(y)2 and F (s) = F X(Ψ−1(s)) Then F X(SX
t ) =

F (SY
t ) = F (SAt

) and

∫ τ

0

λX(Xu)du =

∫ τ

0

λY (Yu)du =

∫ Aτ

0

λ(Bv)dv.

Thus (18) becomes

sup
Aτ≤HΨ(∞)

E

[

∫ Aτ

0

λ(Bu)du − F (SAτ
)

]

≡ sup
τ≤HΨ(∞)

E

[
∫ τ

0

λ(Bu)du − F (Sτ )

]

and we have reduced the problem (18) to one of the form (5) for Brownian motion. Note that if

Ψ(∞) < ∞ it is appropriate to consider Brownian stopping times satisfying τ ≤ HK for K = Ψ(∞).

Example 4.3 Suppose X0 = 0, dX = dW + dt/2, F X(s) = 1 − e−s, λX (x) = ξe−2xsgn(x).

In this case Ψ(x) = 1 − e−x, and the problem (18) reduces to the problem in Example 4.1 with

K = 1. Then if ξ ≤ ẑ, the problem is degenerate and τ ≡ 0 is optimal. Alternatively, if ξ > ẑ (18)

has a non-trivial solution and positive value function.
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4.3 Reward functions based on the terminal value

Consider the problem of finding

sup
τ

E [D(Bτ ) − F (Sτ )] (19)

for a suitable function D. Suppose D is such that λ = D′′/2. Then, by Itô’s formula D(Bτ ) =

D(B0) +
∫ τ

0 D′(Bs)dBs +
∫ τ

0 λ(Bs)ds so that, as Peskir [9] has observed, provided the local mar-

tingale term is a true martingale, (19) is equivalent to

sup
τ

E

[
∫ τ

0

λ(Bs)ds − F (Sτ )

]

.

The functions D for which we get a non-degenerate solution to (19) are concave on R
− and convex

on R
+.

4.4 Conclusions and Extensions

In this paper we have considered a converse problem to that studied in Peskir [9]. Using different

methods to Peskir we have derived the optimal stopping rule, and the value function for the

problem (3). Our method is based on explicit calculation of the value function for any suitably

nice boundary, and then an optimisation (using calculus of variations) over possible boundaries.

In his papers Peskir [9, 10] also studies several extensions and generalisations of (2). Firstly,

in [9], and by considering the case X ≡ |B| and λ constant, he derives (and rederives) many

interesting inequalities relating the maximum of the modulus of Brownian motion evaluated at

any stopping time to the first moment of that stopping time. Further, in the sequel, (Peskir [10])

he introduces the optimal Skorokhod embedding problem, which, given Brownian motion and a

centred target law µ, is to find λ(x) > 0 such that the solution to (2) has the property that Bτ

has law µ. Peskir restricts attention to the case X ≡ B and F (s) = s, but Ob lój [6] shows how

to extend this result to more general functions F and shows how this additional flexibility can be

used to embed atomic measures which were excluded from the analysis in Peskir [10].

It is an open question as to whether the solution to the converse problem (3) leads to similar

inequalities and to further solutions of the optimal Skorokhod embedding problem. At first sight

the answer seems negative in each case: for the inequalities Peskir is able to extend his work to

|B|, which is not covered in the setting of this paper; for the optimal constructions in the solution

of (3) the stopped process only places mass at a single location in R
+ so we cannot hope to embed

all target distributions in this way. In order to embed general distributions on R it would seem

to be necessary to modify the problem (3), perhaps also to incorporate a cost associated with the

minimum of Brownian motion, and to exploit more fully links with the Perkins solution to the

Skorokhod embedding problem. However, if a term involving the minimum is included then it does

not seem to be as simple to write down expressions for the value function for arbitrary stopping

rules, as in Lemma 2.2. For this reason the optimal Skorokhod embedding problem seems very

challenging in this case.
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A Appendix

Proof of Lemma 3.7.

Fix ε > 0 and let Θ =
∫ α(K)

g∗

∗
(K) c(y)(K − y)dy, Φ =

∫ 0

g∗

∗
(K) c(y)dy, and

Q =
supx∈I{c(x)(K − x)}
infx∈I{c(x)(K̂ − x)}

where K̂ = max{K − ε, γ∗} and I = [g∗
∗(K), α(K̂)]. By Assumptions 2.1 and 2.4, 1 < Q < ∞.

Choose δ such that δ < min{ε, K − γ∗, Θ/(Q||f ||∞ + Φ)} where ||f ||∞ = sup{|f(s)| : K̂ < s ≤
K}. Now define r̃ by r̃ − r ≡ 0 on [0, K − δ] and r̃ − r ≡ ∆ ≡ Θ/δ2 on [K − δ, K]. It follows that

α̃(K) = g∗
∗(K) as required.

Since g∗∗(s) ≤ α(s) = α̃(s) for s ≤ K − δ, it remains to show that for K − δ < s ≤ K,

g∗∗(s) ≤ α̃(s). For s > K − δ/2,

∫ s

0

r̃(y)dy −
∫ 0

α̃(s)

c(y)dy ≥
∫ K−δ/2

K−δ

∆dy − Φ ≥ δ∆/2 − Φ = Θ/δ − Φ > Q||f ||∞.

If α̃(s) = g∗
∗(s) for some s > K − δ/2, then

∣

∣

∣

∣

dα̃(s)

ds

∣

∣

∣

∣

−
∣

∣

∣

∣

dg∗∗(s)

ds

∣

∣

∣

∣

>
2Q||f ||∞ − f(s)

2c(g∗∗(s))(s − g∗
∗(s))

> 0

so that α̃(s) ≥ g∗
∗(s) for s > K − δ/2. Further, since g∗

∗(s) ≤ α(γ∗) for s > γ∗, we have

inf
s∈[K−δ/2,K]

∣

∣

∣

∣

dα̃(s)

ds

∣

∣

∣

∣

= inf
s∈[K−δ/2,K]

∫ s

0
r̃(y)dy −

∫ 0

α̃(s)
c(y)dy

c(α̃(s))(s − α̃(s))

≥ sup
s∈[K−δ,K]

||f ||∞
c(g∗∗(s))(s − g∗

∗(s))

≥ 2 sup
s∈[K−δ,K]

∣

∣

∣

∣

dg∗∗(s)

ds

∣

∣

∣

∣

.

Hence,

−α̃(K) + α̃(K − δ/2) ≥ δ

2
inf

s∈[K−δ/2,K]

∣

∣

∣

∣

dα̃(s)

ds

∣

∣

∣

∣

≥ δ sup
s∈[K−δ,K]

∣

∣

∣

∣

dg∗∗(s)

ds

∣

∣

∣

∣

≥ −g∗∗(K) + g∗∗(K − δ),

so that g∗
∗(K − δ) ≤ α̃(K − δ/2). Finally, for s ∈ (K − δ, K − δ/2) we have

g∗∗(s) ≤ g∗∗(K − δ) ≤ α̃(K − δ/2) ≤ α̃(s).

�

References
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Probabilités. XIII, 90–115, and 65–633, 1979.

[2] Cox, A.M.G. and Hobson, D.G., An optimal Skorokhod embedding for diffusions, Stoc.

Proc. Appl. 111 17–39, 2004.

17



[3] Dubins, L.E. and Schwarz, G., A sharp inequality for sub-martingales and stopping times,
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