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Abstract

The aim of this paper is to investigate the properties of stochastic
volatility models, and to discuss to what extent, and with regard to
which models, properties of the classical exponential Brownian motion
model carry over to a stochastic volatility setting. The properties of
the classical model of interest include the fact that the discounted stock
price is positive for all t but converges to zero almost surely, the fact
that it is a martingale but not a uniformly integrable martingale, and
the fact that European option prices (with convex payoff functions)
are convex in the initial stock price and increasing in volatility. We
give examples of stochastic volatility models where these properties
continue to hold, and other examples where they fail.

The main tool is a construction of a time-homogeneous autonomous
volatility model via a time change.

1 Introduction

Notwithstanding the success of the Samuelson-Black-Scholes model, it is
a truth, universally acknowledged, that the model fails to capture many
observed features of financial data. Evidence of this failure manifests itself
in (at least) two ways. Firstly, an analysis of the historical time series shows
that volatility is not constant, and secondly, and more importantly from the
derivative pricing perspective, the prices of vanilla traded options exhibit
smiles and skews, so that the market does not price consistently using the
Black-Scholes model.

There have been many responses to these facts in the literature including
Garch models and their generalisations, level-dependent volatility models,
(Cev models and displaced diffusion models), jump-diffusion models and
local-volatility models. However, probably the most popular and widespread
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extension of the exponential Brownian motion model is to stochastic volatil-
ity models, in which the asset price process is augmented by an auxiliary
volatility process which is itself random.

The exponential Brownian motion model is characterised by its simple
structure. This structure leads to lots of nice but potentially misleading
properties — for example the discounted price process is a true martingale
which remains strictly positive — and simple comparative statics, including
the fact that the price of a call option is increasing in volatility.

The aim of this paper is to study the analogue of these questions in
stochastic volatility models. We answer questions of the form can the price
process hit zero?, does the discounted price process converge?, are discounted
prices true-martingales?, are option prices convex? and are option prices
monotonic in the model parameters?. Since we are interested in stochastic
volatility models for the purpose of derivative pricing, we work under a
martingale measure. Note, however, that in a stochastic volatility model
there can be no unique equivalent martingale measure, and that the selection
of a particular pricing measure is a modelling choice. One of the reasons
for studying these properties of stochastic volatility models is to understand
the impact of this choice.

In a stochastic volatility setting the question about whether S is a true
martingale was studied by Sin [33], Lewis [26] and Andersen and Piter-
barg [1]. Issues related to the convexity of the option pricing function were
studied in Bergman et al [5], see also Janson and Tysk [23] who introduced
the notion of convexity preserving models in multi-dimensions. Hender-
son [13] and Henderson et al [15] proved a comparison theorem - namely
that option prices were monotonic in the market price of volatility risk - be-
tween option prices under different martingale measures. This paper extends
and complements this work.

We will solely consider stochastic volatility models, but it should be
noted that related questions arise in other classes of models, and have been
studied elsewhere in the literature. For example Henderson and Hobson [14]
and Ekström and Tysk [9] investigate the properties of jump diffusion mod-
els, and Bergenthum and Rüschendorf [4] have some comparison results for
general semi-martingales.

The main results of this paper are a construction of the solution to a
stochastic volatility model (Theorem 3.1), the use of this construction to
derive results describing when the discounted asset price can hit zero, and
when it is a martingale (Theorem 4.2) and a comparison theorem for option
prices in different stochastic volatility models (Theorem 6.4). These theoret-
ical results are augmented by discussion of several examples, including both
famed volatility models from the literature, and new models which illustrate
the various phenomena.

Notation: We will use the following notation consistently throughout
the paper: for a diffusion process Zt, BZ

t will be the Brownian motion
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which drives Z in the stochastic differential equation (Sde) representation;
HZ

z := inf{u ≥ 0 : Zu = z} will be the first hitting time of level z by Z;
given ρ ∈ (−1, 1) and BZ

t , ρ⊥ will denote ρ⊥ =
√

1− ρ2, and BZ,⊥
t (often

abbreviated to B⊥
t ) will denote a Brownian motion which is independent of

BZ
t . All Brownian motions are normalised so that B0 = 0.

2 Stochastic Volatility Models

We work on a model (Ω,F ,P) with a filtration F = (Ft)t≥0 supporting two
Brownian motions, and satisfying the usual conditions.

Consider the bi-variate model for the price of a traded asset P and a
(non-traded) auxiliary process V under the physical measure P:

P0 = p dPt = ηtdB
P,P
t + µtdt

V0 = v dVt = atdB
P,V
t + bPt dt (1)

dBP,P
t dBP,V

t = ρtdt.

We will be concerned with questions related to option pricing in which case
it is natural to work under an equivalent martingale measure Q, and further
it will be convenient to work with discounted asset prices (we write St for
Pt discounted by the bond price). Then the model of interest becomes

S0 = s dSt = ηtdB
S
t

V0 = v dVt = atdB
V
t + btdt

dBS
t dB

V
t = ρtdt,

where BS and BV are Q-Brownian motions, b is related to bP through the
associated change of measure, and s = p. If we assume that the pair (S, V )
is a bi-variate diffusion then

S0 = s dSt = η(St, Vt, t)dBS
t

V0 = v dVt = a(St, Vt, t)dBV
t + b(St, Vt, t)dt

dBS
t dB

V
t = ρ(St, Vt, t)dt.

Under the further assumptions that the model is time-homogeneous, that
V is autonomous (in a strong form such that a, b and ρ are functions of
V alone) and that η factorises into measurable functions σ, g such that
η(St, Vt) ≡ σ(St)g(Vt) (and then, by a change of variable if necessary, we
may assume that g is the identity function) we are left with our final model
(on (Ω,F , (Ft)t≥0,Q))

S0 = s dSt = σ(St)VtdB
S
t

V0 = v dVt = α(Vt)dBV
t + β(Vt)dt (2)

dBS
t dB

V
t = ρ(Vt)dt.
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Here we have written α and β instead of a or b purely to distinguish this
model from previous versions. Many papers model the instantaneous vari-
ance V 2 rather than the volatility V , but this is a simple re-parameterisation.
From the context it is natural to assume that the pair (St, Vt) has state space
the first quadrant. For reasons of limited liability we assume that if the local
martingale S reaches zero, then it is absorbed there. If V can reach zero,
then we need to add appropriate boundary conditions of which the most
natural is to assume that zero is a reflecting boundary.

Clearly, at each stage above the rewriting of the problem is only valid
under some technical conditions, and the addition of further assumptions is
at some considerable loss of generality. For example, we assume the existence
of an equivalent martingale measure. Moreover, it is unlikely that a time-
homogeneous model will be able to fit an initial term-structure of volatility.
However, most stochastic volatility models in the literature are special cases
of the formulation in (2), written under some pricing measure Q, and for
this reason we will use (2) as our starting point. Indeed most models take
σ(S) = S and take the correlation to be constant.

Hull and White [20] modelled V as an exponential Brownian motion.
Wiggins [34] and Scott [32] added a mean reversion co-efficient so that the
logarithm of the volatility followed an Ornstein-Uhlenbeck (Ou) process.
(Scott [32] also considered a model in which volatility itself followed an Ou
process, but this is slightly outside the scope of our paper since V can go
negative, which raises issues about whether V is measurable with respect
to the observable filtration generated by S.) Hull and White [21], see also
Heston [16], proposed a model in which the volatility is given by a Bessel
process with an additional mean reversion co-efficient. Lewis suggested a
model with α(v) = v2 which is useful for several counter-examples.

All the models in the previous paragraph assume that σ is a constant
multiple of S. There are also a small number of models which incorporate
a leverage effect. Johnson and Shanno [24] and Melino and Turnbull [28]
assume that σ(S) = Sα. The Sabr model of Hagan et al [11] is also of this
form, and in the Sabr model lnV is modelled as a Brownian motion. If we
are outside the log-linear case then we need some regularity assumptions on
σ:

Assumption 2.1. σ is positive and continuous on the positive reals.

By convention σ(s) is identically zero for s ≤ 0.
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3 The main coupling

Our aim is to construct a pair (St, Vt) on a suitable probability space such
that

S0 = s > 0 dSt = σ(St)VtdB
S
t

V0 = v ≥ 0 dVt = α(Vt)dBV
t + β(Vt)dt (3)

dBS
t dB

V
t = ρ(Vt)dt,

in such a way that we can provide useful couplings, from which it will be
possible to derive comparison results.

Theorem 3.1. Suppose that (Ω,G, (Gt)t>0,Q) is a Brownian filtration, sat-
isfying the usual conditions. Suppose that the Sde

X0 = s dXt = σ(Xt)dBX
t

Y0 = v dYt =
α(Yt)
Yt

dBY
t +

β(Yt)
Y 2

t

dt (4)

dBX
t dB

Y
t = ρ(Yt)dt

has a unique strong solution, up to the first explosion time ε.
Define Γt =

∫ t
0 Y

−2
s ds, and set A ≡ Γ−1.

Then St ≡ XAt and Vt ≡ YAt solve (3).
More precisely, let ζ = limt↑ε Γt ≤ ∞, so that Aζ = ε, and for t ≤ ζ set

Ft = GAt and define

BS
t =

∫ At

0

dBX
u

Yu
BV

t =
∫ At

0

dBY
u

Yu
.

Then, for t ≤ ζ, BS
t and BV

t are Ft-Brownian motions and (St ≡ XAt , Vt ≡
YAt) is a weak solution to (3).

Proof. Note that Γ is strictly increasing and continuous (at least until Y
hits zero or infinity). Hence A is well defined and AΓt = t = ΓAt .

Set

Mt =
∫ t

0

dBY
u

Yu

and let

BV
t = MAt =

∫ At

0

dBY
u

Yu
=

∫ t

0

dBY
Aw

YAw

.

Then, 〈M〉t = Γt, and by the Dambis-Dubins-Schwarz theorem (Karatzas
and Shreve [25][Theorem 3.4.6, p174], see also Revuz and Yor [29][V.1.6,

5



p181]), BV
t is a Ft-Brownian motion. Furthermore, Vt ≡ YAt solves

dVt = α(YAt)
dBY

At

YAt

+ β(YAt)
dAt

Y 2
At

= α(Vt)dBV
t + β(Vt)dt.

By an identical argument we can conclude that BS
t is a Ft-Brownian

motion and dSt = dXAt = σ(XAt)dBX
At

= σ(St)VtdB
S
t .

Finally

〈BS , BY 〉t =
∫ At

0

d〈BX , BY 〉u
Y 2

u

=
∫ At

0
ρ(Yu)dΓu =

∫ t

0
ρ(Vs)ds.

At a first reading of Theorem 3.1, the explosion time ε should be taken to
be the first time that eitherX or Y hits 0 or∞. However, with Q-probability
one X does not explode to infinity, and if X hits zero, then thereafter we
can define X and S to be identically zero. Further the assumption that σ is
positive and continuous on R+ ensures that Xt cannot converge to a positive
value as t ↑ ∞. (Note that St may still converge if At converges.)

The only remaining cases are when Y hits zero or infinity. If the first
explosion time occurs when Y hits zero, and if at that point Γ is finite, then
it may be possible to extend the construction beyond this moment. If Vt is
assumed to be instantaneously reflecting at zero, then it is natural to choose
the solution to (4) for which Yt is also instantaneously reflecting, provided
such a solution exists. The important consideration is whether Γ is well
defined beyond the first hit of Yt on zero, and this can be checked via a scale
and speed analysis.

Finally, it is possible that Y explodes to infinity, in which case it is not
possible to determine the behaviour of Y from the SDE alone, and it is nec-
essary to specify additional boundary conditions. There is an analytic con-
dition involving the co-efficients of the Sde for Y which determines exactly
when it is possible for Y to explode, see Rogers and Williams [30][Theorem
52.1].

To avoid issues of this type, except where otherwise stated in the exam-
ples we make the following assumption throughout the rest of the paper;

Assumption 3.2. The process Y given in (4) does not explode; moreover,
if HY

0 is finite then either ΓHY
0

is infinite or ΓHY
0 + is finite. In particular we

do not have ΓHY
0
< ΓHY

0 + = ∞.

Under Assumption 3.2, and given our comments about zero being ab-
sorbing for S, we may take the first explosion time ε in Theorem 3.1 to be
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the first explosion time of Γ:

ε = sup{u ≥ 0 : Γu <∞}.

By Assumption 3.2, if ε <∞ then ζ = Γε = ∞. Hence, the construction in
Theorem 3.1 is valid for all time.

Note that V will explode if Y explodes, or if Y diverges to infinity and
the time-change A explodes. By assumption we have excluded the former
possibility, but not the latter. However, if A explodes then S converges to
zero, at least under our assumption that σ is continuous and positive on R+.

Issues of this type become important in some of the examples discussed
below, beginning with the Bessel process model.

Remark 3.3. It is possible to give Lipschitz conditions on the stochastic
differential equations for Y which guarantee existence of a strong solution,
but these conditions typically rule out several examples of interest in fi-
nance. Indeed, since Y is a one-dimensional diffusion, there are weaker
conditions for the existence of a strong solution, see for example Revuz and
Yor [29][Theorem IX.3.5].

Remark 3.4. The construction in Theorem 3.1 generates a weak solution
for the pair (S, V ). However, this is the appropriate form of solution in
finance, in that the statistical properties of the price process are specified,
but never the driving Brownian motion.

4 Transience Convergence and Martingale prop-

erties for log-linear models

Our goal in this section is to use the construction of the previous section to
discuss some of the issues raised in the introduction about stochastic volatil-
ity models, namely can S hit 0 in finite time; does St converge to a positive
limit; is St a true martingale; is St a uniformly integrable martingale? In this
section we concentrate on the log-linear case in which σ(s) = σs. Then by
absorbing the constant σ into the volatility process we may assume without
loss of generality that σ(s) = s.

To date the literature has mainly concentrated on the third of these
questions concerning whether the price process is a true martingale or merely
a local martingale. This problem has been considered by Sin [33], Lewis [26]
and Andersen and Piterbarg [1]. As Lewis [26] has shown (see also Heston
et al [17] and Cox and Hobson [6]), if S is a strict local martingale then put-
call parity fails and care is needed over other ‘obvious’ properties of option
prices.
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The clever idea in Sin [33] can be summarised as follows. Suppose
σ(S) = S and ρ is constant, and write BV

t = ρBS
t + ρ⊥B⊥

t where B⊥ is
independent of BS . Suppose that S given by dS = StVtdB

S
t is a true mar-

tingale under Q on [0, T ]. Then Q̃ defined by dQ̃/dQ = ST on FT is a
probability measure which is absolutely continuous with respect to Q, and
under Q̃, dVt = a(Vt)dBV

t + (β(Vt) + ρα(Vt)Vt)dt. However, this introduces
a potential contradiction if the behaviour of the autonomous diffusion V is
different under Q and Q̃, for example, if V explodes with positive probability
under Q̃ but not under Q. For certain examples, Sin is able to complete the
analysis to derive an if and only if condition.

Theorem 4.1 (Sin [33]). Consider the stochastic volatility model in (2).
Suppose σ(s) = s, α(v) = αv, β(v) = β0 − β1v, and ρ(v) = ρ with α and β1

positive. Then St is a true martingale if and only if ρ ≤ 0.

The methods of Sin give a general approach for considering the true mar-
tingale question for log-linear models. Andersen and Piterbarg [1] exploited
these ideas to prove the martingale property in other models including the
Bessel process model below. Conversely, Lewis [26] gives examples where
the martingale property could be shown to fail.

We can use the construction of Theorem 3.1 to make statements about
the martingale property, and about the transience and convergence prop-
erties of St. Recall that ε = sup{u : Γu < ∞}, and ζ = limt↑ε Γt. By
Assumption 3.2, if ε is finite then ζ is infinite. Write Ω as the disjoint union
Ω = Ωζ ∪ Ωε ∪ Ω∞ where

Ωζ = {ω : ε = ∞, ζ <∞}
Ωε = {ω : ε = HY

0 <∞, ζ = ∞}
Ω∞ = {ω : ε = ∞, ζ = ∞}

Note that the event {ω : ε = HY
0 < ∞, ζ < ∞} is ruled out either by

Assumption 3.2, or because ε is not the first explosion time of Γ.

Theorem 4.2. Suppose σ(s) = s. Then, modulo null sets,
on Ωζ we have that S hits zero in finite time,
on Ωε we have that St converges and the limit S∞ is strictly positive, and
on Ω∞ we have that St is positive for all t, but tends to zero.

The discounted price process (St)t≤T is a true martingale if and only if
limγ↑∞ eγQ(supt≤AT

BX
t − t/2 > γ) → 0. Furthermore, St is a uniformly

integrable martingale if and only if limγ↑∞ eγQ(supt≤εB
X
t − t/2 > γ) → 0.

Sufficient conditions for the martingale and uniformly integrability proper-
ties are given by E[eAT /2] <∞ and E[eε/2] <∞ respectively.
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Proof. We have that St = se
BX

At
−At/2, and clearly, BX

t − t/2 → −∞. On Ωζ

we have that At ↑ ∞ as t ↑ ζ and hence Sζ = 0.
On Ωε we have ε <∞ and S∞ = seB

X
ε −ε/2 > 0.

Otherwise, on Ω∞, At is finite for each t and St = se
BX

At
−At/2 is positive

for each t but tends to zero as t and At increases to infinity.
The statements about martingales are direct applications of Théorème

1a in Azéma et al [3] and the Novikov condition.

Consider the price of a put option with strike K. For T ≤ T ′ we have

E[(K − ST ′)+|FT ] ≥ (K − E[ST ′ |FT ])+ ≥ (K − ST )+

where the two inequalities follow by Jensen’s inequality and the super-
martingale property of the local martingale St. It follows that put prices
are increasing in maturity and

lim
T↑∞

E[(K − ST )+] = E[(K − S∞)+]

A similar result holds for any bounded decreasing convex payoff function.
Now consider a call option. Then, although we have E[(ST ′−K)+|FT ] ≥

(E[ST ′ |FT ] − K)+ it is not necessarily the case that E[ST ′ |FT ] ≥ ST and
monotonicity in maturity of option prices does not follow, unless S is a true
martingale. Furthermore, even in the martingale case we only have that
limT↑∞ E[(ST −K)+] = E[(S∞ −K)+] if (St)t≥0 is uniformly integrable.

4.1 Examples

4.1.1 The lognormal volatility model.

Consider the following model introduced by Hull and White [20]: the version
of (3) with

σ(s) = s, α(v) = av, β(v) = bv, ρ(v) = ρ,

with a > 0. Then dX = XdBX and dY = adBY + (b/Y )dt. If we set
Z = Y/a then

dZt = dBY
t +

b

a2Zt
dt

so that Z is a Bessel process of dimension φ = 1+2b/a2. Then Y can hit zero
if and only if φ < 2, or equivalently b < a2/2. It follows from Proposition A.1
that if b < a2/2 then Γt = a2

∫ t
0 Z

−2
s ds explodes the first time that Y hits

zero, and Q(Ωε) = 1; moreover Assumption 3.2 is automatically satisfied.
Then St converges to a positive limit and S∞ = exp(BX

HY
0
−HY

0 /2).
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Conversely, if b ≥ a2/2, then (with probability one) Y does not hit zero,
and Γ does not explode. On the other hand, again by Proposition A.1 nor
does Γ converge: even when b > a2/2 and Y tends to infinity almost surely,
it only grows at rate

√
t. It follows that St → 0 almost surely.

Now suppose that we modify the drift condition to become β(v) ≤ 0, so
that

σ(s) = s, α(v) = a, β(v) ≤ 0 ρ(v) = ρ.

Then Yt ≤ v + aBY
t , Q(HY

0 <∞) = 1 and

∫ HY
0

0

ds

Y 2
s

≥
∫ HBY

−v/a

0

ds

(v + aBY
s )2

= ∞

so that Q(Ωε) = 1. Write BX
t = ρBY

t + ρ⊥B⊥
t , where B⊥ is independent of

BY
t . Then, by Theorem 4.2, St converges and S∞ = s exp(ρBY

HY
0

+ρ⊥B⊥
HY

0
−

HY
0 /2) > 0.

Now suppose also that ρ < 0. Then, for t ≤ HY
0 , BY

t is bounded below
by −v/a and exp(ρBY

HY
0

) is bounded. Furthermore, AT ≤ ε ≤ HY
0 ≤ HBY

−v/a

and for sufficiently large γ,

Q
(

sup
t<ε

(ρBY
t + ρ⊥B⊥

t − t/2) > γ

)
≤ Q

(
sup
t<∞

(ρ⊥B⊥
t − t/2) > γ + ρv/a

)
= e−(γ+ρv/a)/(1−ρ2)

and then eγQ(supt<ε(ρBY
t +ρ⊥B⊥

t −t/2) > γ) → 0. Hence, by Theorem 4.2,
if β(v) ≤ 0 and ρ < 0 then (St)t≤∞ is a uniformly integrable martingale.
It follows that if we take the lognormal volatility model with β(v) = bv for
b < 0, and if ρ < 0, then the model has features which distinguish it from
the exponential Brownian motion model. For example, if we consider put
options with maturity T and payoff (K−ST )+ then unlike in the exponential
Brownian case, the prices of such options do not tend to K with T .

4.1.2 The Bessel process model

For this model, variants of which were introduced by Hull and White [21]
and Heston [16], we have

σ(s) = s, α(v) = a, β(v) = a
(γ
v
− δv

)
, ρ(v) = ρ

where a is a positive parameters. (Hull and White [21] assume that δ = 0,
whereas Heston [16] takes γ = 0.) Then

dYt =
a

Yt
dBY

t + a

(
γ

Y 3
t

− δ

Yt

)
dt
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and if we set Z = Y 2/2a and φ = γ/a + 3/2 then

dZt = dBY
t +

(
φ− 1
2Zt

− δ

)
dt,

so that Z is the radial part of a φ-dimensional Ornstein-Uhlenbeck pro-
cess (suitably interpreted when φ is not an integer). If we define Q̃ via
dQ̃/dQ|Ft = exp(δBY

t − δ2t/2) then B̃Y
t ≡ BY

t − δt is a Q̃-Brownian motion,
and Zt is a Bes(φ) process under Q̃.

If φ < 2 then Z (and hence Y ) can and will hit zero in finite time,
but in contrast to the lognormal model, for the Bessel process model we
have ΓHY

0
= 2a

∫ HY
0

0 Z−1
s ds < ∞, see Proposition A.1. We now get two

cases depending on whether φ > 1, or φ ≤ 1. If φ > 1 then by taking
Y instantaneously reflecting at zero we can continue the process beyond
the first hit of Y on zero in such a way that Γ increases to infinity almost
surely, but does not explode, see Corollary A.2. Using this extension we
have St > 0 for all t, but S∞ = 0 almost surely. However, if φ ≤ 1 then
even though ΓHY

0
< ∞ the first explosion time ε for Γ is HY

0 . In this case
Assumption 3.2 fails, and it is not possible to extend the construction in
Theorem 3.1 beyond HY

0 .
Otherwise, if φ ≥ 2 then Y 2 ≡ 2aZ does not hit zero, and is a positive

recurrent diffusion on state space (0,∞). Hence Γt increases to infinity
almost surely, but does not explode. In this case Q(Ω∞) = 1 and again
St > 0 for all t, but S∞ = 0 almost surely.

4.1.3 Lewis’s 3/2 model

Lewis [26] proposes a model for the squared volatility U ≡ V 2 of the form
dU = 2αU3/2dWt + (2β + α2)U2dt which reduces to

σ(s) = s, α(v) = av2, β(v) = bv3, ρ(v) = ρ

This translates to dYt = aYtdWt +bYtdt so that Yt is exponential Brown-
ian motion, and is positive and finite for all t. If b ≤ a2/2, then Γ∞ = ∞ and
S is positive for all time, but tends to zero as t ↑ ∞. The more interesting
case is when b > a2/2. In this case Y −2

t ↓ 0 and moreover Γ∞ <∞; then A
hits infinity in finite time, and S hits zero in finite time almost surely. (It
is also true that V explodes in finite time.)

Alternatively, if we assume that the volatility itself satisfies a stochastic-
differential equation of the same form as that for U above, or in other words
if our standard notation we take

σ(s) = s, α(v) = av3/2, β(v) = bv2, ρ(v) = ρ

then dYt = a
√
Y dBY

t + bdt. Then Rt = (2/a)
√
Yt is a Bessel process of

dimension φ = 4b/a2, and Γt = 16a−4
∫ t
0 R

−4
s ds.
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If b < a2/2 then φ < 2, Y hits zero in finite time (almost surely) and
ΓHY

0
= ∞. It follows that S∞ > 0. Conversely, if φ > 2 then Γ∞ < ∞, A

explodes, and S hits zero in finite time almost surely. Finally, if b = a2/2,
then Γ does not explode, but does diverge, and St is positive but tends to
zero almost surely.

4.1.4 A further tractable model

Consider the model for which

σ(s) = s, α(v) = av, β(v) = aδv2, ρ(v) = ρ

where a is positive.
Then

dYt = a(dBY
t + δdt)

is linear Brownian motion. As in Example 4.1.1, Γ explodes the first time,
if ever, that Y hits zero. Hence, St does not hit zero in finite time, and it
converges to a limit which is positive if HY

0 is finite. (In particular, if δ > 0
then 0 < Q(Ωε) < 1, and the Q-probability that S has a positive limit S∞
lies strictly between 0 and 1.)

Note that V can hit zero (and we take zero to be a reflecting boundary),
and, in the case δ > 0, V will explode to infinity in finite time. Conversely,
although Y will hit zero with positive probability it does not explode to
infinity. In the case δ > 0 then Yt increases to infinity almost surely, and
then Γ∞ is finite, so that the time-change At explodes.

For this example we are interested in whether St is a uniformly integrable
martingale. We have

St = s exp(BX
At
−At/2)

where BX
t can be decomposed into two independent Brownian motions:

BX
t = ρBY

t + ρ⊥B⊥
t . In particular

S∞ = s exp(ρBY
HY

0
− ρ2HY

0 /2) exp(ρ⊥B⊥
HY

0
− (1− ρ2)HY

0 /2)

It follows from Lemma 4.3 below that S is a uniformly integrable mar-
tingale if and only if δ + ρ ≤ 0. To see this set BY ≡ −W , δ = µ and θ = ρ
so that HY

0 = inf{u ≥ 0 : Wu = v/a+ µt}, where v = Y0.

Lemma 4.3. Let W and W⊥ be independent P-Brownian motions. For
positive z and general µ define

τ ≡ Hw,µ
0 = inf{u : Wu = z + µu}

For (θ, θ⊥) a constant non-zero vector set

Mt = M
(θ,φ)
t = eθWt+φW⊥

t −(θ2+φ2)t/2.

Then Mt∧τ is uniformly integrable and E[Mτ ] = 1 if and only if µ ≤ θ.

12



Proof. Suppose first that φ = 0, but that θ is non-zero, and write Nt for
M

(θ,0)
t .
Let N̂t denote the stopped martingale Nt∧τ , let ηn = inf{u ≥ 0 : N̂u ≥

en}, and define P̂n via
dP̂n

dP

∣∣∣∣∣
Ft∧τ

= N̂t∧ηn

It is easy to see that E[Nτ ] ≡ E[N̂∞] = 1 if and only if N̂t is uniformly
integrable. Then, by Lemma B.1 in the Appendix either of these conditions
is equivalent to the condition P̂n(ηn <∞) → 0.

We have that under P̂n, and for t ≤ τ ∧ ηn, Ŵt = Wt − θt is a Brownian
motion. There is a natural consistency condition between the measures P̂n

which means that we do not need to define a sequence of Brownian motions
Ŵn, but rather a single process Ŵ will suffice. Further, if we define P̂ via
dP̂/dP = Nt on Ft, then the restriction of P̂ to Ft∧τ∧ηn agrees with Pn, and
we can extend Ŵ to be a P̂-Brownian motion defined for all time.

Then,

P̂n(ηn <∞) = P̂n(sup
t≤τ

θWt − θ2t/2 ≥ n)

= P̂(sup
t≤τ

θŴt + θ2t/2 ≥ n).

Note that, under P̂,

τ = inf{u : Ŵu = z + (µ− θ)u}

so that if we define for all non-zero x and for all ψ

Ĥx,φ
0 = inf{u : Ŵu = x+ ψu}

then
P̂(sup

t≤τ
θŴt + θ2t/2 ≥ n) = P̂(Ĥn/θ,−θ/2

0 ≤ Ĥz,µ−θ
0 )

(recall we assuming that θ is non-zero).
The sequence Ĥ

n/θ,−θ/2
0 is a sequence of finite stopping times which

increase to infinity almost surely as n increases to infinity. It follows that
P̂(Ĥn/θ,−θ/2

0 ≤ Ĥz,µ−θ
0 ) → 0 if and only if Ĥz,µ−θ

0 is finite almost surely, or
equivalently if µ− θ ≤ 0.

13



Now suppose φ is non-zero. If we set Nt = M
(θ,φ)
t then the argument is

essentially unchanged and the condition that Mt∧τ is uniformly integrable
reduces to

P̂(sup
t≤τ

θŴt + φŴ⊥
t + θ2t/2 ≥ n) → 0

where Ŵ⊥
t := W⊥

t +φdt is a P̂-Brownian motion. Provided µ ≤ θ, τ is finite
P̂ almost surely and then P̂(supt≤τ θŴt + φŴ⊥

t + θ2t/2 ≥ n) → 0 as n ↑ ∞.
Otherwise, if µ > θ then τ is infinite with positive probability and on this
set supt≤τ{θŴt + φŴ⊥

t + θ2t/2} equals infinity.
Note that if θ = φ = 0 then M (θ,φ) is trivially a uniformly integrable

martingale. On this set θŴt + φŴ⊥
t + θ2t/2 is identically zero so that

P̂(ηn <∞) = 0.

5 Models with leverage effects

A stylised fact from the finance literature is that as the stock price falls so
volatility tends to increase. One way to capture this phenomenon is to use
a stochastic volatility model and to insist that the correlation between the
Brownian motions driving stock price and volatility is negative. However,
another way to capture this phenomenon is to introduce a leverage effect,
or in other words to make σ(s) a non-linear function of s.

The constant elasticity of variance (Cev) model of Cox and Ross [7] and
the displaced diffusion models of Rubinstein [31] both fall into this class. In
the Cev model S solves dS = σSθdBS for some θ with 0 < θ < 1; more
generally we have diffusion models of the form dS = σ(S)dBS . The option
pricing properties of these models were studied extensively in Bergman et
al [5], see also [10] and [18] and the discussion in the next section.

In this section we are interested in models with both a leverage effect
and volatility of the form in (3). Since by Assumption 2.1 we have that σ−2

is locally integrable, a necessary and sufficient condition for X to hit zero in
finite time is that

∫
0+ xσ(x)−2dx is finite. Since X is a time-homogeneous

diffusion, in this case HX
0 is finite almost surely. If moreover Γ does not

explode, then A increases to infinity almost surely and S hits zero in finite
time almost surely. However, if Γ explodes then S may not hit zero.

The Stochastic-Alpha-Beta-Rho (Sabr) model introduced by Hagan et
al [11] is a combination of a Cev model for the discounted stock price with
an exponential Brownian motion for volatility and is of the form

σ(s) = sθ, α(v) = av, β(v) = bv, ρ(v) = ρ (5)

where 0 < θ < 1 and a is positive. (In fact, in the original Sabr model
takes b = 0.)

14



The first question for this model is to decide whether the resulting dis-
counted stock price process is a true martingale. For the Sabr model An-
dersen and Piterbarg [1] answer this question in the positive by deriving
bounds on the moments of S, but here we give a direct proof. In keeping
with the spirit of the rest of the paper this proof relies on stochastic calculus
and a coupling argument.

Theorem 5.1 (Andersen-Piterbarg [1]). Consider the Sabr model with pa-
rameters as in (5). Then St is a true martingale.

Proof. The model is

dSt = Sθ
t Vt(ρdWt + ρ⊥dW⊥

t ) dVt = aVtdWt + bVtdt

where Wt is a shorthand for BV
t . Consider Zt = StV

−1/(1−θ)
t e−δt where δ is

chosen such that
Mt = eδtV

1/(1−θ)
t v−1/(1−θ)

is a martingale. In particular,

Mt = exp
(

a

(1− θ)
Wt +

(b− a2/2)
(1− θ)

t+ δt

)
= exp

(
a

(1− θ)
Wt −

a2

2(1− θ)2
t

)
so that δ = −b/(1− θ)− θa2/2(1− θ)2.

Then E[ST ] = E[ZTV
1/(1−θ)
T eδT ] = v1/(1−θ)E∗[ZT ] where P∗ is defined

via dP∗/dQ = MT on FT . Under P∗ we have that W ∗
t = Wt − (a/(1− θ))t

is a Brownian motion.
Applying Itô’s formula to Z we obtain

dZt = Zθ
t e

δ(θ−1)tρ⊥dW⊥ +
(
Zθ

t e
δ(θ−1)tρ− a

(1− θ)
Zt

)
dW ∗

t

= K(Zt, t)dW̃ ∗,

where the P∗-Brownian motion W̃ ∗ is the appropriate combination of the
P∗-Brownian motions W ∗ and W⊥ and

K(z, t)2 = z2θe2δ(θ−1) +
a2z2

(1− θ)2
− 2aρeδ(θ−1)tz1+θ

(1− θ)
.

Then, for t ≤ T , K(z, t) ≤ (η0 + η1z) ≡ K̄(z) for appropriate constants η0

and η1. In particular, if Z̄ solves dZ̄ = K̄(Z̄, t)dW̃ ∗ subject to Z̄0 = z, then
Z̄ is a true martingale.

Finally, by a time-change argument (see Theorem 3 of Hajek [12]) we
can write Zt = Z̄Ct for a time-change Ct with Ct ≤ t and then Zt is also a
true martingale.
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Example 5.2. Consider the Sabr model with β = 0 and θ = 0. (In this
case we modify σ(s) so that σ(s) = I{s>0} in order to preserve limited
liability. Then dX = (ρdBY + ρ⊥dB⊥) and dY = adBY with Y0 = v, and
we have

∫
0+ xdx <∞, so that X hits zero in finite time. It also follows that

Γ explodes when Y first hits zero, and that A∞ = HY
0 ≡ BY

HBY

−v/a

. Moreover,

until S first hits zero,

St =
ρ(YAt − v)

a
+ ρ⊥B⊥

At

and S hits zero in finite time if and only if

inf
t≤HBY

−v/a

(ρBY
t + ρ⊥B⊥

t ) ≤ −s.

If ρ = 1 and as > v then S does not hit zero.

6 Option price comparisons and convexity

In the standard Samuelson-Black-Scholes model an application of Jensen’s
inequality shows that if the payoff function of a European-style claim is
convex in the underlying, then that property is inherited by the price of
the option at earlier times. Avellaneda, Levy and Paras [2] and Lyons [27]
showed that if volatility is known to lie within a band, (and if the payoff
function is convex), then the prices calculated using the Black-Scholes model
with volatilities corresponding to the ends of the bands provide bounds on
the value of the option price.

These first comparison theorems inspired further study of the convexity
and monotonicity properties of option prices in diffusion models. Bergman
et al [5], El Karoui et al [10] and Hobson [18] each considered this problem
using different approaches. Let dS = σ̂(St)dBt and dS = σ̃(St)dBt be two
competing candidate models for the discounted asset price under the risk-
neutral measure. We distinguish the different models by considering the
price process S under Q̂ and Q̃. There are two types of comparisons which
are important:
Option Price monotonicity: we say there is option price monotonicity if,
whenever σ̃(s) ≤ σ̂(s) and Φ is convex it follows that Ê[Φ(ST )] ≤ Ê[Φ(ST )],
so that option prices are monotonic in the diffusion co-efficient.
Super-replication property: Suppose that there exists a strategy θ̂ ≡ θ̂u such
that if S is governed by the dynamics σ̂

Ê[Φ(ST )] +
∫ T

0
θ̂udSu = Φ(ST ) Q̂ a.s.
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(so that θ̂ is a replicating strategy for the option payoff under Q̂, with asso-
ciated replication price Ê[Φ(ST )]). Then the model has the super-replication
property if when the dynamics of S are governed by σ̃

Ê[Φ(ST )] +
∫ T

0
θ̂udSu ≥ Φ(ST ) Q̃ a.s..

In this case an investor who believes in the model dS = σ̂(St)dBt, and who
acts accordingly (in terms of pricing and hedging) will super-replicate the
option payout, even if the true model is dS = σ̃(St)dBt.

Bergman et al [5] used an analysis of the option pricing partial differential
equation to prove the monotonicity property, whereas El Karoui et al [10]
used stochastic flows and Hobson [18] used a coupling approach to prove the
stronger super-replication property. In all three cases a key stepping stone
was to prove that the price of the option at intermediate times is convex in
the underlying.

6.1 Convexity

Suppose we now consider the question of whether a similar result holds true
in the stochastic volatility context. (This variant on this question has al-
ready been considered by Ekström et al [8], see also Janson and Tysk [23].
They give examples to show that in a bi-variate diffusion model (S(1), S(2)) it
does not follow that if Φ(s(1), s(2)) is convex then ES

(1)
0 =s(1),S

(2)
0 =s(2)

[Φ(S(1)
T , S

(2)
T )]

is convex. However, this does not quite cover the situation in stochastic
volatility models since there S(2) ≡ V is autonomous, and Φ is a function of
S(1) alone.)

Consider a stochastic volatility model. For a convex payoff function Φ
define the corresponding European option price

φ(s, v) = ES0=s,V0=v[Φ(ST )]

Proposition 6.1. Suppose that the coefficients in (3) are such that there
exists a strong solution to (4) and suppose that for all initial starting points
E[Φ(ST )] <∞.

Suppose either that ρ ≡ 0 and that St is a true martingale, or that
σ(s) = s. Then for each fixed v, φ(s, v) is convex in s.

Proof. If ρ(v) ≡ 0 then St = XAt where X and A are independent. Then,
conditioning on the Brownian motion BY which generates A we can apply
the result for the diffusion dX = σ(X)dBX (in particular the coupling proof
in Hobson [18][Theorem 3.1] works for random expiry) to conclude that
E[Φ(XAT

)|AT ] is convex in s. The convexity property is maintained when
we average over AT .
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If σ(s) = s then St = se
BX

At
−At/2 =: sZt where Zt is independent of s.

Then for λ ∈ (0, 1), for s = λq+(1−λ)r, and for any ZT we have φ(sZT ) ≤
λφ(qZT ) + (1− λ)φ(rZT ). The result follows on taking expectations.

Remark 6.2. The results in Proposition 6.1 can be found in Bergman et
al [5] where a formal proof is given involving differentiation of the option
pricing Pde and Henderson [13], who takes ρ = 0.

If the true martingale property fails in the uncorrelated case then the
convexity property may fail also. To see this take σ(x) = (x − 1)2I{x>1}.
Then S is a strict local martingale, (unless S0 ≤ 1, in which case S is
constant) and even for the linear payoff Φ(s) = s we find that φ(s) is not
convex.

If φ is non-zero and S is not log-linear then the convexity property may
fail even when S is a true martingale as the following example shows.

Example 6.3. Consider the model

σ(s) = I{s>0}, α(v) = v, β(v) = −δv2, ρ(v) = 1

with δ > 0.
Fix V0 = 1 and consider the call option with unit strike and maturity T ;

Φ(ST ) = (ST − 1)+.
Write BX

t = BY
t = Bt and set Bt = inf{Br; 0 ≤ r ≤ t}. Denote by

S
(s)
t ≡ X

(s)
At

the solution to (3) with initial value S0 = X0 = s. Then
X(s) = (s + Bt)I{Bt>−s}. Similarly Yt = 1 + Bt − δt and HY

0 < ∞ almost
surely. We have ΓHY

0
= ∞ so that A∞ = HY

0 ≤ HB
−1.

If s = 0 then S(0)
t = X

(0)
At

≡ 0 and E[Φ(S(0)
T )] = 0.

If s = 2 then S
(2)
t = X

(2)
At

= (2 + BAt)I{BAt
>−2}, but since At ≤ A∞ ≤

HB
−1 we have S(2)

t ≥ 1. Further, by the uniform integrability of the stopping
time HY

0 , we have E[BHY
0

] = 0 and E[HY
0 ] = 1/δ. Finally, for any T , AT ≤

HY
0 , and E[X(2)

AT
] = 2. We conclude that E[Φ(S(2)

T )] = E[(X(2)
AT

− 1)+] = 1.
In order to show that φ(s, 1) is not convex it is sufficient to show that

φ(1, 1) > 1/2. If s = 1 then X
(1)
t = (1 + Bt)I{Bt>−1} = (Yt + δt)I{HB

−1>t}

and S
(1)
∞ = X

(1)
A∞

= δHY
0 . Then E[Φ(S(1)

∞ )] = E[(δHY
0 − 1)+]. Now δHY

0 =
inf{δu ≥ 0 : Bu = δu − 1} = inf{r ≥ 0 : B̃r =

√
δ(r − 1)} where B̃r =√

δBr/δ. Standard calculations using the reflection principle and a change
of measure show that if Iδ = E[(δHY

0 − 1)+] then

Iδ =
∫ ∞

0

y√
2π
e−y

√
δ−y2/2 2 sinh y

√
δ√

δ
dy.
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In particular, if I0 := limδ↓0 Iδ then I0 = 1.
Now choose δ so small that Iδ > I0−1/4 and T so large that E[Φ(S(1)

T )] >
E[Φ(S(1)

∞ )]− 1/4. Then E[Φ(S(1)
T )] > 1/2.

6.2 Option Price Comparisons

Notwithstanding the lack of option price convexity, it is still possible to
obtain comparison theorems between pairs of candidate stochastic volatility
models. The following result extends the main result of Henderson et al [15]
to a wider class of stochastic volatility models, including models outside the
log-linear case. The proof uses the construction in Theorem 3.1, whereas
[15] used a comparison based on an analysis of the option pricing partial
differential equation. One corollary of Theorem 6.4 is that in a stochastic
volatility model the vega of an option is positive, provided the option has
convex payoff.

Theorem 6.4. Consider a pair of stochastic volatility models indexed by
i = 0, 1 which differ only in the form of the drift on volatility, or in the
initial value of volatility:

i = 0, 1 S0 = s, V0 = v(i)

dSt = σ(St)VtdB
S
t , dVt = α(Vt)dBV

t + β(i)(Vt)dt,

dBS
t dB

V = ρ(Vt)dt.

Denote by (S(0), V (0)) and (S(1), V (1)) the solutions under the two different
models. Suppose that S(i) is a true martingale in each case.

Suppose that for each model the corresponding time-changed stochastic
differential equation

i = 0, 1 X0 = s, Y0 = v(i)

dXt = σ(St)dBX
t , dYt = (α(Yt)/Yt)dBY

t + (β(i)(Yt)/Y 2
t )dt,

dBX
t dB

Y
t = ρ(Yt)dt,

has a strong solution.
Suppose that β(0)(y) ≤ β(1)(y) for all y, and v(0) ≤ v(1). Then for any

convex Φ,
E[Φ(S(0)

T )] ≤ E[Φ(S(1)
T )].

Proof. We extend the superscript notation representing the pair of models
to cover all processes of interest. The exception is the process Xt, the
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construction of which is the same in both models. Then the stock price
processes S(i)

t = X
A

(i)
t

differ only in the time change.

It is clear that Y (0)
t ≤ Y

(1)
t and hence Γ(0)

t ≥ Γ(1)
t and A(0)

t ≤ A
(1)
t . Then,

recall the notation of Theorem 3.1, conditional on G
A

(0)
T

and using Jensen’s
inequality and the martingale assumption,

E
[
E[Φ(X

A
(1)
T

)|G
A

(0)
T

]
≥ E[Φ(E[X

A
(1)
T

|G
A

(0)
T

])] = E[Φ(X
A

(0)
T

)]

so that E[Φ(S(1)
T )] ≥ E[Φ(S(0)

T )].

Remark 6.5. As discussed in Henderson et al [15], there are two distinct
usages of Theorem 6.4. In the first case we imagine comparing two different
models (or the same model with different initial values of volatility) under
a fixed pricing measure Q. In the second case we consider a stochastic
volatility model under the physical measure P, and two different choices of
martingale measure Q(0) and Q(1). Typically the models for the price and
volatility process under these two measures will differ only in the drift on
volatility, thus placing us immediately in the setting of Theorem 6.4. See
[15] for more details.

7 Conclusions

In this paper we use a stochastic time-change to construct the solutions to
stochastic volatility models, and then use these solutions to deduce proper-
ties of the underlying model. The advantage of the time-change construction
is that it gives insight into the sample-path behaviour of the model. Pre-
viously the literature has focused on the (true) martingale property of the
(discounted) asset price; in addition in this article we study the uniform in-
tegrability properties, and the potential for asset prices to hit zero in finite
time. These properties have implications for put and call prices, especially
in the limits of large maturity and extreme strike.

The time-changed volatility process Y has the same scale function as the
volatility process V itself, so that answers to questions about whether this
process tends to infinity or zero are unchanged. However, the effect of the
time-change is that volatility may explode, even when Y is non-explosive.
The behaviour of Y governs the properties of the discounted asset price
process and partly determines whether the discounted asset price converges
to a positive value, or whether it hits zero in finite time. Neither of these
behaviours is consistent with a constant volatility, exponential Brownian
motion model.
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A Identities for Bessel processes

Proposition A.1. Let Rs be a Bessel process with dimension φ and such
that R0 = r > 0. Define Γt ≡ Γ(η)

t =
∫ t
0 R

−η
s ds.

(i) Suppose 0 ≤ φ < 2. Then HR
0 <∞ almost surely, and Γ(η)

HR
0

= ∞ if and
only if η ≥ 2.
(ii) Suppose φ > 2. Then HR

0 = ∞ almost surely, and Γ(η)
∞ = ∞ if and only

if η ≤ 2.
(iii) Suppose φ = 2. Then HR

0 = ∞ almost surely, and Γ(η)
∞ = ∞ for all η.

Proof. As a general principle, if Z is a one-dimensional diffusion in natural
scale then the additive functional Ct =

∫ t
0 c(Zu)du does not explode if and

only if c is locally integrable with respect to the speed measure of Z. By
appealing to well known properties of financial models we can prove this
result directly for the Bessel process.

(i) Suppose φ < 2. Let Ps = R2−φ
s and p = r2−φ. Then P is in natural

scale and

Pt = r2−φ +
∫ t

0
(2− φ)P (1−φ)/(2−φ)

s dWs = p+BDt

for an appropriate time-change Ds. By considering the case η = 0 of the
following argument it follows that HR

0 = HP
0 ≡ inf{u : Ru = 0} is finite

almost surely.
We have that Γt =

∫ t
0 P

−η/(2−φ)
s ds and by the occupation time formula

(Revuz and Yor [29][Corollary VI./1.6]) with Lt(x) denoting the local time
of p+B at x by time t,

ΓHR
0

=
∫

R+

q−η/(2−φ)(2− φ)−2q−2(1−φ)/(2−φ)L
Hp+B

0
(q)dq

= (2− φ)−2

∫
R+

q(2φ−η−2)/(2−φ)L
Hp+B

0
(q)dq. (6)

Let Γ̃t =
∫ t
0 R

−η
s I{Rs<r}ds; then

Γ̃HR
0

= (2− φ)−2

∫ p

0
q(2φ−η−2)/(2−φ)L

Hp+B
0

(q)dq. (7)

Since R will only spend a finite amount of time above its initial point r,
ΓHR

0
will be finite if and only if Γ̃HR

0
is finite, and since for q < r2−φ we have

E[LHR
0
(q)] = q, it follows that E[Γ̃HR

0
] <∞ if and only if η < 2.
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It remains to show that if η ≥ 2 then Γ̃HR
0

= ∞ (and not just E[Γ̃HR
0
] =

∞). Consider Y given by Y0 = y

dYt = (2− φ)Y θ
t dWt.

Then Y is a Cev process, and it is well known that Y hits zero in finite time
if and only if θ < 1. (Alternatively this result follows from Theorem 51.2 in
Rogers and Williams [30].) Using the fact that Y is a local martingale we
have Yt = y +BAt and, if we set ΓY ≡ A−1 then

ΓY
t =

∫ t

0

ds

(2− φ)2(y +Bs)2θ

so that

HY
0 ≡ ΓY

Hy+B
0

=
∫ Hy+B

0

0

ds

(2− φ)2(y +Bs)2θ

= (2− φ)−2

∫
R+

b−2θL
Hy+B

0
(b)db,

where now L denotes the local time of y + B. By the above remark about
the Cev process this quantity is infinite if and only if θ ≥ 1.

Comparing with (6) we see that if −2θ = (2φ− η − 2)/(2− φ) or equiv-
alently θ = (2 + η − 2φ)/2(2 − φ) we can identify ΓHR

0
with ΓY

HY
0

and then
ΓHR

0
is infinite if and only if θ ≥ 1, or equivalently η ≥ 1.

(ii) Suppose φ > 2. In this case, from standard results about Bessel
processes we know that HR

0 is infinite, almost surely, and that R does not
explode, but drifts to plus infinity.

As before we have that Pt = p + BDt is in natural scale, and since Rt

diverges we have Pt → 0 and

lim
t↑∞

Γ(η)
t = (2− φ)2

∫
R+

q(2+η−2φ)/(φ−2)L
Hp+B

0
(q)dq.

By the same argument as before this quantity is almost surely finite if and
only if

1 +
(2 + η − 2φ)

(φ− 2)
≤ −1

or equivalently η ≤ 2.
(iii) If φ = 2 and p = ln r then Pt = lnRt = p + BDt is in natural scale

and
Γ(η)

t =
∫

R
e−ηqe2qLDt(q)dq.

Since Pt is recurrent, this integral is seen to diverge.
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Corollary A.2. Let Rs be a Bessel process of dimension φ, with R0 = r > 0.
Define Γt = Γ(η)

t =
∫ t
0 R

−η
s ds.

Suppose that φ < 2 and η < 2 so that HR
0 and ΓHR

0
are both finite. Then

ΓHR
0 + is finite if and only if φ > η.

Proof. For any t > HR
0 the local martingale P ≡ R2−φ will have generated

a positive local time at zero, so that ΓHR
0 + <∞ if and only if∫

0+
q(2φ−η−2)/(2−φ)dq <∞

This condition is equivalent to φ > η.

B Conditions for a UI martingale.

Let Nt be a continuous non-negative local martingale on a filtered prob-
ability space (Ω,F , (Ft)t≥0,P). For a stopping time τ define the stopped
martingale N̂t = Nt∧τ . We want to decide when N̂ is uniformly integrable.

Define ηn and P̂n via ηn = inf{u ≥ 0 : N̂u ≥ n} ≤ ∞ and

dP̂n

dP
= N̂t∧ηn on Ft∧τ .

Since N̂t∧ηn is bounded it follows that P̂n is a well-defined probability mea-
sure.

Clearly N̂ is uniformly integrable if and only if E[N̂∞] ≡ E[Nτ ] = 1.
The following lemma follows from Lemma A.1 in Hobson and Rogers [19]

Lemma B.1. The following are equivalent:
N̂ is uniformly integrable
P̂n(ηn <∞) → 0.

Proof. Since N̂t∧ηn is a bounded martingale we have

1 = E[N̂ηn ] = E[N̂ηn ; ηn = ∞] + E[N̂ηn ; ηn <∞]

= E[Nτ ; ηn = ∞] + P̂(ηn <∞) (8)

If P̂n(ηn <∞) → 0 then E[Nτ ; ηn = ∞] → 1, and since this is a lower bound
on E[Nτ ] we conclude that E[Nτ ] = 1 and N̂ is uniformly integrable.

Now suppose that E[Nτ ] = E[N̂∞] = 1. Then, using Doob’s submartin-
gale inequality for N̂ we get P(ηn <∞) → 0, so that E[Nτ ; ηn <∞] ↓ 0 and
E[Nτ ; ηn = ∞] ↑ E[Nτ ] = 1. Finally from (8) Pn(ηn <∞) → 0 as required.
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