OPTIMAL CO-ADAPTED COUPLING FOR THE SYMMETRIC RANDOM WALK ON THE HYPERCUBE

STEPHEN CONNOR,* University of Warwick

SAUL JACKA,* University of Warwick

Abstract

Let X and Y be two simple symmetric continuous-time random walks on the vertices of the n-dimensional hypercube, \mathbb{Z}_{2}^{n}. We consider the class of coadapted couplings of these processes, and describe an intuitive coupling which is shown to be the fastest in this class. Keywords: Optimal coupling; co-adapted; stochastic minimum; hypercube 2000 Mathematics Subject Classification: Primary 93E20

Secondary 60J27

1. Introduction

Let \mathbb{Z}_{2}^{n} be the group of binary n-tuples under coordinate-wise addition modulo 2 : this can be viewed as the set of vertices of an n-dimensional hypercube. For $x \in \mathbb{Z}_{2}^{n}$, we write $x=(x(1), \ldots, x(n))$, and define elements $\left\{e_{i}\right\}_{0}^{n}$ by

$$
e_{0}=(0, \ldots, 0) ; \quad e_{i}(k)=\mathbf{1}_{[i=k]}, i=1, \ldots, n
$$

where 1 denotes the indicator function. For $x, y \in \mathbb{Z}_{2}^{n}$ let

$$
|x-y|=\sum_{i=1}^{n}|x(i)-y(i)|
$$

denote the Hamming distance between x and y.
A continuous-time random walk X on \mathbb{Z}_{2}^{n} may be defined using a marked Poisson process Λ of rate n, with marks distributed uniformly on the set $\{1,2, \ldots, n\}$: the $i^{\text {th }}$ coordinate of X is flipped to its opposite value (zero or one) at incident times of Λ for which the corresponding mark is equal to i. We write $\mathcal{L}\left(X_{t}\right)$ for the law of X at time t. The unique equilibrium distribution of X is the uniform distribution on \mathbb{Z}_{2}^{n}.

[^0]Suppose that we now wish to couple two such random walks, X and Y, starting from different states.

Definition 1.1. A coupling of X and Y is a process $\left(X^{\prime}, Y^{\prime}\right)$ on $\mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{n}$ such that

$$
X^{\prime} \stackrel{\mathcal{D}}{=} X \quad \text { and } \quad Y^{\prime} \stackrel{\mathcal{D}}{=} Y
$$

That is, viewed marginally, X^{\prime} behaves as a version of X, and Y^{\prime} as a version of Y.
For any coupling strategy c, write $\left(X_{t}^{c}, Y_{t}^{c}\right)$ for the value at t of the pair of processes X^{c} and Y^{c} driven by strategy c, although this superscript notation may be dropped when no confusion can arise. (We assume throughout that $\left(X^{c}, Y^{c}\right)$ is a coupling of X and Y.) We then define the coupling time by

$$
\tau^{c}=\inf \left\{t \geq 0: X_{s}^{c}=Y_{s}^{c} \forall s \geq t\right\}
$$

Note that in general this is not necessarily a stopping time for either of the marginal processes, nor even for the joint process. For $t \geq 0$, let

$$
U_{t}^{c}=\left\{1 \leq i \leq n: X_{t}^{c}(i) \neq Y_{t}^{c}(i)\right\}
$$

denote the set of unmatched coordinates at time t, and let

$$
M_{t}^{c}=\left\{1 \leq i \leq n: X_{t}^{c}(i)=Y_{t}^{c}(i)\right\}
$$

be its complement. A simple coupling technique appears in [1], and may be described as follows:

- if $X(i)$ flips at time t, with $i \in M_{t}$, then also flip coordinate $Y(i)$ at time t (matched coordinates are always made to move synchronously);
- if $\left|U_{t}\right|>1$ and $X(i)$ flips at time t, with $i \in U_{t}$, also flip coordinate $Y(j)$ at time t, where j is chosen uniformly at random from the set $U_{t} \backslash\{i\}$;
- else, if $U_{t}=\{i\}$ contains only one element, allow coordinates $X(i)$ and $Y(i)$ to evolve independently of each other until this final match is made.

This defines a valid coupling of X and Y, for which existing coordinate matches are maintained and new matches made in pairs when $\left|U_{t}\right| \geq 2$. It is also an example of a co-adapted coupling.

Definition 1.2. A coupling $\left(X^{c}, Y^{c}\right)$ is called co-adapted if there exists a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ such that

1. X^{c} and Y^{c} are both adapted to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$
2. for any $0 \leq s \leq t$,

$$
\mathcal{L}\left(X_{t}^{c} \mid \mathcal{F}_{s}\right)=\mathcal{L}\left(X_{t}^{c} \mid X_{s}^{c}\right) \quad \text { and } \quad \mathcal{L}\left(Y_{t}^{c} \mid \mathcal{F}_{s}\right)=\mathcal{L}\left(Y_{t}^{c} \mid Y_{s}^{c}\right)
$$

In other words, $\left(X^{c}, Y^{c}\right)$ is co-adapted if X^{c} and Y^{c} are both Markov with respect to a common filtration, $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Note that this definition does not imply that the joint process $\left(X^{c}, Y^{c}\right)$ is Markovian, however. If $\left(X^{c}, Y^{c}\right)$ is co-adapted then the coupling time is a randomised stopping time with respect to the individual chains, and it suffices to study the first collision time of the two chains (since it is then always possible to make X^{c} and Y^{c} agree from this time onwards).

In this paper we search for the best possible coupling of the random walks X and Y on \mathbb{Z}_{2}^{n} within the class \mathcal{C} of all co-adapted couplings.

2. Co-adapted couplings for random walks on \mathbb{Z}_{2}^{n}

In order to find the optimal co-adapted coupling of X and Y, it is first necessary to be able to describe a general coupling strategy $c \in \mathcal{C}$. To this end, let $\Lambda_{i j}(0 \leq i, j \leq n)$ be independent unit-rate marked Poisson processes, with marks $W_{i j}$ chosen uniformly on the interval $[0,1]$. We let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be any filtration satisfying

$$
\sigma\left\{\bigcup_{i, j} \Lambda_{i j}(s), \bigcup_{i, j} W_{i j}(s): s \leq t\right\} \subseteq \mathcal{F}_{t}, \quad \forall t \geq 0
$$

The transitions of X^{c} and Y^{c} will be driven by the marked Poisson processes, and controlled by a process $\left\{Q^{c}(t)\right\}_{t \geq 0}$ which is adapted to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Here, $Q^{c}(t)=\left\{q_{i j}^{c}(t): 1 \leq i, j, \leq n\right\}$ is a $n \times n$ doubly sub-stochastic matrix. Such a matrix implicitly defines terms $\left\{q_{0 j}^{c}(t): 1 \leq j \leq n\right\}$ and $\left\{q_{i 0}^{c}(t): 1 \leq i \leq n\right\}$ such that

$$
\begin{align*}
& \quad \sum_{i=0}^{n} q_{i j}^{c}(t)=1 \quad \text { for all } 1 \leq j \leq n \text { and } t \geq 0 \tag{2.1}\\
& \text { and } \quad \sum_{j=0}^{n} q_{i j}^{c}(t)=1 \tag{2.2}
\end{align*} \quad \text { for all } 1 \leq i \leq n \text { and } t \geq 0 . ~ \$
$$

For convenience we also define $q_{00}^{c}(t)=0$ for all $t \geq 0$.
Note that any co-adapted coupling $\left(X^{c}, Y^{c}\right)$ must satisfy the following three constraints, all of which are due to the marginal processes $X^{c}(i)(i=1, \ldots, n)$ being independent unit rate Poisson processes (and similarly for the processes $Y^{c}(i)$):

1. At any instant the number of jumps by the process $\left(X^{c}, Y^{c}\right)$ cannot exceed two (one on X^{c} and one on Y^{c});
2. All single and double jumps must have rates bounded above by one;
3. For all $i=1, \ldots, n$, the total rate at which $X^{c}(i)$ jumps must equal one.

A general co-adapted coupling for X and Y may therefore be defined as follows: if there is a jump in the process $\Lambda_{i j}$ at time $t \geq 0$, and the mark $W_{i j}(t)$ satisfies $W_{i j}(t) \leq q_{i j}(t)$, then set $X_{t}^{c}=X_{t-}^{c}+e_{i}(\bmod 2)$ and $Y_{t}^{c}=Y_{t-}^{c}+e_{j}(\bmod 2)$. Note that if i (respectively j) equals zero, then $X_{t}^{c}=X_{t-}^{c}$ (respectively, $Y_{t}^{c}=Y_{t-}^{c}$), since $e_{0}=(0, \ldots, 0)$.

From this construction it follows directly that X^{c} and Y^{c} both have the correct marginal transition rates to be continuous-time simple random walks on \mathbb{Z}_{2}^{n} as described above, and are co-adapted.

3. Optimal coupling

Our proposed optimal coupling strategy, \hat{c}, is very simple to describe, and depends only upon the number of unmatched coordinates of X and Y. Let $N_{t}=\left|U_{t}\right|$ denote the value of this number at time t. Strategy \hat{c} may be summarised as follows:

- matched coordinates are always made to move synchronously (thus $N^{\hat{c}}$ is a decreasing process);
- if N is odd, all unmatched coordinates of X and Y are made to evolve independently until N becomes even;
- if N is even, unmatched coordinates are coupled in pairs - when an unmatched coordinate on X flips (thereby making a new match), a different, uniformly chosen, unmatched coordinate on Y is forced to flip at the same instant (making a total of two new matches).

Note the similarity between \hat{c} and the coupling of Aldous described in Section 1: if N is even these strategies are identical; if N is odd however, \hat{c} seeks to restore the parity of N as fast as possible, whereas Aldous's coupling continues to couple unmatched coordinates in pairs until $N=1$.

Definition 3.1. The matrix process \hat{Q} corresponding to the coupling \hat{c} is as follows:

- $\hat{q}_{i i}(t)=1$ for all $i \in M_{t}$ and for all $t \geq 0$;
- if N_{t} is odd, $\hat{q}_{i 0}(t)=\hat{q}_{0 i}(t)=1$ for all $i \in U_{t}$;
- if N_{t} is even, $\hat{q}_{i 0}(t)=\hat{q}_{0 i}(t)=\hat{q}_{i i}(t)=0$ for all $i \in U_{t}$, and

$$
\hat{q}_{i j}=\frac{1}{\left|U_{t}\right|-1} \quad \text { for all distinct } i, j \in U_{t}
$$

The coupling time under \hat{c}, when $\left(X_{0}, Y_{0}\right)=(x, y)$, can thus be expressed as follows:

$$
\hat{\tau}=\tau^{\hat{c}}= \begin{cases}E_{0}+E_{1}+E_{2}+\cdots+E_{m-1}+E_{m} & \text { if }|x-y|=2 m \tag{3.1}\\ E_{0}+E_{1}+E_{2}+\cdots+E_{m-1}+E_{m}+E_{2 m+1} & \text { if }|x-y|=2 m+1\end{cases}
$$

where $\left\{E_{k}\right\}_{k \geq 0}$ form a set of independent Exponential random variables, with E_{k} having rate $2 k$. (Note that $E_{0} \equiv 0$: it is included merely for notational convenience.)

Now define

$$
\begin{equation*}
\hat{v}(x, y, t)=\mathbb{P}\left[\hat{\tau}>t \mid X_{0}=x, Y_{0}=y\right] \tag{3.2}
\end{equation*}
$$

to be the tail probability of the coupling time under \hat{c}. The main result of this paper is the following.

Theorem 3.1. For any states $x, y \in \mathbb{Z}_{2}^{n}$ and time $t \geq 0$,

$$
\begin{equation*}
\hat{v}(x, y, t)=\inf _{c \in \mathcal{C}} \mathbb{P}\left[\tau^{c}>t \mid X_{0}=x, Y_{0}=y\right] \tag{3.3}
\end{equation*}
$$

In other words, $\hat{\tau}$ is the stochastic minimum of all co-adapted coupling times for the pair (X, Y).

It is clear from the representation in (3.1) that $\hat{v}(x, y, t)$ only depends on (x, y) through $|x-y|$, and so we shall usually simply write

$$
\hat{v}(k, t)=\mathbb{P}\left[\hat{\tau}>t \mid N_{0}=k\right]
$$

with the convention that $\hat{v}(k, t)=0$ for $k \leq 0$. Note, again from (3.1), that $\hat{v}(k, t)$ is strictly increasing in k. For a strategy $c \in \mathcal{C}$, define the process S_{t}^{c} by

$$
S_{t}^{c}=\hat{v}\left(X_{t}^{c}, Y_{t}^{c}, T-t\right)
$$

where $T>0$ is some fixed time. This is the conditional probability of X and Y not having coupled by time T, when strategy c has been followed over the interval $[0, t]$ and \hat{c} has then been used from time t onwards. The optimality of \hat{c} will follow by Bellman's principle (see, for example, [7]) if it can be shown that $S_{t \wedge \tau^{c}}^{c}$ is a submartingale for all $c \in \mathcal{C}$, as demonstrated in the following lemma. (Here and throughout, $s \wedge t=$ $\min \{s, t\}$.)

Lemma 3.1. Suppose that for each $c \in \mathcal{C}$ and each $T \in \mathbb{R}_{+}$,

$$
\left(S_{t \wedge \tau^{c}}^{c}\right)_{0 \leq t \leq T} \quad \text { is a submartingale. }
$$

Then equation (3.3) holds.

Proof. Notice that, with $\left(X_{0}, Y_{0}\right)=(x, y), S_{0}^{c}=\hat{v}(x, y, T)$ and $S_{T \wedge \tau^{c}}^{c}=\mathbf{1}_{\left[T<\tau^{c}\right]}$. If $S_{.}^{c} \wedge \tau^{c}$ is a submartingale it follows by the Optional Sampling Theorem that

$$
\mathbb{P}\left[\tau^{c}>T\right]=\mathbb{E}\left[S_{T \wedge \tau^{c}}^{c}\right] \geq S_{0}^{c}=\hat{v}(x, y, T)=\mathbb{P}[\hat{\tau}>T]
$$

and hence the infimum in (3.3) is attained by \hat{c}.

Now, (point process) stochastic calculus yields:

$$
\begin{equation*}
d S_{t}^{c}=d Z_{t}^{c}+\left(\mathcal{A}_{t}^{c} \hat{v}-\frac{\partial \hat{v}}{\partial t}\right) d t \tag{3.4}
\end{equation*}
$$

where Z_{t}^{c} is a martingale, and \mathcal{A}_{t}^{c} is the "generator" corresponding to the matrix $Q^{c}(t)$. Since the Poisson processes $\Lambda_{i j}$ are independent, the probability of two or more jumps occurring in the superimposed process $\bigcup \Lambda_{i j}$ in a time interval of length δ is $O\left(\delta^{2}\right)$. Hence, for any function $f: \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{n} \times \mathbb{R}^{+} \rightarrow \mathbb{R}, \mathcal{A}_{t}^{c}$ satisfies

$$
\mathcal{A}_{t}^{c} f(x, y, t)=\sum_{i=0}^{n} \sum_{j=0}^{n} q_{i j}^{c}(t)\left[f\left(x+e_{i}, y+e_{j}, t\right)-f(x, y, t)\right] .
$$

Setting $f=\hat{v}$ gives:

$$
\begin{aligned}
\mathcal{A}_{t}^{c} \hat{v}(x, y, t) & =\sum_{i=0}^{n} \sum_{j=0}^{n} q_{i j}^{c}(t)\left[\hat{v}\left(x+e_{i}, y+e_{j}, t\right)-\hat{v}(x, y, t)\right] \\
& =\sum_{i=0}^{n} \sum_{j=0}^{n} q_{i j}^{c}(t)\left[\hat{v}\left(\left|x-y+e_{i}+e_{j}\right|, t\right)-\hat{v}(|x-y|, t)\right] .
\end{aligned}
$$

In particular, since \hat{v} is invariant under coordinate permutation, if $N_{t}^{c}=|x-y|=k$ then

$$
\begin{equation*}
\mathcal{A}_{t}^{c} \hat{v}(x, y, t)=\sum_{m=-2}^{2} \lambda_{t}^{c}(k, k+m)[\hat{v}(k+m, t)-\hat{v}(k, t)], \tag{3.5}
\end{equation*}
$$

where $\lambda_{t}^{c}(k, k+m)$ is the rate (according to $\left.Q^{c}(t)\right)$ at which N_{t}^{c} jumps from k to $k+m$. More explicitly,

$$
\begin{array}{ll}
\lambda_{t}^{c}(k, k+2)=\sum_{\substack{i, j \in M_{t} \\
i \neq j}} q_{i j}^{c}(t), & \lambda_{t}^{c}(k, k+1)=\sum_{i \in M_{t}}\left(q_{i 0}^{c}(t)+q_{0 i}^{c}(t)\right), \\
\lambda_{t}^{c}(k, k-2)=\sum_{\substack{i, j \in U_{t} \\
i \neq j}} q_{i j}^{c}(t), & \lambda_{t}^{c}(k, k-1)=\sum_{i \in U_{t}}\left(q_{i 0}^{c}(t)+q_{0 i}^{c}(t)\right), \tag{3.7}
\end{array}
$$

and

$$
\begin{equation*}
\lambda_{t}^{c}(k, k)=\sum_{i \in U_{t}, j \in M_{t}}\left(q_{i j}^{c}(t)+q_{j i}^{c}(t)\right)+\sum_{i=1}^{n} q_{i i}^{c}(t) . \tag{3.8}
\end{equation*}
$$

It follows from the definition of Q and equations (3.6) to (3.8) that these terms must satisfy the linear constraints:

$$
\begin{aligned}
& \lambda_{t}^{c}(k, k-2)+\frac{1}{2} \lambda_{t}^{c}(k, k-1) \leq k, \quad \text { and } \\
& \lambda_{t}^{c}(k, k-2)+\frac{1}{2} \lambda_{t}^{c}(k, k-1)+\lambda_{t}^{c}(k, k)+\frac{1}{2} \lambda_{t}^{c}(k, k+1)+\lambda_{t}^{c}(k, k+2)=n
\end{aligned}
$$

Denote by L_{n} the set of non-negative λ satisfying the constraints

$$
\begin{align*}
& \lambda(k, k-2)+\frac{1}{2} \lambda(k, k-1) \leq k, \quad \text { and } \tag{3.9}\\
& \lambda(k, k-2)+\frac{1}{2} \lambda(k, k-1)+\lambda(k, k)+\frac{1}{2} \lambda(k, k+1)+\lambda(k, k+2)=n \tag{3.10}
\end{align*}
$$

Returning to equation (3.4):

$$
d S_{t}^{c}=d Z_{t}^{c}+\left(\mathcal{A}_{t}^{c} \hat{v}-\frac{\partial \hat{v}}{\partial t}\right) d t
$$

We wish to show that $S_{t \wedge \tau^{c}}^{c}$ is a submartingale for all couplings $c \in \mathcal{C}$. We shall do this by showing that $\mathcal{A}_{t}^{c} \hat{v}$ is minimised by setting $c=\hat{c}$. This is sufficient because $S_{t \wedge \hat{\tau}}^{\hat{c}}$ is a martingale (and so $\mathcal{A}_{t}^{\hat{c}} \hat{v}-\partial \hat{v} / \partial t=0$). Now, from equation (3.5) we know that

$$
\mathcal{A}_{t}^{c} \hat{v}(k, t)=\sum_{m=-2}^{2} \lambda_{t}^{c}(k, k+m)[\hat{v}(k+m, t)-\hat{v}(k, t)] .
$$

Thus we seek to show that, for all $k \geq 0$ and for all $t \geq 0$,

$$
\begin{equation*}
\max _{\lambda \in L_{n}} \sum_{m=-2}^{2} \lambda(k, k+m)[\hat{v}(k, t)-\hat{v}(k+m, t)] \geq 0 \tag{3.11}
\end{equation*}
$$

For each t, this is a linear function of non-negative terms of the form $\lambda(k, k+m)$. Thanks to the monotonicity in its first argument of \hat{v}, the terms appearing in the left-hand-side of (3.11) are non-positive if and only if m is non-negative. Hence we must set

$$
\begin{equation*}
\lambda(k, k+1)=\lambda(k, k+2)=0 \tag{3.12}
\end{equation*}
$$

in order to achieve the maximum in (3.11).
It now suffices to maximise

$$
\begin{equation*}
\lambda(k, k-1)[\hat{v}(k, t)-\hat{v}(k-1, t)]+\lambda(k, k-2)[\hat{v}(k, t)-\hat{v}(k-2, t)] \tag{3.13}
\end{equation*}
$$

subject to the constraint in (3.9).
Combining (3.9) and (3.13) yields the final version of our optimisation problem:

$$
\begin{array}{ll}
\text { maximise } & \lambda(k, k-1)\left([\hat{v}(k, t)-\hat{v}(k-1, t)]-\frac{1}{2}[\hat{v}(k, t)-\hat{v}(k-2, t)]\right) \\
\text { subject to } & 0 \leq \lambda(k, k-1) \leq 2 k \tag{3.15}
\end{array}
$$

The solution to this problem is clearly given by:

$$
\lambda(k, k-1)= \begin{cases}2 k & \text { if }[\hat{v}(k, t)-\hat{v}(k-1, t)]>\frac{1}{2}[\hat{v}(k, t)-\hat{v}(k-2, t)] \tag{3.16}\\ 0 & \text { otherwise }\end{cases}
$$

These observations may be summarised as follows:
Proposition 3.1. For $\lambda \in L_{n}$, the maximum value of

$$
\sum_{m=-2}^{2} \lambda(k, k+m)[\hat{v}(k, t)-\hat{v}(k+m, t)]
$$

is achieved at λ^{*}, where λ^{*} satisfies the following:

$$
\begin{aligned}
& \lambda^{*}(k, k+1)=\lambda^{*}(k, k+2)=0 ; \\
& \lambda^{*}(k, k-2)+\frac{1}{2} \lambda^{*}(k, k-1)=k \\
& \lambda^{*}(k, k-1)= \begin{cases}2 k & \text { if }[\hat{v}(k, t)-\hat{v}(k-1, t)]>\frac{1}{2}[\hat{v}(k, t)-\hat{v}(k-2, t)] \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Our final proposition shows that $\lambda^{*}(k, k-1)=2 k$ if and only if k is odd.

Proposition 3.2. For any fixed $t \geq 0$,

$$
\begin{align*}
& 2[\hat{v}(k, t)-\hat{v}(k-1, t)]-[\hat{v}(k, t)-\hat{v}(k-2, t)] \geq 0 \quad \text { if } k \text { is odd, and } \tag{3.17}\\
& 2[\hat{v}(k, t)-\hat{v}(k-1, t)]-[\hat{v}(k, t)-\hat{v}(k-2, t)] \leq 0 \quad \text { if } k \text { is even. } \tag{3.18}
\end{align*}
$$

Proof. Define \hat{V}_{α} by

$$
\hat{V}_{\alpha}(k)=\int_{0}^{\infty} e^{-\alpha t} \hat{v}(k, t) d t=\frac{1}{\alpha}\left(1-\mathbb{E}\left[e^{-\alpha \hat{\tau}}\right]\right) .
$$

We also define $d(k, t)=\hat{v}(k, t)-\hat{v}(k-1, t)$, and for $\alpha \geq 0$ let

$$
D_{\alpha}(k)=\int_{0}^{\infty} e^{-\alpha t} d(k, t) d t
$$

be the Laplace transform of $d(k, \cdot)$. Given the representation in equation (3.1) of $\hat{\tau}$ as a sum of independent Exponential random variables, it follows that

$$
\hat{V}_{\alpha}(k)= \begin{cases}\frac{1}{\alpha}\left(1-\prod_{i=1}^{m} \frac{2 i}{2 i+\alpha}\right) & \text { if } k=2 m \tag{3.19}\\ \frac{1}{\alpha}\left(1-\frac{2(2 m+1)}{2(2 m+1)+\alpha} \prod_{i=1}^{m} \frac{2 i}{2 i+\alpha}\right) & \text { if } k=2 m+1\end{cases}
$$

To ease notation, let

$$
\phi_{\alpha}(m)=\prod_{i=1}^{m} \frac{2 i}{2 i+\alpha} .
$$

The following equality then follows directly from consideration of the transition rates corresponding to strategy \hat{c} :
for all $\alpha \geq 0$ and $m \geq 1$,

$$
\begin{align*}
1-\alpha \hat{V}_{\alpha}(2 m)+2 m\left[\hat{V}_{\alpha}(2 m-2)-\hat{V}_{\alpha}(2 m)\right] & =\phi_{\alpha}(m)+\frac{2 m}{\alpha}\left[\phi_{\alpha}(m)-\phi_{\alpha}(m-1)\right] \\
& =\phi_{\alpha}(m)+\frac{2 m}{\alpha} \phi_{\alpha}(m)\left[1-\frac{2 m+\alpha}{2 m}\right] \\
& =0 . \tag{3.20}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
1-\alpha \hat{V}_{\alpha}(2 m-1)+2(2 m-1)\left[\hat{V}_{\alpha}(2 m-2)-\hat{V}_{\alpha}(2 m-1)\right]=0 \tag{3.21}
\end{equation*}
$$

Now suppose that $k=2 m$, and hence is even. We wish to prove that

$$
d(2 m-1, t)-d(2 m, t) \geq 0 \quad \text { for all } t \geq 0
$$

which is equivalent to showing that $D_{\alpha}(2 m-1)-D_{\alpha}(2 m)$ is totally (or completely) monotone (by the Bernstein-Widder Theorem; Theorem 1a of [3], Ch. XIII.4).

We proceed by subtracting equation (3.21) from (3.20):

$$
\begin{aligned}
0=-\alpha\left[\hat{V}_{\alpha}(2 m)-\hat{V}_{\alpha}(2 m-1)\right] & +2 m\left[\hat{V}_{\alpha}(2 m-2)-\hat{V}_{\alpha}(2 m)\right] \\
& +2(2 m-1)\left[\hat{V}_{\alpha}(2 m-1)-\hat{V}_{\alpha}(2 m-2)\right] \\
=-\alpha D_{\alpha}(2 m)-2 m\left[D_{\alpha}(2 m)\right. & \left.+D_{\alpha}(2 m-1)\right]+2(2 m-1) D_{\alpha}(2 m-1),
\end{aligned}
$$

and so

$$
\begin{equation*}
D_{\alpha}(2 m-1)-D_{\alpha}(2 m)=\frac{2+\alpha}{2 m-2} D_{\alpha}(2 m) \tag{3.22}
\end{equation*}
$$

It therefore suffices to show that $(2+\alpha) D_{\alpha}(2 m)$ is completely monotone.
Now note from the form of \hat{V} in equation (3.19), that

$$
(2+\alpha) D_{\alpha}(2 m)=2 \Theta_{\alpha}(2 m)
$$

where $\Theta_{\alpha}(2 m)$ is the Laplace transform of

$$
\theta(2 m, t)=\mathbb{P}\left[\sum_{i=0}^{m} E_{i}>t\right]-\mathbb{P}\left[\sum_{i=0}^{m-1} E_{i}+E_{2 m-1}>t\right],
$$

where $\left\{E_{i}\right\}_{i \geq 0}$ form a set of independent Exponential random variables, with E_{i} having parameter $2 i$. But since $\theta(2 m, t)$ is strictly positive for all t, it follows that
$(2+\alpha) D_{\alpha}(2 m)$ is completely monotone, as required. This proves that, for any fixed $t \geq 0$,

$$
\begin{equation*}
2[\hat{v}(k, t)-\hat{v}(k-1, t)]-[\hat{v}(k, t)-\hat{v}(k-2, t)] \leq 0 \tag{3.23}
\end{equation*}
$$

whenever k is even. Thus inequality (3.18) holds in this case.
Now suppose that $k=2 m+1$, and hence is odd. In this case we wish to show that inequality (3.17) holds, which is equivalent to showing that $D_{\alpha}(2 m+1)-D_{\alpha}(2 m)$ is completely monotone. Now, substituting $m+1$ for m in equation (3.21) yields

$$
\begin{equation*}
1-\alpha \hat{V}_{\alpha}(2 m+1)+2(2 m+1)\left[\hat{V}_{\alpha}(2 m)-\hat{V}_{\alpha}(2 m+1)\right]=0 \tag{3.24}
\end{equation*}
$$

Proceeding as above, we subtract equation (3.20) from (3.24):

$$
\begin{align*}
& 0=-\alpha\left[\hat{V}_{\alpha}(2 m+1)-\hat{V}_{\alpha}(2 m)\right]+2(2 m+1)\left[\hat{V}_{\alpha}(2 m)-\hat{V}_{\alpha}(2 m+1)\right] \\
&+2 m\left[\hat{V}_{\alpha}(2 m)-\hat{V}_{\alpha}(2 m-2)\right] \\
&=-\alpha D_{\alpha}(2 m+1)-2(2 m+1) D_{\alpha}(2 m+1)+2 m\left[D_{\alpha}(2 m)+D_{\alpha}(2 m-1)\right] \tag{3.25}
\end{align*}
$$

Then it follows from equation (3.22) that

$$
\begin{equation*}
(2 m-2) D_{\alpha}(2 m-1)=(2 m+\alpha) D_{\alpha}(2 m) . \tag{3.26}
\end{equation*}
$$

Substitution of equation (3.26) into (3.25) gives

$$
0=(4 m+2-\alpha)\left[D_{\alpha}(2 m)-D_{\alpha}(2 m+1)\right]+2\left[D_{\alpha}(2 m-1)-D_{\alpha}(2 m)\right]
$$

and so

$$
\begin{equation*}
D_{\alpha}(2 m+1)-D_{\alpha}(2 m)=\frac{2}{4 m+2+\alpha}\left[D_{\alpha}(2 m-1)-D_{\alpha}(2 m)\right] \tag{3.27}
\end{equation*}
$$

But, since we have already seen that $D_{\alpha}(2 m-1)-D_{\alpha}(2 m)$ is completely monotone, the right-hand-side of equation (3.27) is the product of two completely monotone functions, and so is itself completely monotone [3], as required.

Now we may complete the
Proof of Theorem 3.1. Thanks to Lemma 3.1 and Proposition 3.1, Proposition 3.2, along with equations (3.12) and (3.16), shows that any optimal choice of $Q(t), Q^{*}(t)$, is of the following form:

- when N_{t} is odd:

$$
\begin{aligned}
& q_{i 0}^{*}(t)=q_{0 i}^{*}(t)=1 \text { for all } i \in U_{t},\left(\text { and so } \lambda_{t}^{*}\left(N_{t}, N_{t}-1\right)=2 N_{t}\right), \\
& q_{i i}^{*}(t)=1 \text { for all } i \in M_{t}
\end{aligned}
$$

- when N_{t} is even:

$$
\begin{align*}
& q_{i 0}^{*}(t)=q_{0 i}^{*}(t)=q_{i i}^{*}(t)=0 \text { for all } i \in U_{t},\left(\text { and so } \lambda_{t}^{*}\left(N_{t}, N_{t}-1\right)=0\right), \tag{3.28}\\
& q_{i i}^{*}(t)=1 \text { for all } i \in M_{t} .
\end{align*}
$$

This is in agreement with our candidate strategy \hat{Q} (recall Definition 3.1). From equation (3.28) it follows that the values of $q_{i j}^{*}(t)$ for distinct $i, j \in U_{t}$ must satisfy

$$
\sum_{\substack{i, j \in U_{t} \\ i \neq j}} q_{i j}^{*}(t)=\left|U_{t}\right|
$$

but are not constrained beyond this. Our choice of

$$
\hat{q}_{i j}(t)=\frac{1}{\left|U_{t}\right|-1}
$$

satisfies this bound, and so \hat{c} is truly an optimal co-adapted coupling, as claimed.
Remark 3.1. Observe that when $k=1$, equation (3.1) implies that $\hat{v}(1, t)=\hat{v}(2, t)$ for all t. The optimisation problem in (3.14) and (3.15) simplifies in this case to the following:

$$
\begin{array}{cl}
\text { maximise } & \lambda(1,0) \hat{v}(1, t) \\
\text { subject to } & \frac{1}{2} \lambda(1,0)+\lambda(1,1)+\frac{1}{2} \lambda(1,2) \leq n \tag{3.30}
\end{array}
$$

As above, this is achieved by setting $\lambda(1,0)=2$. Note from equation (3.30), however, that when $k=1$ there is no obligation to set $\lambda(1,2)=0$ in order to attain the required maximum. Indeed, due to the equality between $\hat{v}(1, t)$ and $\hat{v}(2, t)$, when $k=1$ it is not sub-optimal to allow matched coordinates to evolve independently (corresponding to $\left.\lambda_{t}^{c}(1,2)>0\right)$, so long as strategy \hat{c} is used once more as soon as $k=2$.

4. Maximal coupling

Let X and Y be two copies of a Markov chain on a countable space, starting from different states. The coupling inequality (see, for example, [8]) bounds the tail
distribution of any coupling of X and Y by the total variation distance between the two processes:

$$
\begin{equation*}
\left\|\mathcal{L}\left(X_{t}\right)-\mathcal{L}\left(Y_{t}\right)\right\|_{T V} \leq \mathbb{P}[\tau>t] \tag{4.1}
\end{equation*}
$$

Griffeath [5] showed that, for discrete-time chains, there always exists a maximal coupling of X and Y : that is, one which achieves equality for all $t \geq 0$ in the coupling inequality. This result was extended to general continuous-time stochastic processes with paths in Skorohod space in [11]. However, in general such a coupling is not co-adapted. In light of the results of Section 3, where it was shown that \hat{c} is the optimal co-adapted coupling for the symmetric random walk on \mathbb{Z}_{2}^{n}, a natural question is whether \hat{c} is also a maximal coupling.

This is certainly not the case in general. Suppose that X and Y are once again random walks on \mathbb{Z}_{2}^{n}, with $X_{0}=(0,0, \ldots, 0)$ and $Y_{0}=(1,1, \ldots, 1)$: calculations as in [2] show that the total variation distance between X_{t} and Y_{t} exhibits a cutoff phenomenon, with the cutoff taking place at time $T_{n}=\frac{1}{4} \log n$ for large n. This implies that a maximal coupling of X and Y has expected coupling time of order T_{n}. However, it follows from the representation of $\hat{\tau}$ in equation (3.1) that

$$
\begin{equation*}
\mathbb{E}\left[\hat{\tau} ;\left|X_{0}-Y_{0}\right|=n=2 m\right]=\mathbb{E}\left[E_{1}+E_{2}+\cdots+E_{m-1}+E_{m}\right] \sim \frac{1}{2} \log (n) \tag{4.2}
\end{equation*}
$$

It follows that \hat{c} is not, in general, a maximal coupling.
A faster coupling of X and Y was proposed by [9]. This coupling also makes new coordinate matches in pairs, but uses information about the future evolution of one of the chains in order to make such matches in a more efficient manner. This coupling is very near to being maximal (it captures the correct cutoff time), but is of course not co-adapted. Further results related to the construction of maximal couplings for general Markov chains may be found in $[4,6,10]$.

References

[1] Aldous, D. (1983). Random walks on finite groups and rapidly mixing Markov chains vol. 986 of Lecture Notes in Math. Springer, Berlin. pp. 243-297.
[2] Diaconis, P., Graham, R. L. and Morrison, J. A. (1990). Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Structures Algorithms 1, 51-72.
[3] Feller, V. (1971). An introduction to probability theory and its applications second ed. vol. 2. Wiley.
[4] Greven, A. (1987). Couplings of Markov chains by randomized stopping times. Probab. Theory Related Fields 75, 195-212 and 431-458.
[5] Griffeath, D. (1975). A maximal coupling for Markov chains. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31, 95-106.
[6] Harison, V. and Smirnov, S. N. (1990). Jonction maximale en distribution dans le cas markovien. Probab. Theory Related Fields 84, 491-503.
[7] Krylov, N. V. (1980). Controlled diffusion processes vol. 14 of Applications of Mathematics. Springer-Verlag, New York. Translated from the Russian by A. B. Aries.
[8] Lindvall, T. (2002). Lectures on the coupling method. Dover.
[9] Matthews, P. (1987). Mixing rates for a random walk on the cube. SIAM J. Algebraic Discrete Methods 8, 746-752.
[10] Pitman, J. W. (1976). On coupling of Markov chains. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35, 315-322.
[11] Sverchkov, M. Y. and Smirnov, S. N. (1990). Maximal coupling of D-valued processes. Soviet Math. Dokl. 41, 352-354.

[^0]: * Postal address: Department of Statistics, University of Warwick, Coventry, CV4 7AL. UK

