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1 Introduction

We start by giving some examples

1.1 Some examples
1. Drift control Suppose that
dX; = 0dB; + pdt with |p| < c for all ¢ :
find an upper/lower bound for
(i) B [;° e X2dt;
(i) Pe(1o > t), where 7o = inf{t > 0: X; = 0).

2. Tracking/coupling Suppose that we have a fixed Brownian motion
(BM) B on the filtration (F;) and two processes, X and Y, satisfying:

dXt = O'tldBt
and
dY; = afdW;.
Choose W from amongst all the BMs on the filtration (F):
(i) to minimise E(Xr — Y7)%
(i) to minimise P(1o(X —Y) > T), where 70(X —Y) = inf{t > 0 :

3. Investment/consumption Suppose that we have n+1 assets: S°,..., S
and
dS} = poS; dt;

while, for each 1 <17 < n,
S} = S{(>_ o™dB] + pdt).
J

Suppose that we may invest in these assets so that our wealth process
X™¢ satisfies (after consumption):
i

d
dx;e = X (3 x SS} — c,dt),
t
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where 7 and ¢ are constrained to be adapted and to satisfy > 7} =1
and ¢ > 0, for all t.

Given p < 1, find
sup E, [/ (e X7 )Pdt].
0

,C

4. Good Lambda Inequalities Suppose that X and Y are two increas-
. 1
ing processes (e.g. X; = B} =sup,;|B;| and Y; = t2): find the best
constant, ¢, appearing in the inequality

P(X,; > x,Y, <y) <cP(X; > z) for all stopping times 7.

5. Stopping Time Inequalities

(i) Find
sup E(B! — kr)

where 7 runs through all stopping times.

(ii) Find the best constant, ¢, appearing in the inequality

E(B;)P < ¢||B?||, for all stopping times 7.



2 The Bellman principle and HJB equation
2.1 A Typical Problem

Problems in (continuous time) stochastic control usually involve a controlled
Ito process in R%:

Xm;u = b(ut7 Xtu)dt ‘I— U(Ut, Xg)dBt,
where u; may be chosen from a control set A so that u (the control) may be

any adapted process taking values in A.
A typical problem would then be:

find the value function

(2.1) v(x) = sup By J(u, X"),
where the performance functional J is given by

J(u, X*) :/ e‘fga(“S’Xg)dsf(ut,Xf)dt.
0

Remark 1. Notice that we can be charged for the control as, in general,
f depends on u. Notice also that minimisation problems just correspond to
replacing f by —f. The process ¢ = fg a(ug, X*)ds is referred to as the
discount process.

2.2 Bellman’s Principle

Suppose that we follow some control u up to time ¢ and then control optimally
(using the control @) thereafter. Call the resulting control @; then

J(a, X% = / e f (g, X)ds.
0
Splitting up the range of integration we get
t 00 R .
J(u, X*) = / e % f(us, X“)ds + €—¢§‘/ e~ %t f(lg, X)ds.
0 t
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It follows that (since @ is optimal)
t
Ve = B X = [ e X2ds + e o)),
0

Now the longer we follow an arbitrary policy u the longer we fail to follow
the optimal policy u and so the worse we expect to perform, whilst if u = @
then we behave optimally throughout. We get from this:

Bellman’s Principle Under every u, V" is a supermartingale while
under the optimal control @, V% is a martingale.

2.3 A Converse

Suppose we are given a function ¢ and for each policy u we define the process
V" by

t
v = / e fug, X2)ds + e B(XP);
0

now consider the following four conditions (the first three of which are as-
sumed to hold for all controls u and all initial conditions z):

(1) V* is a supermartingale;
(2) E le ®9(X%)] — 0ast— oc;

(3) Ealfy e f(us, X2)ds] — E,[J (u, X*)] as t — oo;

and
(4) for all x there exists a @ such that V% is a martingale.

Theorem 2. Suppose that conditions (1) to (3) hold then

(o4t
vV

.

If, in addition, (4) holds, then

(S
I
St

Proof: from (1) it follows that
t
22) o) =V 2 BV = B[ e % flun XD)ds] + e a(X7),
0
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Now, taking limits as ¢ — oo in equation (2.2), (2) and (3) imply that
5(2) > BuJ(u, X)],
and, since this holds for arbitrary u and x we see that
v > .
If, in addition (4) holds, then we have equality in (2.2) when u = 4, so
8(2) = B[ (0, X%

and thus
o(z) <wv(z) = Slip E.[J(u, X))

2.4 Extensions

e We may make the problem time-dependent by enlarging the statespace
(so (X})i>0 becomes ((X},t))i>0)-

e We can now consider finite time-horizon problems by setting f(u;, X', t) =
0fort>T.

e We may ‘stop’ the problem on first exit from a domain D, setting v to
a prescribed function, g, on dD.

We may also incorporate optional stopping (v is then set to a prescribed
function, g, at a stopping time of our choice).

2.5 The Hamilton-Jacobi-Bellman (HJB) equa-
tion
Suppose that the solution to problem (2.1) is v, and that v is C?. Tto’s

formula tells us that (omitting the argument (u;, X;*) wherever it should
appear, and denoting oo’ by a):

1 0%v ov
u _ = ([ L 7
dVit =e ([2 ;aw Didn, + Z@.:bzfﬁi v + f]dt

0 .
+ Z Ui’ja_;}'ng)’
i, ’



or, defining the differential operator L* by
LY:g— L',

where

AVt = e % ([L"v + f] + Z am-%dBf).
i.j !

Now Bellman’s principle tells us that V* is a supermartingale and should be
a martingale under the optimal control: it follows that for each u we want

L'v+ f<0
and for u = 4 we want )
L'v+ f =0,
or, more succinctly
(2.3) sup[L*v + f] = 0.
u€eA

Equation (2.3) is known as the Hamilton-Jacobi-Bellman (HJB) equation.

2.6 A worked example
Problem Find

(2.4) v(z) = inf Ex/ e ™ f(X})dt,
where « is a fixed positive constant, the process X" satisfies
dX}' = dB; + wdt,

A = {adapted u : |u] <1 for all ¢}



and

fx— a2

Solution The HJB equation is

1
\i?gfl 51}"(@ +uv'(z) — av + 2° = 0.

Guess, by symmetry, that v is symmetric and increasing for x > 0. It follows

that the infimum is attained (for x > 0) at u = —1. It follows that we want
to solve

1 " / 2
(2.5) W (x) —w'(x) — aw + z° = 0.

The general solution is

w = Ae(’H‘%)x + Be(—"/‘f‘%)x + 1332 _ ix + i _ 37
a a? a?  o?
where
V1+ 2«
V=
We want a C? symmetric solution, so we want w'(0) = 0. We can also

conclude that A = 0 (by comparison with the Brownian motion case where
u = 0 and by positivity). This results in the guess:

el p Lo 2 1 2
a?(y — %) o o2 a? od

It’s easy to check that w is increasing on R, since we’ve set w’(0) to zero
and w” is clearly positive. It follows that w satisfies the HJB equation. It
is now relatively easy to check that w satisfies the conditions of Theorem 2,
since properties (2) and (3) follow from the fact that | X}| < |By| + t, whilst
(1) and (4) follow from the fact that w satisfies the HJB equation. O

Exercise 1: solve the problem when f : 2 +— a4,



3 Optimal Portfolio Allocation/Consumption

Recall the setup of example 3.

3.1 Casel

Suppose that there is no risk-free asset (S°) and n = d = 1 (so there is no
allocation problem — 7 = 1).
We get

1
(3.1) Lég(x) = —ox*—2 + (u — c)m—g,
T

with a = 0 and f(c, x) = (cz)?.
A quick check shows that everything scales in x, so we must have v(z) =

kaP for a suitable k.
The HJB equation is

1
(3.2) sup[—502p(1 —p)k + (u— ¢)pk + PlaP = 0,

or, setting 0 = %JQp(l —p) — up and since x > 0

(3.3) sup|c? — epk — 6k] = 0.

C

The supremum in (3.3) is attained at ¢ = k™77 and so, substituting back in
(3.3), we get

l—p 1=
l{; = { — p
D,
provided
1
(3.4) < 502(1 — D).

Exercise 2: by considering consumption policies of the form ¢, = ¢ for
suitable values of ¢g, show that if (3.4) fails then v = 0.

Now, assuming that (3.4) holds, we can check conditions (1)-(4).

(3) holds by positivity and monotone convergence— notice this is always
OK if f > 0. (2) follows from (3.4) and the fact that X¢ < X, (1) and (4)
follow from the HJB equation.



3.2 Case 2

Now assume that n > d and there is a risk-free asset present.
We get
1 d? d
(3.5) L™%g(z) = 57?Ta7~rx2d—;27 + (p'' 7 + pomo — c)xé,
where a = oo®, u*' = (o, 1) and 7 = (o, 7).
The HJB equation is

sup[L™v + (cz)?] = 0.

,C

Scaling again forces a solution of the form v(z) = kP, and so we get

L.y T
sup[—iﬂTaWp(l —p)k + ("7 + pomo — ¢)pk + ] =0
Notice that the maximization in ¢ is independent of 7. It follows that it’s
essentially the same problem as Case 1, unless a is not of full rank. If not
then sup, = oo unless

(3.6) Ker(a) = Ker(o) L (i — pol).

In financial terms, there is an arbitrage unless (3.6) holds. Assuming that
(3.6) does hold, we may assume wlog that a is of full rank). Now we need

(i — pol)Ta=Y (1 — pol
uo+—(“ fol) (i — pol)

< 0.
2 1—0p

3.3 Case 3

We revert to a single asset but now we wish to find
T
sup Ex[/ (s Xs)Pds + AN X5)P]

c 0
Note that this is (a shift of) the Lagrangian for the constrained problem

T

sup Ex[/ (csXs)Pds| subject to E,[(X$)P] = b.
c 0
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Once more by scaling, we can see that the solution must be of the form
v(x,T) = kx(T)aP.
The HJB equation is

1 0%v ov  Ov
sup 5021’2@ + (1 — C)x% T (cx)” =0,

(WHY?), with the boundary condition
v(z,0) = AzP.
Substituting the ‘solution’ v(z,t) = kx(t)z?, we get

sup[(1 — p)rky — pcky — ki = 0,
with (1 —p)r = up — 50%p(1 — p).
As before ¢ = k™15, Amazingly, if we set £ = k:/\lf” we get linear (affine)

differential equation for &:
& =1+r€

Finally, we can solve and substitute to obtain v and E,[(X§)P]. Finally, by
varying A we can solve the constrained problem (for a range of b.
QUESTION: If we use the corresponding optimal control policy, what will
the value of X1 be?

4 Tracking Problems

Exercise 3: Let A be the set of d X d symmetric real matrices a, satisfying
the inequalities:
plr)? < alax < v|zf?

where 0 < p < v. This is the collection of real symmetric matrices with
each eigenvalue in the interval [u,v]. Let A = { adapted o : oy0] €
A for each t}.
Suppose that 0 < € < R, the domain D is given by D = {z € R?: € <
|z| < R} and 7p is the first exit time of D.
Find
sup E,g(|X7, 1),
oceA
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where

and
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4.1 Tracking Problem 1

Recall Problem 2(i) from the introduction:
suppose that we have a fixed Brownian motion (BM) B on the filtration
(F:) and two processes, X and Y, satisfying:

dXt = O'l(Xt)dBt, X() =T

and
dY;W = 0’2(}/;5)th7 Yo=uy.

Choose W from V, the set of all the BMs on the filtration (F;), to minimise
E(Xr —Yr)2
Before we continue, let us add the assumption that

0o is Lipschitz, and o; is Holder continuous with Holder parameter
a > 0.

Under this assumption,
(i) For any W, Y is a strong solution and is adapted to the filtration of
W
(ii) X is unique in law but need not be adapted to the filtration of B.
Remark 3. for any W €V, there is a predictable H and a B € V such that
o W.= [, cosHydB, + |, sinH,dB,

o X s unique in law but need not be a strong solution and hence may not
be adapted to the filtration of B.

Let’s generalise the problem (without making it any harder): fix 7" > 0 and
suppose that @ is C?, convex and of polynomial growth:

(4.1) find (z,y,T) = inf Eo\®(Xr — YY),

Theorem 4. The infimum in (4.1) is attained by setting W = B.

Corollary 5. If o is such that no strong solution for X exists then

n déf lIlf Ex,y[XT - YW’U2]2 > 07

yeER, WV, o2 Lipschitz

and so we cannot approrimate X by a sequence of adapted strong solutions
in L? with Lipschitz coefficients.

13



Sketch proof: suppose we could, i.e we have a sequence (y,, W", g,) s.t.
E[Xp - Y])* -0,

then by Theorem 4, Z" given by Z}' = y,, + fot on(Z7)dB; will do at least as
well and so E[Z} — X7|*> — 0, which implies, by Doob’s maximal inequality,
that

E sup (Z}' — X;)* — 0.

0<t<T

But each Z" is adapted so X is adapted, which is a contradiction. ([l
Sketch proof of Theorem 4: the candidate optimal policy is W = B,
so define

(4.2) w(z,y,t) = Euy®(X; — V7).

Now look at the HJB equation (with

W, = / C.dB, + / S.dB,
0 0

with C' and S adapted and C? + 5% = 1).

Assuming that v is C*!:
W L, L, c
(4.3) dv(X.,Y," T —t) = (5011)m + Co1090, + 502Uy — v)dt + dM,
where M¢ is a martingale; then it follows that the HJB equation is:

. 1 1
661[9{’1](503111«3; + o109V, + §O'§Uyy — ;) = 0.

If we apply this to w we see that we want optimal ¢ = 1 (corresponding
to W = B), so it’s (nearly) necessary and sufficient that w,, < 0. Again,
assuming that w is C*!, we need only show that

IRE//wxydxdygo
R
Y, Y]

for any rectangle R = [z, 2] X [y,
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Now

I =w(,y,t) —w(x,y t) —w y,t) +w(zy,t)
= E[®(Xy(x ') YA (y)) — o(Xi(2) — Y, ()
— (X (2) = Y, (y)) + ®(Xi(z) = V.7 ()]

// " (u — v)dudv],

where R’ = [X;(z), X;(z')] x [Y;2(y),Y,2(y/)]. So, since ®” > 0 we are done
provided that Y2 (y) < Y,B(y/) and X;(z) < X;(2') whenever x < 2’ and
y < y'. This follows for Y from the skip-free property for one-dimensional
strong solutions. For X we need to take the two solutions and paste them
when they collide to get the required property. ([

One small problem: IS w a C*! function?

Trick: fix a finite square domain, freeze (X,Y") on exit from this domain,
restrict controls to the interval

[—1+¢€,1—¢

then (PDEs result) the corresponding w is C*! so is the value function for
the revised problem. Now let € — 0 and the domain T R2.

4.2 Tracking Problem 2: coupling
Now we seek (with the same X and Y as above) to find

(44) U(ZE, y’t) = Ml/%f“/ Pl‘,?J(TO(X - YW) > t)

Note that we have the boundary condition v(z,y,0) = 1,., and we stop the
problem on the diagonal x = y so that

v(x,z,t) = 0.

As in the previous problem, the HJB equation is

1

20%1}% ve) = 0.

1
1[n{ 1](2031}” + co1090,y +

Now coupling ideas suggest that mirror coupling might be best: i.e. to choose
W = —B (at least assuming that o; and oy have the same sign). Choosing
W = —B corresponds to ¢ = —1 in the HJB equation. So, set

Y(z,y,t) = Pyy(m0(X — Y P) > t).

15



Then, we want to show that the inf in the HJB equation is attained at -1
which means we want v, > 0.
Example Suppose that o1 =1, 00 =0 > 0.
Now
X =Y, P =(z—y)+(1+0)B

So 7p is the first hitting time by —B of the point {=2. It follows that (as-
suming w.l.o.g. that z > y)

Ty
x—y 2 /(Ho)ﬁ _u?
x,y,t) = P(|B| < = e 2 du.
vl t) = PUBI < 50 == |

Now

(z —y) )’

e

for some constant k¥ > 0 (and ¢ is C*!). This establishes (1) and (4) and
the optimality of mirror coupling.
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4.3 Tracking Problem 3: ‘staying small’
We have the drift control setup of initial problem 1:
dX" = 0dB, + udt
with u € [—a, a]. We seek to find
v(x,t) = ir;f E.f(X}"),

where f is C2, symmetric, increasing and bounded.
We still guess that the optimal control is that v is an increasing function
of |z| and hence to set 4; = —a.sign(Xy).
The HJB equation is
1

inf —c?v,, +uv, — v =0,
—a<u<a

with boundary condition v(x,0) = f(z). Following our guess, let
w(x, t) = Exf(le)

Standard arguments show that w is C*! except on {0} x R, where w, = 0.
It follows that

1
(4.5) 502wm —aw, —wy = 0,
on x > 0 and so, from Tanaka’s generalisation of Ito’s formula, that w satisfies
the HJB equation (and is optimal) provided that w is increasing on R.
How do we prove this?
Well, look at w,. It’s (fairly) clear, by differentiating (4.5), that w,

satisfies
1

502(11)36)m —a(w)r — (w,); = 0,
on R, x R, with the boundary conditions w, = 0 on {0} x R, w, = f'(x)
on Ry x {0} and w, — 0 as T oo (this follows from the fact that f is
bounded and continuous).

It follows from the strong minimum principle for parabolic operators that
w, has no negative minima on D = (R, x R;)° But w, is non-negative on
the ‘boundary’ of D so it follows that w, is non-negative on R, x R,.

Now we can approximate arbitrary increasing f by C? bounded, increas-
ing f and so it follows that @ achieves the stochastic minimum of the X}
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5 Optimal Stopping
5.1 The HJB equation

The Problem: we seck optional 7 (i.e. T is a stopping time) to achieve

sup o[ [ Ot +9(X,)
T 0
where
dXt = O'(Xt)dBt + b(Xt)dt

To see what we should do, Krylov’s trick is to allow randomised stopping
at a rate r, with 0 < r, <n. Thus

W)= s B / e~ (F(2X,) + reg(X,)) ],
predictable r 0

where ¢, = f(f reds.
Then the HJB equation is

sup [Lo™ 4+ f —r0™] 4 rg =0,
relo,n]

where L = lzazjawax +szg:;)

Clearly the supremum in the HJB equation is attained at r = 0 if v > ¢
and at n if v < g, so the HIB equation is

Lo 4 f 4+ n(g —v™)* = 0.

Thus we ‘want to stop ‘when v(® < ¢ and continue otherwise, when Lv™ +

f=o.

Formally, if we let n — oo then we see that we get
Lv+f<0

v>g

and
L™ 4+ f=0

whenever v > g.
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5.2 The Snell envelope

Given a process X satisfying weak integrability conditions, define

Vi= ess sup FE[X,|F]
optional r>t

Notice that by setting 7 = ¢t we see that V;, > X; a.s.
V' is called the Snell envelope for X. Under weak conditions V' is the
minimal supermartingale dominating X.

Theorem 6. Suppose that

Vi, = ess sup E[X,|F]
bounded optional r>t

(for example, if X is bounded below) and suppose that V is a process satisfying
the following three conditions:

(5) V>X;

(6) Visa supermartingale;

(7) for every t, there is an optional T >t such that
E[X,|F] =T,

then .
V=V

Proof: take a bounded optional 7 > ¢, then (5), (6) and the optional
sampling theorem tell us that

V, > E[V;|F] > E[X.|F] as.,

and since 7 is arbitrary we see that

Conversely, (7) tells us that
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5.3 Good lambda inequalities

Recall that the problem is to find the best constant, ¢, appearing in the
inequality

P(X, > z,Y, <y) <cP(X; > z) for all stopping times 7,

where X and Y are increasing processes. We shall assume (for convenience)
that X is continuous and z > z.
Let us set (for each t > 0):

Sy=  inf{s>0: X, >t}
Ti= inf{s>0: X, >t}
W = W, = 1(thx,Yt<y) - )\1(Xt>z)

= L, vicy) — M>5.)5

and suppose that we wish to optimally stop W;.
This is as simple a non-trivial problem as is possible!
Notice that

0 on [0,

Wi=<¢ =\ on ]S, T,

[

[
Liviey) — A on [T, 00].
[

n
&

=

Now Y is increasing, so W is decreasing on [T}, co[ and so we must have
V =W on [T}, co[. Conversely, W is increasing on |S,, T,], so we must have
‘V, = E[Vq,|F] on |S,, T,], i.e.

Vi = EWr,|F] = P(Yr, <y|F) —Aon ]S, To].
Finally, W is constant on [0, S,] so we must have
V; = E[Vs,|Fi] on [0, S,].

From this it’s clear that the only time we have a choice is at time S,
when we must choose to stop immediately or continue until time 7,. In
other words, the optimal stopping time 7 must be of the form

T=T4= 814 +T,14
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for some event A € Fg..
Now

EW,,|Fs.] = (P(Yr, <ylFs.) — Mla,
so, denoting by &£, the Fg -measurable random variable

P(YTI < y‘sz) - )‘7

it’s clear that an optimal choice of A is (€x > 0).
Thus, our candidate for V' is V' given by :

E[EF|A] on [0,5.],
‘7: P(YTZ < y!]:t) - A ]527Tm[7
1(Yt<y) - A on [Tx, OO[

Check: (5) V' > W is obvious; (6) V is a supermartingale and is bounded;
(7) we have explicitly exhibited ; such that V; = E[W,,|F;], therefore V =V

Application:
inf{c: P(Xr >z, Yr <y) < cP(Xr > z) for all optional T'}
=inf{\: VJ* <0}.

But V3t = E[£], so
V9 <0& P(EV>0)=0

~
A >ess sup P(Yr, < y|Fs.).
Thus the best constant is
c(x,y,z) =ess sup P(Yr, < y|Fs.).

Theorem 7. Suppose that
(B, 5) = Supc(ﬁ)\ OA )
A>0

satisfies
def

le] P
kp ,6’>11n5f>0ﬁ (675) <1
then there exists a C, (= mf(S m) such that

E[XEY] < C,E[YZ] for all optional T.
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Corollary 8. For every p > 0 there is a C, (which is O(p2)) such that for

all optional T':
E((By)] < G,E[T:] < C,E((B})"].

Proof: first take X = B* and Y; = t%, then

c(x,y,2) =ess sup P(Yr, <y|Fs.) =ess sup P(T, < y’|Fs.)
<ess sup P(By, > z|Fs,) < P(B), >z — z),

the last inequality following from the fact that B* is a continuous sub-additive
functional of B. So

T —z 4 o 2
c(x,y,z) <4P(B; > = / e 2 du
( Yy ) = ( 1 y ) \/% w;Z
Y (z — 2)?
<k —
for a suitable choice of k. Thus
< _
c(ﬁ,é)_kﬁ_lexp( 552 ),
and it’s easy to check that
A—)

A I B (8,0)

A similar argument works if we reverse the roles of B* and Ts. 0

22



References

[1] N V Krylov: Controlled Diffusion Processes. Springer, 1980.
[2] B Oksendal: Stochastic Differential Equations. 6th Edn. Springer, 2003.

[3] W H Fleming and H M Soner: Controlled Markov Processes and Vis-
cosity Solutions. Springer, 1993.

[4] A Friedman: Partial Differential Equations of Parabolic Type. Prentice-
Hall, 1964.

23



