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Qn: What is coupling for?
A: To compare probabilities.

Three uses: ordering, approximation and convergence of
probabilities.

They all work by creating copies of random objects which
simultaneously live on the same probability space and have a
desirable relationship. OxWaSP students have already met the idea
with the Chen-Stein method.
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Qn.: How do we simulate from an arbitrary distribution on R?

Answer: suppose the relevant distribution function is F . Take U, a
U[0, 1] random variable [under the probability measure P], and set

X = F−1(U)

(where F−1(t)
def
= inf{x : F (x) ≥ t} for t ∈ [0, 1]).

Note: F is right-continuous and increasing so F (F−1(t) ≥ t for all
t.

Check:

P(X ≤ a) = P(F−1(U) ≤ a) = P(F (a) ≥ U) = F (a), since U is uniform,

so X has distribution function F as required.

Saul Jacka, Warwick Statistics Coupling and convergence
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Recall that the distribution under P of a random variable X
(de�ned on (Ω,F) and taking values in (E , E)) is PX given by

PX (A) = P(X ∈ A).

Theorem: (Skorkohod, Dudley: Skorokhod representation)
Suppose that E is a separable metric space (e.g. Rn) with Borel

σ-algebra E. Suppose that (Pn)n≤∞ are probability measures on

(E , E) with Pn
w⇒ P∞, then there exist random objects (Xn)n≤∞

and a probability space (Ω,F ,P) such that

(i) PXn = Pn n ≤ ∞
and

(ii) Xn
a.s.−→ X∞.

Saul Jacka, Warwick Statistics Coupling and convergence
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Proof: (in the real-valued case)Use the corresponding

distribution functions (Fn)n≤∞. As before, construct a uniform

r.v. U and then set

Xn = F−1n (U).

It is (fairly) clear that F−1n (t)→ F−1∞ (t) for all but countably

many t and so Xn
a.s.−→ X∞.
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Theorem: (Radon-Nikodym Theorem) Suppose that M and R are

σ-�nite measures on (Ω,F) and whenever R(A) = 0, M(A) = 0,
then we write

M << R

and there exists an f ≥ 0, such that∫
XdM =

∫
XfdR, for all M-integrable X .

We often write f = dM
dR and note that it satis�es the chain rule:

M << N << R ⇒ dM
dR = dM

dN
dN
dR . If M << R and R <<M we

write M ∼ R.

Exercise:[Ex1] Show that d(M+N)
dR = dM

dR + dM
dR and deduce that if

M ≤ N (i.e. M(A) ≤ N(A) for all A ∈ F) then dM
dR ≤

dN
dR .

Saul Jacka, Warwick Statistics Coupling and convergence
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De�nition: A family of measures {µθ; θ ∈ Θ} is said to be
dominated by a measure µ if

µθ � µ for all θ ∈ Θ,

and such a µ is said to be a dominating measure for the family.

Remark: Note that for any countable collection {Pn} of probability
measures on (Ω,F) there is a dominating measure (call it R) such
that each Pn is absolutely continuous with respect to R (and thus
has a density by the Radon-Nikodym theorem). To see this simply
set

R =
1

2
(P∞ +

∞∑
n=1

2−nPn) (1)

Note that, in fact, R is a probability measure.

Saul Jacka, Warwick Statistics Coupling and convergence
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Theorem:[Coupling] (The fundamental inequality of coupling) If

P and Q are two probability measures on (Ω,F) then

(a) if X and Y are random objects: X ,Y : (Ω′,F ′,P′)→ (Ω,F)
with distributions P′X = P and P′Y = Q then

P′(X 6= Y ) ≥ d(P,Q)
def
= sup

A∈F
|P(A)−Q(A)| ;

(b) there exists a probability space (Ω̃, F̃ , P̃) and random objects

X ,Y : (Ω̃, F̃ , P̃)→ (Ω,F) such that

(i) P̃X = P and P̃Y = Q
and

(ii) P̃(X 6= Y ) = d(P,Q).

Saul Jacka, Warwick Statistics Coupling and convergence
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Proof: the proof of this result relies on the following observation:
suppose P and Q are as above then, taking any dominating measure
R (i.e. an R s.t. P,Q� R), and, de�ning fP = dP

dR , fQ = dQ
dR ,

d(P,Q) =

∫
(fP − fQ)+dR =

∫
(fP − fQ)−dR

(since
∫

(fP − fQ)dR = 0)

=

∫
K

(fP−fQ)dR =

∫
K c

(fQ−fP)dR = P(K )−Q(K ) = Q(K c)−P(K c)

where K = {ω : fP(ω) > fQ(ω)}

Saul Jacka, Warwick Statistics Coupling and convergence
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To prove (a), de�ne the measure S by S(A) = P′(X = Y ∈ A)
and observe that S ≤ P and S ≤ Q and so (by Exercise [Ex1]) S
has density dominated by fP ∧ fQ. Thus

1− S(Ω) = P′(X 6= Y ) ≥ 1−
∫

Ω
fP ∧ fQdR =

∫
Ω

(fP − fP ∧ fQ)dR

=

∫
Ω

(fP − fQ)+dR = d(P,Q).

To prove (b) we construct independent random variables X , Z and

U on the measurable space (Ω̃, F̃)
def
=

(Ω× Ω× [0, 1],F ⊗ F ⊗ B[0, 1]), with U being Uniform[0, 1], X
having distribution P and Z having density (wrt R)

fM
def
=

(fQ−fP)1Kc

d(P,Q) .
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Thus the probability measure on (Ω̃, F̃) is P̃ = P⊗M⊗ Λ, where Λ
is Lebesgue measure (on B[0, 1]) and, if ω̃ = (ω1, ω2, t), then
(X (ω̃),Z (ω̃),U(ω̃)) = (ω1, ω2, t), i.e. (X ,Z ,U) is the identity on
Ω̃.

Now de�ne Y (ω̃) = X1(
U≤

fP∧fQ(ω1)

fP(ω1)

) + Z1(
U>

fP∧fQ(ω1)

fP(ω1)

). Notice
that Z takes values in K c , where

fP∧fQ(ω1)
fP(ω1) = 1.

It's clear that X has the right distribution and that

P̃(Y ∈ A) = P̃(Y = X ∈ A) + P̃(Y = Z ∈ A)

=

∫
A

fP ∧ fQ(ω1)

fP(ω1)
dP(ω1)

+

∫
(ω1∈Ω)

∫
(ω2∈A)

(
1− fP∧fQ(ω1)

fP(ω1)

)
dP(ω1)dM(ω2)
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=

∫
A
fP ∧ fQ(ω1)dR +

∫
(ω1∈Ω)

(fP − fQ)+dR(ω1)

∫
(ω2∈A)

dM(ω2)

=

∫
A
fP ∧ fQ(ω1)dR + d(P,Q)

∫
(ω2∈A)

dM(ω2)

=

∫
A
fP∧ fQ(ω1)dR +

∫
(ω2∈A)

(fQ− fP)+dR(ω2) =

∫
A
fQdR = Q(A),

so that Y has distribution Q, as required. Finally, it is clear that
P̃(X = Y ) =

∫
fP ∧ fQdR = 1− d(P,Q), �
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De�nition: Given a sequence of probability measures (Pn) we say
the Pn converge Skorokhod weakly to P∞, written

Pn
Sw⇒ P∞ ,

if there is a dominating (probability) measure Q such that:

fn
prob(Q)−→ f∞ as n→∞,

where fn is a version of dPn
dQ .
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De�nition: Given the (Pn)n≤∞, we say the Pn converge
Skorokhod strongly to P∞, written

Pn
Ss⇒ P∞ ,

if there exists a dominating probability measure Q such that:

f∞ ∧ fn
Qa.s.−→ f∞ as n→∞ .

Remark: The reason for the nomenclature will become apparent
soon.

Remark: There is no need to restrict the choice of Q to
probability measures�any σ-�nite measure will do.
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Conversely, we gain nothing by allowing more general σ-�nite
measures, since if R is a σ-�nite dominating measure with Tn ↑ Ω
and R(Tn) < ∞ for each n, then there exists a sequence
(an) ⊂ (0,∞) such that

∑
n
anR(Tn\Tn−1) = 1 and, de�ning Q by

dQ
dR

=
∑
n

an1(Tn\Tn−1),

we see that Q is a probability measure on (Ω,F) and Q ∼ R , so we
may substitute Q for R and dPn

dQ (≡ dPn
dR

dR
dQ) for

dPn
dR .

Saul Jacka, Warwick Statistics Coupling and convergence
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Theorem:[Sw] if (Pn) are probability measures on (Ω,F) then the
following are equivalent

(i) Pn
Sw⇒ P∞

(ii) ∃ a probability space (Ω′,F ′,P′) and random objects
(Xn) : (Ω′,F ′,P′)→ (Ω,F) such that
(a) P′

Xn
= Pn

and

(b) P′(Xn 6= X∞)→ 0 as n→∞
(iii) Pn → P∞ with respect to the total variation metric

i.e.
d(Pn,P∞)→ 0 as n→∞

(iv) ∃ a dominating probability measure Q s.t. the densities
fn = dPn

dQ satisfy

fn
L1(Q)−→ f∞

(v) Pn(A)→ P∞(A) uniformly in A ∈ F .
Saul Jacka, Warwick Statistics Coupling and convergence
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Remark: The equivalence of (i) and (iii) is Sche�é's lemma (see
Billingsley (1968)).

Proof: throughout the proof R is a dominating measure.

(iv) ⇒ (ii) This mimics part of the proof of the fundamental
inequality for coupling. Given Q and the densities (fn)n≤∞, de�ne

Ω′ = Ω× Ω∞ × [0, 1],

F ′ = F ⊗ F∗∞ ⊗ B([0, 1]),

Saul Jacka, Warwick Statistics Coupling and convergence
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and the probability measures Mn by

dMn

dQ
=

(fn − f∞)+

d(Pn,P∞)
.

Then de�ne

P′ = P∞ ⊗
∞⊗
n=1

Mn ⊗ Λ

and de�ne, for each ω′ = (ω∞, ω1, . . . ; t) ∈ Ω′,

X∞(ω′) = ω∞,

Xn(ω′) = ω∞ 1(
t≤ f∞∧fn

f∞
(ω1)
) + ωn1(t> f∞∧fn

f∞
(ω1)
),

and
Y (ω′) = t .

Saul Jacka, Warwick Statistics Coupling and convergence



Preliminaries
The coupling inequality

Convergence
Some applications

De�nitions
Skorokhod weak convergence
Skorokhod strong convergence
Counterexamples

What we're doing is making all the coupling constructions
simultaneously by constructing X∞ to have the right law under P′;
then, taking a single independent U[0, 1] r.v. (called U), setting
Xn = X∞ if (and only if) U ≤ f∞∧fn

fn
(X∞) and otherwise giving Xn

a conditional distribution which gives it the right (unconditional)
distribution. It's not hard to check that P′Xn

= Pn for all n, whilst

P′(Xn 6= X∞) ≤ (=)P′
(
U > f∞∧fn

f∞
(X∞)

)
=
∫

Ω
(fn−f∞)+

f∞
dP∞

=
∫

Ω(fn − f∞)+dQ, (2)

and by (iv) the last term in (2) tends to 0.
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(i) ⇔ (iv) The reverse implication is obvious (since convergence in
L1 is equivalent to {convergence in probability and uniform
integrability}). The forward implication follows since (by virtue of
the fact that f∞ and fn are densities):∫

Ω
|f∞ − fn|dQ = 2

∫
Ω

(f∞ − fn)+dQ (3)

and the integrand on the right of (3) is uniformly bounded by f∞
(which is, by de�nition, in L1(Q)).

(ii) ⇒ (iii) This follows immediately from the coupling inequality.

Saul Jacka, Warwick Statistics Coupling and convergence
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(iii) ⇒ (iv) This follows on taking the dominating measure R :

d(Pn,P∞)→ 0

tells us that, letting densities with respect to R be denoted by f R· ,∫
Ω

(f R∞ − f Rn )+dR → 0

and (as before)
∫

Ω |f
R
∞ − f Rn |dR = 2

∫
Ω(f R∞ − f Rn )+dR establishing

(iv).

(iii) ⇔ (v) This is obvious �

Saul Jacka, Warwick Statistics Coupling and convergence
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Theorem: [Ss] Suppose (Pn) are probability measures on (Ω,F),
then the following are equivalent

(i) Pn
Ss⇒ P∞

(ii) There exists a probability space (Ω′,F ′,P′) and random
objects

(Xn) : (Ω′,F ′,P′)→ (Ω,F)

such that

(a) P′
Xn

= Pn

and
(b) P′(Xn 6= X∞ i.o.) = 0.

Saul Jacka, Warwick Statistics Coupling and convergence
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Proof: (i) ⇒ (ii) Take the representation given in the proof of the
previous theorem, then

P′(∃n ≥ N : Xn 6= X∞) = P′(Y > inf
n≥N

f∞∧fn
f∞

(X∞))

=
∫

Ω(1−
f∞∧ inf

n≥N
fn

f∞
(ω)) dP∞(ω)

=
∫

Ω(f∞(ω)− inf
n≥N

fn(ω))+dQ(ω)

and by monotone convergence this expression converges to∫
Ω(f∞ − lim inf fn)+ dP∞

= 0 (by (i)).

Saul Jacka, Warwick Statistics Coupling and convergence
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(ii) ⇒ (i) Given P′ and (Xn) as in (ii), de�ne Q as in equation 1,
and de�ne, for each m ≥ 1, the measure Sm on (Ω,F) by

Sm(A) = P′(∃n ≥ m : Xn 6= X∞,X∞ ∈ A),

(since Sm(A) ≤ P′(X∞ ∈ A) = P∞(A) by hypothesis) Sm � P∞,
whilst

Sm(Ω) = P′(∃n ≥ m : Xn 6= X∞),

so that
limSm(Ω) = P′(Xn 6= X∞ i.o.).

Now

Sm(A) ≥ P′(Xn 6= X∞,X∞ ∈ A)

≥ P′(Xn ∈ Ac ,X∞ ∈ A)

≥ P′(X∞ ∈ A)− P′(Xn ∈ A)

= P∞(A)− Pn(A) (for any n ≥ m),

Saul Jacka, Warwick Statistics Coupling and convergence
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so that, for any n ≥ m,

gm
def
=

dSm
dQ

≥ f∞ − fn (Q a.s.),

so
gm ≥ (f∞ − fn)+ (Q a.s.) for any n ≥ m .

It follows that gm ≥ (f∞ − inf
n≥m

fn)+ (Q a.s.) and hence

0 = limSm(Ω) = lim
∫

Ω gmdQ
≥ lim

∫
Ω(f∞ − inf

n≥m
fn)+dQ.

It follows (by monotone convergence) that lim inf fn ≥ f∞ (Q a.s.)
from which we may easily deduce (using Fatou's lemma) that lim
inf fn = f∞ (Q a.s.) and hence

f Q∞ ∧ fn
Qa.s.−→ f∞ �
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Exercise:[Ex2] Using counting measure on the integers as a
reference measure show that if (Pn)n≤∞ are all measures on the

integers with Pn
w⇒ P∞, then

Pn
Ss⇒ P∞.

Saul Jacka, Warwick Statistics Coupling and convergence
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Counterexamples In the examples (Bn) are a sequence of
Bernoulli random variables:

(Bn) : (Ω,F)→ ({0, 1}, 2{0,1}),

and B is the random vector (B1,B2, . . .). Note that setting
Y = ·B1B2 . . . [it being understood that a dyadic representation
is being given] it follows (from the fact that the Borel sets of
[0, 1] are generated by the intervals with dyadic rational
endpoints) that Y is a random variable:

Y : (Ω,F)→ ([0, 1],B([0, 1])).

Saul Jacka, Warwick Statistics Coupling and convergence
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Example: Skorokhod weak does not imply Skorokhod strong
convergence. Essentially we just want an example of a sequence
of densities which converge in probability, but not almost surely.
Given the (Bn), de�ne Pk as follows: express k = 2n + r
(0 ≤ r ≤ 2n − 1), then

(i) under Pk , (B1, . . . ,Bn,Bn+2, . . .) are iid Bernoulli
(parameter 1

2
);

(ii) if ·B1 . . .Bn is not the dyadic representation of r
2n

then
make Bn+1 conditionally independent Bernoulli (1

2
);

(iii) if ·B1 . . .Bn is the representation of r
2n
, then set Bn+1 = 1.

Saul Jacka, Warwick Statistics Coupling and convergence
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It follows that fk , the density of Pk
Y is given by

fk(x) =


1 : x /∈ [ r

2n
, r+1

2n
)

2 : x ∈ [
r+ 1

2
2n
, r+1

2n
)

0 : x ∈ [ r
2n
,
r+ 1

2
2n

)

where k (as before) is 2n + r ( with 0 ≤ r ≤ 2n − 1). Clearly

fn
prob−→ f∞(≡ 1), since fn di�ers from f∞ only on a set of Lebesgue

measure O( 1

log2n
), but equally clearly

lim inf fn = 0 Lebesgue a.e.

�
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Example: Skorokhod strong convergence does not imply a.s
convergence of densities. Here we just content ourselves with
giving fk :

fk(x) =

{
1− 2−n : x /∈ [ r

2n
, r+1

2n
)

2− 2−n : x ∈ [ r
2n
, r+1

2n
)

where, as usual, k = 2n + r (0 ≤ r ≤ 2n − 1). Clearly,

lim inf fn = 1,

but
lim sup fn = 2 (Lebesgue a.e.)

�
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An example from �nance (see [7])
Suppose X 1 and X 2 are two continuous-time, skip-free Markov
chains on S = {0, 1, 2, ..., d} (generalised birth-and-death
processes), with birth rates λin and death rates µin and suppose
we know that X 1

0
= x ≥ X 2

0
= y and λ1n ≥ λ2n and µ1n ≤ µ2n for

each n.

Q: How do we show that X 1
t stochastically dominates X 2

t , i.e.
that

P(X 1

t ≥ k) ≥ P(X 2

t ≥ k)

for each k and t?

A: by a suitable coupling, using Poisson-thinning. Poisson
thinning is, at its simplest, the act of obtaining a
Poisson((1− q)θ) process from Y , a Poisson(θ) process, by
removing jumps of Y independently with probability q.

Saul Jacka, Warwick Statistics Coupling and convergence
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Let max
n∈S

(λ1n + µ2n) = ρ. Construct a probability space with N, a

Poisson process with rate 2ρ, and independent U[0, 1] r.v.s U1, ....
Now start versions of X i at x and y respectively and construct
them as follows:

at Tk , the time of the kth jump of N, suppose X i
Tk− = x ik , then

whenever x2k < x1k , X
1 jumps down by 1 if U <

µik
2ρ , jumps up by 1

if 1

2
> U > 1

2
− λik

2ρ otherwise X 1 doesn't move.

Similarly, X 2 jumps down by 1 if 1

2
< U < 1

2
+

µ2k
2ρ , jumps up by 1 if

U > 1− λ2k
2ρ otherwise X 1 doesn't move. Note that X 1 and X 2

cannot jump at the same time in this case.

Saul Jacka, Warwick Statistics Coupling and convergence
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However, if x1k = x2k then X i jumps down by 1 if U <
µik
2ρ , jumps up

by 1 if U > 1− λik
2ρ otherwise X i doesn't move. Note that in this

case, if X 1 jumps down, then so must X 2, while if X 2 jumps up
then so must X 1.

Since the resulting constructions cannot jump over one another, we
see that X 1 ≥ X 2.

Exercise:[Ex3] Let N be a Poisson(θ) process and construct M a
Poisson(pθ) process by thinning N. Find P(N and M di�er on
[0,T ]) when T = θ = 2 and p = 0.95. Using your favourite
calculation package, compare this to the total variation distance
between the distributions of N and M on [0,T].
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Convergence of Markov chains [See [8]] We assume that (Pn) are
a collection of probability measures on D([0,∞);Z+): under Pn,
X (given by Xt(ω) = ωt) is a time-inhomogeneous non-explosive
Markov chain with initial distribution (pni ). We assume the
existence of a dominating measure µ (�nite on compact sets)
with respect to which each probability measure has transition
rates qni ,j(t) (t ≥ 0, i , j ∈ Z) and, as usual we write
qni (t) = −qni ,i (t).

Now �x T > 0 (temporarily) and denote the restriction of the
(Pn) to the paths of X on [0,T ] by Pn|[0,T ] .
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Theorem:[MC] (a) If

pni → p∞i as n→∞ for each i ; (4)

qni
L1(µ)−→ q∞i as n→∞ for each i ; and (5)

qni ,j
µa.e.−→ q∞i ,j for each i and j in Z+; (6)

then Pn|[0,T ]
Ss⇒ P∞|[0,T ].

(b) If (4) and (5) hold and

qni ,j
(µ)−→ q∞i ,j for each i , j in Z+ (7)

then for, each T > 0,

Pn|[0,T ]
Sw⇒ P∞|[0,T ]
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Remark: We stress that we are assuming that, under P∞, the
chain is non-explosive.

Proof: We give �rst a dominating (probability) measure Q: it is
speci�ed by having waiting time distribution �exponential(µ)� in
each state, i.e. qi (t) ≡ 1 for each i . Under Q, the jump chain
forms a sequence of iid geometric(1

2
) r.v.s so that qi ,j(t) = 2−(j+1)

and Q(X0 = i) = 2−(i+1). We assume that µ is continuous
i.e. non-atomic. It is then fairly clear that the density of
Pk |[0,T ] wrt Q|[0,T ] is f

k ≡ f kT given by

Saul Jacka, Warwick Statistics Coupling and convergence



Preliminaries
The coupling inequality

Convergence
Some applications

Poisson thinning and comparing skip-free random walks
Convergence of Markov chains
Conditioning MCs
BM and Girsanov's Theorem
Lipshitz continuity/Feller property for di�usions

f k(ω) = pkω0
∏N

n=1
2(ωTn+1)qkωTn−1 ,ωTn

(Tn)

×
∏N

n=1
exp(

∫ Tn

Tn−1
(1− qkωTn−1

(t))dµ(t))

× exp(
∫ T
TN

(1− qkωTN
(t))dµ(t)), (8)

where N = NT (ω) = # {jumps of X on [0,T ]}, T0 = 0, and
Tn (1 ≤ n ≤ N) are the successive jump times of X (on [0,T ]).
Finally, since under Q the chain is non-explosive, notice that for
any ε > 0, there is an n(ε) s.t. Q(N > n) ≤ ε

2
and then ∃

m(n(ε), ε) s.t.

Q(X leaves {0, . . . ,m} before T ) ≤ ε

2
.

Denote the union of the two sets involved in these statements by
Aε. We are now ready to prove (a).
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Under the assumption (5)

e−
∫ v
u q

k
i (t)dµ(t) → e−

∫ v
u q
∞
i (t)dµ(t),

for any 0 ≤ u ≤ v ≤ T . Hence, o� Aε, there are only �nitely many
terms in (8) and (by (4) and (6)) each converges Q a.s. to the
corresponding term in f∞. Thus Q(f k 6→ f∞) ≤ Q(Aε) ≤ ε and
since ε is arbitrary we have established (a).

To prove (b) we need only to use the subsequence characterisation
of convergence in probability. Given a subsequence (nk) take a
sub-subsequence (nkj ) (by diagonalisation), along which (6) holds

(at least for t ∈ [0,T ]) then f
nkj

Qa.s.−→ f∞ as j →∞ by (a). The

subsequence is arbitrary so f n
prob(Q)−→ f∞ �

Saul Jacka, Warwick Statistics Coupling and convergence



Preliminaries
The coupling inequality

Convergence
Some applications

Poisson thinning and comparing skip-free random walks
Convergence of Markov chains
Conditioning MCs
BM and Girsanov's Theorem
Lipshitz continuity/Feller property for di�usions

Exercise:[Ex4] Check that Pk(A) =
∫
A f kdQ for a suitable

(characterising) family of events A.

Remark: The proof of Theorem [MC] only deals with the case
where µ is non-atomic; if µ has atoms there is no great additional
di�culty: we simply need to replace exp(−

∫
fdµ) by

exp(−
∫
fdµc)

∏
(1− f ∆µ) wherever such terms appear in (8).

This, in particular, allows us to deal with the discrete-time case.

Remark: It's easy to amend the proof to deal with semi-Markov
processes.

Saul Jacka, Warwick Statistics Coupling and convergence



Preliminaries
The coupling inequality

Convergence
Some applications

Poisson thinning and comparing skip-free random walks
Convergence of Markov chains
Conditioning MCs
BM and Girsanov's Theorem
Lipshitz continuity/Feller property for di�usions

Conditioning Markov chains Suppose that, under Px , X is a
Markov chain started at x and τ is a hitting time for X i.e. the
�rst time that X hits some set. De�ne PT

x to be the law of X
conditional on the event (τ > T ). De�ne

h(x , t) = Px(τ > t),

then for A ∈ Ft ,

PT
x (A) =

Px(A ∩ (τ > T ))

Px(τ > T )
=

Ex [1Af (Xt ,T − t)]

f (x ,T )
.

So, for any �xed S < T , on FS

dPT
x

dPx
= 1(τ>S)

f (XS ,T − S)

f (x ,T )

so if f (y ,T−S)
f (x ,T ) → ρx ,S(y) for each y where 1(τ>S)ρ is a density

wrt Px then PT
x

Ss⇒ P∞x .
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Example: Suppose that, under Px , X is a MC on {0, 1, 2, . . . , d}
with Q-matrix Q and τ is the hitting time of 0. The trick here is to
look at the asymptotic behaviour of P̃(t), the defective transition
probabilities for the process killed on hitting 0. So look at Q̃, the
restriction of Q to {1, 2, . . . , d}, then P̃t is

P̃ = exp(tQ̃).

Now if we can diagonalise Q̃ as Q̃ = EΛD then, assuming we have
written the largest eigenvalue of Q̃ as λ = Λ1,1, P̃t ∼ e−λtei ,1d1,j
and it follows that f (i , t) ∼

∑
j e
−λtei ,1d1,j and thus

ρi ,S(j) = eλSh(j)/h(i), where h = e·,1 is the right eigenvector of Q̃
corresponding to the principal eigenvalue. Since h is an eigenvector

it follows that ρ is a density and so PT Ss⇒ P∞ on [0,S ], where P∞
is the law of a MC on with Q-matrix Q̄ given by
Q̄i ,j = λδi ,j + hj Q̃i ,j/h(i).
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Theorem:[Girsanov] Suppose that, under P, B is a standard
Brownian Motion, µ is a bounded continuous adapted process and
we de�ne Q by

dQ
dP

= exp(

∫ T

0

µsdBs −
1

2

∫ T

0

µ2sds),

then under Q, Zt
def
= Bt −

∫ t
0
µsds is a standard BM, or B is a BM

with drift rate µ.

This allows us to copy what we did for convergence of Markov
chains in the Ito di�usion setting.
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Feller property The idea is to couple two copies X x and X y of a
di�usion starting at di�erent positions by coupling the driving
BMs using a mirror coupling. This gives a lower bound on the
probability of coupling by time T (note, they don't actually
have to have the same SDE but...). So

X z
t = z +

∫ t

0

σ(X z
s )dBs +

∫ t

0

µ(X z
s )ds, (9)

where B is a standard BM and σ is bounded below by η > 0 and
|µ| ≤ M. Take a copy of X y , call it Y , where the SDE (9) is
driven by −B (also a BM). This will have the same law. Now
take another copy, call it Z , driven by −B until the stopping
time τ and then driven by B , where τ is the coupling time:

τ = inf{t : Xt = Yt}.
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Now suppose that g is a bounded measurable function,then

|E(g(XT )− E(g(ZT )| ≤ 2MP(τ > T )

where M = sup |g |. Wlog x > y , so

P(τ > T ) =

P(x−y+ inf
0≤t≤T

[∫ t

0

(σ(Xs)+σ(Ys))dBs+

∫ t

0

(µ(Xs)−µ(Ys))ds
]
> 0)

≤ Px−y (τB > 4η2T ),

where B is a one-dimensional BM with drift M
2η2

and τB is the �rst

time that B hits the origin. Now Pz(τB > T ) is O( z√
T

) (as z → 0)

and hence we obtain the required result (see ([6]) and ([10])).
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