
Shuttling in minimal time
The infimum case

Minimising the time to shuttle a diffusion between
two points

Saul Jacka, Warwick University

UBC
22 July, 2013

Saul Jacka, Warwick University Shuttling a diffusion in minimal time



Shuttling in minimal time
The infimum case

Problem: Shuttling in minimal time:

• problem is to control the drift of a diffusion (which reflects
at 0 and 1) so as to minimise the time it takes to travel
from 0 to 1 and back again.
Can only choose drift once at each level.
• problem models one arising in simulated tempering (a form

of MCMC) – with the level corresponding to temperature
in a “heat bath”. Idea is that when simulating a draw from
a highly multimodal distribution we use a reversible
Markov Process to increase the temperature (and thus
smear out the modes temporarily) and then move around
the statespace, then the temperature MP reduces again to
allow us to sample.
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Model

• suppose that dXµ
s = σ(Xµ

s )dBs + µ(Xµ
s )ds, for each µ.

• letting τz denote first hitting time of z by X , the shuttle
time S is defined by S = inf{t > τ1 : Xt = 0}
and we seek a function µ to
Problem 1: (for f a positive cost function) minimise
E0[
∫ S
0 f (Xt)dt];

Problem 2: (for α a positive discount function) maximise
E0[exp(−

∫ S
0 α(Xt)dt)],
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• There is an obvious guess for the first problem: µ ≡ 0! Correct
in the case where f = σ = 1, but not in general.
• To formulate problem, we allow ourselves to choose µ

dynamically — but only once for each level: i.e., letting X ∗

denote the running supremum of the controlled process, we set

dXµ
s = σ(Xµ

s )dBs + µτX∗s
ds.

To describe solution, we now define the (random) scale
function s: so, for each control µ, we define

• s ′ = s ′µ(x) = exp(−2
∫ x
0

µτz
σ2(z)dz), so that s′′(x)

s′(x) = −2 µτx
σ2(x)

• and define s = sµ(x) =
∫ x
0 s ′µ(u)du and

mf = mf
µ(x) = 2

∫ x
0

f (u)du
σ2(u)s′µ(u)

.

Notice that s ′(Xt) and mf (Xt) are adapted.
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Theorem 1: Assume that
√

f
σ is C 1 then the optimal payoff

process for Problem 1 is given by

V µ
t

def
= ess infµ∗: µ∗|[0,t]=µ|[0,t]E [

∫ S
0 f (Xu)du|Ft ]

=
∫ t
0 f (Xs)ds + φ∗µ(Xt ,X ∗t ),

where

φ∗(x , y) =


2
(√

s(y)mf (y) +
1∫
y

√
f (v)
σ(v) dv

)2 − 2
x∫
0
s ′(v)mf (v)dv y < 1,

2s(x)mf (1)−
x∫
0
s ′(v)mf (v)dv y = 1.
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Proof: Only do static version.

• Lemma: if a, b > 0, then

inf
x>0

ax + b
1
x
= 2
√
ab, attained at x =

√
b
a
.

Now payoff starting at 0 if use control s is
p(s)=φs(0, 1) + φs(1, 0) where

φs(x , y) def
= Ex [

∫ τy

0
f (X s

t )dt].

Easy to check that

φ(x , y) =


y∫
x
dvs ′(v)

v∫
0

2f (u)
σ2(u)s′(u)du x ≤ y ,

x∫
y
dvs ′(v)

1∫
v

2f (u)
σ2(u)s′(u)du x ≥ y .
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so

p(s) =

1∫
0

s ′(v)

1∫
0

2f (u)
σ2(u)s ′(u)

dudv = s(1)mf (1).

Now suppose that s is fixed on [0, y ] and rewrite p by dividing
domain of integration into four rectangles:

p(y) = s(y)mf (y) +
1∫
y

(
s(y) 2f (u)

σ2(u)s′(u) +mf (y)s ′(u)
)
du

+
1∫
y

1∫
y

(
s′(v)
s′(u)

f (u)
σ2(u) +

s′(u)
s′(v)

f (v)
σ2(v)

)
dudv
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2nd term in p(y) minimised by setting

s ′(u) =

√
s(y)
mf (y)

√
2f (u)
σ2(u)

and a quick check shows this minimises 3rd term also. Plugging
static optimum into dynamic problem gives candidate solution.
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The dynamic result follows from Bellman’s principle, i.e. Vt is a
submartingale under each admissible control and is a martingale
under some admissible control.

• in general, the “optimal control” starting at level y has a jump
in s ′ so the “optimal control” will have a singular drift at level
y — this corresponds to imposing partial reflection at level y ;
• same general form works for discounted time to shuttle.
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Suppose that we have run dynamic problem for a while
(suboptimally) and have fixed µ at every level above y . How should
we now proceed?

We can plan in advance to use a fixed µ at level x if X reaches this
level (from above) before hitting 1. If not, then clearly we can use
infinite downward drift (with zero cost).
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The corresponding static payoff ( starting at level y) is

p(y) = s̃(y)
[
m̃f (y)(1+

∫ y

0

s ′(z)
s̃(s)

dz)+mf (y)+
∫ y

0
dz

s ′(z)
s̃(z)

(m̃f (z)−m̃f (y)),

where s̃(z) def
= s[z , 1] and m̃f (z) =

∫ 1
z f (u)dm(u).

Then, if we set m̃f (y) = a, s̃(y) = b and s̃(0) = c and let

H(z) = 1+ ln c − ln s̃(z),

then

p(y) = ab + ab ln
c
b
+

2b
ce

∫ y

0

HeH f
σ2H ′

(u)du
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Euler-Lagrange equation is, setting F (z ,H,H ′) = HeH f
σ2H′ (z),

FH − ∂
∂z FH′ = 0, which gives

(1+
1
H
)H ′ =

H ′′

H ′
+

1
2
(ln

σ2

f
)′. (1)

Amazingly, we can solve (1) explicitly to get

H ′ = KHeH

√
f
σ2

and then,

φ(H(z)) = φ(1+ ln
c
b
)
β(z)
β(y)

where

φ(x) =
∫ x

1

dt
tet and β(x) =

∫ x

0

√
f (u)
σ2(u)

du.
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Substituting back in p(y) and optimising in the choice of c gives a
value of

p̂(y) = s̃(y)m̃f (y) +
2β2(y)

e
ψ∗(r(y))

where

r =
es̃m̃f

2β2

and ψ∗ is the Fenchel conjugate of ψ, i.e.

ψ∗(x) = inf
t≥0

tx + ψ(t),

where ψ(t) = 1
tφ(1+t) .
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To establish that we have the optimal dynamic control, we consider
the corresponding payoff

V (x , i , s) = Ex

∫ τi

0
f (Xt)dt +

s̃(x)
s̃(i)

p̂(i)

=

∫ x

0
s ′(v)m̃f (v)dv + s̃(x)m̃f (i)

(
1+

ψ∗(r(i)
r(i)

)
.

Bellman’s principle then requires us to show thatif I is the running
infimum of X then S s

t , given by

S s
t =

∫ t

0
f (Xu)du + V (Xt , It , s),

is a submg for each choice of s and a a mg for some choice of s.
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A little more work (!) shows that it is sufficient to show that

inf
s′(i)

s̃m̃f ψ
∗(r)
r

′
− s ′(i)m̃f − s̃

β′

s ′
(1+

ψ∗(r)
r

) = 0.

This is true.

• Open problem: solve dynamic case when µ is fixed on some
interval [x∗, x∗].

Saul Jacka, Warwick University Shuttling a diffusion in minimal time


	Shuttling in minimal time
	The infimum case

