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Problem: solving the optimal stopping problem We want to find
the payoff (and stopping time) for the following (stochastic
volatility) optimal stopping problem:

v(x , y ,T ) = sup
τ≤T

Ex ,y [e−qτg(Xτ )]

or
v(x , y ,T ) = sup

τ≤T
Ex ,y [e−rτg(erτXτ )]

where

Xt = x +

∫ t

0
σ(Xs)YsdBs ,

Y is independent of B and either

Yt = y +

∫ t

0
η(Ys)dWs +

∫ t

0
µ(Ys)ds

or Y is a skip-free Markov chain on E , a countable subset of
(0,∞)
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Motivated by Jobert and Rogers (2006), where they show the
optimal continuation region in the perpetual American put/infinite
problem is of the form

C = {(x , y) ∈ R× E : x > b(y)} (1)

and give an algorithm to find b.

When E is large, the algorithm can become very intensive if the
ordering of the values of {b(e) : e ∈ E} is not known.
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Our aim is first to show that, under fairly general conditions,
v(x , ·,T ) is increasing and hence if (1) holds then b is decreasing.

We do this by a coupling argument.

Hobson makes very simlar arguments for comparison in the
European case.

From now on specialise to stochastic volatility case.

The idea: timechange X to G which solves the sde

Gt = x +

∫ t

0
σ(Gs)dB̃s

using the timechange Γy = (Ay )−1 where AY
t =

∫ t
0 (Y y

s )2ds.

Notice that, since Y is skip-free, y ′ > y implies Ay ′ ≥ Ay and
Γy ′ ≤ Γy .
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It follows that

v(x , y , t) = sup
ρ≤Ay

T

Ex [e−qΓy
ρg(Gρ)] (2)

or
v(x , y , t) = sup

ρ≤Ay
T

Ex [e−rΓy
ρg(erΓy

ρGρ)]. (3)

In the first case, increasing y increases the index set and decreases
the discount. In the second case we need g decreasing since the
argument of g increases when y increases.

The correct coupling argument starts the construction in reverse, by
first constructing G and time-changed versions of Y y and Y y ′
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Recall that Y satisfies

Yt = y +

∫ t

0
η(Ys)dWs +

∫ t

0
µ(Ys)ds.

Drift rates are hard to estimate, so suppose we only know
µ∗ ≤ µ ≤ µ∗ and we wish to price the American option. The
superhedging price will be

V s(x , y ,T ) = sup
µ∈M, τ≤T

Ex ,y [e−qτg(Xτ )]

where

M = {adapted processes µ such that µ∗(Yt) ≤ mt ≤ µ∗(Yt)}.

Conversely, the client’s price will be

V b(x , y ,T ) = inf
µ∈M

sup
τ≤T

Ex ,y [e−qτg(Xτ )]
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Point is that as soon as we know that V is increasing in y the
candidate drift control is obvious: choose maximum drift to achieve
supremum and minimal drift for infimum!

Sketch proof (superhedging case): look at HJB equation for
stochastic control + optimal stopping problem

max
(

sup
m∈[µ∗,µ∗]

[
1
2
y2σ2(x)V s

xx +
1
2
η2(y)V s

yy + mV s
y − V s

t − qV s ],

g − V s) = 0
(4)

If we take V s to be the corresponding value of v with µ = µ∗ then,
since v is increasing in y , V s

y ≥ 0 and so the sup in (4) is attained
at m = µ∗(y).

Saul Jacka (joint with Sigurd Assing and Adriana Ocejo) Options with stock vol and model uncertainty



American option pricing with stochastic volatility
Uncertainty on volatility dynamics

Probabilistic uncertainty

So, since v solves the optimal stopping problem,
e−qtv(Xt ,Yt ,T − t) is a martingale on the continuation region and
equals g on the stopping region.

It follows that 1
2y2σ2(x)V s

xx + 1
2η

2(y)V s
yy + µ∗V s

y − V s
t − qV s = 0

on the continuation region and g = V s on the stopping region so
that V s satisfies the HJB equation.
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Now, what happens if we are only 95% certain that µ lies in the
interval [µ∗, µ

∗]?

If we assume that the payoff is zero when this constraint is broken
and denote the stopping time at which the constraint is broken is
σ, then the Lagrangian for the superhedging/pricing problem is

V (x , y ,T ) = sup
m∈M

sup
τ≤T

sup
σ

Ex ,y [e−qτg(Xτ )1τ<σ + λ1σ≤τ ].

It’s (fairly) obvious that this means that

V s(x , y ,T ) = sup
m∈M

sup
τ≤T

Ex ,y [max(e−qτg(Xτ ), λ)].
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Similarly, get

V b(x , y ,T ) = inf
m∈M

sup
τ≤T

Ex ,y [min(e−qτg(Xτ ), λ)].

In either case, presence of max or min does not affect monotonicty
argument for V and hence for optimal choice of m. Continuity of
V in λ allows calibration in λ to obtain the appropriate constrained
optimum.
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