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ABSTRACT We establish necessary and sufficient conditions for an H1-martingale to
be representable with respect to a collection, X , of local martingales. M ∈ H1(P )
is representable if and only if M is a local martingale under all p.m.s Q which are
‘uniformly equivalent’ to P and which make all the elements of X local martingales
(Theorem 1). We then give necessary and sufficient conditions which are easier to
verify, and only involve expectations (Theorem 2). We go on to apply these results
to the problem of pricing claims in an incomplete financial market—establishing two
conjectures of Harrison and Pliska (1981).
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§1. Introduction Harrison and Pliska (1981) showed that every contingent claim
in a financial market is attainable (hedgeable) if and only if the collection of mar-
tingale measures is a singleton (see Harrison and Pliska (1981) for terminology and
assumptions); such a market is called complete. The following question then arises very
naturally—

‘which claims are attainable in an incomplete financial market?’

Harrison and Pliska’s proof relied on results in Jacod (1979) and a basic equiva-
lence between questions of this type and questions about martingale representations.
Essentially any dynamic hedging strategy corresponds to a (vector-valued) previsible
process φ, and the (discounted) value of the corresponding portfolio corresponds to the
stochastic integral of φ with respect to the vector of (discounted) security prices. The
question of attainability then becomes one of representation—

‘ which contingent claims can be represented as a stochastic integral with respect
to the vector of discounted security prices?’—

whilst the parallel question in martingale representation theory is:

1 I am grateful to Wilfrid Kendall, Robin Reed and Marc Yor for helpful and stim-
ulating discussions on the topics in this paper, and to C Stricker and an anonymous
referee both for pointing out errors in a previous versions of this paper and for helping
me to improve its presentation.
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‘given a collection X of martingales, which are those martingales which are repre-
sentable as stochastic integrals with respect to X ?’.

In practise we pose and answer (at least initially) a slightly different question, but
before we state it we recall a few concepts.

Recall first that if (Ω,F , (Ft; t ≥ 0)) is a filtered measurable space and P is a
probability measure on (Ω,F) then H1(P ) is the collection of martingales M (with
respect to P ) on (Ω,F , (Ft; t ≥ 0)) such that

EP sup
t
|Mt| < ∞,

or equivalently, such that

EP [M,M ]
1/2
∞ < ∞.

Then, given a collection X of cadlag processes, adapted to the filtered measurable space
we say P is a martingale measure, and write

P ∈M(X ),

if each X ∈ X is a (P,Ft; t ≥ 0) local martingale. Finally, if P is a martingale measure
we say M is representable (with respect to X , under P ) if

M ∈ L1(X ∪ {1}),

where L1(X ∪ {1}) is the closure (in H1(P )) of the collection of elements of H1(P )
which can be written as linear combinations of stochastic integrals with respect to the
elements of X ∪ {1}.

The initial task we have set ourselves is then (suppressing (Ft) and P ) to charac-
terise L1(X ∪ {1}).

We know (Theorem 11.2 of Jacod (1979)), that

P is extremal in M(X )
⇔

L1(X ∪ {1}) = H1(P ) and F0 is P -trivial,

so the case we want to address is that where P is not extremal in M(X ).

Let’s make a few definitions and then we can state the main results:

Definition 1: define
P ≡M(X , P ) ≡ {Q ∈M(X ) : Q ∼ P},
P̂ ≡ M̂(X , P ) ≡ {Q ∈M(X ) : Q � P}
and
P0 ≡M0(X , P ) ≡ {Q ∈M(X ) : Q ∼ P and ||dQ

dP ||∞ ∨ || dP
dQ ||∞ < ∞}.

Thus P is the collection of martingale measures equivalent to P ,
P̂ is the collection of martingale measures absolutely continuous with
respect to P ,
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and
P0 is the collection of martingale measures ‘uniformly equivalent’ to P .

We shall write P ≈ Q if P and Q are uniformly equivalent (in other words ||dQ
dP ||∞∨

|| dP
dQ ||∞ < ∞}, which is, of course equivalent to P and Q having equivalent L1 norms).

Notice that P is extremal in M(X ) if and only if P0 (and then P) is a singleton
(see Chapter 11 of Jacod (1979) for details).

Definition 2: define, for any subset R of P̂ ,
H1(P,R) = {X ∈ H1(P ) : X ∈ Mloc(Q) for all Q ∈ R}

Thus
H1(P,R) consists of all those X in H1(P ) which are also local martin-
gales under each Q in R.

Definition 3: define, for any subset R of P̂ ,
T (Q) = { sequences of stopping times (Tn) : Tn ↑ ∞ Q a.s.},
and say that X ∈ H1(P ) is stable over R if, for any Q ∈ R:
∃(Tn) ∈ T (Q) such that EQXTn = EP X0 ∀n.

Then define
E0(P,R) = {X ∈ H1(P ) : X is stable over R}.

For any collection of adapted processes C, C+ denotes

{X ∈ C : X is non-negative} = C ∩A+

where A+ is the collection of non-negative adapted processes.

Then the results are as follows:

Theorem 1
L1(X ∪ {1}) = H1(P,P0) =

⋂
Q∈P0

H1(Q).

in other words, representable martingales in H1(P ) are those elements of H1(P ) which
are also local martingales under each Q in P0, and then they are in fact in H1(Q) for
each Q in P0.

Theorem 2 If F0 is P -trivial then

H1(P,P0) = E0(P,P0),

and

E0(P,P0) =Ê0(P,P0)
def
= {X ∈ H1(P ) : for each Q ∈ P0 EQ(X∞) = EP (X0) = X0}

(1)
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Theorem 3 If F0 is P -trivial and X is finite then

(a) L1
+(X ∪ {1}) = H1

+(P, P̂) = H1
+(P,P);

and

(b) H1
+(P,P) = E0

+(P,P) and H1
+(P, P̂) = E0

+(P, P̂)

so that
L1

+(X ∪ {1}) = E0
+(P,P)

= E0
+(P, P̂).

(c) If, moreover, all the elements of X are non-negative, then we may remove the
+ signs from all of the above.

Remark: In the language of option pricing, Theorems 1 and 2 say (roughly) that a
contingent claim is attainable if and only if it has the same price under all consistent
price systems. We shall make this result precise in Theorem 8.

For more details on the financial background, the reader is referred to Harrison and
Pliska (1981), Harrison and Pliska (1983), Harrison and Kreps (1979), and for the case
of American options, to Karatzas (1988) and Karatzas (1989).

§2. Notation and proofs

We are given an underlying filtered measurable space (Ω,F , (Ft; t ≥ 0)) and a
collection X of cadlag processes adapted to (Ft). For any p.m. Q on (Ω,F) we define

M(Q) = { processes which are uniformly integrable martingales under Q},

Hp(Q) = {M : M ∈ M(Q) and || sup
t
|Mt|||p < ∞} p ≥ 1,

and, for any suitable class C of processes

Cloc(Q) = {X : there exists (Tn) ∈ T (Q) such that XTn ∈ C ∀n}

We assume the existence of a probability measure P on (Ω,F) such that

X ⊆ Mloc(P )

i.e. each X ∈ X is a P -local martingale2. Then H1(P ) is the collection of P -martingales
with finite H1-norm, whilst L1(X ∪{1}) is the stable sub-space (see Jacod (1979), (4.2))
of H1, generated by stochastic integrals of previsible processes H with respect to M ,
where M ∈ X ∪ {1} and ||

∫
HdM ||H1(P ) < ∞. Note that this last condition is also

written as H ∈ L1(M ;P ).

2 Note that Harrison and Pliska (1981) assume that each X ∈ X is a martingale
under P , but this distinction has no effect.
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We work almost entirely with classes of equivalent measures so we trust no am-
biguity will arise from failing to specify the measure involved in expressions involving
||X||∞.

We have attempted to maintain consistency with Jacod’s notation and the reader
is referred to Jacod (1979) for any unexplained notation.

Finally, before we launch into the promised proofs, we recall the fact, which follows
from Corollary 2.16 of Jacod (1979), that

M(Q) ⊆ Mloc(Q) = H1
loc(Q),

which we shall use repeatedly without, in future, recalling it.

The proof of Theorem 1 is just a fairly straightforward application of the Hahn-
Banach Theorem (and a corollary), together with the characterisation of the dual of
H1(P ).

Proof of Theorem 1 First note that

H1(P,P0) =
⋂

Q∈P0

H1(Q),

since
||dQ

dP
||∞ < ∞ for all Q ∈ P0.

We now wish to show that

L1(X ∪ {1}) ⊆ H1(P,P0) (2).

Since both sets in (2) are closed subspaces of H1(P ) it is clearly sufficient to show that∫
HdX ∈ H1(Q)

for any Q ∈ P0, X ∈ X ∪ {1}, and H ∈ L1(X;P ), but for this to be true we only need
||

∫
HdX||H1(Q) < ∞ which follows immediately from the equivalence of the H1(P ) and

H1(Q) norms, establishing (2).

Now to establish equality in (2), first recall that the dual of H1(P ) is BM0(P ),
with duality given by

c(M) = EP [X, M ]∞ for all M ∈ H1(P ) ,

where c is a continuous linear functional on H1(P ) and X is the corresponding martin-
gale in BM0(P ). Moreover

BM0(P ) ⊆ H∞
loc(P ) . (3)

Now suppose that c is a continuous linear functional on H1(P,P0), which vanishes
on L1(X ∪ {1}). By the Hahn-Banach Theorem there is an extension of c to H1(P ),
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and it then follows from (3), that there is an X ∈ H∞
loc(P ) such that

c(M) = EP [X, M ]∞ for all M ∈ H1(P ) .

By localisation we may assume that X ∈ H∞(P ) with ‖ X ‖H∞= a. Now define Q by

dQ

dP
=

(
1 +

X∞
2a

)
.

Claim: Q ∈ P0.

Proof of claim: It is clear that P ≈ Q, whilst, since c(1) = 0, EP X∞ = 0 (indeed,
since c disappears on L(1) we must have X0 = 0) so Q is a probability measure.

Since
c(M) = 0 for all M ∈ L1(X ∪ {1})

it follows that XM is a P -local-martingale for all M ∈ X so
(
1 + X

2a

)
M is a P -local-

martingale for all M ∈ X , which implies that M is a Q-local-martingale for all M ∈ X
so Q ∈ P0.

If we now take N ∈ H1(P,P0) it follows, by reversing the argument above, that,
since N is in both H1(P ) and H1(Q),

(
1 + X

2a

)
N , and hence XN , is in H1(P ), thus

[X, N ] ∈ H1(P ) and so c(N) = EP X0N0 = 0. It is now immediate that L1(X ∪ {1}) is
dense in H1(P,P) (suppose not and apply corollary 23.6 of Jameson (1974) to deduce
a contradiction), but L1(X ∪ {1}) is closed so L1(X ∪ {1}) = H1(P,P0) �

Corollary 4
L1

loc(X ∪ {1}) =
⋂

Q∈P0

Mloc(Q).

Proof : Suppose X is in L1
loc(X ∪ {1}), then there is a sequence (Tn) in T (P ) such

that
XTn ∈ L1(X ∪ {1}) = H1(P,P0) = H1(P ) ∩

⋂
Q∈P0

Mloc(Q),

by Theorem 1, so XTn is in Mloc(Q) for each Q in P0 and hence (since (Tn) is in T (Q)
for each Q in P0) so is X. Thus

L1
loc(X ∪ {1}) ⊆

⋂
Q∈P0

Mloc(Q).

To establish the reverse inclusion, simply take X in
⋂

Q∈P0 Mloc(Q), then take (Tn) ∈
T (P ) with XTn ∈ H1(P ); it follows that XTn ∈ H1(P )∩

⋂
Q∈P0 Mloc(Q), so the reverse

inclusion follows from Theorem 1.

Theorem 2 is perhaps more interesting, because this is a result whose formulation
is driven by the financial theory: if there’s a unique price for an option then it must be
hedgeable (attainable). The proof is somewhat perverse so we’ll describe it first. Notice
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that, by Theorem 1,

H1(P,P0) ⊆ Ê0(P,P0) ⊆ E0(P,P0);

so all we need to prove is that H1(P,P0) ⊇ E0(P,P0). The way we do this is as
follows: we take an M ∈ E0(P,P0); all we need to show is that M is a Q local-
martingale for all Q ∈ P0. Now since M ∈ E0(P,P), M ∈ M(P ) , so in particular M

is a P -martingale. We then show that MQ,n, given by MQ,n
t = EQ[MTn |Ft], is a P -

martingale: then, since MQ,n
∞ = MTn , it follows that MQ,n ≡ MTn (since MQ,n−MTn

is an M(P )−martingale terminating at 0) so that MTn is a Q-martingale. Finally,
since this is true for the whole localising sequence (Tn), M is a Q-local-martingale .

Proof of Theorem 2 As we said above, all we need to prove is that if M ∈ E0(P,P0)
then MQ,n is a P -martingale for any Q ∈ P0. To do this we shall show that

EP MQ,n
τ = EP MQ,n

0 for any stopping time τ . (4)

Given τ and Q define a probability measure R by

dR

dP
=

dQ

dP

/
EP

[
dQ

dP
|Fτ

]
(5)

Notice that P and R agree on Fτ .

Claim: R ∈ P.

Proof of claim: It is obvious that P ≈ R. Now take any X ∈ X ; by localising we
may assume that X is both a P - and a Q- uniformly integrable martingale. We show
that

ERXS = ERX0 for any stopping time S.

Now,

ER[XS ] = ER[XS1(τ≥S)] + ER[XS1(τ<S)]

= EP [XS1(τ≥S)] + EP

[
dR

dP
XS1(τ<S)

]
= EP [XS1(τ≥S)] + EP

[
dQ

dP
XS

/
EP

[
dQ

dP
|Fτ

]
1(τ<S)

]
= EP [XS1(τ≥S)] + EP

[
EP

[
XS

dQ

dP
|Fτ

]/
EP

[
dQ

dP
|Fτ

]
1(τ<S)

]
= EP

[
XS1(τ≥S) + EQ

[
XS |Fτ

]
1(τ<S)

]
= EP

[
Xτ∧S

]
= EP

[
X0

]
.

This is true for any S (including S ≡ 0) so the claim is proved.

To establish the main result; since R ∈ P0 it follows that (if M ∈ E0(P,P0))

ERMTn
= EP M0 ,
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but ER

[
MTn

]
= EP

[
dQ

dP
MTn

/
EP

[dQ

dP
|Fτ

]]
= EP

[
EP

[dQ

dP
MTn |Fτ

]/
EP

[dQ

dP
|Fτ

]]
= EP

[
EQ

[
MTn

|Fτ

]]
= EP

[
MQ,n

τ

]
,

at least if τ ≤ Tn. So EP [MQ,n
τ ] is constant over stopping times and hence EP [MQ,n

τ ] =
EP [MQ,n

0 ] for all τ and hence MQ,n is a P -martingale. �

Remark A careful reading of the proof shows that we have also demonstrated the
following equality

Corollary 6

{X ∈ M(P ) : EQ(X∞) = EP (X0) = X0} for each Q ∈ P0

=⋂
Q∈P0

M(Q).

We’ve already done a lot of the work to prove Theorem 3 in proving Theorems 1 and
2. The remaining ingredient is the following theorem which we believe is of independent
interest.

Theorem 7 If F0 is P -trivial and X is finite then the collection P0 is dense (with
respect to the L1(P ) norm) in P̂, in the sense that if we define D0 = {dQ

dP : Q ∈ P0}
and D̂ = {dQ

dP : Q ∈ P̂} then
cl(D0) ⊇ D̂.

Proof Notice that D0 ⊆ D̂ ⊆ L1(P ) and both D0 and D̂ are convex sets. If we
take a continuous linear functional c on D̂ which disappears on D0 we may extend it to
L1(P ). Now, since the dual of L1 is L∞, we see that

c(Y ) = EP M(∞)Y for a suitable M(∞) ∈ L∞(P ).

Now define the P -martingale M by

Mt = EP [M(∞)|Ft]

(so that M∞ = M(∞)).

Claim M is in L1(X ∪ {1}) ∩H∞(P ).

Proof of claim Since M∞ is essentially bounded (under P and hence under Q
for all Q ∈ P̂) it follows from Doob’s L∞ (in)equality that M is in H∞(P ), but since c
disappears on D0 it follows that

EQM∞ = EP [
dQ

dP
M∞] = 0 for all Q ∈ P0
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so that
M ∈ E0(P,P).

Hence, by Theorem 2,
M ∈ L1(X ∪ {1}) ∩H∞(P )

Now, if we can prove that M ∈ H1(Q) for all Q ∈ P̂ then we will have proved the
theorem, for if this were true then we would have established that c disappears on D̂
which would imply the result. But we know that M ∈ L1(X ∪{1}), so, since X is finite
it is sufficient to show that∫

HdX ∈ H∞(P ) implies
∫

HdX ∈ H1(Q)

for any Q ∈ P̂. But this follows from the representation and the trite inequality

EQM∗
∞ = EP [

dQ

dP
M∗
∞] ≤ ||M∗

∞||∞,

where M∗
t

def
= sups≤t |Ms| �

Proof of Theorem 3 (a) Notice that

H1(P, P̂) ⊆ H1(P,P) ⊆ H1(P,P0),

so all we need to prove is that

L1
+(X ∪ {1}) ⊆ H1(P, P̂).

Claim Under the conditions of Theorem 3 if M ∈ L1
+(X ∪ {1}) then M is a

non-negative Q-supermartingale for each Q ∈ P̂.

Proof of Claim Fix Q ∈ P̂ then by Theorem 7 we may take a sequence (Qn) ⊆ P̂
such that dQn

dP

n→∞−→ dQ
dP in L1(P ).Take a subsequence (nk) such that dQnk

dP

a.s.−→ dQ
dP . Then

Mt = EQnk
[Mt+s|Ft] = EP [

dQnk

dP
Mt+s|Ft]/EP [

dQnk

dP
|Ft]

so that, by Fatou’s lemma, M is a Q-supermartingale.

By virtue of the (implicit) representation of M we may prove that M ∈ Mloc(Q)
by exhibiting a sequence (Tn) ∈ T (Q) such that M∗

Tn
∈ L1(Q) for each n: if we set

Tn = n ∧ inf{t : Mt ≥ M0 + n} then M∗
Tn− ≤ M0 + n so, since M is non-negative, it

follows that

EQM∗
Tn
≤ EQ max(M∗

Tn−,MTn
) ≤ EQ(M∗

Tn− + MTn
),
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we are done if we can show that EQMTn
< ∞. But Tn is a bounded stopping time so

that, by the optional sampling theorem for supermartingales,

EQMTn
≤ M0.

(b) Since H1(P,R) ⊆ E0(P,R) for any R, whilst E0(P, P̂) ⊆ E0(P,P) it follows
from (a) that we need only prove that E0(P,P) ⊆ H1(P,P), but a careful reading of
the proof of Theorem 2 shows that it remains valid for this case.

(c)It follows from Theorems 1 and 2 and (a) and (b) above that it is sufficient to
show that

span(L1
+(X ∪ {1})) = L1(X ∪ {1}).

This follows by a similar argument to that given in the proof of Theorem 1 on observing
that if c is a continuous linear functional on H1(P ) which disappears on L1

+(X ∪ {1})
and the elements of X are non-negative then (localising if necessary) c disappears on X
and hence disappears on L1(X ∪ {1}) �

§3. An application to incomplete financial markets

We assume from now on that X is a finite collection of non-negative discounted
security prices (represented as the vector Z), stopped at some finite horizon T , P ∈
M(X ) and that F0 is P -trivial, so that, in particular, all the conditions of Theorem 3
are satisfied.

Definition 4: Following Harrison and Pliska (1981) we say that X (∈ F) is a
contingent claim if X ≥ 0 P -a.s. X is to be interpreted as a claim for an amount
X to be paid at time T . If βt is the discount factor at time t then X is said to be
P−integrable if EP βT X < ∞, and is said to be P−attainable if there exists a V
such that:

i)Vt = V0 +
∫ t

0

φs.dZs, where φ is predictable,

ii)V is a P -martingale,
iii) VT = βT X.

Finally X is said to be bounded if ||βT X||∞ < ∞.

Harrison and Pliska (1981) define the price under P of a claim as

πP (X)
def
= EP βT X,

and it follows that the price under P of a P−attainable claim X is

πP (X) = V0, given by i).

We are now in a position to state Theorem 8.

Theorem 8 If X is a contingent claim then the following are equivalent:
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(i) X is P -attainable

(ii) X has the same price under all Q ∈ P0

(iii) the process V given by
Vt = EP [βT X|Ft] (6)

is a Q−martingale for all Q ∈ P0

Proof Taking V given by (6), it follows from Corollary 4 that, if (iii) holds,

V ∈ L1
loc(X ∪ {1}, P )

and since V ∈ M(P ), X is P -attainable thus (iii)⇒(i).

If X is P -attainable then V is a Q-local martingale for all Q ∈ P0, but V is P -
uniformly integrable and hence is Q-uniformly integrable for any Q ∈ P0 and hence is
a Q-martingale, thus (iii)⇐(i).

If V ∈ M(Q) then
πQ(X) = EQVT = V0,

so (iii)⇒(ii).

Finally, if (ii) holds then, by (6) V is in M(P ) and hence by successively applying
Corollary 6 and Corollary 4, we deduce that

V ∈ L1
loc(X ∪ {1}, P )

and since V ∈ M(P ), X is P -attainable, thus (ii)⇒(i) �

We are also in a position to prove two conjectures from Harrison and Pliska (1981).

Theorem 9 If X is a bounded claim then it is P -attainable iff it is Q-attainable for
all Q ∈ P.

Remark This result is Proposition 2.1 of Stricker (1984)

Theorem 10 If Q,R ∈ P and X is both Q- and R-attainable then

πQ(X) = πR(X)

Proof of Theorem 9 If X is bounded and P−attainable then V given by (6) is in
H∞(P ) ∩

⋂
Q∈P Mloc(Q): it follows immediately from the equality of the L∞(P ) and

L∞(Q) norms that

V ∈
⋂

Q∈P
H∞(Q) ⊆ H1(R) ∩

⋂
Q∈P

Mloc(Q)

for all R ∈ P, but from Theorem 3,

H1(R) ∩
⋂

Q∈P
Mloc(Q) = L1(X ∪ {1}, R)
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hence V is R−representable �

Corollary 11 If X is a bounded claim then it is P -attainable iff it is Q-attainable for
all Q ∈ P̂.

Proof Just observe that in the proof of Theorem 5 we may conclude (using Theorem
3) that V ∈ H∞(R) for all R ∈ P̂ and the result follows �

Theorem10 is a corollary of the following theorem.

Theorem 12 X is P -attainable if and only if

πP (X) ≥ πQ(X) for all Q ∈ P (7).

Proof It follows from Theorem 3 that, if X is P -attainable then, for any Q in P, V
is a positive local martingale under Q and hence is a positive Q-supermartingale, thus

πQ(X) = EQβT X = EQVT ≤ V0 = EP VT = EP βT X = πP (X),

establishing the forward implication.

Conversely, suppose that (7) holds, then in particular the inequality holds for any
Q ∈ P0. Suppose Q ∈ P0 with ||dQ

dP ||∞ = a. Notice that a ≥ 1, and that if we define

R = (1 + 1/a)P − 1/aQ,

then R ∈ P0. If we now apply (7) to R, then we see that

πQ(X) ≥ πP (X),

so that equality must hold in (7) whenever Q ∈ P0, and it then follows immediately
from the equivalence in Theorem 8 that X is P−attainable.

�

Proof of Theorem 10 This follows immediately from Theorem 12 and the fact that
P is an equivalence class under the obvious equivalence relation �

References:

Harrison, J.M. and Kreps, D. M. (1979). “Martingales and arbitrage in multiperiod
securities markets”. J. Econ. Theory 20, 381-408.

Harrison, J.M. and Pliska, S. (1981). “Martingales and stochastic integrals in the theory
of continuous trading”. Stoch. Proc. Appl. 11, 215-260.

Harrison, J.M. and Pliska, S. (1983). “A stochastic calculus model of continuous trading:
complete markets”. Stoch. Proc. Appl. 15, 313-316.



MARTINGALE REPRESENTATION [from Math. Finance 2, 23-34 (1992)] 13

Jacod, J. (1979). “Calcul Stochastique et Problémes de Martingales”. Lecture Notes in
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