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Abstract

This paper considers some measure-valued processes {Xt : t ∈ [0, T ]} based on an un-
derlying critical branching particle structure with random branching rates. In the case of
constant branching these processes are Dawson-Watanabe processes. Sufficient conditions
on functionals Φ of the process are given that imply that the expectations E(Φ(XT )) are
comparable to the constant branching case. Applications to hitting estimates and regularity
of solutions are discussed. The result is established via the martingale optimality principle
of stochastic control theory. Key steps, which are of independent interest, are the proof of
a version of Ito’s Lemma for Φ(Xt), suitable for a large class of functions of measures (The-
orem 3) and the proof of various smoothing properties of the Dawson-Watanabe transition
semigroup (section 3).

1 Introduction and statement of results

1.1 Introduction

We start by describing the stochastic processes that we study, which will be solutions to a certain
martingale problem. Let E be a compact metric space, with Borel sigma field E , and let M be
the space of finite Borel measures on (E, E), on which we put the topology of weak convergence.
We write either (µ, f) or µ(f) for the integral of a function f : E → R with respect to a measure
µ ∈M, whenever this is well defined. Let C(E) (respectively B(E)) be the space of continuous
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(respectively bounded measurable) functions on E, with the supremum norm ‖f‖E , and let A
be the generator of a strongly continuous Markov semigroup {Pt : t ≥ 0} on C(E).

Suppose {Xt : t ∈ [0, T ]} is an adapted process defined on a filtered probability space
(Ω,F ,Ft, P ) that has continuous paths with values in M. The terminal time T will be fixed
throughout the paper. Let P be the predictable sets for this probability space. Let σ : [0, T ]×
Ω × E → [0,∞) be P ⊗ E measurable. We call {Xt} a solution to the martingale problem
M(A, σ) if for all φ ∈ D(A) the process

Zt(φ) = (Xt, φ)− (X0, φ)−
∫ t

0
(Xs, Aφ)ds (1)

is an Ft local martingale for t ∈ [0, T ] with quadratic variation

[Z(φ)]t =
∫ t

0
(Xs, σsφ

2)ds. (2)

One may think of Xt as a measure describing the position of an infinite cloud of infinitesimal
particles that are independently moving according to the process with generator A, and that
are continuously dying and branching into two, each at rate σ/2. We emphasise that σt(x), the
particle branching rate at time t and position x, may be random, for instance it may depend
on the position of the other particles. This has the potential for modeling many aspects of
populations, for example competition, mutualism or clustering. The convergence of particle
systems to a measure valued limit satisfying M(A, σ) is well known for constant branching rates
(see Dawson [4] section 4.6) and has been shown for some interacting branching rates σ in Lopez
[8]. Our arguments will need only the martingale problem and will not use this associated
particle picture.

The solutions for a constant branching rate σc
t ≡ c are called Dawson-Watanabe processes

and have been extensively studied (see Dawson [4]). The martingale problem M(A, σc) has
solutions that are unique in law. The constant branching rate means that disjoint sets of
particles evolve independently. This makes the process quite tractable and a large number of
qualitative properties have been established. Less is known about the processes with random
branching rates σ. Existence of solutions to the martingale problem, studied in Metivier [10],
Meleard and Roelly [9], Perkins [11] and Kurtz [6], holds for a large class of branching rates.
Uniqueness is typically unknown. Uniqueness for an extended version of the martingale problem
(called a historical martingale problem) has been established in [11] for a restricted class of
branching rates σ.

The aim of this paper is to establish a comparison principle for expectations E(Φ(Xt)) of
certain functionals Φ : M→ [0,∞]. When the branching rate satisfies σ ≥ c we find conditions
on Φ that ensure the expectation E(Φ(Xt)) is greater than the corresponding expectation for the
Dawson-Watanabe process with constant branching rate c. There is a corresponding result when
σ ≤ c. The intuition is that more branching should lead to more clustering which should lead to
certain functionals increasing in expectation. This leads to easy proofs that certain properties
of Dawson-Watanabe processes carry over to interactive branching processes. This result should
be compared to those of Cox, Fleischmann and Greven [3], who studied a similar problem for
functionals of systems of SDEs on a lattice and applied it to establish ergodic properties. By
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taking our processes to have a motion process on the lattice our results apply to systems of
SDEs. The results of Cox, Fleischmann and Greven are then more general in that they treat
the case of two comparable branching rates σ1 ≤ σ2, although our results allow a greater class
of interactions.

The analogous problem of comparing functionals of processes with different drift terms, for
example with the term +

∫ t
0 (bs, φ)ds added into the martingale problem (1), can be treated via

pathwise comparison results. These allow one to couple two processes if one has a larger drift
than the other, from which one can deduce comparisons between the expectations of increasing
functionals. There are various pathwise comparison arguments in the literature for SPDEs (see
Assing [2] and its bibliography). For measure valued branching processes when the drift terms
come from immigration, or from mass creation and annihilation terms (that is they are of the
form

∫ t
0 (Xs, bsφ)ds), a coupling can be constructed via a ‘thinning’ procedure (see Barlow, Evans

and Perkins [1] Theorem 5.1 for a related result.)

1.2 Statement of main result

We now discuss the hypotheses for the theorem. We will need two mild assumptions on the
branching rate and on the underlying spatial motion generated by A, for which we give the
following two definitions:

• The branching rate σ is called locally bounded if there exist stopping times Tn ↑ ∞ so that
σtI(t < Tn) are bounded, as functions on [0, T ]× Ω× E, for each n.

• The generator A is called a good generator if there is a dense linear subspace D0 of C(E)
that is an algebra and is closed under the mappings Pt for all t ≥ 0.

The assumption that σ is locally bounded ensures that the integral in (2) is well defined. Most
commonly studied motion processes have good generators. Without loss of generality we may,
and shall, assume that D0 contains the constant functions. Using a lemma of Watanabe (see
Ethier and Kurtz [7] Proposition 1.3.3) the conditions on D0 imply that D0 is a core for A.
Recall that D0 is a core for D(A) if whenever f ∈ D(A) there exist fn ∈ D0 so that fn → f and
Afn → Af .

The key hypothesis on Φ is the following convexity hypothesis:

E
(
Φ(µ+ Z + Z̄)− Φ(µ+ Z)− Φ(µ+ Z̄) + Φ(µ)

)
≥ 0 (3)

for all µ ∈ M and for all I.I.D. M valued variables Z, Z̄ with bounded total mass. This is a
randomized version of the following parallelogram condition:

Φ(µ+ ν + η)− Φ(µ+ ν)− Φ(µ+ η) + Φ(µ) ≥ 0, for all µ, ν, η ∈M. (4)

Clearly (4) implies (3). In the case that Φ has two continuous directional derivatives, as defined
by (10) in section 2, the condition (4) is equivalent to DxyΦ(µ) ≥ 0 for all x, y ∈ E, µ ∈ M.
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Example 5, in section 4, does not satisfy (4) but (3) applies. Furthermore, example 6 in section
4 shows that Φ being convex is not a sufficiently strong hypothesis.

We require one more hypothesis on the smoothing properties of the underlying motion
process. We suppose the motion semigroup {Pt} satisfies Ptf ∈ D(A) for t > 0, f ∈ B(E) and
that there exists α <∞ and β ∈ [0, 21/2) so that

‖APtf‖E ≤ αt−β ‖f‖E for all t ∈ [0, T ], f ∈ B(E). (5)

Here is the main result of the paper.

Theorem 1. Suppose {Xt} is a solution to the martingale problem M(A, σ) for a locally bounded
branching rate σ and good generator A satisfying the smoothing hypothesis (5). Suppose that
Φ : M→ [0,∞) is continuous, satisfies hypothesis (3) and the growth condition:

Φ(µ) ≤ exp(λ(µ, 1)), for some λ < 1/cT and C <∞. (6)

Let {Yt} be a solution to the problem M(A, σc), that is a Dawson-Watanabe process with the
constant branching rate c, and whose initial condition Y0 has the same law as X0. Then the
following comparisons hold:

a) if 0 ≤ σ ≤ c then E(Φ(Xt)) ≤ E(Φ(Yt)) for all t ∈ [0, T ];

b) if c ≤ σ and Φ is bounded then E(Φ(Xt)) ≥ E(Φ(Yt)) for all t ∈ [0, T ];

c) if c ≤ σ ≤ c̄ and λ < 1/2c̄T then E(Φ(Xt)) ≥ E(Φ(Yt)) for all t ∈ [0, T ].

Remarks

1. The continuity and growth conditions on Φ are certainly not necessary, and can often be
weakened. For example if the conclusions of the theorem hold for a convergent sequence of
functions Φn then it is often possible to deduce that they hold for the limit.

2. The smoothing hypothesis (5) on the underlying motion process should be totally unnecessary,
and hence we have not sought a best possible bound on β. However the hypothesis is satisfied
by the Laplacian with the value β = 1 and this is sufficient for all our examples in section 4.
We make some more remarks on this at the end of section 3.

3. A similar result, under the same hypotheses, holds for path functionals
∫ T
0 f(t)Φ(Xt)dt where

f ≥ 0. Since the comparison holds for each E(Φ(Xt)) it must hold for the integral.

4. The sketch proof below makes it clear that it is enough for the convexity hypothesis (3) to
hold at all µ in the range of Xt, that is on any set M0 ⊆ M for which Xt ∈ M0 for all t ≤ T
almost surely.

4



We now give a sketch of the method used for the proof of this result, restricting for simplicity
to the case 0 ≤ σ ≤ c. We write {U c

t : t ≥ 0} for the transition semigroup of the Dawson-
Watanabe process with constant branching rate c. The conclusions of the theorem, for example
part (a), can then be rewritten as

E(Φ(Xt)) ≤ E(UtΦ(X0)) for all t ∈ [0, T ].

We shall use the ideas of control theory. We consider σ as a control and try to maximize the
value of E(Φ(Xt)) over all controls bounded above by a constant c. Under our hypotheses on
Φ the constant control σc is optimal and so we define the value function, the reward under the
optimal control, by

F (t, µ) = E(Φ(Yt)) = U c
t Φ(µ).

The martingale optimality argument is the heuristic that, if Xs is a solution to M(A, σ), then
the process s → F (s,Xt−s) is a supermartingale if σ ≤ c and a martingale for the constant
branching case σ = c implying

E(Φ(Xt)) = E(F (0, Xt)) ≥ E(F (t,X0)) = E(U c
t Φ(X0))

which is the desired conclusion. To implement this idea we need the drift in the semimartingale
decomposition for a process F (s,Xs). In section 2 we show, for a general class of functions
F (s, µ), that this is given by

∫ t
0 L

σF (s,Xs)ds where

LσF (s, µ) = DsF (s, µ) +
∫

E

(
A(x)DxF (s, µ) + σs(x)DxxF (s, µ)

)
µ(dx). (7)

The derivatives Dx and Dxx are first and second derivatives in the direction of the point mass
δx, as defined in section 2, and we write A(x) to indicate the variable on which the operator A is
acting. This formula is well known and easy to establish for certain simple explicit functionals
F . We establish it for F which only need to satisfy certain smoothness conditions. When σ
takes the constant value c this gives a formula for the generator Lc of the Dawson-Watanabe
process acting on smooth functions. Comparing Lσ with Lc we see they differ only in the term
involving the second directional derivative.

Using the semigroup property of U c
t one expects that

LcF (T − s, µ) = 0 for all µ ∈M and 0 < s ≤ T . (8)

Then suppose X is a solution to M(σ,A). Formally we expect

E(Φ(Xt))− E(U c
t Φ(X0))

= E(F (0, Xt))− E(F (t,X0))

= E(
∫ t

0
LσF (t− s,Xs))ds)

= E(
∫ t

0
LcF (t− s,Xs))ds) + E(

∫ t

0

∫
(σs(x)− c)DxxF (t− s,Xs)Xs(dx)ds)

= E(
∫ t

0

∫
(σs(x)− c)DxxF (t− s,Xs)Xs(dx)ds) using (8).
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So what is needed to complete the proof is that

DxxF (s, µ) = DxxU
c
sΦ(µ) ≥ 0. (9)

We will show that the convexity hypothesis (3) implies this by finding a representation, in section
3, for the derivative DxxU

c
sΦ(µ).

The main technical difficulty in implementing this heuristic proof is that we do not know
whether the value function U c

t Φ(µ) satisfies the smoothness assumptions required to apply the
formula (7). In section 3 we investigate smoothing properties of the Dawson-Watanabe transition
semigroup {U c

t } and show that directional derivatives always exist. In section 4 we complete
the proof of Theorem 1 and we give a number of examples of functions Φ satisfying all the
required assumptions. We use the one point compactification of a locally compact space to show
how our results apply to processes on Rd and Zd. We then choose suitable functionals Φ to
establish several properties of interacting measure-valued processes that are already known for
the constant branching case, such as local extinction, hitting estimates and absolute continuity
or singularity of the measures. The heuristic that ‘more branching leads to more clustering’
always holds true. In many cases the proofs of these properties for the Dawson-Watanabe
process would carry over to the interacting processes. However application of a comparison
argument, when applicable, is very simple. It would be good to find a comparison result for
two random branching rates that are comparable, σ1 ≤ σ2, as may occur when there is a
scalar parameter in front of an interacting branching mechanism. However our control theory
argument, which we felt was a natural approach to the problem, fell foul of the problem of
smoothing an infinite dimensional value function. The present proof uses the fact that we are
comparing with a constant branching rate to show the smoothness of the value function, which,
given integrability, follows from explicit formulae for the required derivatives, established by
exploiting the branching property for Dawson-Watanabe processes.

We end this section with a moment estimate, useful throughout the paper, for the total
mass (Xt, 1) of solutions to M(A, σ).

Lemma 2. Suppose {Xt} is a solution to the martingale problem M(A, σ) satisfying (X0, 1) ≤ K
and σ ≤ L, almost surely. Then

E

(
sup
t≤T

exp((Xt, 1)/LT )

)
≤ 4 exp(2K/LT ).

Proof. The stopping times Tn = inf{t : (Xt, 1) ≥ n} reduce the local martingales Zt(1), as
follows from (2) and the bound on σ. Set Et = exp(2(Xt, 1)/L(T + t)). Using Ito’s formula and
the martingale problem M(A, σ) we have

dEt ≤ (2Et/L(T + t))dZt(1).

The right hand side is also reduced by Tn so by optional stopping, for t ≤ T ,

E (exp((Xt∧Tn , 1)/LT )) ≤ E (Et∧Tn) ≤ E (E0) = E (exp(2(X0, 1)/LT )) ≤ exp(2K/LT ).
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Ito’s formula also implies that exp(λ(Xt∧Tn , 1)) is a submartingale for any λ. So by Doob’s L2

inequality we have

E

(
sup
t≤T

exp((Xt∧Tn , 1)/LT )

)
≤ 4 exp(2K/LT ).

Letting n→∞ and applying monotone convergence completes the proof. .

2 Semimartingale decompositions

In this section we suppose {Xt} is a solution to the martingale problem M(A, σ) for a locally
bounded branching rate σ and good generator A. We shall show that for sufficiently smooth
functions F (t, µ) the process F (t,Xt) is a semimartingale and give an expression for the finite
variation part.

We define the first directional derivatives DxF : E ×M→ R by

DxF (µ) = lim
ε→0

1
ε
(F (µ+ εδx)− F (µ)). (10)

We will need only these derivatives in the directions of point masses. When DxF (µ) is contin-
uous, directional derivatives in the direction of a general element ν ∈ M can be expressed in
terms of the function DxF (µ) (see Lemma 4 part (a)). We define second directional derivatives
DxyF : E2 ×M→ R by taking a further derivative so that DxyF = DxDyF . For derivatives in
time and mixed derivatives we write DsF,DsxF,DsxyF . If the mixed derivatives are continuous
then they may be taken in any order. We write A(x) or P (x)

t for the generator or semigroup
applied in the variable x, whenever the action is unclear.

Theorem 3. Suppose F : [0, T ]×M→ R satisfies

• the functions F,DxF,DxyF,DxyzF,DsF,DsxF,DsxyF,DsxyzF exist and are continuous,

• for fixed s, y, z, µ the maps x → DxF (s, µ), x → DxyF (s, µ), x → DxyzF (s, µ) are in the
domain of the generator A,

• the functions A(x)DxF (s, µ), A(x)DxyF (s, µ), A(x)DxyzF (s, µ) are continuous in s, x, y, z, µ.

Then F (t,Xt)−
∫ t
0 L

σF (s,Xs)ds is a local (Ft) martingale for t ∈ [0, T ] where LσF is given by
(7), which can be written in short as LσF = DsF + (A(x)DxF + σDxxF, µ(dx)).

Remarks

1. In the case of constant branching σ = σc, the theorem shows that (7) is a deterministic
formula for the Markov generator of the Dawson-Watanabe process acting on suitably smooth
F . The Dawson-Watanabe semigroup can be generated (see Watanabe [14]) via a Trotter
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product formula that mixes the semigroup due to pure branching and the dual semigroup P ∗t
describing the heat flow of measures. Therefore we expect the generator to be the sum of the
two corresponding generators and the last two terms of (7) can be identified as such (for the
heat flow see Lemma 7).

2. It would be natural to require hypotheses only on those derivatives that are involved in the
expression LσF . The reason for requiring DxyzF in the domain D(A) and not just DxF is that
we shall approximate the worst derivatives DxyzF and A(x)DxyzF first and then integrate up to
get all the lesser derivatives.

The rest of this section contains the proof of this result. Formula (7), at least as a formal
expression, is well known. This is presumably based on the fact that it is easy to verify for a
class of simple functions F , as we now show. Let C1([0, T ]) be the space of bounded functions
ψ : [0, T ] → R with one bounded continuous derivative. Suppose that ψ ∈ C1([0, T ]), φi ∈ D(A)
for i = 1, . . . , n and define

F (µ, t) = ψ(t)
n∏

i=1

(µ, φi).

Notice that we may obtain the formula for the covariation of Z(φ1) and Z(φ2):

[Z(φ1), Z(φ2)]t =
∫ t

0
(Xs, σsφ1φ2)ds, (11)

from equation (2) by polarisation. Then applying Ito’s formula, using (11) and the decomposi-
tions (1) and (2), we have that

F (Xt, t)− F (X0, 0)

=
∫ t

0
Dsψ(s)

n∏
i=1

(Xs, φi)ds+
∫ t

0
ψ(s)

n∑
i=1

∏
j 6=i

(Xs, φj)

 (Xs, Aφi)ds

+
∫ t

0
ψ(s)

n∑
i,j=1

j 6=i

∏
k 6=i,j

(Xs, φk)

 (Xs, σsφiφj)ds+
∫ t

0
ψ(s)

n∑
i=1

∏
j 6=i

(Xs, φj)

 dZs(φi).(12)

The last term is a local martingale and the first three terms on the right hand side can easily be
identified with the three terms of the expression for the weak generator (7) applied to the simple
product function F . The proof for general F now consists of an approximation argument using
the simple functions above. We shall simultaneously approximate F and all the derivatives of F
that occur in the formula for LσF . For functions on Rn approximating derivatives can be done
elegantly using Fourier transforms. In this infinite dimensional setting we shall do it the hard
way, approximating the second derivative DxyF first and integrating up to get approximations
to lesser derivatives. We need to take care to ensure that, after integrating up, we remain in the
class of simple product functions. Readers who believe this can be done will wish to skip to the
next section.

In what follows we shall repeatedly need a type of fundamental theorem of calculus for
functions F : M→ R to allow us to reconstruct F from its derivatives.
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Lemma 4. a) Suppose F : M → R is continuous and has a continuous derivative DxF :
E ×M→ R. Then, writing 0 for the zero measure,

F (µ) = F (0) +
∫ 1

0

∫
DxF (θµ)µ(dx)dθ. (13)

b) Suppose G(x, µ) is continuous and has one spatial derivative DyG(x, µ) that is continuous
in x, y ∈ E, µ ∈M. Suppose also that DyG(x, µ) = DxG(y, µ). Define

F (µ) =
∫ 1

0

∫
G(y, θµ)µ(dy)dθ. (14)

Then DxF (µ) = G(x, µ) for x ∈ E, µ ∈M.

In particular this holds if G(x, µ) =
∫
φ(x, z)µk(dz) for some φ ∈ C(Ek+1) which is sym-

metric under permutations of its variables.

Proof. The continuity of DxF (µ) implies that the function

H(θ1, . . . , θn) := F (θ1δx1 + . . .+ θnδxn)

is continuously differentiable on [0,∞)n. For a weighted sum of point masses µ =
∑n

i=1 ciδxi ,
part (a) holds by applying the fundamental theorem of calculus on [0, 1] to the function θ →
H(θc1, . . . , θcn) = F (θµ). Weighted sums of point masses are dense in M and, for fixed µ ∈M,
we may take a sequence of such sums µε so that µε → µ in the weak topology. Then we can
pass to the limit in equation (13) for µε, to obtain the same equation for µ, by using the fact
that DxF (θµε) → DxF (θµ) uniformly over x ∈ E.

To prove part (b) of the lemma we differentiate (14) from the definition to obtain

DxF (µ) = lim
ε→0

∫ 1

0

∫
G(y, θ(µ+ εδx))−G(y, θµ)

ε
µ(dy)dθ + lim

ε→0

∫ 1

0
G(x, θ(µ+ εδx))dθ

= lim
ε→0

∫ 1

0

∫ ∫ 1

0
θDxG(y, θ(µ+ θ′εδx)dθ′µ(dy)dθ +

∫ 1

0
G(x, θµ)dθ

=
∫ 1

0

∫
θDxG(y, θµ)µ(dy)dθ +

∫ 1

0
G(x, θµ)dθ

=
∫ 1

0

∫
θDyG(x, θµ)µ(dy)dθ +

∫ 1

0
G(x, θµ)dθ, (15)

where in the second equality we applied part (a) of this lemma. Using part (a) again we have
that ∫ 1

0
G(x, θµ)dθ =

∫ 1

0

(
G(x, 0) +

∫ 1

0

∫
DyG(x, θ′θµ)θµ(dy)dθ′

)
dθ

= G(x, 0) +
∫ 1

0

∫
(1− θ′′)DyG(x, θ′′µ)µ(dy)dθ′′. (16)
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Combining (15) with (16) gives

DxF (µ) = G(x, 0) +
∫ 1

0

∫
DyG(x, θµ)µ(dy)dθ = G(x, µ)

using part (a) of this lemma again. If G(x, µ) =
∫
φ(x, z)µk(dz) then

DxG(y, µ) = lim
ε→0

1
ε

(∫
φ(y, z1, . . . , zk)(µ(dz1) + εδx) . . . (µ(dzk) + εδx)−

∫
φ(y, z)µk(dz)

)
=

k∑
i=1

∫
φ(y, z1, . . . , zi−1, x, zi+1, . . . , zk)µk−1(dz1, . . . , dzi−1, dzi+1, . . . , dzk).

which is symmetric in x and y if φ is symmetric in its variables.

Iterating the fundamental theorem gives a corollary showing one way to reconstruct F from
its second partial derivatives.

Corollary 5. a) Suppose F : M→ R has continuous derivatives DxF,DxyF . Then

F (µ) = F (0) +
∫
DxF (0)µ(dx) +

∫ 1

0

∫ 1

0

∫ ∫
DxyF (θθ′µ)θµ(dx)µ(dy)dθdθ′. (17)

b) Suppose F : [0, T ]×M→ R has continuous derivatives DxF,DxyF,DsF,DsxyF . Then

F (t, µ) = F (t, 0) +
∫ (

DxF (0, 0) +
∫ t

0
DsxF (s, 0)ds

)
µ(dx)

+
∫ 1

0

∫ 1

0

∫ ∫ (
DxyF (0, θ′θµ) +

∫ t

0
DsxyF (s, θθ′µ)ds

)
θµ(dx)µ(dy)dθdθ′. (18)

Proof. Fixing x and applying (13) to DxF (θµ) gives

DxF (θµ) = DxF (0) +
∫ 1

0

∫
DyxF (θ′θµ)θµ(dy)dθ′. (19)

Substituting this into (13) gives (17). For part (b) fix t ∈ [0, T ] and apply (17) to F (t, µ). Then
expand the derivatives DxyF (t, θ′θµ) and DxF (t, 0) using the usual fundamental theorem for
real functions over [0, t] to obtain (18).

Notation We write ‖f‖X for the supremum norm on the space C(X) of continuous functions on
any compact metric space X. The space M is locally compact with compact subsets M(K) =
{µ ∈M : (µ, 1) ≤ K}. By using suitable stopping arguments we will be able to restrict toM(K)
in our proof of Theorem 3 and hence we fix K > 0 for the remainder of this section. We now
define some spaces of simple approximating functions. Let Sn denote the space of permutations
on {1, . . . , n}. For any function φ : En → R we define its symmetrization φsym by

φsym(x1, . . . , xn) =
1
n!

∑
π∈Sn

φ(xπ1 , . . . , xπn).
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Recall D0 is the particular dense linear subspace of C(E) described in the definition of a good
generator A. For k ≥ 1 let Dprod

0 (Ek) be the linear span generated by the functions
∏k

i=1 φi(xi)
where φi ∈ D0. If k = 0 we let this set of functions be just the constant functions. Then define

Dsym
0 (Ek) =

{
φsym : φ ∈ Dprod

0 (Ek)
}
.

Note that Dsym
0 (Ek) consists of exactly the symmetric functions in Dprod

0 (Ek). Let µk be the
k-fold product measure of µ. Let C1

0 ([0, T ]) be those ψ : [0, T ] → R that have one continuous
derivative that vanishes at T . Define, for each n ≥ 0

Asym
n =

{
m∑

i=1

∫
Eki

ψi(t)φki
(x, z)µki(dz) : ψi ∈ C1

0 ([0, T ]), φki
∈ Dsym

0 (Eki+n), ki,m ≥ 0

}
.

The functions in Asym
n act on the variables t ∈ [0, T ], x ∈ En and µ ∈ M(K), and thus

Asym
n ⊆ C([0, T ]×En ×M(K)). Let Aprod

n be the same set but with Dsym
0 (Eki+n) replaced by

Dprod
0 (Eki+n). The functions in Asym

2 will be used to approximate DxyF (s, µ). The functions
F ∈ Asym

0 are sums of the simple products for which we used Ito’s formula directly in (12) to
find LσF . Finally we define Cn([0, T ]×M) to be the collection of functions in C([0, T ]×M(K))
possessing n continuous directional derivatives, that is the derivatives exist for (µ, 1) < K and
have a continuous extension to the closed ball (µ, 1) ≤ K. Define

Hk,n = {Dx1...xk
F (t, µ) : F ∈ Cn([0, T ]×M(K))} , for k = 0, 1, . . . , n.

Lemma 6. For each n ≥ 0 and K > 0,

a) Aprod
n is dense in C([0, T ]× En ×M(K)).

b) Asym
n is a dense subset of Hn,n in C([0, T ]× En ×M(K)).

Proof. Aprod
n is a linear subspace and it is easy to check that it is an algebra, since C1([0, T ])

is an algebra, D0 is an algebra and if φ1 ∈ C(En+l) and φ2 ∈ C(En+m) then∫
El

φ1(x, z)µl(dz)
∫

Em

φ2(x,w)µm(dw) =
∫

El+m

φ(x, z, w)µl+m(dzdw),

where φ(x, z, w) = φ1(x, z)φ2(x,w). Moreover, it is not hard to show that Aprod
n separates points.

Part (a) follows by the Stone-Weierstrass Theorem.

Since Aprod
0 = Asym

0 we may now consider n ≥ 1 in part (b). If G ∈ Asym
n and we define

F (t, x1, . . . , xn−1, µ) =
∫ 1

0

∫
G(t, x1, . . . , xn, θµ)µ(dxn)dθ

it is easy to verify that F ∈ Asym
n−1. Moreover DxnF (t, x1, . . . , xn−1, µ) = G(t, x1, . . . , xn, µ),

which follows either by direct calculation or from Lemma 4 (b). Using this and induction we
see that Asym

n is a subset of Hn,n. In the rest of this proof we shall show that Hn,n+1 ⊆ Asym
n .

In Corollary 12 we show that Hn,n ⊆ Hn,n+1 which will therefore complete the proof.
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Fix Dx1...xnF (t, µ) ∈ Hn,n+1. Then Dx1...xnxn+1F (t, µ) ∈ Hn+1,n+1 and so, by part (a) of
this lemma, for any ε > 0 and K ≥ 0 we can find G1 ∈ Aprod

n+1 with

||G1(t, x1, . . . , xn+1, µ)−Dx1...xn+1F (t, µ)||[0,T ]×En+1×M(K) ≤ ε. (20)

Since Dx1...xn+1F (t, µ) is symmetric in the variables x1, . . . , xn+1 we may symmetrize G1 in these
variables without changing the bound (20) and still have G1 ∈ Aprod

n+1 . In the same way we may
find G0 ∈ Aprod

n that lies within ε of Dx1...xnF (t, 0) and is symmetric in x1, . . . , xn. Now define

F ε(t, x1, . . . , xn, µ) = G0(t, x1, . . . , xn, µ) +
∫ 1

0

∫
E
G1(t, x1, . . . , xn, xn+1, θµ)µ(dxn+1)dθ. (21)

If we compare this with the reconstruction formula (13) forDx1...xnF (t, µ) in terms ofDx1...xn+1F ,
we see that

||F ε(t, x1, . . . , xn, µ)−Dx1...xnF (t, µ)||[0,T ]×En×M(K) ≤ (1 +K)ε.

It remains only to show that F ε ∈ Asym
n . Since Dx1...xnF (t, 0) does not depend on µ we may

choose G0 independent of µ (indeed we may replace G0(t, x1, . . . , xn, µ) by G0(t, x1, . . . , xn, 0)).
This, and the symmetry in x1, . . . , xn imply that G0 is actually a member of Asym

n . The function
G1 may, since it was chosen from Aprod

n+1 , be written as a linear combination of terms of the form∫
Ek

ψ(t)φk(x1, . . . , xn, xn+1, z1, . . . , zk)µk(dz), with ψ ∈ C1
0 ([0, T ]) and φk ∈ C(En+k+1).

By our earlier remark, we may assume that φk is symmetric in the variables x1, . . . xn+1. This
term enters into the formula (21) for F ε as

θk+1

k + 1

∫
E

∫
Ek

φk(x1, . . . , xn, xn+1, z1, . . . , zk)µk(dz)µ(dxn+1). (22)

The integral in (22) is with respect to the product measure µk+1 so we may symmetrize φk in
its last k + 1 arguments. Since φk is also symmetric in its first n+ 1 arguments, and Sn+k+1 is
generated by the collection consisting of permutations of {1, . . . , n+1} and of {n+1, . . . , n+k+1},
φk may be replaced by φsym

k and hence F ε ∈ Asym
n .

The above lemma shows we can approximate DxyF by elements of Asym
2 . We now turn to

the approximation of DsF and
∫
E A

(x)DxFµ(dx). To do this we introduce some more notation.

Notation For each n ≥ 0, define the (stopped) semigroup (V n
t ) on C([0, T ]× En ×M(K)) by

V n
s F (t, x1, . . . , xn, µ) =

{
P

(x1)
s . . . P

(xn)
s F (t+ s, x1, . . . , xn, P

∗
s µ) if s+ t ≤ T ,

P
(x1)
T−t . . . P

(xn)
T−t F (T, x1, . . . , xn, P

∗
T−tµ) if s+ t ≥ T .

Here {P ∗t } is the dual semigroup to {Pt}, acting on M. Let Ds +Qn be the generator of (V n
s )

acting on C([0, T ]× En ×M(K)).

The operator V n
s acts independently on the variables t, x1, . . . , xn, µ and this makes the

semigroup property clear. The domain of its generator is described in the following lemma.

12



Lemma 7. Fix K > 0.

a) Suppose for some F ∈ C([0, T ]×En×M(K)) that DsF , A(xi)F , DzF and A(z)DzF exist
and are continuous in all variables. Then F is in the domain of Ds +Qn and

(Ds +Qn)F (t, x1, . . . , xn, µ) (23)

= DsF (t, x1, . . . , xn, µ) +
n∑

i=1

A(xi)F (t, x1, . . . , xn, µ) +
∫

E
A(z)DzF (t, x1, . . . , xn, µ)µ(dz)

b) Suppose F ∈ Cn([0, T ] ×M(K)) and that Dx1...xnF satisfies the hypotheses of part (a).
Then

Dx1...xn

(
(Ds +Q0)F (t, µ)

)
= (Ds +Qn)Dx1...xnF (t, µ).

The proofs of both of parts of this lemma are fairly routine. We only sketch some steps
and leave the details to the reader. For part (a) one can use the fact that the semigroup (V n

t )
is made up of separate semigroups acting in each variable. The expression (23) is simply the
sum of the generators for the individual semigroups. In particular the derivative of the heat flow
µ→ P ∗t µ is given, for suitable G, by

d

dt
G(P ∗t µ) =

∫
E
A(z)DzG(P ∗t µ)µ(dz).

Part (b) follows once one has shown that

Dxk

(
(Ds +Qk−1)Dx1...xk−1

F (t, µ)
)

= (Ds +Qk)Dx1...xk
F (t, µ)

for k = 1, . . . , n. To show this, one applies directly the definition of the directional derivative
Dxk

. The key point is the fact that, for i ∈ {1, . . . , k − 1},

Dxk

(
A(xi)Dx1...xk−1

F (t, µ)
)

= lim
ε↓0

A(xi)Dx1...xk−1
F (t, µ+ εδxk

)−A(xi)Dx1...xk−1
F (t, µ)

ε

= lim
ε↓0

lim
u↓0

P
(xi)
u − I

u

Dx1...xk−1
F (t, µ+ εδxk

)−Dx1...xk−1
F (t, µ)

ε

= lim
ε↓0

lim
u↓0

1
u

∫ 1

0

∫ u

0
P (xi)

s A(xi)Dx1...xk
F (t, µ+ εθδxk

)dsdθ (using (13))

= A(xi)Dx1...xk
F (t, µ).

The fact that (x1, . . . , xk, θ, s) → P
(xi)
s A(xi)Dx1...xk

F (t, µ + εθδxk
) is uniformly continuous in

all variables means that the limits t ↓ 0 and ε ↓ 0 can be taken in either order and that the
convergence is uniform in the other variables (x1, . . . , xk−1).

We now briefly explain our strategy in the rest of the proof. Note that (Ds + Q0)F gives
precisely the terms DsF and

∫
E A

(x)DxFµ(dx) which we need to approximate in the drift (7)
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of F (Xt) in Theorem 3. To approximate F , (Ds +Q0)F and DxyF simultaneously however we
shall approximate DxyF and (Ds +Q2)DxyF simultaneously and integrate up twice to show we
have approximated F and (Ds +Q0)F as well. The following lemma is the key to implementing
this idea.

Lemma 8. For each n ≥ 0

a) Hn,n is a closed linear subspace of C([0, T ]× En ×M(K)),

b) V n
t : Hn,n → Hn,n for all t ≥ 0,

c) Asym
n is a core for the generator Ds +Qn of the semigroup (V n

t ) acting on Hn,n.

Proof. The standard proof of part (a) uses induction on n. The result is trivial for n = 0 since
H0,0 = C([0, T ]×M(K)). Take a sequence Fm ∈ Hn,n converging to F ∈ C([0, T ]×En×M(K)).
We may suppose that Fm(t, x1, . . . , xn, µ) = Dx1...xnGm(t, µ). Define

Hm(t, x1, . . . , xn−1, µ) =
∫ 1

0

∫
Fm(t, x1, . . . , xn−1, xn, θµ)µ(dxn)dθ. (24)

By Lemma 4 (a) we know that Hm differs from Dx1...xn−1Gm by a function independent of µ,
namely Dx1...xn−1Gm(t, 0). For any symmetric continuous F : En → R, by differentiating from
the definition, we have

F (x1, . . . , xn) =
1
n!
Dx1...xn

(∫
En

F (y1, . . . , yn)µn(dy)
)
.

Applying this to Dx1...xn−1Gm(t, 0) we see that Dx1...xn−1Gm(t, 0) ∈ Hn−1,n−1. Thus Hm ∈
Hn−1,n−1 also. Using the uniform convergence of Fm to F , (24) implies that Hm converge
uniformly to continuous H. Also by Lemma 4 part (a) we have

Hm(t, x1, . . . , xn−1, µ+ εδx)−Hm(t, x1, . . . , xn−1, µ) =
∫ ε

0
Fm(t, x1, . . . , xn, µ+ ηδx)dη.

Taking the limit m→∞ we obtain the same identity with Hm, Fm replaced by H,F . But this
identity implies that DzH = F . By the inductive hypothesis H ∈ Hn−1,n−1 and this implies the
conclusion of part (a).

For part (b) we suppose G(t, x1, . . . , xn, µ) = Dx1...xnG(t, µ) for some G ∈ Cn([0, T ] ×
M(K)). Then, when t + s ≤ T , by direct differentiation one can check that (t, µ) → G(t +
s, P ∗s µ) ∈ Cn([0, T ] × M(K)) and that Dx1...xnG(t + s, P ∗s µ) = V n

s F (t, x1, . . . , xn, µ). This
proves part (b) when t+ s ≤ T . The proof when t+ s ≥ T is entirely similar.

Since Asym
n is a dense subspace of Hn,n, we can apply again Watanabe’s lemma (given in

Ethier and Kurtz [7] Proposition 1.3.3). This shows it is sufficient, to prove part (c), to establish,
for each s, that V n

s : Asym
n → Asym

n . Applying V n
s to a typical term in the sum which constitutes

14



an element of Asym
n , we have, for some ψ ∈ C1

0 ([0, T ]) and φ ∈ Dsym
0 (Ek+n),

V n
s

(
ψ(t)

∫
Ek

φ(x1, . . . , xn, z1, . . . , zk)µk(dz)
)

=

{
ψ(t+ s)

∫
Ek P

(x1)
s . . . P

(xn)
s φ(x1, . . . , xn, z1, . . . zk)(P ∗s µ)k(dz) if t+ s ≤ T ,

ψ(T )
∫
Ek P

(x1)
T−t . . . P

(xn)
T−t φ(x1, . . . , xn, z1, . . . zk)(P ∗T−tµ)k(dz) if t+ s ≥ T ,

=

{
ψ(t+ s)

∫
Ek P

(x1)
s . . . P

(xn)
s P

(z1)
s . . . P

(zk)
s φ(x1, . . . , xn, z1, . . . zk)µk(dz) if t+ s ≤ T ,

ψ(T )
∫
Ek P

(x1)
T−t . . . P

(xn)
T−t P

(z1)
T−t . . . P

(zk)
T−tφ(x1, . . . , xn, z1, . . . zk)µk(dz) if t+ s ≥ T .

The definition of C1
0 ([0, T ]) implies that for ψ ∈ C1

0 ([0, T ]) the function t→ ψ(t+ s ∧ T ) is still
an element of C1

0 ([0, T ]). Recalling the form of φ ∈ Dsym
0 (Ek+n), and that Pt : D0 → D0, the

result follows.

Lemma 9. For any F satisfying the conditions of Theorem 3, and any ε > 0 and K > 0, there
exists F ε ∈ Asym

0 such that

||F − F ε||[0,T ]×M(K) ≤ ε,

||DxyF −DxyF
ε||[0,T ]×E2×M(K) ≤ ε,

||(Ds +Q0)F − (Ds +Q0)F ε||[0,T ]×M(K) ≤ ε.

Proof. Throughout this proof K is fixed and the norm ‖ · ‖, without a subscript, is the
supremum norm of C([0, T ]× Em ×M(K)), for a relevant value of m.

Fix F : [0, T ] ×M → R as in the statement of Theorem 3. By Lemma 7 the hypotheses
on F imply that DxyF (t, µ) is in the domain of the generator Ds +Q2, that DxF (t, 0) is in the
domain of Ds +Q1 and that F (t, 0) is in the domain of Ds +Q0. Hence, given ε > 0, we may,
by Lemma 8, pick Gε

2 ∈ A
sym
2 , Gε

1 ∈ A
sym
1 , and Gε

0 ∈ A
sym
0 so that

||Gε
2 −DxyF ||+ ||(Ds +Q2)(Gε

2 −DxyF )|| ≤ ε,

||Gε
1 −DxF ||+ ||(Ds +Q1)(Gε

1 −DxF )|| ≤ ε,

||Gε
0 − F ||+ ||(Ds +Q0)(Gε

0 − F )|| ≤ ε. (25)

Since F (t, 0) and DxF (t, 0) are independent of µ we may also pick Gε
1 and Gε

0 independent of
µ. Now we define

F ε(t, µ) = Gε
0(t) +

∫
E
Gε

1(t, x)µ(dx) +
∫ 1

0

∫ 1

0

∫
E

∫
E
Gε

2(t, x, y, θθ
′µ)dθdθ′µ(dx)µ(dy)dθdθ′. (26)

Note that F ε is an element ofAsym
0 and, using Lemma 4 part (b), thatDxyF

ε(t, µ) = Gε
2(t, x, y, µ)

and DxF
ε(t, 0) = Gε

1(t, x). The bound ‖DxyF
ε − DxyF‖ ≤ ε follows immediately from (25).

Comparing (26) and the reconstruction formula (17) for F , and using the estimates from (25),
we see that ‖F ε − F‖ ≤ ε(1 +K +K2).

Lemma 7 also shows that (Ds +Q0)F is twice differentiable and identifies the derivatives.
Applying the reconstruction (18) we get

(Ds +Q0)F (t, µ) = DsF (t, 0) +
∫

E
(Ds +Q1)DxF (t, 0)µ(dx)

+
∫ 1

0

∫ 1

0

∫
E

∫
E
(Ds +Q2)DxyF (t, θθ′µ)dθdθ′µ(dx)µ(dy). (27)
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Applying this formula with the choice F = F ε gives

(Ds +Q0)F ε(t, µ) = DsG
ε
0(t) +

∫
E
(Ds +Q1)Gε

1(t, x)µ(dx)

+
∫ 1

0

∫ 1

0

∫
E

∫
E
(Ds +Q2)Gε

2(t, x, y, θθ
′µ)dθdθ′µ(dx)µ(dy). (28)

Comparing (27) and (28) and using the estimates in (25) shows that

‖(Ds +Q0)F ε − (Ds +Q0)F‖ ≤ ε(1 +K +K2)

which completes the proof.

Proof of Theorem 3 We make the following reductive assumption: there exists K > 0 so that,
with probability one,

(Xt, 1) ≤ K and |σt| ≤ K for all t ∈ [0, T ]. (29)

We claim that if we can prove Theorem 3 when this assumption holds then we can prove the
general case. To see this suppose that {Xt} is as in the statement of Theorem 3. Using the local
boundedness of σ, choose stopping times T 1

K so that σK
t := σtI(t < TK) is bounded by K and

T 1
K ↑ ∞ as K →∞. Set T 2

K = inf{t : (Xt, 1) ≥ K} and TK = T 1
K∧T 2

K . Let ΩK = {(X0, 1) ≤ K}
and define

XK
t =


0 on Ωc

K ,
Xt on ΩK ∩ {t < TK},
P ∗t−TK

XTK
on ΩK ∩ {t ≥ TK}.

(30)

It is straightforward to show that (XK
t ) is a solution on (Ω,Ft, P ) to the martingale problem

M(σK , A). Moreover d(XK
t , 1) = 0 for t > TK so the total mass process never exceeds K. So

(XK
t ) and (σK

t ) satisfy the assumption (29) and so MK
t := F (t,XK

t ) −
∫ t
0 L

σK
F (s,XK

s )ds is a
local martingale on [0, T ]. But on the set ΩK

F (t ∧ TK , Xt∧TK
)−

∫ t∧TK

0
LσF (s,Xs)ds = MK

t∧TK
.

Since ΩK is F0 measurable the process F (t ∧ TK , Xt∧Tk
) −

∫ t∧TK

0 LσF (s,Xs)ds is also a local
martingale on [0, T ]. Since TK ↑ ∞ this completes the reduction of Theorem 3 to the case where
assumption (29) holds.

We now fix a constant K where (29) holds. For F as in the hypotheses of Theorem 3 we
pick F ε as in Lemma 9. The function Fε is an element of Asym

0 so we may apply Ito’s formula
to Fε(t,Xt) as in (12) to see that Fε(t,Xt) −

∫ t
0 L

σFε(s,Xs)ds is a local martingale. Since, by
assumption (29), both σ and the total mass (Xt, 1) are bounded by K, the functions F and
LσF are evaluated only on the compact set and hence are bounded. So the process is a true
martingale and for any bounded Fs measurable variable Zs we have

E

(
Zs

(
Fε(t,Xt)− Fε(s,Xs)−

∫ t

s
LσFε(r,Xr)dr

))
= 0 for s ≤ t ≤ T . (31)

Now let ε→ 0 in this expectation. Using the various uniform convergence estimates in Lemma
9 and the fact that (Xt, 1) ≤ K we obtain the same equation (31) with Fε replaced by F . Hence
F (t,Xt)−

∫ t
0 L

σF (s,Xs) is an (Ft) martingale on [0, T ], completing the proof of Theorem 3.
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3 Smoothing properties of the Dawson-Watanabe semigroup

It is not always obvious how to smooth functions on infinite dimensional spaces. The proper-
ties we develop in this section suggest that smoothing using the Dawson-Watanabe transition
semigroup (U c

t ) is a useful method. The key to our proof of the smoothness of U c
t Φ(µ) is the

branching structure underlying Dawson-Watanabe processes. The branching rate c > 0 will be
fixed throughout this section. We start by collecting the three facts we shall use.

Fact 1. Define Qt
µ to be the law of a Dawson-Watanabe process at time t, with initial

condition µ and constant branching c, so that U c
t Φ(µ) = Qt

µ(Φ). The branching property of the
Dawson-Watanabe process can be expressed as

Qt
µ+λ(Φ) = Qt

µ ∗Qt
λ(Φ) :=

∫ ∫
Φ(ν1 + ν2)Qt

µ(dν1)Qt
λ(dν2). (32)

This is thought of intuitively as the fact that disjoint sets of particles evolve independently.

Fact 2. Qt
µ is the law of a Cox cluster random measure (see [4] sections 3 and 4). Intuitively

the measure is thought of as a Poisson number of clusters, rooted at points chosen according to
µ, where each cluster represents the surviving ancestors of one individual at time zero. This can
be expressed as follows: for each t > 0 and x ∈ E, there is a probability kernel (Rt

x(A) : A ⊆M),
satisfying Rt

x({0}) = 0, so that Qt
µ is the law of

∫
M ν ηµ

t (dν), where ηµ
t is a Poisson random

measure on M with finite intensity (2/ct)
∫
E µ(dx)Rt

x(dν). The kernel Rt
x(A) is characterized

by its Laplace functional given, for continuous φ : E → [0,∞), by∫
M

exp(−(ν, φ))Rt
x(dν) = 1− ct

2
ut(x) (33)

where (us(x) : 0 ≤ s ≤ t, x ∈ E) is the unique non-negative solution to the differential equation

∂tu = Au− cu2

2
, u0(x) = φ(x). (34)

In the case that µ = εδx we can write the measure
∫
ν ηµ

t (dν) as a finite sum of a Poisson
number N , mean 2ε/ct, of I.I.D. random measures {Zi

t}, independent of N , as follows∫
M
ν ηεδx

t (dν) =
N∑

i=1

Zi
t (35)

where each Zi
t has the law P (Zi

t ∈ A) = Rt
x(A). The sum is zero if N = 0. The Laplace

functional of Rt
x can be used to show that (2/ct)Zi

t converge in law, as t ↓ 0, to a point mass at
x, with a weight given by an exponential variable with mean 1.

Fact 3. The total mass (ν, 1) under the law Rt
x(dν) has an exponential distribution with

mean ct/2, as can be checked from (33). We can form a further disintegration by conditioning
on this total mass to obtain, for each m > 0, t > s > 0, x ∈ E a probability kernel (Rs,t

x,m(A) :
A ⊆M) so that

Rt
x(Φ) =

∫ ∞

0
dmet(m)R0,t

x,m(Φ) where et(m) = 2
cte

−2m/ct. (36)
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The kernels Rs,t
x,m can be defined via the following probabilistic description, due to Dawson and

Perkins (see Dawson [4] Theorem 12.4.6), which they call the ‘splitting atom process’. A particle
of mass m starts at x at time s and moves according to the underlying motion process. At the
inhomogeneous rate 2mtc−1(t − r)−2dr, for r ∈ [s, t), the particle splits. At the splitting time
two particles are formed with masses um and (1 − u)m where u is chosen independently and
uniformly over [0, 1]. After the splitting the two particles continue independently using the same
rules as the parent particle. This measure valued process converges to a limit at time t and the
law of this limiting random measure is Rs,t

x,m(dν). Note that the inhomogeneous rate has infinite
intensity on [s, t) ensuring that a split (and then infinitely many splits) occur. Write pt(x, dy)
for a measurable probability kernel that generates the operators {Pt}. By conditioning on the
time of the first split we have that

Rs,t
x,m(Φ) =

∫ t

s
dr πm,s,t(r)

∫
E
pr−s(x, dy)

∫ 1

0
duRr,t

y,um ∗Rr,t
y,(1−u)m(Φ), (37)

where

πm,s,t(r) =
2mt

c(t− r)2
exp

(
−
∫ r

s

2mt
c(t− q)2

dq

)
=

2mt
c(t− r)2

exp
(
− 2mt(r − s)
c(t− r)(t− s)

)
.

This representation implies a certain smoothness of the law Rt
x(dν) in x and will lead, for suitable

underlying motion, to the regularity of the derivatives DxU
c
t Φ in x.

One immediate consequence of the last fact is the following lemma.

Lemma 10. If {Pt} is a strong Feller semigroup then, for bounded measurable Φ : M → R,
the map (t, µ) → U c

t Φ(µ) is continuous on (0,∞) ×M. In particular {U c
t } is a strong Feller

semigroup.

Proof Fix a bounded measurable Φ. By subtracting a constant we may assume that that
Φ(0) = 0. The representation of Qt

µ as the law of a Poisson random measure allows us to
calculate U c

t Φ(µ) = Qt
µ(Φ) in terms of the intensity of the Poisson random measure as

U c
t Φ(µ) =

2
ct

∫
E
µ(dx)Rt

x(Φ)

=
∫

E
µ(dx)

∫ t

0
dr

∫
E
pr(x, dy)HΦ(r, t, y) (38)

where, using the decompositions (36) and (37), HΦ(r, t, y) is defined by

HΦ(r, t, y) =
2
ct

∫ ∞

0
dmet(m)πm,0,t(r)

∫ 1

0
duRr,t

y,um ∗Rr,t
y,(1−u)m(Φ).

We can bound |HΦ(r, t, y)| by

2
ct

∫ ∞

0
dmet(m)πm,0,t(r)‖Φ‖M =

2t
c(rt+ t− r)2

‖Φ‖M

≤ 2
c

max{t−1, t−3}‖Φ‖M.
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The strong Feller property of {Pt} imply that the map x →
∫ t
0 dr

∫
E pr(x, dy)HΦ(r, t, y) is

bounded and continuous. This and (38) shows that U c
t Φ(µ) is continuous in µ. In particular

the semigroup {U c
t } is strong Feller. For the joint continuity in (t, µ) we fix s < t and write

U c
t Φ(µ) = U c

t−sΨ(µ) where Ψ = U c
sΦ is bounded and continuous. The joint continuity is now a

consequence of the Feller property of {U c
t }.

The next result shows that smoothing with the Dawson-Watanabe semigroup yields deriv-
atives of all orders.

Lemma 11. Fix Φ : M→ [0,∞) and x1, . . . xn ∈ E.

a) Suppose, for some t > 0, that U c
t Φ(µ) < ∞ for all µ ∈ M. Then the derivatives

Dx1...xnU
c
t Φ(µ) exist and are given by the following expression:

Dx1...xnU
c
t Φ(µ) =

(
2
ct

)n ∑
A⊆{1,...,n}

(−1)n−|A|E

(
Φ

(
Yt,µ +

∑
i∈A

Zi
t

))
,

where Yt,µ has the law Qt
µ of a Dawson-Watanabe process at time t started at µ, (Zi

t :
i = 1, 2, . . .) is an independent sequence of independent random measures and Zi

t has the
cluster law Rt,xi. The sum above is over all subsets A of {1, . . . , n} and |A| denotes the
cardinality of A.

b) If U c
t Φ(µ) is continuous for t ∈ (0, T ], µ ∈ M then the derivatives Dx1...xnU

c
t Φ(µ) are

continuous for xi ∈ E, µ ∈M, t ∈ (0, T ].

c) If Φ is continuous and satisfies the growth condition (6) then U c
t Φ(µ) is continuous over

t ∈ [0, T ], µ ∈M.

Proof Consider the case n = 1. Fix x ∈ E and let (Zi
t,x : i = 1, 2, . . .) be an I.I.D. sequence

of random measures with the cluster law Rt,x. Let N be a Poisson variable, with mean 2ε/ct,
independent of Yt,µ and of (Zi

t,x : i = 1, 2, . . .). Using the branching property (32) and the
representation (35) we have

DxU
c
t Φ(µ) = lim

ε→0

1
ε
E

(
Φ

(
Yt,µ +

N∑
i=1

Zi
t,x

)
− Φ (Yt,µ)

)

= lim
ε→0

1
ε

∞∑
k=1

e−2ε/ct(2ε/ct)k

k!
E

(
Φ

(
Yt,µ +

k∑
i=1

Zi
t,x

)
− Φ (Yt,µ)

)

=
(

2
ct

)
E
(
Φ
(
Yt,µ + Z1

t,x

)
− Φ (Yt,µ)

)
.

To justify the interchange of the limit and the sum over k, we use the dominated convergence
theorem with the domination, over ε ∈ (0, 1],

∞∑
k=0

(2/ct)k

k!
E

(
Φ

(
Yt,µ +

k∑
i=1

Zi
t,x

)
+ Φ (Yt,µ)

)
= e2c/t(U c

t Φ(µ+ δx) + U c
t Φ(µ)) (39)
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which is finite by assumption. The existence of the n-th order derivative follows by a very similar
argument, using induction on n, and using the finiteness of U c

t Φ(µ + nδx) for the dominated
convergence step.

The map x → δx ∈ M is continuous. So under the continuity assumption of part (b) the
map U c

t Φ(µ + εδx) is continuous in x ∈ E,µ ∈ M, t ∈ (0, T ]. The definition of the derivative
shows that DxU

c
t Φ(µ) is the limit of functions that are continuous in x, µ, t. The domination

above can be used to show the limit is uniform over t ∈ (t0, T ] for any t0 > 0. Again the
argument for the higher derivatives is similar.

If Φ is continuous then the Feller property of (U c
t ) implies that U c

t (Φ ∧ n)(µ) is continuous
for t ∈ [0, T ], µ ∈M. Under the growth condition we have for some p > 1, using Lemma 2, that

sup
µ∈M(K)

sup
t∈[0,T ]

U c
t (Φp)(µ) ≤ 4 exp(2K/cT ) <∞.

Using this one can show U c
t Φ(µ) is the limit of U c

t (Φ∧n)(µ) as n→∞, uniformly over t ∈ [0, T ],
µ ∈M(K).

We now finish one unproved step from section 2.

Corollary 12. Using the notation introduced before Lemma 6 in section 2,

Hn,n+1 is dense in Hn,n.

Proof. Fix K > 0, F ∈ Hn,n and G ∈ Cn([0, T ]×M(K)) with F = Dx1...xnG. Extend G to a
function G̃ defined on [0, T ]×M, that is continuous and bounded. Now set, for ε, δ > 0,

Gε,δ(t, µ) = U c
ε G̃(t, (1 + δ)−1µ), and Fε,δ = Dx1...xnGε,δ.

By Lemma 11 we have Gε,δ ∈ Cn+1([0, T ]×M) and hence Fε,δ ∈ Hn,n+1. We shall show that

lim
δ↓0

lim
ε↓0

‖Fε,δ − F‖[0,T ]×En×M(K) = 0 (40)

which will complete the proof. Using the representation for the derivatives of Fε,δ from Lemma
11 we obtain

Fε,δ(t, x1, . . . , xn, µ)

=
(

2
cε

)n ∑
A⊆{1,...,n}

(−1)n−|A|E

(
G̃(t, (1 + δ)−1(Yε,µ +

∑
i∈A

Zi
ε))

)

=
(

2
cε

)n ∑
A⊆{1,...,n}

(−1)n−|A|E

(
G(t, (1 + δ)−1(Yε,µ +

∑
i∈A

Zi
ε))

I((Yε,µ, 1) +
n∑

i=1

(Zi
ε, 1) ≤ K(1 + δ))

)
+ Error(t, x1, . . . , xn, µ), (41)

where

|Error(t, x1, . . . , xn, µ)| ≤
(

2
cε

)n

2n‖G̃‖[0,T ]×MP ((Yε,µ, 1) +
n∑

i=1

(Zi
ε, 1) > K(1 + δ)).
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The process (Yt,µ, 1) follows a Feller diffusion. There are positive exponential moments given by

E (exp(λYt,µ(1))) = exp(2λµ(1)/(2− cλt)) when λ < 2/ct.

A Chebychev argument using these moments shows that P ((Yε,µ, 1) > (µ, 1)+η) is exponentially
small in ε−1. Using the the Laplace transform of the independent masses (Zi

ε, 1) given by (33)
and corresponding exponential moments, a Chebychev argument shows a similar bound for
P ((Zi

ε, 1) > η). Together these show that the probability in the error term, for fixed δ > 0, is
exponentially small in ε−1, uniformly over (µ, 1) ≤ K. We omit the details.

So we may concentrate on the first term on the right hand side of (41). Note that the terms
in the summation evaluate G at the vertices of a n-dimensional parallelopiped. The alternating
sign allows us to combine the terms in terms of the derivatives of G using Lemma 4 part (a) n
times, yielding(

2
cε

)n ∫ 1

0
dθ1 . . .

∫ 1

0
dθn

∫
En

E

(
Dz1...znG(t, (1 + δ)−1(Yε,µ +

n∑
i=1

θiZ
i
ε))

Z1
ε (dz1) . . . Zn

ε (dzn)I((Yε,µ, 1) +
n∑

i=1

(Zi
ε, 1) ≤ K(1 + δ)))

)
.

Now we use convergence of the measures Yε,µ → µ and (2/cε)Zi
ε → Eiδxi in law, where Ei are

I.I.D. exponential variables with mean 1. We may, changing the probability space if necessary
via Skorokhod’s lemma, assume the convergence is almost sure. Then applying the dominated
convergence theorem to (42) we may pass to the limit, as ε ↓ 0, to obtain Dx1...xnG(t, (1+δ)−1µ).
Moreover it is not too hard to show that this convergence is uniform on (µ, 1) ≤ K. Finally,
using the continuity of Dx1...xnG, we let δ ↓ 0 to complete the proof of (40).

The example where the underlying motion is uniform motion on a torus shows that the
map x → DxU

c
t Φ need not be in the domain D(A) and further smoothing is required to apply

Theorem 3. We failed to find a smoothing of Φ that would work and thus we are led to making
the smoothing assumption (5) on the underlying motion process.

Lemma 13. Suppose the motion semigroup {Pt} satisfies the smoothing property (5). Suppose
also that Φ is continuous and satisfies the growth condition (6). Then for some T ′ > T , the
maps A(x1)Dx1...xnU

c
t Φ(µ) exist and are continuous in xi ∈ E, µ ∈M, and A(x1)Dx1...xnU

c
t Φ(µ)

is locally bounded in t ∈ (0, T ′], uniformly over xi ∈ E,µ ∈M(m) for any m.

Proof In this proof C(t, α, ...) will denote a quantity whose value may change from line to line,
but which is locally bounded as a function of t. We first claim, for continuous Φ and t > 0, that

|Rs,t
y,m(Φ)−R0,t

y,m(Φ)| ≤ C(t, c, α)(1 +m)s1/(1+β)‖Φ‖M(m) for s ≤ t/2. (42)

Indeed, we may use the decomposition (37) to write the difference R0,t
y,m(Φ)−Rs,t

y,m(Φ) as∫ s

0
dr πm,0,t(r)

∫
E
pr(x, dy)

∫ 1

0
duRr,t

y,um ∗Rr,t
y,(1−u)m(Φ)

+
∫ t

s
dr(πm,0,t(r)− πm,s,t(r))

∫
E
pr(x, dy)

∫ 1

0
duRr,t

y,um ∗Rr,t
y,(1−u)m(Φ)

+
∫ t

s
dr πm,s,t(r)

∫
E
(pr(x, dy)− pr−s(x, dy))

∫ 1

0
duRr,t

y,um ∗Rr,t
y,(1−u)m(Φ). (43)
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Apply the inequality πm,0,t(r) ≤ 2mtc−1(t − r)−2 ≤ 32mt−1c−1 when r ≤ 3t/4 to bound the
first term of (43) by C(c)mst−1‖Φ‖M(m). Using the estimate

|πm,0,t(r)− πm,s,t(r)| ≤ πm,s,t(r)2msc−1(t− s)−1

we can bound the second term of (43) by the same quantity. From the smoothing hypothesis
(5) on {Pt} we have

‖Prφ− Pr−sφ‖E =
∥∥∥∥∫ r

r−s
APqφdq

∥∥∥∥
E

≤ αs(r − s)−β‖φ‖E .

Using this we can bound the third term of (43), when s1/(1+β) ≤ t/4, by

‖Φ‖M(m)

∫ t

s
πm,s,t(r) min

{
αs(r − s)−β , 2

}
dr

≤ ‖Φ‖M(m)

(
2
∫ s+s1/(1+β)

s
πm,s,t(r)dr + αs1/(1+β)

∫ t

s+s1/(1+β)

πm,s,t(r)dr

)

≤ ‖Φ‖M(m)

(
2
∫ (s+s1/(1+β))

s

2mt
c(t− r)2

dr + αs1/(1+β)

∫ t

s
πm,s,t(r)dr

)
≤ C(t, c, α)(1 +m)s1/(1+β)‖Φ‖M(m).

When s1/(1+β) ≥ t/4 we use the simple bound 2‖Φ‖M(m) ≤ C(t)s‖Φ‖M(m). Combining the
bounds on the terms in (43) establishes the claim (42).

Our second claim is that the map x→ R0,t
x,m(Φ) is in D(A) and

|AR0,t
x,m(Φ)| ≤ C(t, c, α)(1 +m)‖Φ‖M(m) for all x ∈ E (44)

To show this we use (37) to write

R0,t
x,m(Φ) =

∫ t

0
πm,0,t(r)PrHr(x)dr

=
∫ t

0
πm,0,t(r)PrH0(x)dr +

∫ t

0
πm,0,t(r)Pr(Hr −H0)(x)dr (45)

where Hr(y) =
∫ 1
0 duR

r,t
y,um ∗ Rr,t

y,(1−u)m(Φ). A standard argument shows that the first term on
the right hand side of (45) is in the domain D(A) and

A(
∫ t

0
πm,0,t(s)PsH0ds) = −πm,0,t(0)H0 −

∫ t

0
∂rπm,0,t(r)PrH0dr

= πm,0,t(0)(PtH0 −H0) +
∫ t

0
∂rπm,0,t(r)(Pt − Pr)H0dr.

(The unusual rearrangement here is to avoid a term of the form
∫ t
0 |∂rπm,0,t(r)|dr = O(m−1).)

We now estimate the size of these two terms. Using ‖Hs‖ ≤ ‖Φ‖M(m) we can bound the first
term by 4mt−1c−1‖Φ‖M(m). Using (5) we have ‖(Pt − Pr)H0‖E ≤ C(t − r)αr−β‖Φ‖M(m).
Combining this with the trivial bound ‖(Pt − Pr)H0‖E ≤ 2‖Φ‖M(m) leads to

‖(Pt − Pr)H0‖E ≤ C(t, α)(t− r)‖Φ‖M(m) for all 0 < r ≤ t.
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So ∥∥∥∥∫ t

0
∂rπm,0,t(r)(Pt − Pr)H0dr

∥∥∥∥
E

≤ C(t, c, α)‖Φ‖M(m)

∫ t

0
|∂rπm,0,t(r)|(t− r)dr

and an explicit computation shows this is bounded by C(t, c, α)(1+m)‖Φ‖M(m). For the second
term on the right hand side of (45) we claim that

A(
∫ t

0
πm,0,t(r)Pr(Hr −H0)dr) = lim

δ→0

∫ t

0
πm,0,t(r)

Pδ − I

δ
Pr(Hr −H0)dr

=
∫ t

0
πm,0,t(r)APr(Hr −H0)dr.

To justify this we use (42) twice to bound ‖Hr −H0‖E ≤ C(t, c, α)(1 +m)r1/(1+β)‖Φ‖M(m) for
r ≤ t/2. Then, using (5), we bound∥∥∥∥Pδ − I

δ
Pr(Hr −H0)

∥∥∥∥
E

≤ ‖APr(Hr −H0)‖E ≤ C(t, c, α)(1 +m)r−βr1/(1+β)‖Φ‖M(m)

whenever r ≤ t/2. The power r−βr1/(1+β) is integrable near zero when β ∈ (0, 21/2). This leads
to the domination required to pass to the limit δ → 0 in the above and also can be used to show
that the result is bounded by C(t, c, α)(1 + m)‖Φ‖M(m). Combining the various estimates we
have completed the proof of the claim (44).

Now we prove the lemma for a first derivative DxU
c
t Φ. Take Φ satisfying the growth

conditions and let Φν(µ) = Φ(ν + µ). Lemma 11 (a) shows that

Pδ − I

δ
DxU

c
t Φ(µ) =

2
ct

Pδ − I

δ

∫ ∫
Φ(ν1 + ν2)Rt

x(dν1)Qt
µ(dν2)

=
2
ct

∫ ∫ ∞

0

(
Pδ − I

δ
R0,t

x,m(Φν)
)
et(m)dmQt

µ(dν)

→ 2
ct

∫ ∫ ∞

0
AR0,t

x,m(Φν)et(m)dmQt
µ(dν). (46)

To justify taking the limit under the integrals here we use the bound from (44) and the growth
bound on Φ to show the domination

2
ct

∫ ∫ ∞

0
‖AR0,t

x,m(Φν)‖et(m)dmQt
µ(dν)

≤ C(t, c, α)
∫ ∫ ∞

0
‖Φν‖M(m)(1 +m)et(m)dmQt

µ(dν)

≤ C(t, c, α)
∫ ∫ ∞

0
exp(λ(m+ (ν, 1)))(1 +m)et(m)dmQt

µ(dν)

≤ C(t, c, α)
∫

exp(λ(ν, 1))Qt
µ(dν)

≤ C(t, c, α) exp(2(µ, 1)/cT ).

The final inequality is valid for t ≤ T ′, for suitably chosen T ′ > T , by Lemma 2. A similar
argument shows that the higher derivatives x1 → Dx1...xnU

c
t Φ are also in the domain D(A).
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Finally we come to the regularity of the first derivatives. The argument for the higher
derivatives is very similar. Presumably the derivative ADxU

c
t Φ(µ) is continuous in t > 0, x, µ.

We prove the slightly weaker conclusion of the theorem as this is all we need in the next section.

Examining all the terms in the expression for AR0,t
x,m(Φ) given in this proof one sees, using

the assumed continuity of PrHq and APrHq when r > 0, that for fixed t > 0 and ν the map
x→ AR0,t

x,m(Φν) is continuous. Using this in (46) one finds that, for fixed t > 0 and µ the map
x → ADxU

c
t Φ(µ) is continuous. Using the growth condition on Φ and the bound (44) one can

show that the maps (
ν →

∫ ∞

0
AR0,t

x,m′(Φν)et(m′)dm′
)

x∈E

are equicontinuous on M(m). Using this in (46), the growth condition and the Feller property
of U c

t one finds that for fixed t > 0 the map µ → ADxU
c
t Φ(µ) is continuous, uniformly in x.

Finally the domination that guaranteed (46) also shows that ADxU
c
t Φ(µ) is locally bounded in

t, uniformly over x ∈ E,µ ∈M(m) for any m.

4 The martingale optimality argument and examples

Proof of Theorem 1

We fix Φ as in the statement of the theorem. We need to smooth the value function in time.
Choose a mollifier as follows: let h : (0,∞) → [0,∞) be smooth, supported in (1, 2) and satisfy∫
h(r)dr = 1. For δ > 0 set hδ(r) = δ−1h(rδ−1). Define

Fδ(t, µ) =
∫ ∞

0
hδ(s)U c

t+sΦ(µ)ds. (47)

The growth condition (6) on Φ involves the strict inequality λ < 1/cT . It therefore holds also
for some λ′ < 1/cT ′ where T ′ > T . So, for δ > 0 small enough, Lemma 11 part (c) implies that

the functions Dx1...xnUtΦ(µ) are continuous for t ≤ T + 2δ, xi ∈ E, µ ∈M. (48)

After the smoothing in time we find, using Lemma 13, that Fδ(t, µ) satisfies all the hypotheses
of Theorem 3.

To follow the argument sketched in the introduction we need the next two lemmas, which
are rigorous versions of (8) and (9).

Lemma 14. For δ > 0 sufficiently small we have

LcFδ(t, µ) = 0 for all µ ∈M and t ≤ T .

Proof. We work with δ small enough that (48) applies. Let {Yt} be a Dawson-Watanabe process
with motion semigroup {Pt}, constant branching rate c and initial condition Y0 = µ. Fix t so
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that t ≤ T + 2δ. For s ≤ t let τ s
K = inf{r : (Yr, 1) ≥ K} ∧ s for values of K > (µ, 1). Applying

the strong Markov property for this stopping time we have

U c
t Φ = E(Φ(Yt)) = E(U c

t−τs
K

Φ(Yτs
K

)).

By integrating over the t variable we obtain

Fδ(t, µ) = E(Fδ(t− τ s
K , Yτs

K
)) when t ≤ T .

Now apply Theorem 3 to the function Fδ(t − q, Yq) for q ∈ [0, τ s
K ]. The stopping time and the

continuity of Fδ and LcFδ ensure that the local martingale in this theorem is a true martingale.
Hence we obtain

0 =
1
s

(
E(Fδ(t− τ s

K , Yτs
K

)− Fδ(t, µ)
)

= E

(
1
s

∫ τs
K

0
LcFδ(t− q, Yq)dq

)
= E

(
1
s

∫ s

0
I{(Yq ,1)<K}L

cFδ(t− q, Yq)dq
)
.

Using the continuity of LcFδ and the continuous paths, we may let s ↓ 0 in this equation and
by dominated convergence obtain LcFδ(t, µ) = 0.

Lemma 15. For δ > 0 sufficiently small we have

DxxFδ(t, µ) ≥ 0 for all µ ∈M and t ≤ T .

Proof. We use Lemma 11 to represent the derivative DxxU
c
t Φ(µ). Let (Y 1

t , Y
2
t ) be independent

identically distributed random measures with law Rt
x. Let Y i

t (n) be finite approximations given
by Y i

t (n) = nY i
t (n ∨ (Y i

t , 1))−1. Then

DxxU
c
t Φ(µ)

= E
(
Φ(Xt,µ + Y 1

t + Y 2
t )− Φ(Xt,µ + Y 1

t )− Φ(Xt,µ + Y 2
t ) + Φ(Xt,µ)

)
= lim

n→∞
E
(
Φ(Xt,µ + Y 1

t (n) + Y 2
t (n))− Φ(Xt,µ + Y 1

t (n))− Φ(Xt,µ + Y 2
t (n)) + Φ(Xt,µ)

)
.

The second equality follows from the growth bound on Φ. Since (Y 1
t , Y

2
t ) are independent of Xt,µ

the convexity hypothesis (3) implies that DxxU
c
t Φ(µ) ≥ 0 and integrating over the t variable

completes the proof.

Before starting the proof of Theorem 1 we make a reduction. Suppose that {Xt} is a solution
to M(A, σ). We claim we may assume that (X0, 1) ≤ L for some L. Suppose the theorem is
proved under such a restriction. Define ΩL = {(X0, 1) ≤ L} and XL

t = XtIΩL
. Then XL is a still

a solution to M(σ,A) and has initial mass bounded by L. The conclusion of the theorem then
compares E(Φ(XL

t )) and E(U c
t Φ(XL

0 )). Splitting both expectations into two parts, one over ΩL

and one over Ωc
L, we can apply monotone convergence as L → ∞ to obtain the conclusion for

Xt. Thus we now assume (X0, 1) ≤ L

Using the local boundedness of σ, choose stopping times T 1
K so that T 1

K ↑ ∞ as K → ∞
and |σt|I(t < T 1

K) ≤ K. Set T 2
K = inf{t : (Xt, 1) ≥ K}, TK = T 1

K ∧ T 2
K . Fix t ∈ (0, T ]. We
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apply Theorem 3 to the function Fδ(t− s,Xs) for s ∈ [0, t ∧ TK ]. The definition of the stopped
processes and the continuity of Fδ and its derivatives imply that the local martingale in this
theorem is a true martingale. Hence

E (Fδ(t− (t ∧ TK), Xt∧TK
))− E (Fδ(t,X0))

= E

(∫ t∧TK

0
LσFδ(t− s,Xs))ds

)
= E

(∫ t∧TK

0
LcFδ(t− s,Xs))ds

)
+E

(∫ t∧TK

0

∫
(σs(x)− c)DxxFδ(t− s,Xs)Xs(dx)ds

)
. (49)

The second equality follows by comparing the expressions for Lσ and Lc. The first term on the
right hand side of (49) is zero by Lemma 14. Lemma 15 shows that the last term on the right
hand side of (49) is non-negative if σ ≥ c and non-positive if σ ≤ c.

Turning to the left hand side of (49) we know that Fδ(t, µ) → U c
t Φ(µ) as δ → 0, uniformly

over compacts in t, µ. Passing to this limit in (49) we obtain

E
(
U c

t−(t∧TK)Φ(Xt∧TK
)
)
≤ E (U c

t Φ(X0)) (50)

when σ ≤ c and the reverse inequality when σ ≥ c. It remains only to let K → ∞ and we
consider each of the three cases stated in the theorem. When σ ≤ c we can use Fatou’s lemma
to obtain the desired comparison. When Φ is bounded we can apply the dominated convergence
theorem. This leaves only case (c) where c ≤ σ ≤ c̄ and Φ(µ) ≤ C exp(λ(µ, 1)) for some
λ < 1/2c̄T . We split the left hand side of (50) into two parts. On the set {TK > t} we have

E
(
Φ(Xt)I{TK>t}

)
→ E (Φ(Xt)) , as K →∞.

Lemma 2 implies that U c
t Φ(µ) ≤ C exp(2λ(µ, 1)) for all t ≤ T . So on the set {TK ≤ t} we have

E
(
U c

t−TK
Φ(XTK

)I{TK≤t}
)

≤ C exp(2λK)P (TK ≤ t)

≤ C exp(2λK) exp(−K/c̄T )E

(
sup
t≤T

exp((1/c̄T )(Xs, 1))

)
≤ C exp(2λK) exp(−K/c̄T ) exp(2L/c̄T ),

using Markov’s inequality and Lemma 2 for the last two inequalities. Letting K → ∞ and
combining the two parts gives the comparison in the third and final case.

Examples

1. Extension to locally compact E. Many examples of measure valued processes are studied
when E = Rd or E = Zd. To apply the comparison in these cases one can consider them as
living on the compactification of E, as follows. Let E be a locally compact metric space and let
C0(E) be the space of continuous functions on E that converge to zero at infinity. Let {Pt} be
a strongly continuous Markov C0(E) semigroup with generator A. Suppose {Xt} is a process
taking values in the space of finite measures on E and that
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1. t→ Xt(φ) is continuous for all φ ∈ C0(E) and for the constant function φ = 1,

2. {Xt} solves equations (1) and (2), for some locally bounded σ, for all φ ∈ D(A) and for
the constant function φ = 1 (where we set A1 = 0).

Let Ē be the one point compactification of E. We can identify the space C(Ē) with the functions
on E that have a limit at infinity, each of which can be written as a constant plus a function in
C0(E). The semigroup {Pt} extends to a semigroup {P̄t} on C(Ē) by setting, for φ̄ ∈ C(Ē),

P̄tφ̄(x) =
{
Ptφ(x) if x 6= ∞, where φ := φ̄|E ,
φ̄(∞) if x = ∞, where φ̄(∞) = limx→∞ φ̄(x).

It can then be checked that {P̄t} is still strongly continuous and Markov and has generator Ā
where D(Ā) = {φ̄ : φ̄|E − φ̄(∞) is an element of D(A)} and

Āφ̄(x) =
{
Aφ(x) if x 6= ∞

0 if x = ∞

Finally we extend σ to σ̄ by setting σ̄(t,∞) = 0. If we now consider {Xt} as a process taking
values in the space of finite measures on Ē, giving no mass to the point at infinity, then t→ Xt(φ̄)
is continuous for all φ̄ ∈ C(Ē) and {Xt} is a solution to M(Ā, σ̄) and we may apply the results
of the theorem.

To apply our results to two important cases discussed in the literature, we need to check
the hypothesis on the generator A. If A is the Laplacian on Rd, we may take the good core to
consist of the algebra generated by the Schwartz space of rapidly decaying test functions and
the function 1. If A is a bounded generator on the lattice Zd, for example the generator of a
continuous time Markov chain with bounded jump rates, we may take the algebra generated by
C0(Zd) and the function 1. In both cases the smoothing hypothesis (5) holds.

2. Ergodicity. The application studied in Cox, Fleischmann and Greven [3] was to study-
ing ergodicity problems for systems of interacting SDEs indexed by the lattice Zd. Here the
interest is in translation invariant initial conditions. Therefore, to obtain analogous results, one
needs to extend our results to processes with infinite mass. Typically one expects, although
uniqueness in law would be a usual ingredient of the proof, that solutions with initial conditions
having infinite mass can be approximated by solutions with finite initial mass, and then the
comparison results will extend to the more general setting. As an example consider the case of
Dawson-Watanabe process with a Brownian motion process, which is known as super-Brownian
motion. In dimensions d = 1, 2 solutions with translation invariant initial conditions become
locally extinct, in that Xt(φ) → 0 in probability, for compactly supported φ ≥ 0. Using the
functional Φ(µ) = exp(−λµ(φ)) one can use the comparison argument to show the same holds for
interacting processes with branching rates that are bounded below. In dimensions d ≥ 3 there
are non-zero stationary measures. Using second moments Φ(µ) = (µ(φ))2 one can then use the
comparison principle to show that local extinction does not occur for interacting models with
branching rates bounded above. Together with compactness arguments this leads to the proof
of existence of non-zero invariant measures. See [3] and cited references for these techniques.
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3. Hitting sets. For super-Brownian motion on Rd there are useful bounds on the probability
of charging small balls, see Dawson, Iscoe and Perkins [5]. For example in d ≥ 3, if Y0 = µ,

P (Yt(B(x0, ε) > 0) ≤ Cεd−2

∫
(2πt)−d/2 exp(−|x0 − x|2/2t)µ(dx). (51)

These imply that if C has zero d − 2 Hausdorff measure then P (Yt(C) > 0) = 0. Let d be the
metric on the space E and fix a closed subset C. Define, for α, ε > 0,

φε(x) = 1− d(x,C) ∧ ε
ε

, Φ(µ) = exp(−α(µ, φε)).

Φ is continuous and satisfies the parallelogram rule (4). Letting ε ↓ 0 the function φε converges
to the indicator of C and then as α → ∞ the function Φ converges to the indicator of the
set {µ(C) = 0}. Applying the comparison result to Φ and taking the above limits we obtain
the following comparison: if {Xt} solves M(A, σ) and {Yt} is a Dawson-Watanabe process with
branching rate c and with the same initial condition then

P (Xt(C) > 0) ≥ P (Yt(C) > 0), for closed C,

when σ ≤ c and the reverse inequality when σ ≥ c. This confirms the intuition that the more
branching there is the greater the clustering and the lower the chance of hitting sets.

4. Regularity of solutions. It is well known (see Dawson [4]) that, for super-Brownian motion
in dimensions d ≥ 2, the closed support of Yt at time t > 0 has Hausdorff dimension 2. The
hitting estimates (51) provide a simple proof of this fact. Indeed covering Rd by a lattice of
boxes of length r the hitting estimates lead immediately to the bound E(N(r)) ≤ Cr−2 on the
first moment of the number N(r) of boxes that are charged by Yt. Using this, a Borel-Cantelli
argument gives a sequence of covers for the support of Yt showing that the 2 + ε Hausdorff
measure of the support is zero for any ε > 0. Since the hitting estimates carry over by the
comparison argument one obtains the same singularity for interacting models with branching
bounded below by a constant.

To obtain lower bounds on the dimension of the support note that the usual Frostman
energy approach uses the functional

E(Φ(Yt)) = E

(∫ ∫
|x− y|−αYt(dx)Yt(dy)

)
.

This energy is finite for super-Brownian motion started from deterministic finite initial measures
when α < 2 and t > 0. For φ ≥ 0 the functional Φ(µ) =

∫ ∫
φ(x, y)µ(dx)µ(dy) satisfies the

convexity hypothesis (4). By approximating the energy by continuous second moments of this
sort the comparison argument applies. This implies the support has dimension at least 2 for a
class of interacting models with branching bounded above by a constant.

5. Existence of densities. Super-Brownian motion process in dimension d = 1 has a con-
tinuous density. Roelly-Coppoletta [12] used spectral methods as a simple way to investigate
densities at a fixed time. Set eθ = exp(iθx), acting on E = R, and

ΦN (µ) =
∫ N

−N
|µ(eθ)|2 dθ.
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The randomized parallelogram rule (3) becomes, after some simplification,

E
(
ΦN (µ+ Z + Z̄)− ΦN (µ+ Z)− ΦN (µ+ Z̄) + ΦN (µ)

)
=

∫ N

−N
E
(
Z(eθ)Z̄(e−θ) + Z(e−θ)Z̄(eθ)

)
dθ

= 2
∫ N

−N
(E(Z(cos(θ·))))2 + (E(Z(sin(θ·))))2 dθ

≥ 0.

(Note that in this example the parallelogram rule (4) fails). So the comparison theorem is
applicable and, by letting N →∞, we obtain the comparison for the function

E

(∫
R
|Xt(eθ)|2 dθ

)
.

For initial conditions µ(dx) = f(x)dx with f ∈ L1 ∩ L2 this expectation is finite for one di-
mensional super-Brownian motion. By comparison it is finite for solutions to M(∆/2, σ) when
σ ≤ c, and Plancherel’s theorem then implies that these processes have an L2 density at any
fixed time t > 0. In Lopez [8] a class of interacting branching processes on R is shown to have
continuous densities.

6. A counterexample We searched for some time for simpler sufficient conditions on Φ
ensuring the comparison result holds. The following example, which we found surprising, stopped
us wasting time on certain false conjectures. Fix non-negative f, g ∈ C(E) and consider the
functional Φ(µ) = max{µ(f), µ(g)}. Note that Φ is nice: it has quadratic growth and, being
the maximum of two linear functions, Φ is a convex function on M. The representation for the
second derivatives in Lemma 11 and the simple fact that

max{a+ b, c+ d} −max{a, c} −max{b, d} ≤ 0, for all real a, b, c, d,

show that DxxU
c
t Φ(0) ≤ 0 for all t > 0. Moreover it is clear that except in very special

circumstances this will be a strict inequality, so that U c
t Φ is not convex in the direction of point

masses. Moreover using the continuity of DxxU
c
t Φ(µ) one expects Theorem 1 to fail, in that

for solutions Xt to the martingale problem M(A, σ) with σ ≤ c and X0 = µ, one expects the
comparison

E(Φ(Xt)) > U c
t Φ(µ), for µ with (µ, 1) sufficiently small.
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