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Abstract

We consider a pair (X,Y ) of processes satisfying the equation dX = a(X)Y dB
driven by a Brownian motion and study the monotonicity and continuity in y of the value
function v(x, y) = sup

τ
Ex,y [e

−qτg(Xτ )], where the supremum is taken over stopping
times with respect to the filtration generated by (X,Y ). Our results can successfully be
applied to pricing American options where X is the discounted price of an asset while
Y is given by a stochastic volatility model such as those proposed by Heston or Hull &
White. The main method of proof is based on time-change and coupling.

Key words: optimal stopping, time-change, coupling, stochastic volatility model, Ameri-
can option

AMS 2010 subject classifications: Primary 60G40; Secondary 91G20

1 Introduction

Consider a two-dimensional strong Markov process (X,Y ) = (Xt, Yt, t ≥ 0) with state space
R×S, S ⊆ (0,∞), given on a family of probability spaces (Ω,F , Px,y, (x, y) ∈ R×S) which
satisfies the stochastic differential equation

dX = a(X)Y dB (1)

where B = (Bt)t≥0 is a standard Brownian motion and a : R → R is a measurable function.
Processes of this type are common in mathematical finance and, in this context, X

would be the discounted price of an asset while Y is a process giving the so-called stochastic
volatility.

We shall refer to this application in the examples, as it was our motivation in the
beginning. However, the methods used are of a broader nature and can be applied in a
wider context.

This paper mainly deals with the regularity of the value function

v(x, y) = sup
0≤τ≤T

Ex,y [e
−qτg(Xτ )], (x, y) ∈ R× S, (2)

with respect to the optimal stopping problem given by (X,Y ), a discount rate q > 0, a
time horizon T ∈ [0,∞] and a measurable gain function g : R → R. But for financial
applications, see Section 5, a slightly modified value function of type

v(x, y) = sup
0≤τ≤T

Ex,y [e
−rτg(erτXτ )] (2′)
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is also considered where r stands for the instantaneous interest rate.
The supremum in (2) and (2′) is taken over all finite stopping times with respect to the

filtration generated by the pair of processes (X,Y ).
To ensure the well-posedness of this problem, we assume the integrability condition

(recall that T may be infinite)

Ex,y

[

sup
0≤t≤T

e−qt|g(Xt)|I(t < ∞)

]

< ∞ for all (x, y) ∈ R× S (3)

which is a common assumption in the context of optimal stopping problems.
Note that this condition is satisfied if g is bounded. For more general functions, verifying

this condition can be fairly difficult and its validity may depend on the particular choice of
the dynamics for (X,Y ).

Our main focus is on proving the monotonicity of v(x, y) with respect to y ∈ S and we
are able to verify this property in the case of the following two classes of strong Markov
processes under not too restrictive conditions (see Theorem 2.5 and Theorem 3.5):

• Regime-switching: Y is an irreducible continuous-time Markov chain which is inde-
pendent of the Brownian motion B driving the equation (1).

• Diffusion: Y solves a stochastic differential equation of the type

dY = η(Y )dBY + θ(Y )dt (4)

where BY = (BY
t )t≥0 is a standard Brownian motion such that 〈B,BY 〉t = δt, t ≥ 0,

for some real parameter δ ∈ [−1, 1] and η, θ : R → R are measurable functions.

Remark that, in the second class, the joint distribution of X and Y is uniquely determined
if the system of equations (1),(4) admits a weakly unique solution and the process Y does
not have to be independent of the driving Brownian motion B, whereas, in the case of the
first class, the process Y is not given by an equation and the assumed independence of
Y and B is a natural way of linking X and Y if there is too little information about the
structure of the pair (X,Y ).

Our technique is based on time-change and coupling. The equation (1) goes back to
a volatility model used by Hobson in [H2010] who also applies time-change and coupling
but for comparing prices of European options. As far as we know, our paper is the first
paper dealing with the extra difficulty of applying this technique in the context of optimal
stopping. It should be mentioned that Ekström [E2004, Theorem 4.2] can compare prices
of American options if Y ≡ 1 in equation (1) and a also depends on time. Nevertheless, it
seems to be that his method cannot be applied in the case of non-trivial processes Y .

We provide some examples to illustrate the results. In the case of regime-switching, we
look at the pricing of perpetual American put options which, for a(x) = x, was studied by
Guo and Zhang [GZ2004] for a two-state Markov chain and by Jobert and Rogers [JR2006]
for a finite-state Markov chain. While the former, since the situation is much easier, gave a
closed-form expression for the price the latter could only provide a numerical algorithm to
approximate the value function which gives the price of the contract. It turns out that the
algorithm in the case of a chain with many states can be very time-intensive if the unknown
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thresholds which characterize the optimal stopping rule are not known to be in a specific
order when labelled by the different volatility states before the algorithm starts. However,
based on our result that the value function v(x, y) is monotone in y, we are now able to give
conditions under which these thresholds must be in a monotone order. Ultimately, in the
case where Y is a diffusion, we verify the continuity and monotonicity of the value function
v(x, y) with respect to y ∈ S = (0,∞) for two important volatility models, the Heston
[H1993] and the Hull & White [HW1987] model.

The structure of this paper is as follows. In Section 2 the monotonicity of the value
function v(x, y) with respect to y ∈ S = {yi : i = 1, 2, . . .} ⊆ (0,∞) is shown in the case
of regime-switching and the main method is established. In Section 3 the main method
is adapted to the case of a system of stochastic differential equations (1),(4) which is the
diffusion case while in Section 4 we use monotonicity to show the continuity of the value
function v(x, y) with respect to y ∈ S = (0,∞) in the diffusion case. In Section 5 we
reformulate our results in the context of option pricing. Then all our examples are discussed
in detail in Section 6 and, in the Appendix, we prove auxiliary results and some of the
corollaries.

Finally, it should be mentioned that all our results and proofs would not change in
principle if the state space of (X,Y ) is R × S with S ⊆ (−∞, 0) instead of S ⊆ (0,∞).
The only change in this case ( see Corollary 2.7(ii)) would be to order: increasing becomes
decreasing. However, as pointed out in the proof of Corollary 2.7(ii), our method cannot be
applied to show the monotonicity of v(x, y) in y ∈ S if S contains a neighbourhood of zero.
We do not know either how to generalise our method to the non-martingale case.

2 The Regime-Switching-Case

Suppose that (X,Y ) = (Xt, Yt, t ≥ 0) is a strong Markov process given on a family of
probability spaces (Ω,F , Px,y, (x, y) ∈ R× S) which satisfies the conditions

C1: the process (X,Y ) is adapted with respect to a filtration Ft, t ≥ 0, of sub-σ-algebras
of F and, for every (x, y) ∈ R× S, there is an Ft Brownian motion B on (Ω,F , Px,y)
independent of Y such that

Xt = X0 +

∫ t

0
a(Xs)Ys dBs, t ≥ 0, Px,y − a.s.,

C2: the process Y is a continuous-time Markov chain with Q-matrix (q[yi, yj ]) on S =
{yi : i = 1, 2, . . .} ⊂ (0,∞) such that

Px,y (

∫ t

0
Y 2
s ds < ∞,∀ t ≥ 0) = 1, Px,y ( lim

t↑∞

∫ t

0
Y 2
s ds = ∞) = 1, (x, y) ∈ R× S.

Remark 2.1 (i) From the above assumptions it immediately follows that, for every ini-
tial condition x ∈ R, there exists a weak solution to the stochastic differential equation
dG = a(G)dW driven by a Brownian motion W . To see this fix (x, y) ∈ R × S and
write

Xt = x+

∫ t

0
a(Xs) dMs, t ≥ 0, Px,y − a.s.,
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where Ms =
∫ s

0 Yu dBu is well-defined since
∫ s

0 Y 2
u du < ∞, Px,y - a.s., for all s ≥ 0.

But time-changing X by the inverse of 〈M〉, which exists by Condition C2 above,
yields

Gt = x+

∫ t

0
a(Gs) dWs, t ≥ 0, Px,y − a.s.,

where G = X ◦〈M〉−1 is F〈M〉−1
t

- adapted and W = M ◦〈M〉−1 is an F〈M〉−1
t

Brownian

motion by the Dambis-Dubins-Schwarz Theorem (see [RY1999, V.1.6]). The equation
does indeed hold for all t ≥ 0 since Px,y ( limt↑∞

∫ t

0 Y
2
s ds = ∞) = 1.

(ii) Furthermore, as 〈M〉 is a strictly increasing, continuous, perfect additive functional of
(X,Y ) satisfying 〈M〉∞ = ∞ a.s., the time-changed process (X ◦ 〈M〉−1, Y ◦ 〈M〉−1)
is strong Markov with respect to FX,Y

〈M〉−1
t

, t ≥ 0, by standard theory on right processes

(see [S1988, Th.(65.9)] for example). Here FX,Y
t stands for the universal augmentation

of the filtration σ({Xs, Ys : s ≤ t}), t ≥ 0 (see Section 2.7.B of [KS1991] for a good
account of universal filtrations). Note that the filtration FX,Y

t can be smaller than
Ft, t ≥ 0, mentioned in Condition C1 on page 3.

(iii) Because 〈M〉−1 =
∫ ·
0 Y

−2

〈M〉−1
s

ds, an easy calculation shows that the process Y ◦ 〈M〉−1

is a continuous-time Markov chain with Q-matrix (y−2
i q[yi, yj]), yi, yj ∈ S.

By the above remark, there exists a strong Markov process which is also a weak solution
of dG = a(G)dW . The law of this strong Markov process is entirely determined by its
semigroup of transition kernels. Multiplying these transition kernels and the transition
kernels of a continuous-time Markov chain on S×S both marginals of which are determined
by the Q-matrix (y−2

i q[yi, yj ]), yi, yj ∈ S, results in a semigroup of transition kernels of
a strong Markov process (G,Z,Z ′) with G being independent of (Z,Z ′). Now choose a
complete probability space (Ω̃, F̃ , P̃ ) such that (G,Z,Z ′) starts from fixed (x, y, y′) ∈ R ×
S × S. If FG,Z,Z′

t denotes the augmentation of the filtration σ({Gs, Zs, Z
′
s : s ≤ t}), t ≥ 0,

then, by the martingale problem associated with the strong Markov process G, Gt − x is a

continuous local FG,Z,Z′

t -martingale with quadratic variation
∫ t

0 a(Gs)
2ds, t ≥ 0. Thus, by

a well-known result going back to Doob (see [IW1981, Th. II 7.1’] for example), there is a
Brownian motion W such that

Gt − x =

∫ t

0
a(Gs)dWs, t ≥ 0, P̃ − a.s. (5)

The construction of W on (Ω̃, F̃ , P̃ ) (or on a canonical enlargement of it1) as given in the
proof of Th. II 7.1’ in [IW1981] shows that the pair (G,W ) is also independent of (Z,Z ′).
But remark that W might only be a Brownian motion with respect to a filtration F̃t larger

than FG,Z,Z′

t , t ≥ 0, so that the stochastic integral in (5) can only be understood with
respect to the larger filtration.

The last paragraph can be summarised as follows.

1Our convention is to use (Ω̃, F̃ , P̃ ) for the enlarged space, too.
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Corollary 2.2 For given (x, y, y′) ∈ R × S × S, there is a complete probability space

(Ω̃, F̃ , P̃ ) equipped with two filtrations FG,Z,Z′

t ⊆ F̃t, t ≥ 0, which is big enough to carry
four basic processes G,W,Z,Z ′ such that: (G,W ) is a weak F̃t - adapted solution of dG =
a(G)dW starting from x independent of (Z,Z ′), Z and Z ′ are Markov chains with Q-
matrix (y−2

i q[yi, yj ]), yi, yj ∈ S, starting from y and y′, respectively, and (G,Z,Z ′) is a

strong Markov process with respect to FG,Z,Z′

t , t ≥ 0.

The goal of this section is to show that, under some not too restrictive conditions, for
fixed x ∈ R and y, y′ ∈ S:

if y ≤ y′ then v(x, y) ≤ v(x, y′) (6)

where the value function v is given by (2). Choosing x and y ≤ y′, we will construct two
processes (X̃, Ỹ ) and (X̃ ′, Ỹ ′) on (Ω̃, F̃ , P̃ ) such that (X̃, Ỹ ) has the same law as (X,Y )
under Px,y and (X̃ ′, Ỹ ′) has the same law as (X,Y ) under Px,y′ hence

v(x, y) = sup
0≤τ̃≤T

Ẽ [e−qτ̃g(X̃τ̃ )] and v(x, y′) = sup
0≤τ̃ ′≤T

Ẽ [e−qτ̃ ′g(X̃ ′
τ̃ ′)] (7)

where τ̃ and τ̃ ′ are finite stopping times with respect to the filtrations generated by (X̃, Ỹ )
and (X̃ ′, Ỹ ′), respectively. Working on only ONE probability space is an important part
of our method for proving (6) which is based on time-change and coupling and which is
demonstrated below.

Let G,W,Z,Z ′ be given on (Ω̃, F̃ , P̃ ) as described in Corollary 2.2 and define

Γt =

∫ t

0
Z−2
s ds, t ≥ 0.

This process Γ = (Γt)t≥0 is of course continuous but also strictly increasing since Z only
takes non-zero values. Moreover, Condition C2 on page 3 implies that

Γt < ∞, t ≥ 0, a.s., and lim
t↑∞

Γt = ∞ a.s., (8)

since, by Remark 2.1(iii), Z has the same law as Y ◦ 〈M〉−1 under Px,y with
∫ ·
0 Y

−2
〈M〉−1

s
ds

being the inverse of
∫ ·
0 Y

2
s ds. Thus A = Γ−1 is also a continuous and strictly increasing

process satisfying

At < ∞, t ≥ 0, a.s., and lim
t↑∞

At = ∞ a.s. (9)

As a consequence, the two technical properties

P1: ΓAt = AΓt = t for all t ≥ 0 a.s.

P2: s < Γt if and only if As < t for all 0 ≤ s, t < ∞ a.s.

must hold.
Of course, Γ is adapted to both filtrations FG,Z,Z′

t and F̃t, t ≥ 0. However, A = Γ−1

is considered an FG,Z,Z′

t - time - change in the following lemma. We denote by M and T
the families of stopping times with respect to the filtrations (FG,Z,Z′

t )t≥0 and (FG,Z,Z′

At
)t≥0,

respectively.
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Lemma 2.3 If ρ ∈ M then Γρ ∈ T and if τ ∈ T then Aτ ∈ M.

A similar lemma can be found in [S1988]. Since the above lemma is going to be used
to reformulate the original optimal stopping problem (2) in both the case where Y is a
Markov chain and the case where Y is a diffusion, its proof is given in the Appendix for
completeness.

The reformulation of (2) is based on the existence of a suitable solution to (1) which is
constructed next.

Since Z is F̃t–adapted, one can rewrite (5) to get

Gt = x+

∫ t

0
a(Gs)ZsdM̃s, t ≥ 0, a.s., where M̃s =

∫ s

0

dWu

Zu
, s ≥ 0.

Observe that the stochastic integral defining M̃ exists by (8). Time-changing the above
equation by A yields

X̃t = x+

∫ t

0
a(X̃s)Ỹs dB̃s, t ≥ 0, a.s., for X̃ = G ◦ A, Ỹ = Z ◦A, B̃ = M̃ ◦ A.

Of course, (X̃, Ỹ ) is F̃At - adapted and B̃ is an F̃At Brownian motion by the Dambis-Dubins-
Schwarz Theorem [RY1999, V.1.6]. Thus (X̃, Ỹ ) gives a weak solution to (1) starting from
(x, y). Moreover, B̃ and Ỹ are independent since W and Z are independent. The proof of
this is contained in the Appendix (see Lemma A.1).

Proposition 2.4 Let G, X̃, Ỹ be the processes on (Ω̃, F̃ , P̃ ) introduced above and starting
from G0 = X̃0 = x and Ỹ0 = y. If the stochastic differential equation

dX = a(X)Y dB, (X,Y ) unknown,

driven by a Brownian motion B, where Y is required to be a continuous-time Markov chain
independent of B with Q-matrix (q[yi, yj ]), yi, yj ∈ S, admits a weakly unique solution then,
for any T ∈ [0,∞]:

v(x, y) = sup
τ∈TT

Ẽ [e−qτg(X̃τ )] = sup
ρ∈MT

Ẽ [e−qΓρg(Gρ)]

where
TT = {τ ∈ T : 0 ≤ τ ≤ T} and MT = {ρ ∈ M : 0 ≤ ρ ≤ AT }.

Here, T and M denote the families of finite stopping times with respect to the filtrations

(FG,Z,Z′

At
)t≥0 and (FG,Z,Z′

t )t≥0, respectively.

Proof. First note that Γ is a continuous, strictly increasing, perfect additive functional
of (G,Z,Z ′) which satisfies (8) and recall that (G,Z,Z ′) is a strong Markov process with

respect to FG,Z,Z′

t , t ≥ 0, by Corollary 2.2. So (G ◦ A,Z ◦ A,Z ′ ◦ A)—and hence its

marginal (X̃, Ỹ )—must possess the strong Markov property with respect to FG,Z,Z′

At
, t ≥ 0,

by [S1988, Theorem 65.9]. But A = Γ−1 =
∫ ·
0 Ỹ

2
s ds by time-changing the integral defining

Γ. So Ỹ is a continuous-time Markov chain with Q-matrix (q[yi, yj]), yi, yj ∈ S. Combining
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these statements, (X̃, Ỹ ) has the same law as (X,Y ) under Px,y, since both pairs satisfy
the equation dX = a(X)Y dB in the sense explained in the proposition and this equation
admits a weakly unique solution. As a consequence it follows from (7) that

v(x, y) = sup
0≤τ≤T

Ẽ [e−qτg(X̃τ )]

where the finite stopping times τ are with respect to the filtration FG,Z,Z′

At
, t ≥ 0. Here

one should mention that the stopping times used in (7) are with respect to the filtration

generated by (X̃, Ỹ ) which might be smaller than FG,Z,Z′

At
, t ≥ 0. However, it is well-known

(see [S1978, Cor. 2, Sect. 3.3] for example) that the corresponding suprema are the same if
the underlying process, in this case (X̃, Ỹ ), is also strong Markov with respect to the bigger
filtration.

It remains to show that

sup
τ∈TT

Ẽ [e−qτg(X̃τ )] = sup
ρ∈MT

Ẽ [e−qΓρg(Gρ)]. (10)

Fix τ ∈ TT and observe that

Ẽ [e−qτg(X̃τ )] = Ẽ [e−qΓAτ g(GAτ )]

by Property P1 and the construction of X̃. Then Aτ is an FG,Z,Z′

t - stopping - time by
Lemma 2.3. The right-hand side above does not change if a finite version of Aτ is chosen

which still is an FG,Z,Z′

t - stopping - time, since the filtration satisfies the usual conditions.
Thus Aτ ∈ MT and it follows that

Ẽ [e−qτg(X̃τ )] ≤ sup
ρ∈MT

Ẽ [e−qΓρg(Gρ)].

Similarly, for fixed ρ ∈ MT , the equality Ẽ [e−qΓρg(Gρ)] = Ẽ [e−qΓρg(X̃Γρ)] leads to

Ẽ [e−qΓρg(Gρ)] ≤ sup
τ∈TT

Ẽ [e−qτg(X̃τ )]

finally proving (10).

Of course, the conclusion of Proposition 2.4 remains valid for v(x, y′), X̃ ′, Ỹ ′, T ′
T , M′

T ,
A′ and Γ′ if these objects are constructed by using Z ′ instead of Z. Notice that the solution
G is the same.

We are now in the position to formulate and prove the main result of this section about
the validity of (6).

Theorem 2.5 Let (X,Y ) be a strong Markov process given on a family of probability spaces
(Ω,F , Px,y, (x, y) ∈ R × S) and let g : R → R be a measurable gain function such that
{g ≥ 0} 6= ∅. Assume (3), that (X,Y ) satisfies Conditions C1 and C2 on page 3 and that
all pairs of processes satisfying Conditions C1 and C2 have the same law. Further suppose
that Y is skip-free. Define Kg+

T to be the collection of all finite stopping times τ ≤ T with
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respect to the filtration generated by (X,Y ) such that g(Xτ ) ≥ 0. Fix (x, y) ∈ R × S and
assume that v(x, y) = sup

τ∈Kg+
T

Ex,y [e
−qτg(Xτ )]. Then:

v(x, y) ≤ v(x, y′) for all y′ ∈ S such that y ≤ y′,

so that v(x, y) is a lower bound for v(x, ·) on [y,∞) ∩ S.

Remark 2.6 (i) The condition v(x, y) = sup
τ∈Kg+

T
Ex,y [e

−qτg(Xτ )] is a technical con-

dition which states that the optimum v(x, y) as defined by (2) can be achieved by
stopping at non-negative values of g only. It is of course trivially satisfied for all
(x, y) ∈ R×S if the gain function is non-negative and in this case the theorem means
that v(x, ·) is increasing.

(ii) In the case of an infinite time horizon T = ∞, it easily follows from the section
theorem [RY1999, IV.5.5] that

Px,y

(

inf{t ≥ 0 : g(Xt) ≥ 0} < ∞
)

= 1 for all (x, y) ∈ R× S

is sufficient for v(x, y) = sup
τ∈Kg+

T
Ex,y [e

−qτg(Xτ )] to be true for all (x, y) ∈ R × S
since (X,Y ) is strong Markov. Indeed, if a process always hits the set {g ≥ 0} with
probability one then it is quite natural that maximal gain is obtained whilst avoiding
stopping at negative values of g. One can easily construct processes satisfying this
sufficient condition where the gain function g takes both positive and negative values.

(iii) In the case where T < ∞, the only reasonable sufficient condition the authors can find
is the trivial condition g(x) ≥ 0 for all x ∈ R. This is because, in general a process is
not almost surely guaranteed to hit a subset of the state space in finite time.

(iv) The skip-free condition on Y is , of course, equivalent to saying that the Q-matrix is
tridiagonal.

Proof of Theorem 2.5. Fix x ∈ R and y, y′ ∈ S such that y ≤ y′ and let G,W,Z,Z ′

be given on a complete probability space (Ω̃, F̃ , P̃ ) as described in Corollary 2.2. While
in Corollary 2.2 the coupling of the two chains Z and Z ′ was not specified any further we
now choose a particular coupling associated with a Q-matrix Q which allows us to compare
Z and Z ′ directly. Denoting the Q-matrix corresponding to the independence coupling by
Q⊥, we set

Q

[

yi yj
yk yl

]

=



















Q⊥

[

yi yj
yk yl

]

: i 6= k

y−2
i q[yi, yj ] : i = k, j = l

0 : i = k, j 6= k

for yi, yj, yk, yl ∈ S, that is, Z and Z ′ move independently until they hit each other for the
first time and then they move together. It follows from the skip-free-assumption that Z
cannot overtake Z ′ before they hit each other for the first time. Hence

Z0 = y ≤ y′ = Z ′
0 implies Zt ≤ Z ′

t, t ≥ 0, a.s.,
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which results in the inequality

Γt =

∫ t

0
Z−2
s ds ≥

∫ t

0
(Z ′

s)
−2ds = Γ′

t, t ≥ 0, a.s. (11)

Note that then the inverse increasing processes A = Γ−1 and A′ = (Γ′)−1 must satisfy the
relation At ≤ A′

t, t ≥ 0, a.s.
Now recall the definition of MT in Proposition 2.4 and note that the above comparison

allows us to conclude that

Ẽ [e−qΓρg(Gρ)] ≤ Ẽ [e−qΓ′

ρg(Gρ)] for every ρ ∈ M+
T (12)

where M+
T = {ρ ∈ MT : g(Gρ) ≥ 0 a.s.}. Thus

Ẽ [e−qΓρg(Gρ)] ≤ sup
ρ′∈M′

T

Ẽ [e
−qΓ′

ρ′g(Gρ′)] for every ρ ∈ M+
T

since AT ≤ A′
T a.s. implies that every stopping time in M+

T has a version which is in M′
T .

Putting these results together, we obtain:

sup
ρ∈M+

T

Ẽ [e−qΓρg(Gρ)] ≤ sup
ρ′∈M′

T

Ẽ [e
−qΓ′

ρ′ g(Gρ′)].

But, if T +
T denotes {τ ∈ TT : g(X̃τ ) ≥ 0 a.s.}, then the equality

sup
τ∈T +

T

Ẽ [e−qτg(X̃τ )] = sup
ρ∈M+

T

Ẽ [e−qΓρg(Gρ)]

can be shown in the same way that (10) was shown in the proof of Proposition 2.4 (note
that in this proof we may choose versions of certain stopping times and this is the reason
the qualification ‘a.s.’ appears in the definitions of M+

T and T +
T ).

Furthermore,

if v(x, y) = sup
τ∈Kg+

T

Ex,y [e
−qτg(Xτ )], then v(x, y) ≤ sup

τ∈T +
T

Ẽ [e−qτg(X̃τ )]

since the law of (X̃, Ỹ ) is equal to the law of (X,Y ) under Px,y and the filtration FG,Z,Z′

At
, t ≥

0, is at least as big as the filtration generated by (X̃, Ỹ ). So, under the condition v(x, y) =
sup

τ∈Kg+
T

Ex,y [e
−qτg(Xτ )], we can finally deduce that

v(x, y) ≤ sup
τ∈T +

T

Ẽ [e−qτg(X̃τ )] = sup
ρ∈M+

T

Ẽ [e−qΓρg(Gρ)] ≤ sup
ρ′∈M′

T

Ẽ [e
−qΓ′

ρ′g(Gρ′ )] = v(x, y′),

where the last equality is due to Proposition 2.4 applied to (X̃ ′, Ỹ ′).

Corollary 2.7 (i) If {g ≥ 0} = ∅ but all other assumptions of Theorem 2.5 are satisfied
then, in the infinite time horizon case where T = ∞:

v(x, y) ≥ v(x, y′) for all x ∈ R and y, y′ ∈ S such that y ≤ y′,

so that v(x, ·) is decreasing.
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(ii) Let the assumptions of Theorem 2.5 be based on S ⊆ (−∞, 0), fix (x, y) ∈ R× S and
assume that v(x, y) = sup

τ∈Kg+
T

Ex,y [e
−qτg(Xτ )]. Then:

v(x, y) ≥ v(x, y′) for all y′ ∈ S such that y ≤ y′,

so that v(x, y) is an upper bound for v(x, ·) on [y,∞) ∩ S.

Proof. If {g ≥ 0} = ∅ then, instead of (12), we obtain

Ẽ [e−qΓρg(Gρ)] ≥ Ẽ [e−qΓ′

ρg(Gρ)] for every ρ ∈ MT

and MT is (up to versions) equal to M′
T since T = ∞. Hence (i) can be deduced directly

from Proposition 2.4. Note that the above inequality cannot be used in the case where
T < ∞ since there can be stopping times in M′

T which are not in MT .
If S ⊆ (−∞, 0) then Zt ≤ Z ′

t, t ≥ 0, a.s., does not imply (11) but instead

Γt =

∫ t

0
Z−2
s ds ≤

∫ t

0
(Z ′

s)
−2ds = Γ′

t, t ≥ 0, a.s.,

hence, interchanging the roles of y and y′, (ii) can be proved like Theorem 2.5. Note that
Zt ≤ Z ′

t, t ≥ 0, a.s., would not lead to any comparison between Γ and Γ′ if y < 0 < y′.
Hence our method cannot be applied to show the monotonicity of v(x, y) in y ∈ S if S
contains a neighbourhood of zero.

3 The Diffusion-Case

Fix δ ∈ [−1, 1] and suppose that (X,Y ) is a strong Markov process given on a family of
probability spaces (Ω,F , Px,y, (x, y) ∈ R× S) which satisfies the conditions

C1’: the process (X,Y ) is adapted with respect to a filtration Ft, t ≥ 0, of sub-σ-algebras
of F and, for every (x, y) ∈ R×S, there is a pair (B,BY ) of Ft Brownian motions on
(Ω,F , Px,y) with covariation 〈B,BY 〉t = δt, t ≥ 0, such that

Xt = X0 +

∫ t

0
a(Xs)Ys dBs & Yt = Y0 +

∫ t

0
η(Ys)dB

Y
s +

∫ t

0
θ(Ys)ds

for all t ≥ 0, Px,y − a.s.,

C2’: the process Y takes values in S ⊆ (0,∞) and

Px,y (

∫ t

0
Y 2
s ds < ∞,∀ t ≥ 0) = 1, Px,y ( lim

t↑∞

∫ t

0
Y 2
s ds = ∞) = 1, (x, y) ∈ R× S.

Remark 3.1 Under the assumptions above, for every (x, y) ∈ R × S, there exists a weak
solution to the system of stochastic differential equations

dG = a(G)dW,

dξ = η(ξ)ξ−1dW ξ + θ(ξ)ξ−2dt,

ξt ∈ S, t ≥ 0,











(13)
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driven by a pair of Brownian motions with covariation 〈W,W ξ〉t = δt, t ≥ 0. Such a
solution can be given by (X◦〈M〉−1, Y ◦〈M〉−1) whereM denotes the continuous local
martingale Ms =

∫ s

0 Yu dBu, s ≥ 0, as in Remark 2.1(i). Here W = M ◦ 〈M〉−1 and

W ξ =
∫ 〈M〉−1

·

0 Ys dB
Y
s are F〈M〉−1

t
Brownian motions by the Dambis-Dubins-Schwarz

Theorem (see [RY1999, V.1.6]) with covariation

〈W,W ξ〉t = 〈
∫ ·

0
Ys dBs,

∫ ·

0
Ys dB

Y
s 〉〈M〉−1

t

= δ

∫ 〈M〉−1
t

0
Y 2
s ds = δ〈M〉〈M〉−1

t
= δt, t ≥ 0, Px,y − a.s.,

where the last equality is ensured by Condition C2’.

We want to show (6) using a method similar to the method applied in Section 2. The
main difference to the case discussed in Section 2 is that the pair (X,Y ) is now determined
by a system of stochastic differential equations. So, instead of constructing X̃ by time-
changing a solution of the single equation dG = a(G)dW as in Section 2, we now construct
X̃ by time-changing a solution of a system of stochastic differential equations. Furthermore,
in Section 2 we constructed the coupling of Z and Z ′ in the proof of Theorem 2.5 from a
given generator. In this section we will couple ξ and ξ′—both satisfying the second equation
in (13) but starting from y ≤ y′, respectively—we will do so directly from the stochastic
differential equation. The next condition should be understood in this context.

C3: Let a, η, θ be measurable functions such that the system (13) of stochastic differential
equations has, for all initial conditions (G0, ξ0) ∈ R×S, a unique non-exploding strong
solution taking values in R× S.

Now choose a complete probability space (Ω̃, F̃ , P̃ ) big enough to carry a pair of Brownian
motions (W,W ξ) with covariation 〈W,W ξ〉t = δt, t ≥ 0, and denote by F̃t, t ≥ 0, the usual
augmentation of the filtration generated by (W,W ξ). Let (G, ξ) be the unique solution of
the system (13) starting from G0 = x ∈ R and ξ0 = y ∈ S given on (Ω̃, F̃ , P̃ ) by (W,W ξ).

Define Γ = (Γt)t≥0 by

Γt =

∫ t

0
ξ−2
u du, t ≥ 0,

and remark that Γ satisfies (8). Indeed, by Remark 3.1, Y ◦〈M〉−1 solves the second equation
of (13) hence Condition C3 implies that ξ has the same law as Y ◦ 〈M〉−1 under Px,y. The
property (8) therefore follows from C2’ since

∫ ·
0 Y

−2
〈M〉−1

s
ds is the inverse of

∫ ·
0 Y

2
s ds.

Of course, we may deduce from (8) together with the fact that ξ never vanishes, that
Γ is a continuous and strictly increasing process. Thus, A = Γ−1 is also a continuous and
strictly increasing process satisfying (9). As a consequence, the two technical Properties
P1 and P2 on page 5 must again be valid.

As ξ is F̃t - adapted, we see that

Gt = x+

∫ t

0
a(Gs)ξs dM̃s, t ≥ 0, a.s., (14)

ξt = y +

∫ t

0
η(ξs)dM̃

ξ
s +

∫ t

0
θ(ξs)dΓs > 0, t ≥ 0, a.s., (15)
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where (8) implies that the continuous local martingales M̃ and M̃ ξ given by the stochastical
integrals

M̃s =

∫ s

0
ξ−1
u dWu and M̃ ξ

s =

∫ s

0
ξ−1
u dW ξ

u

exist for each s ≥ 0. Now it immediately follows from (14),(15) that the F̃At - adapted
processes X̃ = G ◦A and Ỹ = ξ ◦A on (Ω̃, F̃ , P̃ ) constitute a non-exploding weak solution
of the system (1),(4) with Ỹt ∈ S, t ≥ 0, since B̃ = M̃ ◦ A and B̃Y = M̃ ξ ◦ A are F̃At

Brownian motions by the Dambis-Dubins-Schwarz Theorem [RY1999, V.1.6] and

〈B̃, B̃Y 〉t = 〈M̃, M̃ ξ〉At = δ

∫ At

0
ξ−2
u du = δΓAt = δt, t ≥ 0, a.s.,

by Property P1.

Remark 3.2 (i) Combining Remark 3.1 and Condition C3, it follows from the construc-
tion above that (X̃, Ỹ ) must have the same distribution as (X,Y ) under Px,y.

(ii) The filtration F̃At , t ≥ 0, might be bigger than the filtration generated by (X̃, Ỹ ).
However, it is straightforward to show the strong Markov property of (X̃, Ỹ ) with
respect to F̃At , t ≥ 0, since (X̃, Ỹ ) was obtained by time-changing a unique strong
solution of a system of stochastic differential equation driven by Brownian motions.

This remark makes clear that the following proposition can be proved by applying the ideas
used in the proof of Proposition 2.4 in Section 2 ( so we omit its proof).

Proposition 3.3 Let G, X̃, Ỹ be the processes on the filtered probability space (Ω̃, F̃ , F̃t,
t ≥ 0, P̃ ) introduced above and starting from G0 = X̃0 = x ∈ R and Ỹ0 = y ∈ S. Then, for
any T ∈ [0,∞], it follows that

v(x, y) = sup
τ∈TT

Ẽ [e−qτg(X̃τ )] = sup
ρ∈MT

Ẽ [e−qΓρg(Gρ)]

where
TT = {τ ∈ T : 0 ≤ τ ≤ T} and MT = {ρ ∈ M : 0 ≤ ρ ≤ AT }.

Here, T and M denote the family of finite stopping times with respect to the filtration
(F̃At)t≥0 and (F̃t)t≥0, respectively.

Remark 3.4 The above representation of the value function v(x, y), (x, y) ∈ R×S, could
be extended to cases were S is bigger than (0,∞). However, in such cases, the
equation for ξ in (13) must admit solutions starting from ξ0 = 0 which is an additional
constraint, since ξ is in the denominator on the right-hand side of this equation.
Furthermore, in addition to the assumptions that

Px,y (

∫ t

0
Y 2
s ds < ∞,∀ t ≥ 0) = 1 and Px,y ( lim

t↑∞

∫ t

0
Y 2
s ds = ∞) = 1,

one would need to assume that
∫ ·
0 Y

2
s ds is strictly increasing Px,y-a.s. as, in principle,

the process Y could now spend time at zero.
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Recall that, in contrast to the case of regime-switching, the process Ỹ above was con-
structed by time-change from a solution of a stochastic differential equation and this results
in some small variations from the proof of Theorem 2.5. Note that the conclusion of Propo-
sition 3.3 remains valid for v(x, y′), X̃ ′, T ′

T , M′
T , A

′ and Γ′ if these objects are constructed
using a different starting point y′ ∈ S.

Theorem 3.5 Let (X,Y ) be a strong Markov process given on a family of probability spaces
(Ω,F , Px,y, (x, y) ∈ R × S) and let g : R → R be a measurable gain function such that
{g ≥ 0} 6= ∅. Assume (3), that (X,Y ) satisfies Conditions C1’ and C2’ on page 10 and
that Condition C3 on page 11 holds true for the system (13). Define Kg+

T to be the collection
of all finite stopping times τ ≤ T with respect to the filtration generated by (X,Y ) such that
g(Xτ ) ≥ 0. Fix (x, y) ∈ R×S and assume that v(x, y) = sup

τ∈Kg+
T

Ex,y [e
−qτg(Xτ )]. Then:

v(x, y) ≤ v(x, y′) for all y′ ∈ S such that y ≤ y′,

so that v(x, y) is a lower bound for v(x, ·) on [y,∞) ∩ S.

Proof. Fix x ∈ R and y, y′ ∈ S with y ≤ y′ and choose a complete probability
space (Ω̃, F̃ , P̃ ) large enough to carry a pair of Brownian motions (W,W ξ) with covari-
ation 〈W,W ξ〉t = δt, t ≥ 0. Let (G, ξ) and (G, ξ′) be the solutions of (13) starting from
(x, y) and from (x, y′), respectively, which are both given by (W,W ξ) on (Ω̃, F̃ , P̃ ). Remark
that G is indeed the same for both pairs since (13) is a system of decoupled equations.

Define C = inf{t ≥ 0 : ξt > ξ′t} and set ξ̄t = ξtI(t < C) + ξ′tI(t ≥ C) so that ξ̄t ≤ ξ′t for
all t ≥ 0. Obviously, (G, ξ̄) solves the system (13) starting from G0 = x and ξ̄0 = y hence
ξt = ξ̄t ≤ ξ′t, t ≥ 0, a.s., by strong uniqueness.

Construct X̃ = G ◦ A and X̃ ′ = G ◦ A′ using the above (G, ξ) and (G, ξ′) and observe
that Γt ≥ Γ′

t follows immediately from 0 < ξt ≤ ξ′t for all t ≥ 0 a.s. Thus, simply using
Proposition 3.3 instead of Proposition 2.4, the rest of the proof can be copied from the
corresponding part of the proof of Theorem 2.5.

Remark 3.6 For a discussion of the condition v(x, y) = sup
τ∈Kg+

T
Ex,y [e

−qτg(Xτ )] we

refer the reader to Remark 2.6. Corollary 2.7 remains true if it is reformulated in the
terms of the theorem above instead of Theorem 2.5.

4 Continuity in the Diffusion-Case

Let S be an open subset of (0,∞), fix x ∈ R and suppose that all the assumptions of
Theorem 3.5 are satisfied. Furthermore, suppose that

v(x, y) = sup
τ∈Kg+

T

Ex,y [e
−qτg(Xτ )] for all y ∈ S. (16)

For a sequence (yn)
∞
n=1 ⊆ S converging to y0 ∈ S as n → ∞, denote by (G, ξn) the solution

of (13), starting from G0 = x and ξn0 = yn, n = 0, 1, 2, . . . , given by a pair (W,W ξ) of
Brownian motions with covariation 〈W,W ξ〉t = δt, t ≥ 0, on a probability space (Ω̃, F̃ , P̃ ).
Using (G, ξn) construct Γn, An, n = 0, 1, 2, . . . , like Γ, A in Section 3.

13



Lemma 4.1 Suppose that the ξ-component corresponding to the unique strong solution to
(13) on page 10 is a Feller process with state space S. If the sequence (yn)

∞
n=1 is monotone,

that is either yn ↓ y0 or yn ↑ y0 when n → ∞, then

Γn
t → Γ0

t and An
t → A0

t as n → ∞ for all t ≥ 0 a.s. (17)

Proof. Here, we will use without further comment the elementary fact that if U and V
are two random variables with the same law and U ≥ V a.s. then, in fact, U = V a.s.

Suppose that yn ↓ y0 as n → ∞. By the coupling argument in the proof of Theorem
3.5, without loss of generality one may chose ξn such that

ξ1t ≥ ξ2t ≥ · · · ≥ ξnt ≥ · · · ≥ ξ0t > 0, t ≥ 0, n = 0, 1, 2, . . . ; (18)

hence the pathwise limit limn ξ
n
t , t ≥ 0, exists. It follows from the Feller property that

the two processes ξ0 and (limn ξ
n
t )t≥0 must have the same law by comparing their finite-

dimensional distributions. As (18) also yields the inequalities limn ξ
n
t ≥ ξ0t > 0, t ≥ 0, we

see that

Γ0
t ≥

∫ t

0
(lim

n
ξnu)

−2du = lim
n

Γn
t , t ≥ 0,

by monotone convergence. But, if ξ0 and (limn ξ
n
t )t≥0 have the same law then the same

must hold true for Γ0 and
∫ t

0 (limn ξ
n
u)

−2du, t ≥ 0. Thus Γ0
t ≥

∫ t

0 (limn ξ
n
u)

−2du implies

Γ0
t =

∫ t

0 (limn ξ
n
u)

−2du a.s. for each t ≥ 0. The desired result, Γ0
t =

∫ t

0 (limn ξ
n
u)

−2du, t ≥ 0,
a.s, now follows since both processes have continuous paths.

Thus Γn
t ↑ Γ0

t , t ≥ 0, a.s. Since An, A0 are the right-inverses of the continuous increasing
processes Γn and Γ0, respectively, we have An

t ↓ A0
t , t ≥ 0, a.s., concluding the proof in the

case where the (yn) are decreasing.
In the case where yn ↑ y0 as n → ∞, we see that

0 < ξ1t ≤ ξ2t ≤ · · · ≤ ξnt ≤ · · · ≤ ξ0t

and

Γ0
t ≤

∫ t

0
(lim

n
ξnu)

−2du = lim
n

Γn
t , t ≥ 0,

by Lebesgue’s dominated convergence theorem. This ensures that Γn
t ↓ Γ0

t , t ≥ 0, a.s., and
An

t ↑ A0
t , t ≥ 0, a.s.

In what follows, in addition to the assumptions of Theorem 3.5, we impose the assump-
tion of Lemma 4.1 and the following condition C4 is used to summarise these conditions,
that is,

C4: – the gain function g satisfies {g ≥ 0} 6= ∅;
– the process (X,Y ) satisfies Conditions (3), C1’, C2’ and the value function v

satisfies (16) for the chosen value of x;

– Condition C3 holds true for the system (13) and the second equation in (13) has
a Feller solution.
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Note that, in many cases, the conditions one imposes on the coefficients η and θ to ensure
Condition C3 also imply that the whole solution of (13) is a Feller process.

We now discuss the continuity of the value function v(x, ·) which we subdivide into
left-continuity and right-continuity.

Proposition 4.2 Assume Condition C4. Then, when T = ∞, v(x, ·) is left-continuous.

Proof. First observe that Theorem 3.5 implies that

lim sup
n→∞

v(x, yn) ≤ v(x, y0),

whenever yn ↑ y0 in S, so it remains to show that

v(x, y0) ≤ lim inf
n→∞

v(x, yn).

Recall the definition of M from Proposition 3.3 and choose ρ ∈ M. Then

e−qΓn
ρ g(Gρ) ≥ −e−qΓ0

ρ |g(Gρ)| = −e−qΓ0
ρ |g(X̃0

Γ0
ρ
)| (19)

for all n = 1, 2, . . . , since Γn
ρ ≥ Γ0

ρ. But the right-hand side of (19) is integrable by (3), thus
the inequality

Ẽe−qΓ0
ρg(Gρ) ≤ lim inf

n→∞
Ẽ e−qΓn

ρ g(Gρ) (20)

follows from Fatou’s lemma and Lemma 4.1.
Now Ẽ e−qΓn

ρ g(Gρ) ≤ supρ′∈M Ẽ e
−qΓn

ρ′g(Gρ′) and so Proposition 3.3 gives

Ẽe−qΓ0
ρg(Gρ) ≤ lim inf

n→∞
v(x, yn) (21)

since MT can be replaced by M in the case where T = ∞. So, taking the supremum over
ρ ∈ M in the left-hand side of (21) completes the proof.

Remark 4.3 (i) The fact that v(x, y0) ≤ lim infn→∞ v(x, yn) when yn ↓ y0 in S is an
immediate consequence of Theorem 3.5. As v(x, y0) ≤ lim infn→∞ v(x, yn), yn ↑ y0,
was shown in the proof above, v(x, ·) is, under Condition C4, lower semicontinuous
on S when T = ∞ without any continuity-assumption on the gain function g.

(ii) From (i) above it follows that, to establish right-continuity in the case where T = ∞,
it remains to show that lim supn→∞ v(x, yn) ≤ v(x, y0) when yn ↓ y0 in S. We are
only able to prove this using the extra integrability condition of Proposition 4.4 below.
Note that the combination of Proposition 4.2 and Proposition 4.4 gives continuity of
v(x, ·) for fixed x in the case where T = ∞ without the requirement that the gain
function g is continuous.

(iii) If T < ∞ then the proof of Proposition 4.2 fails. Indeed, in this case, ρ cannot be
chosen from M as it belongs to a different class Mn

T for each n = 0, 1, 2, . . . We are
able to show left- and right-continuity in the case where T < ∞ under the additional
assumption that the gain function g is continuous—see Proposition 4.5.

15



Proposition 4.4 Assume, in addition to Condition C4, that for each y ∈ S there exists
ȳ > y such that (y, ȳ) ⊆ S and

sup
y≤y′<ȳ

Ex,y′

[

sup
t≥N

e−qt|g(Xt)|
]

→ 0 as N ↑ ∞.

Then, when T = ∞, v(x, ·) is right-continuous.

Proof. Choose y ∈ S and y′ ∈ (y, ȳ). Applying Proposition 3.3 with respect to x and
y′ yields v(x, y′) = supρ∈M Ẽ [e−qΓ′

ρg(Gρ)] since T = ∞. Fix an arbitrary ǫ > 0 and choose
an ǫ - optimal stopping time ρ′ǫ ∈ M for v(x, y′) so that

0 ≤ v(x, y′)− v(x, y) ≤ ǫ+ Ẽ [e
−qΓ′

ρ′ǫg(Gρ′ǫ
)− e−qΓρ′ǫg(Gρ′ǫ

)]. (22)

Because Γρ′ǫ ≥ Γ′
ρ′ǫ
, the right-hand side of (22) can be dominated by

ǫ+ Ẽ
(

1− e
−q(Γρ′ǫ

−Γ′

ρ′ǫ
)
)

e
−qΓ′

ρ′ǫ |g(Gρ′ǫ
)|I(ρ′ǫ ≤ A′

N ) + Ẽ e
−qΓ′

ρ′ǫ |g(Gρ′ǫ
)|I(ρ′ǫ > A′

N )

≤ ǫ+ Ẽ
(

1− e
−q(Γρ′ǫ

−Γ′

ρ′ǫ
)
)

e
−qΓ′

ρ′ǫ |g(Gρ′ǫ
)|I(ρ′ǫ ≤ A′

N ) + Ẽ [sup
t≥N

e−qt|g(X̃ ′
t)| ]

where
Ẽ [sup

t≥N

e−qt|g(X̃ ′
t)| ] = Ex,y′ [sup

t≥N

e−qt|g(Xt)| ]

and both

e
−qΓ′

ρ′ǫ |g(Gρ′ǫ
)| ≤ sup

t≤A′

N

e−qΓ′

t |g(Gt)| ≤ sup
t≤A

ȳ
N

e−qΓȳ
t |g(Gt)|

= sup
t≤A

ȳ
N

e−qΓȳ
t |g(X̃ ȳ

Γȳ
t

)| ≤ sup
t≤N

e−qt|g(X̃ ȳ
t )| (23)

and

Γρ′ǫ − Γ′
ρ′ǫ

=

∫ ρ′ǫ

0
(ξ−2

u − (ξ′u)
−2)du ≤

∫ A′

N

0
(ξ−2

u − (ξ′u)
−2)du = ΓA′

N
−N (24)

on {ρ′ǫ ≤ A′
N}. Hence choosing N large enough that

sup
y≤y′<ȳ

Ex,y′ [sup
t≥N

e−qt|g(Xt)| ] ≤ ǫ

we obtain from (22):

|v(x, y′)− v(x, y)| ≤ 2ǫ+ Ẽ
(

1− e
−q(ΓA′

N
−N)

)

sup
t≤N

e−qt|g(X̃ ȳ
t )| (25)

for some N depending on y but NOT on y′.
Now, in inequality (25), replace y and y′ by y0 and yn, respectively, with the (yn)

bounded above by ȳ0 and decreasing to y0. Since supt≤N e−qt|g(X̃ ȳ0
t )| is integrable, it

follows by dominated convergence that

lim
n→∞

|v(x, yn)− v(x, y0)| ≤ 2ǫ+ Ẽ

(

1− e
−q(limn Γ0

An
N
−N)

)

sup
t≤N

e−qt|g(X̃ ȳ0
t )|,
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and so
lim
n→∞

|v(x, yn)− v(x, y0)| ≤ 2ǫ

by Lemma 4.1. Since ǫ is arbitrary we conclude with the desired result.

Proposition 4.5 Assume, in addition to Condition C4, that the gain function g is con-
tinuous. Then, when T < ∞, v(x, ·) is continuous.

Proof. Following the proof of the previous proposition choose y, y′ ∈ S with y < y′, fix
an arbitrary ǫ > 0 and choose an ǫ - optimal stopping time ρ′ǫ ∈ M′

T so that

0 ≤ v(x, y′)− v(x, y) ≤ ǫ+ Ẽ [e
−qΓ′

ρ′ǫ g(Gρ′ǫ
)− e

−qΓρ′ǫ∧AT g(Gρ′ǫ∧AT
)]. (26)

Note that ρ′ǫ ≤ A′
T and that ρ′ǫ ∧ AT is used since one cannot conclude that v(x, y) ≥

Ẽe−qΓρg(Gρ) for stopping times ρ which may exceed AT with positive probability. Therefore,
in contrast to the case where T = ∞, dominating the right-hand side of (26) leads to an
upper bound of

ǫ+ Ẽ
(

1− e
−q(Γρ′ǫ

−Γ′

ρ′ǫ
)
)

e
−qΓ′

ρ′ǫ |g(Gρ′ǫ
)| (27)

+ Ẽ
(

1− e
−q(T−Γ′

ρ′ǫ
)
)

e
−qΓ′

ρ′ǫ |g(Gρ′ǫ
)| I(AT < ρ′ǫ ≤ A′

T ) (28)

+ Ẽ e−qT |g(Gρ′ǫ
)− g(GAT

)| I(AT < ρ′ǫ ≤ A′
T ) (29)

by adding −e−qT g(Gρ′ǫ
) + e−qT g(Gρ′ǫ

) in the case where AT < ρ′ǫ ≤ A′
T .

Now replace y and y′ by yn and y0, respectively, with yn ↑ y0 in S. Suppose for now
that Lebesgue’s dominated convergence theorem can be applied to interchange limit and
expectation in (27),(28),(29). Then it can be shown that

lim
n→∞

|v(x, yn)− v(x, y0)| ≤ ǫ

proving left-continuity since ǫ was arbitrary. To see this first dominate

Γn
ρ0ǫ

− Γ0
ρ0ǫ

by Γn
A0

T
− T

performing a calculation similar to (24) but using T instead of N . Then (27) tends to ǫ as
n → ∞ by Lemma 4.1. Secondly, since {An

T < ρ0ǫ ≤ A0
T } = {Γ0

An
T
< Γ0

ρ0ǫ
≤ T}, both (28)

and (29) converge to zero as n → ∞ by Lemma 4.1 and the continuity of g.
Finally it remains to justify the application of the dominated convergence theorem.

Observe that

e−qT |g(Gρ0ǫ
)| ≤ e

−qΓ0
ρ0ǫ |g(Gρ0ǫ

)| = e
−qΓ0

ρ0ǫ |g(X̃0
Γ0
ρ0ǫ

)| ≤ sup
0≤t≤T

e−qt|g(X̃0
t )|

since ρ0ǫ ≤ A0
T and

e−qT |g(GAn
T
)| = e

−qΓn
An
T |g(GAn

T
)| ≤ sup

t≤A0
T

e−qΓ0
t |g(Gt)| ≤ sup

0≤t≤T

e−qt|g(X̃0
t )|
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since An
T ≤ A0

T for all n ≥ 1 which, by (3), gives an integrable bound with respect to all
three terms (27), (28), (29).

For the right-continuity, replace y and y′ by y0 and yn, respectively, assuming yn ↓ y0
in S. Note that

e−qT |g(Gρnǫ
)| ≤ e

−qΓn
ρnǫ |g(Gρnǫ

)| ≤ sup
t≤T

e−qt|g(X̃1
t )|

where the second inequality is obtained following the line of inequalities in (23) but using T
and y1 instead of N and ȳ, respectively. As e−qT |g(GA0

T
)| ≤ sup0≤t≤T e−qt|g(X̃0

t )| too, dom-

inated convergence can be applied again by (3) with respect to all three terms (27),(28),(29).
Then (27) tends to ǫ as n → ∞ by Lemma 4.1 since Γ0

ρnǫ
−Γn

ρnǫ
can be estimated by Γ0

An
T
−T .

Furthermore, (28) and (29) converge to zero as n → ∞ by Lemma 4.1 and the continuity
of g since T −Γn

ρnǫ
≤ T −Γn

A0
T

on {A0
T < ρnǫ ≤ An

T }. So, making ǫ arbitrarily small completes

the proof.

5 Application to Option Pricing

Assume that the dynamics of X are given by

dX = XY dB (1′)

which is the special case a(x) = x of equation (1). In mathematical finance (1′) describes a
simple model for the discounted price of an asset with stochastic volatility Y .

If exercised at a stopping time τ , the American options we have in mind would pay off
g(erτXτ ) where r > 0 stands for the instantaneous interest rate which is assumed to be
constant. So, for notational convenience, the discount rate q is replaced by r throughout
this section.

In this setup, assuming the measure Px,y is used for pricing when X0 = x and Y0 = y,
the price of such an option with maturity T ∈ [0,∞] is

v(x, y) = sup
0≤τ≤T

Ex,y [e
−rτg(erτXτ )] (2′)

where the supremum is taken over all finite stopping times with respect to the filtration
generated by (X,Y ). This value function differs from the value function given by (2) since
g is not applied to Xτ but to erτXτ and, as a consequence, some of the conditions for our
results have to be adjusted slightly.

First, the condition

Ex,y

[

sup
0≤t≤T

e−rt|g(ertXt)|I(t < ∞)

]

< ∞ for all (x, y) ∈ R× S (3′)

is now assumed throughout. Then

v(x, y) = sup
τ∈TT

Ẽ [e−rτg(erτ X̃τ )] = sup
ρ∈MT

Ẽ [e−rΓρg(erΓρGρ)]

is the analogue to what was obtained in Propositions 2.4 and 3.3 for the value function
given by (2). However, in order to conclude the results of Theorems 2.5 and 3.5 for the new
value function, a new condition has to be imposed on g.
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Corollary 5.1 Let v be the value function given by (2′). In addition to the assump-
tions made in either Theorem 2.5 or 3.5 assume that g is a decreasing function. De-
fine Kg+

T to be the collection of all finite stopping times τ ≤ T with respect to the filtra-
tion generated by (X,Y ) such that g(erτXτ ) ≥ 0. Fix (x, y) ∈ R × S and assume that
v(x, y) = sup

τ∈Kg+
T

Ex,y [e
−rτg(erτXτ )]. Then:

v(x, y) ≤ v(x, y′) for all y′ ∈ S such that y ≤ y′,

so that v(x, y) is a lower bound for v(x, ·) on [y,∞) ∩ S.

Remark 5.2 (i) The proofs of this and the next corollary are contained in the Appendix.

(ii) If g is a monotone function then it has a left and a right-continuous version. Note
that the proof of Corollary 5.1 does not depend on choosing a specific version for g.
But, when applying the corollary to show continuity properties of the value function,
we will choose the right-continuous version in what follows.

(iii) Of course, Corollary 5.1 does not depend on the specific choice of the diffusion coeffi-
cient a in this section as long as (3′) and all other assumptions of Theorem 2.5 or 3.5
are satisfied.

(iv) If a(x) = x then Condition C2 or C2’ assumed in Corollary 5.1 ensures that the
discounted price X is a positive exponential local martingale of the form

Xt = x exp{
∫ t

0
Ys dBs −

1

2

∫ t

0
Y 2
s ds}, t ≥ 0, Px,y − a.s.,

since the stochastic integrals
∫ t

0 Ys dBs, t ≥ 0, are all well-defined. Furthermore,

because limt↑∞

∫ t

0 Y
2
s ds = ∞ Px,y - a.s., Xt tends to zero for large t as in the Black-

Scholes model.

(v) From (iv) above it follows immediately that, in the case a(x) = x, all processes
satisfying Conditions C1 and C2 on page 3 have the same law.

(vi) Note that, in this section, the equation for G in (13) on page 10 coincides with the
linear equation dG = GdW which has a unique non-exploding strong solution for all
G0 ∈ R. Hence Condition C3 on page 11 becomes a condition only on the coefficients
η, θ of the equation for ξ in (13).

We now consider the diffusion case and discuss the results of Section 4 for the value
function given by (2′). So, let S be an open subset of (0,∞), fix x ∈ R and replace
Condition C4 on page 14 by

C4’: – the gain function g is decreasing and satisfies {g ≥ 0} 6= ∅;
– the process (X,Y ) satisfies Conditions (3′), C1’, C2’ and the value function v

satisfies
v(x, y) = sup

τ∈Kg+
T

Ex,y [e
−rτg(erτXτ )] for all y ∈ S (16′)

for the chosen x (using the definition of Kg+
T given in Corollary 5.1);
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– Condition C3 holds true for the system (13) and the second equation in (13) has
a Feller solution.

Corollary 5.3 Let v be the value function given by (2′). Assume Condition C4’.

(i) If g is bounded from below then, when T = ∞, v(x, ·) is left-continuous and lower
semicontinuous.

(ii) If g is continuous and if for each y ∈ S there exists ȳ > y such that (y, ȳ) ⊆ S and

sup
y≤y′<ȳ

Ex,y′

[

sup
t≥N

e−rt|g(ertXt)|
]

→ 0 as N ↑ ∞,

then, when T = ∞, v(x, ·) is right-continuous.

(iii) If g is bounded from below and continuous then, when T < ∞, v(x, ·) is continuous.

6 Examples

Pricing of American Puts via Jobert and Rogers [JR2006] using the Markov mod-
ulated model

dX = XY dB, Y finite state Markov chain.

Notice that the value function in [JR2006] is more general than ours as the authors allow
for an interest rate which depends on Y . So in what follows we always mean a constant
interest rate when applying our results to the value function2 in [JR2006].

Obviously, the gain function g(x) = max{0,K − x} where K is the strike price is
decreasing and satisfies both Condition (3′) and

v(x, y) = sup
τ∈Kg+

T

Ex,y [e
−rτg(erτXτ )], (x, y) ∈ R× S.

The Condition C2 on page 3 is trivially satisfied since the Markov chain Y has finitely
many positive states, only. So, recalling Remark 5.2(iv)+(v), Corollary 5.1 implies that, for
fixed x ∈ R, the value function v(x, y) in [JR2006] is monotonously increasing in y ∈ S =
{y1, . . . , yd} provided Y is skip-free.

Knowing this monotonicity property of the value function massively reduces the com-
putational complexity of PROBLEM 1 on page 2066 in [JR2006]. The authors verified that
the value function is uniquely attained at a stopping time of the form3

τ⋆ = inf{t ≥ 0 : Xt < b[Yt]}

where the vector b[yi], i = 1, . . . , d, is indexed by the states of the Markov chain Y and
their PROBLEM 1 consists in finding the so-called thresholds b[yi] which are assumed to
be in the order b[y1] ≥ · · · ≥ b[yd]. It is then stated in a footnote on the same page

2Remark that the notation of the value function in [JR2006] is different because our Markov chain Y is,
in their terms, a function σ applied to the Markov chain playing the role of their volatility process.

3We again adapted the author’s notation to ours in the definition of τ⋆.
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2066 that ‘When it comes in practice to identifying the thresholds, no assumption is made
on the ordering, and all possible orderings are considered.’ Of course, this approach has
exponential complexity. Our result on the monotonicity of the value function would reduce
this complexity to choosing one ordering b[y1] > · · · > b[yd] if y1 < · · · < yd and Y is
skip-free. Indeed, since τ⋆ is the unique optimal stopping time for this problem, by general
theory, it must coincide with the first time the process (X,Y ) enters the stopping region
{(x, y) : v(x, y) = g(x)}. Thus, as it is not optimal to stop when g is zero in this example:

v(x, yi) = g(x) for x ≤ b[yi] while v(x, yi) > g(x) for x > b[yi]

for each i = 1, . . . , d which gives the unique ordering of the thresholds since g is strictly
decreasing on {g > 0}.

The Hull & White model [HW1987]

dX = X
√
V dB and dV = 2η V dBY + κV dt

where η, κ > 0 and B,BY are independent Brownian motions4. Setting Y =
√
V transforms

the above system into

dX = XY dB and dY = ηY dBY + θY dt

where θ = (κ − η2)/2. Assuming a positive initial condition, this equation has a pathwise
unique positive solution for every η, θ ∈ R. Calculating the equation for ξ in (13) on page
10 gives a constant diffusion coefficient η and if Z denotes ξ/η then

dZ = dW ξ +
θ

η2
Z−1dt

which formally is an equation for a Bessel process of dimension φ = 1+2θ/η2. This equation,
and so the equation for ξ, only has a unique non-exploding strong solution if φ ≥ 2 and
this solution stays positive when started from a positive initial condition. As made clear in
Section 3, the fact that Y satisfies Condition C2’ on page 10 can be derived from Condition
(8) with respect to

Γt =

∫ t

0

1

ξ2u
du = η2

∫ t

0

1

Z2
u

du, t ≥ 0.

Now, by applying Prop.A.1(ii)-(iii) in [H2010]) with respect to the second time integral
above, we see that Γ satisfies Condition (8) if φ ≥ 2. So, assuming φ ≥ 2, Remark
5.2(iv)+(vi) ensures that there is a unique strong Markov process (X,Y ) which satisfies
Conditions C1’ and C2’ on page 10 and that the system (13) satisfies Condition C3 on
page 11 in this example. Since Bessel processes are Feller processes (see [RY1999, p446]),
the second equation of (13) has a Feller solution.

Therefore if φ ≥ 2 (i.e. κ ≥ 2η2) then the conclusions of the Corollaries 5.1 and 5.3 apply
to perpetual American options whenever the corresponding pay-off function g satisfies the
conditions stated.

4Remark that 〈B,BY 〉 6= 0 is possible but we follow Hull & White’s original setup.
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The Heston model [H1993]

dX = X
√
V dB and dV = 2η

√
V dBY + κ(λ− V )dt

where η, κ, λ > 0 are constants and B,BY are Brownian motions, this time with covariation
δ ∈ [−1, 1]. The equation for V describes the so-called Cox-Ingersoll-Ross process and it is
well-known (see [CIR1985, p.391]) that, with a positive initial condition, this equation has
a pathwise unique positive solution if κλ ≥ 2η2. Setting Y =

√
V transforms the system

into

dX = XY dB and dY = η dBY +

(

θ1
Y

− θ2 Y

)

dt

with θ1 = (κλ − η2)/2 and θ2 = κ/2. It is clear that the pathwise uniqueness of the
equation for V ensures the pathwise uniqueness of positive solutions of the equation for Y .
Calculating the equation for ξ in (13) on page 10 yields

dξ =
η

ξ
dW ξ +

(

θ1
ξ3

− θ2
ξ

)

dt

hence Z = ξ2/(2η) satisfies

dZ = dW ξ +

(

φ− 1

2Z
− θ2

η

)

dt

with φ = θ1/η
2 + 3/2. By changing to an equivalent probability measure, this equation

for Z is transformed into an equation for a Bessel process of dimension φ which only has a
unique non-exploding strong solution if φ ≥ 2 and this unique strong solution stays positive
when started from a positive initial condition. All these properties and the Feller property
of Bessel processes carry over to the solutions of the equation for ξ. Finally, the process

Γt =

∫ t

0

1

ξ2u
du =

1

2η

∫ t

0

1

Zu
du, t ≥ 0,

satisfies (8) if φ ≥ 2 (apply Proposition A.1(ii)-(iii) in [H2010] to the second integral) which
implies Condition C2’ on page 10 following the arguments given in Section 3. So, as in
the previous example, all conditions imposed on X,Y, ξ in the Corollaries 5.1 and 5.3 are
satisfied if φ ≥ 2 or equivalently κλ ≥ 2η2.

Appendix

Proof of Lemma 2.3. Fix ρ ∈ M and r ≥ 0 and set

Ω0 = {ω ∈ Ω : s < Γt(ω) if and only if As(ω) < t for all 0 ≤ s, t < ∞}.

Then
{Γρ ≤ r} ∩ Ω0 ∩ {Ar < ∞} = {ρ ≤ Ar} ∩ Ω0 ∩ {Ar < ∞}

implies

{Γρ ≤ r} ∈ FG,Z,Z′

Ar
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since both P (Ω0 ∩ {Ar < ∞}) = 1 by Property P2,(9) and {ρ ≤ Ar} ∈ FG,Z,Z′

Ar
. Note that

Ω0 ∩ {Ar < ∞} ∈ FG,Z,Z′

Ar
as FG,Z,Z′

0 already contains all P̃ -null sets.

Similarly, if τ ∈ T then {Aτ ≤ r} ∈ FG,Z,Z′

AΓr
where AΓr = r a.s. by Property P1, thus

the inclusion FG,Z,Z′

AΓr
⊆ FG,Z,Z′

r must be true.

Lemma A.1 Let W,Z,A, M̃ be given on the filtered probability space (Ω̃, F̃ , F̃t, t ≥ 0, P̃ ) as
introduced in Section 2. Then the time-changed processes B̃ = M̃ ◦ A and Ỹ = Z ◦ A are
independent.

Proof. Let FW
t , t ≥ 0, denote the augmentation of the filtration generated by W and

define the so-called big filtration by

Fbig
t = FW

t ∨ σ({Zs : s ≥ 0}), t ≥ 0.

Note that W is an Fbig
t Brownian motion since W and Z are independent hence the stochas-

tic integral M̃ is a continuous Fbig
t local martingale. Since A is a functional of Z it must

be an Fbig
t - time - change by the definition of the big filtration. As A satisfies (9), it follows

from the Dambis-Dubins-Schwarz Theorem [RY1999, V.1.6] that B̃ = M̃ ◦ A is an Fbig
At

Brownian motion. But Ỹ = Z ◦ A is a functional of Z thus it must be independent of B̃
since σ({Zs : s ≥ 0}) ⊆ Fbig

0 = F̃big
A0

and B̃ is independent of Fbig
A0

.

Proof of Corollary 5.1. The only part of the proof where the additional condition on
g is needed is the verification of (12). But, for (2′), the modification of (12) reads

Ẽ [e−rΓρg(erΓρ Gρ) ≤ Ẽ [e−rΓ′

ρg(erΓ
′

ρGρ)] for every ρ ∈ M+
T

and the above inequality is indeed true because Γt ≥ Γ′
t, t ≥ 0, a.s., and g is decreasing.

Note that the above set of stopping times M+
T now denotes the set {ρ ∈ MT : g(erΓρ Gρ) ≥

0 a.s.}.

Proof of Corollary 5.3. First observe that Lemma 4.1 follows by simply applying
Corollary 5.1 instead of Theorem 3.5 and can therefore be used in the proof below.

Now, as the left-hand side of the estimate (19) is trivially bounded from below since g
is bounded from below, we obtain

Ẽe−rΓ0
ρg(erΓ

0
ρGρ) ≤ lim inf

n→∞
Ẽ e−rΓn

ρ g(erΓ
n
ρGρ)

using Fatou’s lemma, Lemma 4.1 and Remark 5.2(ii). The remaining arguments below
(20) used to show Proposition 4.2 also apply in the case where (2′) holds proving the left-
continuity claimed in Part (i). And finally, the lower semicontinuity follows by the argument
for lower semicontinuity given in Remark 4.3(i).

The proof of Part (ii) is along the lines of the proof of Proposition 4.4 with some small
changes emphasised below.

First, using the value function defined in (2′), the right-hand side of (22) is dominated
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by

ǫ+ Ẽ
(

1− e
−r(Γρ′ǫ

−Γ′

ρ′ǫ
)
)

e
−rΓ′

ρ′ǫ |g(erΓ
′

ρ′ǫGρ′ǫ
)|I(ρ′ǫ ≤ A′

N )

+ Ẽ e
−rΓρ′ǫ |g(erΓ

′

ρ′ǫGρ′ǫ
)− g(e

rΓρ′ǫGρ′ǫ
)|I(ρ′ǫ ≤ A′

N )

+ Ẽ [sup
t≥N

e−rt|g(X̃ ′
t)| ] + Ẽ [sup

t≥N

e−rt|g(X̃t)| ]

where the middle term

Ẽ e
−rΓρ′ǫ |g(erΓ

′

ρ′ǫGρ′ǫ
)− g(e

rΓρ′ǫGρ′ǫ
)|I(ρ′ǫ ≤ A′

N ) (30)

is new. Note that the ǫ - optimal stopping time ρ′ǫ can be chosen from the set (M′)+ = {ρ ∈
M : g(erΓ

′

ρGρ) ≥ 0} and so

e
−rΓ′

ρ′ǫ |g(erΓ
′

ρ′ǫGρ′ǫ
)| = e

−rΓ′

ρ′ǫg(e
rΓ′

ρ′ǫGρ′ǫ
) ≤ e

−rΓȳ

ρ′ǫg(e
rΓȳ

ρ′ǫGρ′ǫ
)

≤ sup
t≥0

e−rΓȳ
t |g(erΓȳ

t Gt)| ≤ sup
t≥0

e−rt|g(ertX̃ ȳ
t )|.

Using this in place of the upper bound on the right-hand side of (23), we obtain that

|v(x, y′)− v(x, y)| ≤ 3ǫ+ Ẽ
(

1− e
−r(ΓA′

N
−N)

)

sup
t≥0

e−rt|g(ertX̃ ȳ
t )|

+ Ẽ e
−rΓρ′ǫ |g(erΓ

′

ρ′ǫGρ′ǫ
)− g(e

rΓρ′ǫGρ′ǫ
)|I(ρ′ǫ ≤ A′

N ).

So, after y and y′ were replaced by y0 and yn respectively, it only remains to show that

lim
n→∞

Ẽ e
−rΓ0

ρnǫ |g(erΓ
n
ρnǫ Gρnǫ )− g(e

rΓ0
ρnǫ Gρnǫ )|I(ρnǫ ≤ An

N ) = 0. (30′)

This limit refers to the new term in (30) which was not considered in the proof of Proposition
4.4. But, by dominated convergence, (30′) would follow if, for almost every ω ∈ Ω, the
equality

lim
n→∞

|g(erΓ
n
ρnǫ (ω)

(ω)
Gρnǫ (ω)

(ω))− g(e
rΓ0

ρnǫ (ω)
(ω)

Gρnǫ (ω)
(ω))|I(ρnǫ (ω) ≤ An

N (ω)) = 0 (31)

holds, and this is true. Indeed, choose ω ∈ Ω such that both Γ0
An

N
(ω)(ω) → N as n → ∞

and t 7→ Gt(ω) is continuous. Define

c1 = sup
t≤A

ȳ0
N (ω)

|Gt(ω)|, c2 = Γ0
A

ȳ0
N (ω)

(ω)

and observe that

0 ≤ ρnǫ (ω)I(ρ
n
ǫ (ω) ≤ An

N (ω)) ≤ Aȳ0
N (ω)I(ρnǫ (ω) ≤ An

N (ω)), n = 1, 2, . . . ,

since yn ↓ y0 and y1 < ȳ0 by assumption. The functions g and t 7→ ert are uniformly
continuous on [−erc2c1, e

rc2c1] and [0, c2], respectively. Hence, for the chosen ω, the equality
(31) follows from

0 ≤
(

Γ0
ρnǫ (ω)

(ω)− Γn
ρnǫ (ω)

(ω)
)

I(ρnǫ (ω) ≤ An
N (ω)) ≤

(

Γ0
An

N (ω)(ω)−N
)

→ 0 as n → ∞,
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and almost all ω are of this type since the map t 7→ Gt is almost surely continuous and
limn→∞ Γ0

An
N

is almost surely equal to N by Lemma 4.1.

Part (iii) can be shown by combining the ideas of the proof of Part (ii) and the proof
of Proposition 4.5. In addition to (27,28,29) there will be an extra term like (30). We only
need to justify why Lebesgue’s dominated convergence theorem can be applied with respect
to this extra term after substituting the sequence yn, n = 1, 2, . . . , and here, but only in
the case of yn ↑ y0, one needs g to be bounded from below.
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