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Setup
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Problem: the optimal control problem: Given a filtered probability
space Q, (F:), F,P) and a jointly continuous f, find for each x

ef T
V() % sup BL[ F(XT,Ne)dt + g(XM)1(rco0)]
Ne Ay 0

where

(1) X takes value in some topological space S, 7 is the first exit
from some domain D in S, I takes values in a (sequentially)
compact space A and is adapted.

(2) For each a € A we assume that the constant process a is in
each A, and that X? is a strong Markov process with
(martingale) infinitesimal generator L? and domain D?. We
assume that C is a nonempty subset of N,caD? with the
property that L?¢(x) is jointly continuous in (x,a) € D x A for
each ¢ € C.
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(3) A consists of all those adapted processes [1 such that there
exists a unique adapted, right-continuous process X' with

1. XorI = X;
2. for each ¢ € C,

tAT
¢(thAT) — / Lnsqb(Xsn)ds is a martingale; (1)
0
and defining J by
Joe) = [ FXPN)de + 8O
0
we have
tAT /1
/ f(th,”t)dt+g(XTr')1(T<oo) = J(x, ).
0

We refer to elements of A, as controls.
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1. Discounted infinite horizon problem. Here X? is a killed
Markov process with S = D U {0} with O an isolated cemtery
state. Killing to O is at rate a and 7 is the death time of the
process.

2. The finite horizon problem. Here we have Y? a Markov
process on S’ with infintesimal generator G. 7 is the time to
the horizon Then S=5 xRand D=5 x RTt, so if
x=(y,T)then X2 =(Y7, T—1t), 7=T and La:g—%
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Policies and improvements
The policy improvement algorithm (PI1A) Improvement works

convergence of payoffs
Convergence of policies

We define Markov policies as follows: 7 is a Markov policy if

lL.1: S5—=A
and for each x € D there exists a unique (up to
indistinguishability) X such that

2. Xo = X,
3. M given by Ny = 7(X;) is in A,
4. X" =X.

Hereafter we denote such an X by X7.

Given x and I € A, we define the payoff, V''(x) = E[J(x, )] and
in a corresponding fashion for Markov policies 7.

We say that a Markov policy is improvable if V™ € C and denote
the collection of improvable Markov policies by /.
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Policies and improvements
The policy improvement algorithm (PI1A) Improvement works

convergence of payoffs
Convergence of policies

If is a Markov policy, we say that 7’ is an improvement of  if,

1. foreach xe D

7'(x) € arg r‘:‘r’1€alé>‘<[La V7™(x) + f(x, a)]

L7CIVT() 4 £(x,7'(x)) = sup[L7V7(x) + F(x, )],

and

2. « is also a Markov policy.
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Policies and improvements
The policy improvement algorithm (PI1A) Improvement works

convergence of payoffs
Convergence of policies

The PIA works by defining a sequence of improvements and their
associated payoffs: so 7,1 is the improvement of 7.

Assumptions A

Al There exists a non-empty subset /* of / such that
mo € I* implies that 7, € I* for each n (issue is
whether V™ € C and whether the sup is attained)
and each 7, is continuous.

A2 For mg € I*,

VT (X ) = VT (X C Z, >0 a.s. foreach x € D.

Saul Jacka, Warwick Statistics The PIA in a continuous setting



Policies and improvements
The policy improvement algorithm (PI1A) Improvement works

convergence of payoffs
Convergence of policies

Theorem 1
Under Assumptions Al and A2,

V7Tl > /7 for each n.
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Policies and improvements
The policy improvement algorithm (PI1A) Improvement works

convergence of payoffs
Convergence of policies

Assume from now on that Assumptions Al and A2 hold and that
we have fixed a my in /™.

Assumptions B

A3 V is finite on D.

A4 There is a subsequence (ng)k>1 such that
L™t Vo (x) 4 (x, Ty 11(x)) =3 0 uniformly in x € D.
A5 For each x, each 1 € A, and each n

Tn L
v (Xt!_/I\T) - g(Xl!_/I\T)]'(T<OO)

Saul Jacka, Warwick Statistics The PIA in a continuous setting



Policies and improvements
The policy improvement algorithm (PI1A) Improvement works

convergence of payoffs
Convergence of policies

Theorem 2
Under Assumptions A and B,

VLR
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Policies and improvements
The policy improvement algorithm (PI1A) Improvement works

convergence of payoffs
Convergence of policies

Assume from now on that Assumptions Al to A5 hold and that we
have fixed a mg in /*.

Assumptions C

A6 For any mg € I*, (mn)n>1 is sequentially precompact
in the sup norm topology.
A7 For any sequence 7, € I*, if
> ¢, € Cforall nand ¢, =3 ¢ pointwise
> L™¢, e Q
n—oo .
> T, — T in sup norm
then
peCand L"p=Q.

A8 For each x, each N € A,

11
V(th/\r) - g(Xtr/I\T)l(T<oo) .
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Policies and improvements
The policy improvement algorithm (PI1A) Improvement works

convergence of payoffs
Convergence of policies

Theorem 3
Under Assumptions Al to A8, for any mg in [*, there is a
subsequence m,, such that w, — 7* and V™ =V
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Discounted, infinite horizon controlled diffusion.

Take D =R9 and S = R U {0} and C = CZ(R? R), the
bounded, C?, real-valued functions on R?. Suppose that X is a
controlled (killed) Ito diffusion in R? so that

26 = So(-,2) Hoo(,2) + u(,2) V6 — a(,2)o,

where H¢ is the Hessian (%). Assume that

Assumption N1 o(x, a), u(x, a), a(x, a) and f(x, a) are uniformly
(in a) Lipschitz on compacts in R? and are
continuous in a; « is bounded below by A > 0, ¢ is
uniformly elliptic and f is uniformly bounded by
M.

Assumption N2 Suppose that the control set A is a compact
interval [a, b].
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For every h € C and x € RY, let I,(x) denote an element of
arg max,ea[L?h(x, a) + f(x, a)].

Assumption N3 If the sequence (h,) € C?, if the sequence
(Hhp)n>1 is uniformly bounded on compacts, then we
may choose the sequence /I, to be uniformly
Lipschitz on compacts.

Remark This assumption is very strong. Neverthless, if o is
independent of a and bounded, p = u1(x) — ma,

a(x,a) = ai(x) + ca and f(x,a) = f(x) — f(a) with f, € C! and
with strictly positive derivative on A, and assumptions N1 and N2
hold then N3 holds.
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Proposition 4

Under Assumptions X1 to N3, Assumptions Al to A8 hold and
the PIA converges for mg locally Lipschitz.

Proof Note: L2¢ is jointly continuous if ¢ is in C and (with the
usual trick to deal with killing) (1) holds for any M such that
there is a solution to the killed equation

t t
XM :(x—|—/ a(xs”,ns)d35+/ p(XS”,I'IS)ds)l(KT)+81(tZT).
0 0

and any locally Lipschitz 7 is a Markov policy (by strong
uniqueness of the solution to the SDE).
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(A1) If mg is Lipschitz on compacts then by Assumption
N3, Al holds.

(A3) Boundedness of V (A3) follows from the boundedness
of f and the fact that « is bounded away from 0.

(A6) Assumption N3 implies that (7,) are uniformly
Lipschitz and hence sequentially precompact in the
sup-norm topology (A6) by the Arzela-Ascoli
Theorem.

(A5) g =0 and since « is bounded away from 0, for any

M, X" — 9. Now V"(9) = 0 and so, by bounded
convergence, (A5) holds:
Tn L
v (Xt!_/I\T) - g(XL!_/I\T)l(T<oo)
(A2) Similarly, (A2) holds:

V(X — ve(xait) S o
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(A4) (A4) is tricky. Note that we have (Al), (A2) so by
Theorem 1, V" 1. Moreover, since (A3) holds,
V4 VIim Now take a subsequence (ny) such that
(Tng> Tnyy) — (%, 7) uniformly on compacts. Then
the corresponding o etc. must also converge. Denote
the limits by o*, & etc. Then (see Friedman [1]),
Vim e C2 and VV™, V Vi — v VIim
HV"™ HV"™+1 — HVm yniformly on compacts and
LFVIim 4 £(.,%(-)) = 0. Now, from the convergence
of the derivatives of V",
LTwsr VO 4 f (o o () = LEVIM 4 £ 7(1) =0
uniformly on compacts.

(A7) and (A8) From Friedman.

Saul Jacka, Warwick Statistics The PIA in a continuous setting



Finite horizon controlled diffusion.
This is very similar to the previous example if we add the
requirement that g is Lipschitz and bounded.

Remark In both examples we need to prove that V is continuous
before we can apply the usual pde arguments.
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Lemma 4
Under Assumptions Al and A2,

L™ V7 (x) + f(x,7mn(x)) =0 for all x € D
Proof We know that
tAT
V(X — / L™ V(XTI ds
0

is a martingale and the ususal Markovian argument shows that
therefore

/OMT(L’T" V™ 4 F(, () (XE7)ds = 0.

The result then follows from continuity of L™ V™ + f(-, 7py(+))
and the right continuity of X™.
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Proof of Theorem 1
Take mg € I* and x € D and define

Se = (VT = V) (XERE)-
By assumption, V™1 and V™ are in C so
tAT
V(X[ —/ LT+t Tk (X Tl ) dls
0
is a martingale for k =n, n+ 1. So,
tAT
S = (VYY) My [ (v v s
0
where M is a martingale. Thus
tAT
S = (V- V””)(x)+Mt/\T—/ sup[LPVTr+£ (-, a)](XI+1)ds,
0 a

by Lemma 4 and the definition of w41 U
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Appealing to Lemma 4 again, the integrand is non-negative and
hence S is a supermartingale. Taking expectations and letting
t — oo we obtain the result using A2.
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Proof of Theorem 2

From Theorem 1 and A3, V™ 4 V™ for a suitable finite limit
bounded above by V. Fix x and Nl € A, and take the
subsequence in A4. Set

tAT
Sk = (V”nk(X&T)+/ f(xI,Ny))ds,
0

It follows that there is a martingale M* such that
St =S¢ + My + Jg I VT 4 £ M)I(XT)ds
< S+ ME + [ maxa[L2V 4 (-, a)|(XT)ds
=S¢ + My, + Jo TILTV T A (- w1 ()X ds

So
tAT
BSE< S BL[ LAV IO (2
0
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Letting k — oo in (2) we obtain, by monotone convergence, that
. tAT .
BV + [ A N)ds] < V().
0
Now by A5, since V™ > V™ for each k we get
“mtinfEV”m(th/\T) > IF‘g()<1fr/l\7')]'(’r<c>o)a

and so VM > VM for each M € A, and so V'™ > V. However
VIim <V so we have equality O
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Proof of Theorem 3
From A5

Ll
Vﬂ-n(Xtrl/\T) — g(XtrI/\‘r)l(T<oo) .

uniformly in x and now take a subsequence, denoted (m;) so that
T, —> T

By A7, V€ Cand L™ V + f(-,7*(-)) = 0 so, defining

tAT
Miy, (v (X + /0 F(XE 7 (X)) ds,

is a martingale. Thus, defining

*

i def Tmj T AT T * T
SLE (VX)) + A FIXT 7™ (X ))ds,
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we have
tAT .
S= VP [V ) ()
0
Now for each t, S} 1+ V(X7r,) + [&"T F((XZ",7*(XZ"))ds, by AS,

while the L! limit of the RHS of (3) is V( ) by A4, Letting t — o0
we obtain the result that V™ = V by A8 O

Saul Jacka, Warwick Statistics The PIA in a continuous setting



[d A Friedman, Partial Differential Equations of Parabolic Type.
Prentice-Hall, Englewood Cliffs, N.J., 1964.
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