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Introduction Dynamic stochastic control with control-dependent information

Some control examples

Example 1
We have two Brownian Motions, B0 and B1. We may only observe one
of them at any given time. We acquire a running reward of the difference
between the BM we observe and the unobserved one.

At any time we may
pay a state-dependent cost K to switch our observation to the other BM.
The control process, c , is any cadlag process taking values in {0, 1},
adapted to the filtration Gct :=σ(Bcs

s : s ≤ t), and representing the index
of the BM we choose to observe.
We denote by σc(t) the last time that we changed our observed BM i.e.
the last jump time of c before time t, and τ c(t) is the lag since the last
jump i.e. τ c(t) = t − σc(t). Then we define Z c as follows:

Z c
t :=Bc

t − B1−c
σc (t),

so that Z c is the conditional mean of Bc − B1−c given observations up
to time t.
The reward J (which we seek to maximise) is given by

J(c) =

∫ ∞
0

e−αtZ c
t dt −

∫ ∞
0

e−αtK (Z c
t−, τ(t−))|dct |
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Some control examples

Example 2

The controlled process X is merely a process in Rn (later just R). The
control c is the drift of X and is bounded in norm by 1 so

dX c
t = ctdt + σdWt ,

where W is a BM and ||ct || ≤ 1.

There is an underlying random measure on Rn, µ (which we will later
assume to be Poisson with rate λ).
We (progressively) observe the restriction of µ to the closure of the path
traced out by the unit ball around X c .
The objective function J (to be minimised) is

J(c) =

∫ τ c

0

µ(B(X c
t ))dt + κ1(τ c<∞),

where τ c is a stopping time (time of retirement) which we also control.
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Some control examples

Example 3

N is a Poisson process of unit intensity with arrival times (Sn)n∈N0 ,
S0 := 0, Sn <∞ for all n ∈ N. (Rn)n∈N0 is a sequence of random signs
with P(Rn = +1) = 1− P(Rn = −1) = 2/3.
The “observed process” is

W := W0 + N +

∫ ·
0

∑
n∈N0

Rn1[Sn,Sn+1)(t)dt

(so W has a drift of Rn during the random time interval [Sn,Sn+1),
n ≥ 0). Let G be the natural filtration of W .
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Some control examples

The set of controls, C, consists of real-valued, measurable processes,
starting at 0, which are adapted to the filtration Ft :=σ(WSn : Sn ≤ t).
Intuitively, we must decide on the strategy for the whole of [Sn,Sn+1)
based on the information available at time Sn already.
For X ∈ C consider the penalty functional

J(X ) :=

∫
[0,∞)

e−αt1(0,∞) ◦ |Xt −Wt |dt

Let v := infX∈C EJ(X ) be the optimal expected penalty; clearly an
optimal control is the process X̂ which jumps to WSn at time Sn and
assumes a drift of +1 in between those instances, so that v = 1/(3α).
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Some control examples

Next, for X ∈ C, let

V X
S := P-essinfY∈C,Y S=X S E[J(Y )|GS ], S a stopping time of G,

be the “Bellman system”.

(1) It is clear that the process (Vt)t∈[0,∞) (the Bellman process (i.e.
system at the deterministic times) for the optimal control), is not mean
nondecreasing —in particular, is not a submartingale, let alone a
martingale with respect to G.

(2) Nevertheless the process (V X
Sn

)n∈N0 is a discrete-time submartingale

(and martingale when X = X̂ ) with respect to (GSn)n∈N0 , for all X ∈ C.
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Some control examples

Example 4

Consider coherent risk measures (with a sign change) in multiperiod
setting.
So, in the simplest case with no cash flows,

ρ(X ):= sup
Q∈Q

EQ[X ],

where Q is some collection of probability measures absolutely continuous
with respect to some reference measure P.
We can think of this as a stochastic control problem using the change of
measure/Girsanov approach.

Now consider the particular case of “expected shortfall” where,

Q = {Q :
dQ
dP
≤ λ},

for some fixed λ > 1.
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Some control examples

Note: the Basel III accords have fixed on this as the technical measure of
risk for reserving and accounting purposes for dervatives and similar
contracts.

Question: is this a stochastic control problem in the dynamic sense? I.e.
if we define

ρt(X ):=esssupQ∈QEQ[X |Ft ],

is it the case that
ρt = ρt ◦ ρt+s?

Answer: no, not in general.
Delbaen gave a nsc for this sort of temporal consistency: m-stability. And
in general expected shortfall is not m-stable.
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Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

I is random; the objective being to maximize/minimize its expectation;

I subject to exogenous influence;

I controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1. May be partial (observable vs. accumulated information).

2. Moreover, may depend on the control.

The phenomenon of control-dependent-information is common.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.
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Motivation

Motivation (cont’d)

Question: Can we offer a consistent general framework for optimal
dynamic stochastic control, with an explicit control-dependent
informational structure, and that comes equipped with an abstract
version of Bellman’s optimality (/super/martingale) principle?
Key ingredient is the modeling of information:

I What then is the typical & most important example of a
control-dependent filtration?

It is the (completed) natural filtration
of an observed (controlled) process.

I Informational consistency appears crucial:

If two controls agree up to a certain time, then what we
have observed up to that time should also agree.

I At the level of random (stopping) times, and in the context of
(completed) natural filtrations of processes, this ‘obvious’
requirement becomes surprisingly non-trivial (at least in continuous
time).
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Motivation

Motivation (cont’d)

Question: if X and Y are two processes, and S a stopping time (of one
or both) of their (possibly completed) natural filtrations, with the stopped
processes agreeing, X S = Y S (possibly only with probability one), must
the two (completed) natural filtrations at the time S agree also?

Example 5
Let E be an Exp(1) r.v. and I a r.v. uniformly distributed on
{0,−1,−2}. Define the process Xt := I (t − e)1[0,t](e) , t ∈ [0,∞), so X
is zero until time E and then has drift I , and the process
Yt := (−1)(t − e)1[0,t](e)1(I<0), t ∈ [0,∞), so Y has drift equal to the
maximum of −1 and the drift of X .
The completed natural filtrations of X and Y are already
right-continuous. The first entrance time S of X into (−∞, 0) is equal to
the first entrance time of Y into (−∞, 0), and this is a stopping time of

FX as it is of FY (but not of FX and not of FY ) (S = E1I 6=0 +∞1I=0).
Moreover, X S = 0 = Y S .
Consider now the event A := {I = −1}. Then it is clear that A ∈ FX

S

but A 6∈ FY
S .
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Overview

Overview

I On the ‘optimal dynamic stochastic control’ front:

1. Of course, the phenomenon of control-dependent information has
been studied in the literature in specific situations/problems; but
focus there on reducing (i.e. a priori proving a suitable equivalence
of) the original control problem, which is based on partial
control-dependent observation, to an associated ‘separated’ problem,
which is based on complete observation, at least in some sense.

2. As far as general frameworks go, however, hitherto, only a single,
non-control dependent (observable) informational flow appears to
have been allowed.

I On the ‘informational consistency’ front:

1. What is essentially required is a test “connecting σ(X S) with FX
S ”.

2. In literature this is available for coordinate processes on canonical
spaces.

3. However, coordinate processes are quite restrictive, and certainly not
very relevant to stochastic control.
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Informal statement of results

Informal statement of results

I Basically: we answer in the affirmative the two questions posed
above.

I Specifically:

1. We put forward a general stochastic control framework which
explicitly allows for a control-dependent informational flow. In
particular, we provide a fully general (modulo the relevant (technical)
condition) abstract version of Bellman’s principle in such a setting.

2. With respect to the second question, a generalization of (a part of)
Galmarino’s test to a non-canonical space setting is proved, although
full generality could not be achieved.

See [[1], [2], [3], [4], [5], [6], [7], [8]] for some examples!
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Convention

The modeling of the informational flow using filtrations, can be done in
one of the following two, essentially different, ways: With or without
completion. We’ll do both with any differences denoted by {} braces.
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Stochastic control systems

An abstract stochastic control system
We will see a system of stochastic control as consisting of:

(T ,C,Ω, (F c)c∈C, (Pc)c∈C, J, (Gc)c∈C) ,

where
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Stochastic control systems

(i) A time set T with a linear ordering ≤. We assume T = N0 or R+.

(ii) A set C of admissible controls.

(iii) A non-empty sample space Ω endowed with a collection of
σ-algebras (F c)c∈C. Here F c is all the information accumulated by
the “end of time”/ a “terminal time”, when c is the chosen control.

(iv) (Pc)c∈C, a collection of {complete} probability measures, each Pc

having domain which includes the {Pc -complete} σ-field F c (for
c ∈ C).

(v) A function J : C→ [−∞,+∞]Ω, each J(c) being F c measurable
(as c runs over C) {and defined up to Pc -a.s. equality}. We further
insist EPc

J(c)− <∞ for all c ∈ C [we are maximising]. Given the
control c ∈ C, J(c) is the random payoff.

(vi) A collection of filtrations (Gc)c∈C on Ω. We assume that
Gc∞ := ∨t∈TGct ⊂ Fc , and (for simplicity) that each Gc0 is Pc -trivial
{and Pc -completed}, while Gc0 = Gd0 {i.e. null sets are constant over
C} and Pc |Gc

0
= Pd |Gd

0
for all c , d ∈ C. Gct is the information

acquired by the controller by time t ∈, if the control is c .
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Stochastic control systems

The dynamical structure

Definition (Controlled times)

A collection of random times S = (Sc)c∈C is called a controlled time, if
Sc is a {defined up to Pc -a.s. equality} stopping time of Gc for every
c ∈ C.

We assume given: a collection G of controlled times, and also a family
(D(c ,S))(c,S)∈C×G of subsets of C for which ‘certain natural’ conditions
hold true – stemming from the interpretation that D(c ,S) are the
controls agreeing with c up to time S.

We write c ∼S d for d ∈ D(c ,S).
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Stochastic control systems

We assume that (D(c ,S))(c,S)∈C×G is a collection of subsets of C for
which:

(1) c ∈ D(c ,S) for all (c ,S) ∈ C× G.

(2) For all S ∈ G and c , d ∈ C, d ∈ D(c ,S) implies Sc = Sd {Pc &
Pd -a.s}.

(3) If S, T ∈ G, c ∈ C and Sc = T c {Pc -a.s}, then D(c ,S) = D(c , T ).

(4) If S, T ∈ G and c ∈ C is such that Sd ≤ T d {Pd -a.s.} for each
d ∈ D(c , T ), then D(c , T ) ⊂ D(c ,S).

(5) For each S ∈ G, {D(c ,S) : c ∈ C} is a partition of C.

(6) For all (c ,S) ∈ C× G: D(c ,S) = {c} (resp. D(c ,S) = C), if Sc is
identically {or Pc -a.s.} equal to ∞ (resp. 0).

For example:

For all S ∈ G and c , d ∈ C: d ∈ D(c ,S) implies Sc = Sd {Pc

& Pd -a.s}.
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Stochastic control systems

Temporal consistency and optimality

Assumption (Temporal consistency)

For all c , d ∈ C and S ∈ G satisfying c ∼S d , we have GcSc = GdSd and
Pc |Gc

Sc
= Pd |Gd

Sd
.

Now we can define the optimal payoff.

Definition (Optimal expected payoff)

We define v := supc∈C EPc

J(c) (sup ∅ := −∞), the optimal expected
payoff. c ∈ C is said to be optimal if EPc

J(c) = v .
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The conditional payoff and the Bellman system

The conditional payoff and the Bellman system

Definition (Conditional payoff & Bellman system)

We define for c ∈ C and S ∈ G:

J(c ,S) := EPc

[J(c)|GcSc ],

and then
V (c ,S) := Pc |Gc

Sc
-esssupd∈D(c,S)J(d ,S);

and say c ∈ C is conditionally optimal at S ∈ G, if V (c ,S) = J(c ,S)
Pc -a.s.
(J(c ,S))(c,S)∈C×G is called the conditional payoff system and
(V (c ,S))(c,S)∈C×G the Bellman system.
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Bellman’s principle

A (vital) lattice condition

Assumption (Upwards lattice property)

For all c ∈ C, S ∈ G and {ε,M} ⊂ (0,∞), (J(d ,S))d∈D(c,S) enjoys the
(ε,M)-upwards lattice property:

For all {d , d ′} ⊂ D(c ,S) there exists a d ′′ ∈ D(c ,S) such that
Pc -a.s.

J(d ′′,S) ≥ (M ∧ J(d ,S)) ∨ (M ∧ J(d ′,S))− ε.

This condition represents a direct linking between C, G and the collection
(Gc)c∈C. In particular, it may fail at deterministic times, as in Example 3.
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Bellman’s principle

Theorem (Bellman’s principle)

(V (c ,S))(c,S)∈C×G is a (C,G)-supermartingale system: that is, whenever

S, T ∈ G and c ∈ C satisfy Sd ≤ T d {Pd -a.s.} for every d ∈ D(c , T ),
Pc∗ -a.s.:

EPc

[V (c , T )|GcSc ] ≤ V (c ,S).

Moreover, if c∗ ∈ C is optimal, then (V (c∗, T ))T ∈G is a G-martingale:
i.e. for any S, T ∈ G with Sd ≤ T d {Pd -a.s.} for each d ∈ D(c∗, T ),
Pc∗ -a.s.,

EPc∗

[V (c∗, T )|Gc
∗

Sc∗ ] = V (c∗,S).

Conversely, and regardless of whether the “upwards lattice assumption”
holds true, if G includes a sequence (Sn)n∈N0 for which (i) S0 = 0, (ii)
the family (V (c∗,Sn))n≥0 has a constant Pc∗ -expectation and is
uniformly integrable, and (iii) V (c∗,Sn)→ V (c∗,∞), Pc∗-a.s. (or even
just in Pc∗-probability), as n→∞, then c∗ is optimal.
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Bellman’s principle

Theorem (Minimal supermartingale)

Assume the upwards lattice property and that ∞ ∈ G. Then V is the
minimal (C,G)-supermartingale W satisfying the terminal condition
W (c ,∞) ≥ EPc

[J(c)|Gc∞] for each c ∈ C.

Theorem (Observational consistency)

Let X and Y be two processes (on Ω, with time domain T and values in
(E , E), S an FX and an FY -stopping time. Suppose furthermore
X S = Y S . If any one of the conditions

(1) T = N0.

(2) ImX = ImY .

(3) (a) (Ω,G) (resp. (Ω,H)) is Blackwell for some σ-field G ⊃ FX
∞ (resp.

H ⊃ FY
∞).

(b) σ(X S) (resp. σ(Y S)) is separable and contained in FX
S (resp. FY

S ).
(c) (ImX S , E⊗T |ImXS ) (resp. (ImY S , E⊗T |ImY S )) is Hausdorff.

is met, then FX
S = FY

S .
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Bellman’s principle

Theorem (Observational consistency II)

Let Z and W be two processes (on Ω, with time domain [0,∞) and
values in E ); PZ and PW probability measures on Ω, sharing their null
sets, and whose domain includes FZ

∞ and FW
∞ , respectively; T a

predictable FZ
PZ

and FW
PW

-stopping time. Suppose furthermore
ZT = W T , PZ and PW -a.s. If for two processes X and Y , PZ and
PW -indistinguishable from Z and W , respectively, and some stopping
times S and U of FX and FY , respectively, PZ and PW -a.s. equal to T :

(1) (Ω,G) (resp. (Ω,H)) is Blackwell for some σ-field G ⊃ FX
∞ (resp.

H ⊃ FY
∞).

(2) σ(X S) (resp. σ(Y U)) is separable and contained in FX
S (resp. FY

U ).

(3) (ImX S , E⊗[0,∞)|ImX S ) (resp. (ImY U , E⊗[0,∞)|ImY U )) is Hausdorff.

then FZ
PZ

T = σ(ZT )
PZ

= σ(W T )
PW

= FW
PW

T .
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Examples again

Example 1

Recall that c is the control process taking values in {0, 1}, and
representing the index of the BM we choose to observe. The two BMs
are B0 and B1 and we denote by σc(t) the last time that we changed our
observed BM i.e. the last jump time of c before time t, and τ c(t) is the
lag since the last jump i.e. τ c(t) = t − σc(t). Then we define Z c as
follows:

Z c
t :=Bc

t − B1−c
σc (t),

so that Z c is the conditional mean of Bc − B1−c given Gct .
The reward J is given by

J(c) =

∫ ∞
0

e−αtZ c
t dt −

∫ ∞
0

e−αtK (Z c
t−, τ(t−))|dct |
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We will solve this in the following special case:

K (z , t) =∞ : z > −l

where

K (z , t) =
∫
R dwφ(w)[(ψ(z −

√
tw)− k(

√
tw − z))1(z−

√
tw>l)

+ψ(
√
tw − z)1(z−

√
tw≤l)]− ψ(−z) + k(z) : z ≤ −l ,

ψ : z 7→ z
α + Ae−γz and

k : z 7→ ∞ : z > −l

k : z 7→ [ψ(l)− ψ(−l)]eγ(z+l) : z ≤ −l ,

with γ =
√

2α, A = 3

2γαe
1
2

and l = 1
2γ .

Clearly any c which jumps when Z c is above level −l attracts infinite
cost. For controls which do not do this, define
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Sc
t =

∫ t

0

e−αsZ c
s ds −

∫ t

0

e−αsK (Z c
s−, τ(s−))|dcs |+ e−αtV (Z c

t , τ
c(t)),

for a function V to be defined shortly. Bellman’s principle tells us that
this should be a Gct supermartingale and a martingale if c is optimal
provided that V gives the optimal payoff.
We define V by

V (z) = ψ(z) : z ≥ −l

V (z) = ψ(−z)− k(z) : z ≤ −l ,

and observe that V is C 1, and C 2 except at −l . We claim that V is the
optimal payoff and an “optimal policy”is to switch (i.e. jump c) every
time that Z c hits −l . Denote this policy by ĉ .
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Now to show that Bellman’s principle holds for this V we need to show:

1. 1
2V
′′(z)− αV (z) + z ≤ 0;

2. 1
2V
′′(z)− αV (z) + z = 0 for z > −l ;

3.
∫
R dwφ(w)(V (

√
tw − z)− K (z , t)− V (z) ≤ 0;

4.
∫
R dwφ(w)(V (

√
tw − z)− K (z , t)− V (z) = 0 for z ≤ −l ;

5. S ĉ
t is a ui martingale and converges to J(ĉ).
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Example 2

Recall that (setting n = 1 and σ = 0) the controlled process X is merely
a process in R. The control c is the drift of X and is bounded in norm by
1 so

dX c
t = ctdt.

There is an underlying random poisoon measure µ with rate λ.
The filtration Gc is given by Gct = σ(µ|∪s≤tB(X c

s )), where B(x) denotes

the unit ball centred on x . This means we observe the restriction of µ to
the closure of the path traced out by the unit ball around X c . The
objective function J (to be minimised) is

J(c) =

∫ τ c

0

µ(B(X c
t ))dt + κ1(τ c<∞),

where τ c is a stopping time (time of retirement) which we also control.
This doesn’t a priori meet the criterion of having EJ(d)+ <∞ for all d ,
so we simply restrict to those c with this property.
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Define, for x , y ∈ R, and ν a measure on (R,B):

f (x , y , ν) =

∫ x∨y

x∧y
ν(B(z))dz

and denote the point mass at x by δx . Denote the running iminimum of
X c by I c and the running maximum by Sc .
For any measure ν on (R,B) and i ≤ s, we denote the restriction of ν to
the interval (i − 1, s + 1) by νi,s ; i.e

On dynamic stochastic control with control-dependent information Saul Jacka



Introduction Dynamic stochastic control with control-dependent information

Examples again

dνi,s
dν

= 1(i−1,s+1).

Now, for any i , s, ν and x ∈ [i , s], define

zl(x , i , s, ν) = sup{y ≤ x : νi,s(B(y)) = 0}

and
zr (x , i , s, ν) = inf{y ≥ x : νi,s(B(y)) = 0}

We actually want to solve the problem with G consisting of all fixed
times, but first we’ll “solve” the problem when G consists of a much
more restricted set of times: G initially consists of controlled times S
such that Sc is a Gc -stopping time with the additional property that one
of the following four conditions hold:

1. Sc = 0

2. or X c
Sc = I cSc and µ({X c

Sc}) = 1

3. or X c
Sc = Sc

Sc and µ({X c
Sc}) = 1

4. or µ(B(X c
Sc )) = 0.
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We also restrict controls to taking values in {−1, 0, 1}), so X c may go
left or right at unit rate or pause where it is. We refer to this as Problem
2’. It is clear from this setup that at each control time we may choose to
pause or retire at time 0, and thereafter we must go left until we hit a
zero of µ(B(X )) or a newly revealed point mass of µ, or go right until we
hit a zero of µ(B(X )) or a newly revealed point mass of µ.
There is a corresponding “optimality equation”:

v(x , i , s, ν) = min(κ, χ{0}(ν(B(x)), vl(x , i , s, ν), vr (x , i , s, ν)),

where

vl(x , i , s, ν) =


f (x , zl , νi,s) if zl ≥ i

e−λ(i−zl )f (x , zl , νi,s)

+
∫ i−zl

0
λe−λt(f (x , i − t, νi,s) + v(i − t, i − t, s, νi,s + δi−t)dt if zl < i ,

(1)
vr is defined in a corresponding fashion and χ is the (convex-analytic)
indicator function:
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χA(x) =

{
0 if x ∈ A

∞ if x 6∈ A

Claim: there is a minimal positive solution v to the equation (1.1).
Claim: the optimal payoff to Problem 2 is

V (c , t) =

∫ t∧τ c

0

µ(B(X c
u ))du + κ1(τ c≤t) + v(X c

t , I
c
t ,S

c
t , µ)1(τ c>t).
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