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Abstract

We discuss three forms of convergence in distribution which are stronger than the normal

weak convergence. They have the advantage that they are non-topological in nature and

are inherited by discontinuous functions of the original random variables—clearly an im-

provement on ‘normal’ weak convergence. We give necessary and sufficient conditions for

the three types of convergence and go on to give some applications which are very hard to

prove in a more restricted setting.
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§1. Introduction

Any introduction to weak convergence includes several examples of probability
measures which ‘ought’ to converge but don’t unless you adopt the weak formulation
of the Portmanteau Theorem (see Billingsley (1968)) —for example the probability
measures on R: Pn(A) = 1

(1/n∈A)
; P(A) = 1(0∈A).

Concentration on this form of convergence of (probability) measures has, we believe,
led to a failure to notice when stronger forms of convergence of measures may hold (with
the exception of convergence with respect to the total variation metric). In this article
we discuss three ‘strong’ forms of convergence of measure which are well-known in
the function-analytic literature (see, for example, Dunford and Schwartz (1958)) but
whose probabilistic scope is not widely appreciated. These forms of convergence are
not topological in nature and therefore have significant advantages over the usual weak
convergence. Firstly we demonstrate that two of these forms of convergence allow types
of Skorokhod representation with respect to the discrete metric. Secondly we prove a
result relating these types of convergence to convergence of sufficient statistics — we
have found extensive applications of these results in problems concerning convergence
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of conditioned Markov processes. We go on to point out situations in which these forms
of convergence apply and note some deductions which are very hard to prove in a more
restricted setting.

The article is organised as follows—in chapter 2 we introduce the definitions. Chap-
ter 3 offers alternative characterisations for each type of convergence, including the Sko-
rokhod representation results. Chapter 4 gives applications to sufficient statistics and
conditioned Markov processes. Chapter 5 gives applications to the convergence of more
general time-inhomogeneous Markov processes.

§2. Notation, preliminaries and definitions

We shall work throughout with a fixed measurable space (Ω,F). All measures
(unless otherwise stated) will live on (Ω,F)—we make no topological assumptions about
Ω (or F). For ease of notation we shall index any sequence of probability measures on
(Ω,F) by N̄ = N ∪ {∞}. P∞ will be our candidate limit law and any statement about
the sequence Pn will be meant to include P∞; i.e. {Pn} is shorthand for {Pn;n ∈ N̄}
and (Pn) is shorthand for (Pn)n∈N̄. As is customary, we shall denote the distribution
of a random object X under a probability measure P by PX ≡ P ◦X−1.

The first of our three forms of convergence is the standard undergraduate guess at
a definition of convergence of measures:

Definition 2.1 Given a sequence (Pn) of probability measures on (Ω,F) we say the
Pn converge strongly to P∞, written

Pn
s⇒ P∞ ,

if for all A ∈ F
Pn(A) → P∞(A) as n →∞ .

Before we introduce the other two types of convergence a reminder is in order.

Definition 2.2 A family of measures {µθ; θ ∈ Θ} is said to be dominated by a measure
µ if

µθ � µ for all θ ∈ Θ,

and such a µ is said to be a dominating measure for the family.

Note that for any countable collection {Pn} of probability measures on (Ω,F) there
is a dominating measure (call it R) such that each Pn is absolutely continuous with
respect to R (and thus has a density by the Radon-Nikodym theorem). To see this
simply set

R = 1/2(P∞ +
∞∑

n=1

2−nPn) .

Note that, in fact, R is a probability measure

Now for the two other types of convergence:
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Definition 2.3 Given a sequence of probability measures (Pn) we say the Pn converge
Skorokhod weakly to P∞, written

Pn
SW⇒ P∞ ,

if there is a dominating (probability) measure Q such that:

fQ
n

prob(Q)−→ fQ
∞ as n →∞,

where fQ
n is a version of dPn

dQ .

Definition 2.4 Given the (Pn), we say the Pn converge Skorokhod strongly to P∞,
written

Pn
SS⇒ P∞ ,

if there exists a dominating probability measure Q such that:

fQ
∞ ∧ fQ

n
Qa.s.−→ fQ

∞ as n →∞ .

Remark 2.5 The reason for the nomenclature will become apparent in the next chap-
ter.

Remark 2.6 There is no need to restrict the choice of Q to probability measures—
any σ-finite measure will do (with convergence in probability replaced by convergence in
measure and convergence a.s. replaced by convergence a.e.). Conversely, we gain nothing
by allowing more general σ-finite measures, since if R is a σ-finite dominating measure
with Tn ↗ Ω and R(Tn) < ∞ for each n, then there exists a sequence (an) ⊆ (0,∞)
such that

∑
n

anR(Tn\Tn−1) = 1 and, defining Q by

dQ
dR

=
∑

n

an1(Tn\Tn−1),

we see that Q is a probability measure on (Ω,F) and Q ∼ R, so we may substitute Q
for R and fQ

n (≡ fR
n

dR
dQ ) for fR

n .

Remark 2.7 The use of weak in the phrase ‘Skorokhod weak convergence’ is in the
same style as in ‘the weak law of large numbers’, denoting convergence in probability.

Before we continue with the body of the paper we recall the definition of the total
variation metric and the fundamental inequality of coupling: given two probability
measures P and Q on (Ω,F) we define the total variation metric d by

d(P,Q) = sup
A∈F

|P(A)−Q(A)| .

Note that d is a metric on the space P of probability measures on (Ω,F) and (P, d) is
a complete metric space. The fundamental inequality of coupling states that if P and
Q are two probability measures on (Ω,F) then
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(a) if X and Y are random objects: X, Y : (Ω′,F ′,P′) → (Ω,F) with distri-
butions P′

X = P and P′
Y = Q then

P′(X 6= Y ) ≥ d(P,Q) ;

(b) there exists a probability space (Ω̃, F̃ , P̃) and random objects
X, Y : (Ω̃, F̃ , P̃) → (Ω,F) such that

(i) P̃X = P and P̃Y = Q
and

(ii) P̃(X 6= Y ) = d(P,Q).

The proof of this result relies on the following observation: suppose P and Q are as
above then, taking any dominating measure R (i.e. an R s.t. P,Q � R), and, defining
fP = dP

dR , fQ = dQ
dR ,

d(P,Q) =
∫

(fP − fQ)+dR =
∫

(fP − fQ)−dR

=
∫

K

(fP − fQ)dR =
∫

Kc

(fQ − fP)dR = P(K)−Q(K) = Q(Kc)− P(Kc)

where K = {ω : fP(ω) > fQ(ω)} †

The proof of (a) then follows by defining the measure S by S(A) = P′(X = Y ∈ A)
and observing that S � R with density dominated by fP ∧ fQ so that

S(Ω) = P′(X = Y ) ≤
∫

Ω

fP ∧ fQdR.

To prove (b) we construct the measurable space (Ω̃, F̃)
def
= (Ω × Ω × [0, 1],F ⊗

F ⊗B[0, 1]), and the probability measure T on (Ω,F) by setting dT
dR = (fQ−fP)1Kc

d(P,Q) , then
define (for each ω̃ = (ω1, ω2, t) ∈ Ω× Ω× [0, 1])

X(ω̃) = ω1, Y (ω̃) = ω11(
t≤

fP∧fQ(ω1)
fP(ω1)

) + ω21(
t>

fP∧fQ(ω1)
fP(ω1)

)
and then set P̃ = P⊗ T ⊗ Λ, where Λ is Lebesgue measure (on B[0, 1]).

† We need to make a technical assumption here—that (X 6= Y ) is measurable: if
we don’t assume this then the result remains valid if we reinterpret P′(X 6= Y ) as P′

−
(X 6= Y ), where P′

− is the inner measure generated by P′ (= 1− outer measure).
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§3. Equivalent formulations and counter examples

3.1. Equivalent formulations

Recall that for an arbitrary space S, the discrete metric ρdis is defined by

ρdis(x, y) = I(x6=y).

Hidden just underneath the surface (despite our protestations about the non-topological
nature of our definitions) is a metric—the discrete metric. To see this with Definition
2.1 is the work of a moment—if you accept that ‘measurable’ is the right substitute for
‘continuous’ when working with the discrete metric. Recall part of the Portmanteau
Theorem:

Pn
w⇒ P∞

if and only if∫
g dPn →

∫
g dP∞ for all bounded continuous g : (Ω,F) → (R,B).

Theorem 3.1.1 Given (Pn) on (Ω,F) the following are equivalent:

(i) Pn
s⇒ P∞:

(ii)
∫

g dPn →
∫

g dP∞ ∀ bounded measurable g : (Ω,F) → (R,B):

(iii) ∃ a probability measure Q on (Ω,F) s.t.∫
A

fQ
n dQ →

∫
A

fQ
∞dQ for all A ∈ F .

Remark 3.1.2 To put Definition 2.1 in line with the other two we might have adopted
(iii) above as the definition of strong convergence.

Proof of Theorem 3.1.1 The equivalence of (i) and (iii) is immediate (using the
comment after Definition 2.2).

Moreover setting g = 1A shows that (ii) ⇒ (i).

To prove (i) ⇒ (ii) just mimic the proof of the equivalent implication in the Port-
manteau Theorem—approximating g by simple functions �

To see the underlying importance of the discrete metric for Skorokhod weak and
strong convergence first recall Skorokhod’s representation theorem: one version of it
states that if (Ω,F) is a separable metric measurable space then Pn

w⇒ P∞ if and only if
there is a probability space (Ω′,F ′,P′) and random objects (Xn) : (Ω′,F ′,P′) → (Ω,F)
such that

(i) P′
Xn

= Pn

and
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(ii) Xn
P′a.s.−→ X∞

Now we can ask ‘ what about Skorokhod representation for the discrete metric?’

Theorem 3.1.3 If (Pn) are probability measures on (Ω,F) then the following are
equivalent

(i) Pn
SW⇒ P∞

(ii) ∃ a probability space (Ω′,F ′,P′) and random objects (Xn) : (Ω′,F ′,P′) → (Ω,F)
such that

(a) P′
Xn

= Pn

and

(b) Xn
prob(P′)−→ X∞ with respect to the discrete metric

i.e.
P′(Xn 6= X∞) → 0 as n →∞

(iii) Pn → P∞ with respect to the total variation metric

i.e.
d(Pn,P∞) → 0 as n →∞

(iv) ∃ a dominating probability measure Q s.t.

fQ
n

L1(Q)−→ fQ
∞

(v) Pn(A) → P∞(A) uniformly in A ∈ F .

Remark 3.1.4 We’ve given you more than we promised here but trust the relative
simplicity of the proofs will justify a (relatively) long list of equivalent conditions.

Remark 3.1.5 The equivalence of (i) and (iii) is Scheffé’s lemma (see Billingsley
(1968)). The equivalence of (ii) and (iii) is an immediate consequence of the fundamental
theorem of coupling (see, for example, Rogers and Williams (1987)). We prove all the
equivalences for the sake of completeness.

Proof of Theorem 3.1.3 Throughout the proof R is as defined in Remark 2.2.

(iv) ⇒ (ii) This mimics part of the proof of the fundamental inequality for coupling.
Given Q and the densities (fQ

n ), define

Ω′ = Ω× Ω∞ × [0, 1],
F ′ = F ⊗ F∗∞ ⊗ B([0, 1]),

and the probability measures Tn by

dTn

dQ =
(fQ

n − fQ
∞)+

d(Pn,P∞)
.
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Then define

P′ = P∞ ⊗
∞⊗

n=1

Tn ⊗ Λ

and define, for each ω′ = (ω∞, ω1, . . . ; t) ∈ Ω′,

X∞(ω′) = ω∞,

Xn(ω′) = ω∞1(
t≤ f

Q
∞∧f

Q
n

f
Q
∞

(ω1)
) + ωn1(

t>
f

Q
∞∧f

Q
n

f
Q
∞

(ω1)
),

and
Y (ω′) = t .

What we’re doing is constructing X∞ to have the right law under P′; then, taking an
independent U [0, 1] r.v. (called Y ), setting Xn = X∞ if (and only if) Y ≤ fQ

∞∧fQ
n

fQ
n

(X∞)
and otherwise giving Xn a conditional distribution which gives it the right (uncondi-
tional) distribution. It’s not hard to check that P′

Xn
= Pn for all n, whilst

P′(Xn 6= X∞) ≤ (=)P′(Y >
fQ
∞ ∧ fQ

n

fQ
∞

(X∞)
)

=
∫

Ω

(fQ
n − fQ

∞)+

fQ
∞

dP∞

=
∫

Ω

(fQ
n − fQ

∞)+dQ, (3.1.1)

and by (iv) the last term in (3.1.1) tends to 0.

(i) ⇔ (iv) The reverse implication is obvious (since convergence in L1 is equivalent
to {convergence in probability and uniform integrability}). The forward implication is
well-known since (by virtue of the fact that fQ

∞ and fQ
n are densities):∫

Ω

|fQ
∞ − fQ

n |dQ = 2
∫

Ω

(fQ
∞ − fQ

n )+dQ (3.1.2)

and the integrand on the right of (3.1.2) is uniformly bounded by fQ
∞ (which is, by

definition, in L1(Q)).

(ii) ⇒ (iii) This follows immediately from the coupling inequality.

(iii) ⇒ (iv) This follows on taking the dominating measure R:

d(Pn,P∞) → 0

tells us that ∫
Ω

(fR
∞ − fR

n )+dR → 0 (3.1.3)

and (as before)
∫
Ω
|fR
∞ − fR

n |dR = 2
∫
Ω
(fR
∞ − fR

n )+dR establishing (iv).

(iii) ⇔ (v) This is obvious �
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Now for Skorokhod strong convergence.

Theorem 3.1.6 Suppose (Pn) are probability measures on (Ω,F), then the following
are equivalent

(i) Pn
SS⇒ P∞

(ii) There exists a probability space (Ω′,F ′,P′) and random objects

(Xn) : (Ω′,F ′,P′) → (Ω,F)

such that

(a) P′
Xn

= Pn

and

(b) P′(Xn 6= X∞ i.o.) = 0.

Proof (i) ⇒ (ii) Take the representation given in the proof of Theorem 3.1.3, then

P′(∃n ≥ N : Xn 6= X∞) = P′(Y > inf
n≥N

fQ
∞ ∧ fQ

n

fQ
∞

(X∞))

=
∫

Ω

(1−
fQ
∞ ∧ inf

n≥N
fQ

n

fQ
∞

(ω)) dP∞(ω)

=
∫

Ω

(fQ
∞(ω)− inf

n≥N
fQ

n (ω))+dQ(ω)

and by monotone convergence this expression converges to∫
Ω

(fQ
∞ − lim inf fQ

n )+ dP∞

=0 (by (i)).

(ii) ⇒ (i) Given P′ and (Xn) as in (ii), define Q as in Remark 2.2, and define, for each
m ≥ 1, the measure Qm on (Ω,F) by

Qm(A) = P′( sup
n≥m

δ(Xn, X∞) = 1, X∞ ∈ A),

where δ is the discrete metric on Ω. Note that (since Qm(A) ≤ P′(X∞ ∈ A) = P∞(A)
by hypothesis) Qm � P∞, whilst

Qm(Ω) = P′( sup
n≥m

δ(Xn, X∞) = 1),

so that
limQm(Ω) = P′(Xn 6= X∞ i.o.).
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Now
Qm(A) ≥ P′(Xn 6= X∞, X∞ ∈ A)

≥ P′(Xn ∈ Ac, X∞ ∈ A)
≥ P′(X∞ ∈ A)− P′(Xn ∈ A)
= P∞(A)− Pn(A) (for any n ≥ m),

so that, for any n ≥ m,

gm
def
=

dQm

dQ ≥ fQ
∞ − fQ

n (Q a.s.),

so
gm ≥ (fQ

∞ − fQ
n )+ (Q a.s.) for any n ≥ m .

It follows that gm ≥ (fQ
∞ − inf

n≥m
fQ

n )+ (Q a.s.) and hence

0 = limQm(Ω) = lim
∫

Ω

gmdQ

≥ lim
∫

Ω

(fQ
∞ − inf

n≥m
fQ

n )+dQ.

It follows (by monotone convergence) that lim inf fQ
n ≥ fQ

∞ (Q a.s.) from which we
may easily deduce (using Fatou’s lemma) that lim inf fQ

n = fQ
∞ (Q a.s.) and hence

fQ
∞ ∧ fQ

n
Qa.s.−→ fQ

∞ �

Remark 3.1.7 We can see from the proof of Theorem 3.1.6 that we could have adopted
two slightly different definitions of Skorokhod strong convergence:

(a) lim inf fQ
n = fQ

∞ (Q a.s.)

(b) lim inf fQ
n ≥ fQ

∞ (Q a.s.).

Remark 3.1.8 For an example of these constructions see Roberts and Jacka (1993)
where we exhibit an explicit construction to demonstrate the convergence of time-
inhomogeneous birth and death processes.

Remark 3.1.9 There is, of course, a still stronger form of convergence of measures:

Definition 3.1.10 If (Pn) are probability measures on (Ω,F) we say that Pn tends
strictly to P∞, written

Pn
strict⇒ P∞ ,

if there is a dominating probability measure Q such that

Pn � Q, with densities fQ
n

such that
fQ

n
Qa.s.−→ fQ

∞.
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Remark 3.1.11 Theorem 3.1.6 allows us to deduce another equivalent formulation
for Skorokhod weak convergence as we see in the corollary below.

Corollary 3.1.12 Suppose (Pn) are probability measures on (Ω,F) then the following
are equivalent:

(i) Pn
SW⇒ P∞

(ii) There exists a dominating probability measure Q such that

fQ
∞ ∧ fQ

n

prob(Q)−→ fQ
∞

Proof This follows by looking at a.s. convergent subsequences:

(i) ⇒ (ii) If (i) holds then by Theorem 3.1.3(ii) ∃P′, (Xn) s.t.

(a) P′
Xn

= Pn

and

(b) δ(Xn, X∞)
prob(P′)−→ 0

so, given any subsequence (nk) there is a sub-sub-sequence (nkj
) such that

δ(Xnkj
, X∞) P′a.s.−→ 0

so, by Theorem 3.1.6,
fQ
∞ ∧ fQ

nkj

Qa.s.−→ fQ
∞ .

Since the subsequence nk is arbitrary it follows that

fQ
∞ ∧ fQ

n

prob(Q)−→ fQ
∞ .

(ii) ⇒ (i) This is essentially the same argument: for any (nk) there is a sub-subsequence
(nkj

), s.t.

fQ
∞ ∧ fQ

nkj

Qa.s.−→ fQ
∞

and hence (essentially) by Theorem 3.1.6(ii), ∃P′, (Xnkj
) s.t.

(a) P′
Xnkj

= Pnkj

and

(b) P′(δ(Xnkj
, X∞) → 0) = 1.

Since (nk) is arbitrary, δ(Xn, X∞)
prob(P′)−→ 0 and thus, by Theorem 3.1.3,

Pn
SW⇒ P∞

�
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Remark 3.1.13 If (Ω,F) is a countable metric measurable space, and (Pn) are prob-
ability measures on (Ω,F) then

Pn ⇒ P∞ iff Pn strict⇒ P∞.

This is because {ω} must be a P∞-continuity set for each ω ∈ Ω, so that, enumerating
Ω as {ωk : k ≥ 1}, and defining Q by

Q(A) =
∑

k

2−k1(ωk∈A),

we have
dPn

dQ (ωk) ≡ 2kPn({ωk}) → 2kP∞({ωk}) ≡
dP∞

dQ (ωk)

�

Remark 3.1.14 It is easy to show that (in general) these forms of convergence are
all distinct (see, for example, Jacka and Roberts (1992)).

3.2 Counterexamples

We want now to show that none of our four definitions of convergence are equivalent.
It is obvious that ‘strict ⇒ Skorokhod strong ⇒ Skorokhod weak ⇒ strong convergence’
so the following three counterexamples will do, but before we do this we’ll introduce a
general set-up.

In the examples (Bn) are a sequence of Bernoulli random variables:

(Bn) : (Ω,F) → ({0, 1}, 2{0,1}),

and B is the random vector (B1, B2, . . .). Note that setting Y = ·B1B2 . . . [it being
understood that a dyadic representation is being given] it follows from the fact that the
Borel sets of [0, 1] are generated by the intervals with dyadic rational endpoints that Y
is a random variable:

Y : (Ω,F) → ([0, 1],B([0, 1])).

Example 3.2.1 (This example is due to Dudley). Strong convergence does not imply
Skorokhod weak convergence Define Pk by:

(i) the (Bn) are independent under Pk;

(ii) Pk(Bn = 1) = 1/2 + 1/2δk,n,

Pk(Bn = 0) = 1/2− 1/2δk,n;

(iii) P∞ is, of course, the ‘uniform measure’, ie under P∞ the (Bn) are iid Bernoulli
with parameter 1/2.
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In other words, under Pk the (Bn) are independent and for all n 6= k, Bn is equally
likely to be 0 or 1 but (under Pk) Bk is 1. Taking our reference measure as Lebesgue
measure, Λ, on [0, 1] it is clear that the density of Y under Pn is given by fn where:

fn(x) =
{

2 : 2k−1
2n ≤ x < 2k

2n ; k = 1, . . . , 2n−1

0 : otherwise

so fn

prob

6→ f∞ ≡ 1.

It remains to prove that Pn
s⇒ P∞ or equivalently, that Pn(Y ∈ A) → Λ(A), for

all A ∈ B([0, 1]).

Now given A ∈ B[0, 1] and using the equivalence mentioned above we see that

(Y ∈ A) = (B ∈ D) = (ω ∈ C)

for some C ∈ σ(B).

But, using the approximation lemma, for any C ∈ σ(B) and any ε > 0 there exists
an n ≡ n(ε, C) and a Cn ∈ σ(B1, . . . , Bn) such that

P∞(C4Cn) ≤ ε .

Now, for any k > n, Pk(Cn) = P∞(Cn) (since under Pk the first n of the B’s are iid
Bernoulli) so

|Pk(C)− P∞(C)| ≤ Pk(C4Cn) + P∞(C4Cn),

but dPk

dP∞ ≤ 2 so
Pk(C4Cn) ≤ 2P∞(C4Cn) ≤ 2ε

and hence, for all k > n(ε, C),

|Pk(C)− P∞(C)| ≤ 3ε

establishing that Pn
s⇒ P∞ �

Example 3.2.2 Skorokhod weak does not imply Skorokhod strong convergence Es-
sentially we just want an example of a sequence of densities which converge in proba-
bility, but not almost surely. Given the (Bn), define Pk as follows: express k = 2n + r
(0 ≤ r ≤ 2n − 1), then

(i) under Pk, (B1, . . . , Bn, Bn+2, . . .) are iid Bernoulli (parameter 1/2);

(ii) if ·B1 . . . Bn is not the dyadic representation of r
2n then make Bn+1 conditionally

independent Bernoulli (1/2);

(iii) if ·B1 . . . Bn is the representation of r
2n , then set Bn+1 = 1.

It follows, setting Y = ·B1 . . . as before, that

fk(x) =


1 : x /∈ [ r

2n , r+1
2n )

2 : x ∈ [ r+1/2
2n , r+1

2n )

0 : x ∈ [ r
2n ,

r+1/2
2n )
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where k (as before) is 2n + r (0 ≤ r ≤ 2n − 1). Clearly fn
prob−→ f∞(≡ 1), since fn differs

from f∞ only on a set of Lebesgue measure O( 1

log2n
), but equally clearly

lim inf fn = 0 Lebesgue a.e.

�

Example 3.2.3 Skorokhod strong convergence does not imply strict convergence.
Here we just content ourselves with giving fk:

fk(x) =
{

1− 2−n : x /∈ [ r
2n , r+1

2n )
2− 2−n : x ∈ [ r

2n , r+1
2n )

where, as usual, k = 2n + r (0 ≤ r ≤ 2n − 1). Clearly,

lim inf fn = 1,

but
lim sup fn = 2 (Lebesgue a.e.)

�

§4. Applications to sufficient statistics and conditioned Markov processes

For any unexplained notation or terminology in this and the subsequent chapter,
the reader is referred to Ethier and Kurtz (1986). For a more expansive account of the
formalism of sufficient statistics see Le Cam (1986).

4.1. Sufficient statistics

We need to introduce a number of definitions in order to state and prove the main
result of this section. However, we trust that the benefits are reaped in the subsequent
section.

Suppose (Pθ; θ ∈ Θ) are a collection of probability measures on (Ω,F), and S is
a measurable function S : (Ω,F) → (Ω′,F ′). Recall that S is a sufficient statistic for
(Pθ; θ ∈ Θ) (S is sufficient for (Pθ)) if Pθ(·|S = ·) (the conditional probability under θ
given S) satisfies:

(i) for each θ ∈ Θ, Pθ(·|S = ·) is a regular conditional probability (i.e. Pθ(·|S = s) is
a probability measure on (Ω,F) for each s ∈ Ω′ and Pθ(A|S = ·) is a measurable
function from (Ω′,F ′) to ([0, 1],B([0, 1])) for each A ∈ F);

and

(ii) Pθ(·|S = ·) is independent of θ.

It’s worth quoting the Factorisation Theorem carefully: we do so below.

The Factorisation Theorem Suppose that S is sufficient for (Pθ); denote (the
common value of) Pθ(·|S = ·) by P̃(·|S = ·), and the distribution of S under Pθ by Pθ

S .
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Then, if PS is a dominating (probability) measure for the (Pθ
S ; θ ∈ Θ) and dPθ

S

dP S = fθ,S ,
and, if we define Q by

Q(A) =
∫

Ω′
P̃(A|S = s)dPS(s), (4.1)

then:

(i) Q is a probability measure on (Ω,F) and Pθ � Q for each θ ∈ Θ;

(ii) the law of S under Q is given by

QS ≡ PS ;

and

(iii) fθ(ω)
def
= dPθ

dQ = fθ,S(S(ω)), i.e. the density at ω of Pθ with respect to Q is the
density at S(ω) of Pθ

S wrt PS .

Conversely, suppose (Pθ; θ ∈ Θ) are dominated by the probability measure Q, with
densities dPθ

dQ given by
dPθ

dQ (ω) = fθ(S(ω)) .

Then, defining the conditional Q-probabilities given S as Q(·|S = ·), we have:

Pθ(A|S = s) = Q(A|S = s),

so that if Q(·|S = ·) is a collection of regular conditional probabilities, then:

(iv) S is sufficient for the Pθ;

(v) QS is a dominating probability measure for the (Pθ
S)

and

(vi) dPθ
S

dQS
(s) = fθ(s). (4.2)

It is this converse which is usually used to identify sufficient statistics.

Remark 4.1.1 The existence of regular conditional probabilities is in general very
hard to establish but the following theorem is generally applicable.

Theorem 4.1.2 (see Shiryayev (1984) Theorem II.7.5) If (Ω′,F ′) is a Borel space,
and X is a random object taking values in (Ω′,F ′), i.e.

X : (Ω,F) → (Ω′,F ′),

then for any probability measure Q on (Ω,F) and any sub σ-field G of F , there is a
(unique) regular conditional distribution for X given G).

In particular, if (Ω,F) is a Borel space, then, taking X to be the identity, for
any probability measure Q on (Ω,F) and any sub σ-field G of F , regular conditional
probabilities Q(·|G) exist.
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Remark 4.1.3 The definition of a Borel space may also be found in Shiryayev (1984)—
who points out that any complete, separable metric space (equipped with its Borel sets)
is a Borel space. In particular if Ω is D([0,∞),Z+), Cn([0,∞]) or Dn([0,∞]) and F is
the corresponding Borel σ-field (under the usual topology) then (Ω,F) is a Borel space.

Remark 4.1.4 See also Theorem II.69 of Williams (1979)—this tells us that if (Ω,F)
is a Polish space equipped with its Borel sets then any countably generated sub-σ-field
G gives rise to regular conditional probability measures under any probability measure
on (Ω,F).

We are now nearly in a position to give our general result on convergence in the
presence of a sufficient statistic but firstly, to simplify reference to them, we shall use the
following nomenclature for types of convergence of measure: weak, strong, Skorokhod
weak, Skorokhod strong, and strict convergence will henceforth be referred to as conver-
gence type 0 to 4 respectively. Secondly, we shall extend the definitions of these types
of convergence in the following way:

if Θ is any subset of (−∞,∞] which is unbounded from above, and (Pθ; θ ∈ Θ) are a
collection of probability measures on (Ω,F), we say

Pθ ⇒ P∞ (type i) or Pθ
type i
=⇒ P∞ ,

for i = 0, 1, . . . , 4, if for every sequence (θk) ⊆ Θ with θk →∞ as k →∞ † ,

Pθk ⇒ P∞ (type i) for the same value of i .

Now we can state our next theorem.

Theorem 4.1.5 Suppose Θ is such an index set, (Pθ; θ ∈ Θ) are a collection of
probability measures on (Ω,F) and S is sufficient for (Pθ), then, for each i = 1, . . . , 4,

Pθ
type i
=⇒ P∞

if and only if

Pθ
S

type i
=⇒ P∞

S

Proof Since S is sufficient for (Pθk) for any sequence (θk) with θk → ∞ we may
restrict attention to the countable case. The result now follows (essentially) from the
fact that each type of convergence may be defined in terms of the densities dPθk

dQ (or

equivalently dPθk
S

dQS
).

† We may make suitable generalisations for Θ ⊆ S, where S is a complete metric
space.
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Perhaps the only equivalence which is not clear is type 1; to prove this notice that

Pθk(A) =
∫

Ω′
Pθk(A|S = s)dPθk

S (s)

=
∫

Ω′
P̃(A|S = ·)dPθk

S

and since P̃(A|S = s) is a bounded measurable function of s it follows from Theorem

3.1.1 (ii) that Pθk
type 1
=⇒ P∞. �

4.2. Convergence of conditioned Markov processes

We consider now an application to conditioned Markov processes. We suppose
that S is a statespace, and for concreteness we suppose that S is either Rn or Z+. We
suppose that (Px,t;x ∈ S, t ∈ R+) constitute a collection of time-inhomogeneous strong
Markov probability measures on D([0,∞);S) equipped with its Borel sets (henceforth
denoted by (Ω,F)), and the usual filtration. X is the process given by

Xt(ω) = ωt

and X is, of course, a time-inhomogeneous strong Markov process under each Px,t.
Finally (ϑt; t ∈ R+) is the usual collection of shift operators:

ϑt : ω 7→ ωt

where ωt
s = ωt+s.

We define Gt = σ({Xs : s ≥ t}).

We shall now define the sort of events on which we want to condition.

Definition 4.2.1 An event A in F is said to be t−decomposable if it can be written
as

A = Bt ∩ Ct,

for some B ∈ Ft and C ∈ Gt.

Definition 4.2.2 An event A in F is said to be uniformly t−decomposable if it is
s-decomposable for each s ≤ t.

Definition 4.2.3 Suppose that T ⊆ R+. A collection of events {AT : T ∈ T} in F
is said to be uniformly decomposable if, for each T ∈ T, AT can be written as

AT = Bs ∩ CT
s ,

for some Bs ∈ Fs and CT
s ∈ Gs, for each s ≤ T .

Remark 4.2.4 Note that in Definition 4.2.3 we are asking slightly more than that
each AT is uniformly T -decomposable; we’re asking that the ‘B sets’ are the same in
each case.
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Remark 4.2.5 The sort of situation we’re envisaging is where the (AT ) are all of the
form

AT = (T < τ < ∞),

where τ is a, possibly infinite, Markov time (i.e a stopping time satisfying (τ > t+s) =
(τ > t) ∩ (τ ◦ ϑt > s) for all s, t > 0). In this case we can take

Bt = (τ > t) and CT
t = (∞ > τ ◦ ϑt > T − t).

Remark 4.2.6 Notice that if, for each i, (Ai
T ) is a uniformly decomposable collection

with index set T, then, defining A∞
T =

⋂∞
i=1 Ai

T ,

{A∞
T : T ∈ T} is a uniformly decomposable collection.

We suppose that we are given a uniformly decomposable collection of events
{AT : T ∈ R}, satisfying

Px,t(AT ) > 0

for some non-trivial collection X of (x, t) pairs. We define, for each (x, t) ∈ X :

PT
x,t(·) = Px,t(·|AT )

and we wish to consider the convergence of PT
x,t as T → ∞. In fact we shall only

consider convergence of PT
x,t|FR

for arbitrary but finite R. We denote such probability
measures by PT,R (suppressing the dependence on x and t).

Lemma 4.2.7 Setting RR = [R,∞), the value of X at time R, XR, is sufficient for
(PT,R

x,t ;T ∈ RR) for each fixed x and t.

Proof Denote (Xt; 0 ≤ t ≤ R) by XR, then

PT
x,t(X

R ∈ A|XR = s)

= Px,t(XR ∈ A|At ∩XR = s)

= Px,t(XR ∈ A|BR ∩ CT
R ∩ (XR = s))

=
Px,t((XR ∈ A) ∩BR|CT

R ∩ (XR = s))
Px,t(BR|CT

R ∩ (XR = s))

and by the Markov property this is

Px,t((XR ∈ A) ∩BR|XR = s)/Px,t(BR|XR = s)
= Px,t(XR ∈ A|BR ∩ (XR = s)) (4.3)

which is independent of T . Moreover it is clear from (4.3) that PT
x,t(·|XR = s) constitutes

a regular conditional probability measure. �

Corollary 4.2.8 If the law of XR under PT
x,t converges as T →∞ (type 1 to 4) then

the law of XR under PT
x,t converges (type 1 to 4) and, in particular, if S is countable,
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and the law of XR under PT
x,t converges weakly (as T →∞) then the law of XR under

PT
x,t converges type 4 as T →∞.

§5. Convergence of time-inhomogeneous Markov processes

5.1. Time-inhomogeneous Markov chains

We assume that (Pn) are a collection of probability measures on D([0,∞);Z+):
under Pn, X (given by Xt(ω) = ωt) is a time-inhomogeneous non-explosive Markov
chain with initial distribution (pn

i ). We assume the existence of a dominating measure
µ (finite on compact sets) with respect to which each probability measure has transition
rates qn

i,j(t) (t ≥ 0, i, j ∈ Z) and, as usual we write qn
i (t) = −qn

i,i(t).

Recall the following notation: we write

fn
L1

loc(µ)
−→ f

if, for all T ≥ 0,
∫
[0,T ]

|fn − f | dµ → 0 as n →∞; and we write

fn
(µ loc)−→ f

if, for all T ≥ 0, and for each ε > 0, µ{t ∈ [0, T ] : |fn(t)− f(t)| > ε} → 0.

Theorem 5.1.1 (a) If

pn
i → p∞i as n →∞ for each i; (5.1)

qn
i

L1
loc(µ)
−→ q∞i as n →∞ for each i; (5.2)

and
qn
i,j

µa.e.−→ q∞i,j for each i and j in Z+; (5.3)

then, for each T > 0,

Pn|[0,T ]

type 4
=⇒ P∞|[0,T ]

(b) If (5.1) and (5.2) hold and

qn
i,j

(µ loc)−→ q∞i,j for each i, j in Z+ (5.4)

then for, each T > 0,

Pn|[0,T ]

type 2
=⇒ P∞|[0,T ]

Remark 5.1.2 We stress that we are assuming that P∞ is non-explosive.

Proof We give first a dominating (probability) measure Q: it is specified by having
waiting time distribution “ exponential (µ)” in each state, i.e. qi(t) ≡ 1 for each i. Under
Q, the jump chain forms a sequence of iid geometric(1/2) r.v.s so that qi,j(t) = 2−(j+1)
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and Q(X0 = i) = 2−(i+1). We assume that µ is continuous i.e. non-atomic. It is then
obvious that the density of Pk|[0,T ] wrt Q|[0,T ] is fk ≡ fk

T given by

fk(ω) =eµ([0,T ])pk
ω0

2
(∑N

n=0
(ωTn+1)

)
exp(−

∫ T

TN

qk
ωTN

(t)dµ(t))

×
N∏

n=1

qk
ωTn−1 ,ωTn

(Tn) exp(−
∫ Tn

Tn−1

qk
ωTn−1

(t)dµ(t)), (5.5)

where N = NT (ω) = # {jumps of X on [0, T ]}, T0 = 0, and Tn (1 ≤ n ≤ N) are the
successive jump times of X (on [0, T ]). Finally, since Q is non-explosive, notice that for
any ε > 0, there is an n(ε) s.t. Q(N > n) ≤ ε/2 and then ∃ m(n(ε), ε) s.t.

Q(X leaves {0, . . . ,m} before T ) ≤ ε/2.

Denote the union of the two sets involved in these statements by Aε. We are now ready
to prove (a). Under the assumption (5.2)

e
−
∫ v

u
qk

i (t)dµ(t) → e
−
∫ v

u
q∞i (t)dµ(t)

,

for any 0 ≤ u ≤ v ≤ T . Hence, off Aε, there are only finitely many terms in (5.5)
and (by (5.1) and (5.3)) each converges Q a.s. to the corresponding term in f∞. Thus
Q(fk 6→ f∞) ≤ Q(Aε) ≤ ε and since ε is arbitrary we have established (a).

To prove (b) we need only take subsequences: given a subsequence (nk) take a sub-
subsequence (nkj ) (by diagonalisation), along which (5.3) holds (at least for t ∈ [0, T ])

then fnkj
Qa.s.−→ f∞ as j →∞ by (a). The subsequence is arbitrary so fn prob(Q)−→ f∞ �

Remark 5.1.3 The proof of Theorem 5.1.1 only deals with the case where µ is non-
atomic; if µ has atoms there is no great additional difficulty: we simply need to replace
exp(−

∫
fdµ) by exp(−

∫
fdµc)

∏
(1− f∆µ) wherever such terms appear in (5.5).

Remark 5.1.4 If some of the Pk are explosive we can restrict attention to the time-
interval [0, T ∧ τn], where τn

def
= inf{t : Xt ≥ n} and retain (in this more restricted

setting) the results of Theorem 5.1.1.

Remark 5.1.5 If we retain the hypothesis that P∞ is non-explosive but allow some
of the Pk (k < ∞) to be explosive then (the RHS of) (5.5) gives a lower bound for fk†.
It follows that, under these circumstances:

† Of course, an explosive Pk is not a probability measure on D([0,∞);Z+), but its
restriction to D([0, T );Z+) is a sub-probability measure and fk is the density of this
restriction.
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(a) if (5.1) to (5.3) hold then, by Remark 3.1.7 (b),

Pk|[0,T ]

type 3
=⇒ P∞|[0,T ];

whilst

(b) if (5.1), (5.2), and (5.4) hold then, as before,

Pk|[0,T ]

type 2
=⇒ P∞|[0,T ].

5.2. Time-inhomogeneous Itô diffusions

By a (time-inhomogeneous) Itô diffusion we mean a solution to a stochastic integral
equation of the form

Xt = x0 +
∫ t

0

σs(Xs)dBs +
∫ t

0

µs(Xs)ds (5.6)

where B is a d-dimensional Brownian motion, σs is n× d and µs is n× 1, and σ and µ
are such that the solution is strict (i.e. adapted to the filtration of B—see Rogers and
Williams (1987)).

We use the following version of the Cameron-Martin-Girsanov formula (a straight-
forward adaptation of Rogers and Williams (1987), Theorems IV.38.5 and IV.38.9).

Theorem 5.2.1 Suppose P and Q are probability measures on C([0,∞),Rd) (equip-
ped with its natural filtration), τ is some stopping time, b is a previsible (predictable)
process, and Zτ is given by

Zτ
t = exp(

∫ t∧τ

0

bsdωs − 1/2
∫ t∧τ

0

|bs|2ds).

Then if, under P, ω is a Brownian motion (BM) started at 0, whilst under Q, ω′ given
by

ω′t = ωt −
∫ t

0

bsds ,

is a BM on [0, τ ], then, provided Zτ is uniformly integrable, (Zτ
t ) is a ui martingale and

dQ
dP |Fτ = Zτ

τ .

We consider the case where we have a collection of solutions to stochastic integral
equations with the same diffusion co-efficient.

Corollary 5.2.2 Suppose (Xk(x;B)) are strict solutions to the SDEs

Xk
t = x0 +

∫ t

0

σs(Xk
s )dBs +

∫ t

0

µk
s(Xk

s )ds, (5.7)k
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where B is a P-BM, the initial distribution of Xk is to be νk, and νk � ν, for each k,
where ν is a dominating probability measure

Define Q (a probability measure on Rn × C([0,∞),Rd)) by

Q = ν ⊗ P.

Set
ρk

t (x) = σ′t(x)(σt(x)σ′t(x))−1(µk
t (x)− µ∞t (x)),

and define

Z̃k
t (x;B)

def
=

dνk

dν
(x)Zk

t (x;B),

where

Zk
t (x;B)

def
= exp(

∫ t

0

ρk
s(X∞

s (x;B))dBs − 1/2
∫ t

0

|ρk
s(X∞

s (x;B))|2ds).

Define Pk(x; ·) by
dPk

dP (x;B)
def
= Zk

τ (x;B),

and P̃k by
dP̃k

dQ
def
= Z̃k

τ (x;B). (5.8)

Then, if (Zk
t∧τ ) is ui (for each k): Pk and P̃k are probability measures and under

P̃k, X∞ is the solution to (5.7)k [with B replaced by Bk def
= B −

∫ ·
0
ρk

s(X∞
s )ds—a

P̃k-BM (at least on [0, τ ])], and has initial distribution νk.

Thus, if i, j ≥ 2, and

νk
type i
=⇒ ν∞

and

Pk|[0,τ ](x; ·)
type j
=⇒ P∞|[0,τ ](x; ·) for each x ∈ Rn, (5.9)

then

P̃k|[0,τ ]

type i ∧ j
=⇒ P̃∞|[0,τ ],

which implies that

Xk|[0,τ ]

type i ∧ j
=⇒ X∞|[0,τ ].

Proof All we’ve done is to expand the sample space to include the initial distribution
of the X’s. Thus the first paragraph of the corollary follows immediately from Theorem
5.2.1 on substituting B = Bk +

∫ ·
0
ρk

s(X∞(x;B))ds.
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The second paragraph follows from the density characterisation of type i conver-
gence and the representation (5.8) �

Remark 5.2.3 Notice that if the νk are all equal to δx0 , the point mass at x0, then
we need only require convergence of the Pk(x0; ·) in the corollary.

The corollary above is a little bit ethereal so let’s give a slightly more concrete
application.

Theorem 5.2.4 Suppose that σ and µ∞ are such that X∞ is a strict solution to (5.7).
Suppose that

ρk
· (·) → 0 uniformly on compact subsets of R+ ×Rn, (5.10)

then, defining
τN = inf{t : |X∞

t | ≥ N},

the following are equivalent for each i ≥ 2:

(i) νk
type i
=⇒ ν∞;

and

(ii) Xk|[0,τN ]

type i
=⇒ X∞|[0,τN ] for any (and then for all) N > 0.

Proof (i) ⇒ (ii): it is a fairly trivial application of stochastic calculus to show that
(5.10) implies that

EP sup
0≤t≤τN

(Zj
t (x; ·)− 1)2 ≤ cN

k (t) for all j ≥ k and x ∈ Rn,

for a suitable sequence of functions cN
k (·), and that cN

k (·) → 0 as k → ∞. It follows
that condition (5.9) holds with j = 4.

(ii) ⇒ (i): this is immediate on observing that Xk
0 is a measurable function of

Xk|[0,τN ] (for any N) �

Remark 5.2.5 In the case where the diffusion coefficient σ varies with k, these results
break down—essentially because different σs give rise to mutually singular measures. In
the one-dimensional case some results may be obtained by time-changing—the details
are left to the reader.
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