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Abstract

The theory of general state-space Markov chains can be strongly related to
the case of discrete state-space by use of the notiemafl setsand associated
minorization conditions The general theory shows that small sets exist for all
Markov chains on state-spaces with countably generatatfjebras, though the
minorization provided by the theory concerns small sets of ordand n-step
transition kernels for some unspecifiedPartly motivated by the growing impor-
tance of small sets for Markov chain Monte Carlo and Coupling from the Past, we
show that in general there need be no small sets of arderl even if the kernel
is assumed to have a density function (though of course one camtakel if
the kernel density is continuous). Howewver= 2 will suffice for kernels with
densities (integral kernels), and in fact small sets of ogdaboundin the tech-
nical sense that the-step kernel density can be expressed as a countable sum of
nonnegative separable summands based on small sets. This can be exploited to
produce a representation using a latent discrete Markov chain; indeed one might
say, inside every Markov chain with measurable transition density there is a dis-
crete state-space Markov chain struggling to escape. We conclude by discussing
complements to these results, including their relevance to Harris-recurrent Markov
chains and we relate the counterexample t@mroblems for bipartite graphs.
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1 Introduction

The notion of a small set was introduced to Markov chain theory by various writers (see
for example [8]) and has been exploited to produce a reduction to the discrete case

of Markov chain theory for general state-spaces (see Nummelijnahd Meyn and
Tweedie 4] for treatments in book form). The basic idea is to elicinaorization
conditionfor a given Markov chain:
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Definition 1.1 The transition probability kernek (z, -) satisfies aminorization con-
dition (of ordern) if for some non-vanishing non-negative functipand some proba-
bility measureu we have

K™ (z,4) > g(z)u(A)

for all z, all measurableA. In particular a setC' is a small set (of orden) if its
indicator function can occur together with a constane (0,1) asg(x) = plj¢) in a
minorization condition of order.

The minorization can be used to produce #mdit-chain constructiorof Nummelin

[16] — see also Athreya and Ney][where small sets are used for regeneration argu-
ments — and hence to control convergence to equilibrium: as Nummelin wrote, “the
‘elementary’ techniques and constructions based on the notion of regeneration, and
common in the study of discrete chains, can now be applied in the general tase” [
pageix]. More recently small sets have been used by Rosenithtg establish rates

of convergence for Markov chain Monte Carlo (see also the extended notiseoflo-
small setsdescribed by Roberts and Rosenthzi, [21]) and also (under the rubric of
gamma-couplingto produce effective Coupling from the Past (CFTP) constructions in
the work of Murdoch and Greerni|, 15] (see also some exciting new work ocatalytic
perfect simulatiorby Breyer and Robert$[ 4]).

Closely related to the ideas presented here is the discretization proposed by Robert
[19], originally devised for the purposes of Markov chain Monte Carlo convergence
assessment. This discretization is based on sub-sampling of a discrete sequence derived
from a continuous state-space Markov ch@i,;» > 0} depending on a sequence
of renewals times, in the following way. Suppose that possesses several disjoint
small set”;, with ¢ = 1, ..., I for which the minorization condition of Definitioh.1
holds with constants; and measureg;. TheC; need not necessarily form a partition
of the whole state-space. Suppose the above splitting construction is applied whenever
X visits one of the”;. Define the renewal times) = 1 andr,,, with n > 1 by:

- inf{t > 71 X,_1 € C; forsomei € {1,..., I}
and regeneration occurs at tim]e

Robert shows that the finite valued sub-sequepcebtained fromX; by:
Ny =1 if XT”,1 e C;

is a homogeneous Markov chain defined on the finite state-pace. , I'}.

The theory of general Markov chains assures us of the existence of small sets, but
gives no guarantees concerning the order. For the purposes of establishing convergence
results this is of no great importance; however ordisrrequired for current CFTP ap-
plications. This raises the question, for what sort of Markov chains can one guarantee
existence of small sets of orde? As a straightforward exercise in mathematical analy-
sis at an advanced undergraduate level, one can show existence for state-space a smooth
manifold when the kernel has a continuous dengity, y), and indeed then one can
show small sets of order abound in the sense that they can be used to produce a
representation;

plzy) = Zfi(x)gi(y) (69)



where thef;(z) are non-negative continuous functions supported on small sets, and the
g:(y) are probability density functions. From this representation one can further deduce
the existence of &tent discrete Markov chairsince [ p(z,y) dy = 1 it follows that

>, filx) = 1forall z, and sof;(x) may be viewed as a transition probability density
describing transitions from the state-space to a latent countable state{spzce.};

and the entire stochastic dynamics of the original chain can be viewed as derived from
a discrete state-space chain with transition probability matrix of entries

pij = / 9i(y) fi(y) dy. )

(Finite versions of such constructionfnite-rank Markov chainsare used to derive
limit theorems in P5, 13]; see also?7.) We continue this line of enquiry in more
detail in sectior5.

However this particular representation fails hopelessly as soon as we move to the
slightly more general category of Markov chains with measurable transition probability
densities! Even the obvious step of allowing theandg; to be measurable is of no
avail. For, as we show in the next section, there exist transition probability densities for
which there areno non-trivial small sets of order. The construction is based on the
construction of a Borel subset of the unit square with no non-null subsets of measurable
rectangle form, and is related to a variant of thedFuproblem from extremal graph
theory.

However, and somewhat to our initial surprise, the cause of measurable transition
densities is not entirely lost. As we show in sectli so long as we move to order
2 we canconstruct non-trivial small sets (following known techniques for establishing
the existence of small sets), and in fact ttedgoundin the sense that one can build
representations of thstep transition probability densipy® (x, y) generalizing that
of Eqg. (1), and hence derive an interlacing latent discretization with transition matrix
generalizing Eq.4). Moreover this discretization uses only the measurable structure
of the underlying space, rather than its topology: one need only suppose the state-
spaces-algebra to be countably generated. In Secfiénve use the method éf3 to
show that the weaker notion gseudo-small sef?0, 21] results in the presence of
many pseudo-small sets even at orélehowever this weaker notion is too weak to
allow us to construct latent discretizations. In the concluding se@tione discuss
the latent discretization, and various complements including the extent to which the
discretization can be generalized yet again, if one wishes to consider Markov chains
whose kernels do not possess transition densities.
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2 Measurable transition densities may have no
non-null small sets of order1

This section relies on a simple combinatorial calculation, known to graph theorists in
a considerably refined form (see for example 10]). We present a self-contained



exposition, yielding as a first step a probabilistic construction of a measurable subset
of [0, 1]? which is “rectangle-free”, which is to say, contains no non-null measurable
rectangles. It should be clear to anyone who has studied measure theory that such sets
must exist: however we have not been able to find a construction in the literature.

The combinatorial aspect concelarsays of cellsn x n square lattices, the nodes
of which are viewed as square cells of sidelengthaither filled or not, and arranged
to pack the unit square. Unions of filled cells fopixellated subsetsf [0, 1]2. We
will be interested in whether we can find non-negligifiled measurable rectangles
pixellated subsets corresponding to unions of cells of the form

{cell(z;,y;):i=1,...,r, j=1,...,s}

defined by subsequences, .. ., z, andyy, .. ., ys wherer ands amount to substantial
fractions ofn. The basic combinatorial argument constructs random subsets of arrays
of cells which have low probability of containing measurable rectangles which are
not very small. A Borel-Cantelli argument can then be applied to intersections of the
corresponding pixellated subsets, so as to derive the following result.

Theorem 2.1 There exist Borel measurable subskts [0, 1]? of positive area which
arerectangle-freeso that ifA x B C E thenared A x B) = 0.

Proof:
Recall Stirling’s asymptotic approximation:

1
n!l  ~ exp (n (logn — 1) + B 10g(27m)) asn — oo. (©)]

For fixed rationala: € (0,1) we apply Stirling’s approximation to the formula for
the mean number ofan| x |an] filled measurable rectangles to be found in an
n x n array of cells of side-lengtl%, such that cells are filled independently with fill
probabilityp. (Here|z] is the greatest integer smaller thar We obtain

lan]?

mean number of such measurable rectangi:es(L " J)
an
exp (n* (a®logp) — 2n (aloga + (1 — a)log(l — @)) + log (2mna(l — a)))

(at least fom running through the subsequence for whiehis an integer?).
We apply Markov’s inequality to deduce that for fixed- 0 andp € (0, 1)

P[ atleastongéan| x |an| filed measurable rectangle <
(1+¢) xexp [nQ (a2 logp) —2n(aloga+ (1 — a)log(l — a))

+log (2mna(l — a))} 4

foralln > N = N(e, «, p) such thatun is an integer. Clearly the upper bound tends
to zero asn — oo through the relevant subsequence. Moreover the mean area of the
corresponding pixellated random set is given#y/n? = p.

We now construct a random sub&ebf the unit squaré0, 1] as the intersection

= = Hk;omHkUJrlﬂ...



of a sequencély,, Hy, 11, ... of such pixellated random sets. TheBgtis constructed
as the union of filled cells in any, x ny, array of cells of side—lengtﬁl;, such that cells
are filled independently with fill probability,.. We fixe > 0 and select

1
« = o = E
p = p = 1-27"
n = n; = inf{r>2ka(€,ak,pk) : aris anintegef . 5)

The mean area & is bounded below by

(oo}

E[aredZ)] > 1- ) (1-ElaredH)]) = 1-2'"%,
k=ko

and therefor& has a positive chance of having positive area (at ledst if 1).
On the other hand we may apply the first Borel-Cantelli lemma to show that all but
finitely many of the events

Ri. = {H; contains no measurable rectangles of sidelength greate}

must occur. For geometrical arguments show that the failugoforces the corre-
sponding cell array to contain at least dre:| x |an] filled measurable rectangle,
and by the bound Eg4] the failure-probability of this event is therefore bounded above

by

bnd /12

—k—1_2 2 k—1 2
constant< (1 —27%) < constantx e=2 " "/ < constant e 2 /5.

This is summable, and so the first Borel-Cantelli lemma applies.

It follows that almost surele is rectangle-free, in the sense thatdifand B are
measurable subsets[0f 1] with A x B C Zthen are@A x B) = 0. Figurelillustrates
(an approximation of) this random construction. O

Remark 2.2 The above randomization argument can be replaced, at the price of more
complexity, by a counting argument, demonstrating the existence of a counterexample
E C [0,1)? of area prescribed to lie in the rangg 1).

The indicator function for the random s&tnearly provides a Markov transition
density under normalization, except that this normalization will fail when a slice along
a fixedz has zero length. However this is easily fixed in any one of several ways,
yielding the following corollary.

Corollary 2.3 There exist measurable Markov transition densities for which there are
no non-null small sets of orddr.

Proof:
Suppose=q, Ea, ... are independent copies &fas constructed in Theorefl, but
affinely transformed to fit into the rectangles

0,1] x [1/2,1),[0,1] x [1/4,1/2), ... .

Consider the union

(1]

= =pUz=oU...,



Figure 1: Example of rectangle-free random=et

-t *I.

Figure 2: Example of rectangle-free random=ewith z-slices almost all of positive

length.



as illustrated in Figuré.

A slice of =* along fixedz (anz-slice) can have zero length only if its component
z-slices along each of thHg; have zero length. The componenslices are indepen-
dent and (saving only an exceptional null-set-ofalues corresponding to vertical cell
boundaries) the chance of a componedice having non-zero length is positive and
is the same for each component (by construction of2he Therefore independence
shows that for non-exceptionalthe z-slice of =* is almost surely of positive length.

Thus the following defines a Markov transition density for which there are no non-
null small sets of ordet:

o H[E*](I’ y)
ple,y) = fol L=+ (2, z) dz ©)

where the ratio is taken to equiafor thosex for which the denominator vanishes (only
a null-set and therefore negligible). Existence of a non-null small set of araleuld
entail a lower bound

p(z,y) > plp(y)

for all z € A, for some positivep and non-null Borel setd, B C [0, 1]. Hence (possi-
bly reducingA somewhat) we would obtain a non-null measurable rectangle subset of
=, in contradiction to the assertion of Theor@m. O

An alternative method of proof uses monotonic transformation ofitlaeis to
remove all but a null-set of coordinates at whiglslices have length-zero intersection
with =.

Remark 2.4 A refinement of this approach produces a rectangle-free symmetric subset
E C [0,1]%, symmetric in the sense thét, y) € = if and only if (y, z) € =. Simply
modify the filling procedure of Theoref 1 so that cell(z, y) is filled if and only if

cell (y, ) is filled, but otherwise cells are filled independently. The resulting random
set= is symmetric. Supposd x B C =. Choose median values ¢t such that
lengthA N [0, s]) = 3 length(A), length B N [0,t]) = 1length(B). If s < ¢ then
(AN[0,s]) x (BNt 1]) lies in the upper triangl& N {(z,y) : = < y}; otherwise
(AN[s, 1)) x (BNJ0,¢]) lies in the lower triangle. Either way we exhibit a measurable
rectangle subset & of measure} aredA x B) lying in a region which could have
been produced by the original construction of Theotafhand therefore must have
zero area. It follows th&E is not only symmetric but also rectangle-free.

Remark 2.5 Yet a further refinement can be used to produevarsibleMarkov chain
with no orderd small sets, thus answering a question raised by Gareth Roberts. We
sketch the construction of a transition dengify:, y) on the unit square which is sym-
metric (hence doubly stochastic) and which takes only the valuesand2.

We start withpy (z, y) = 1, and use the notation of Theoré, butincrease they,
if necessary so as to ensure they are all even. In order to maintain the doubly stochastic
property we use moves developed for Markov chain Monte Carlo on contingency table
configurations: at levet, independently with probability — p;, = 2~* for each of the
n? /4 cells of dimensiom; ' x n; " in the upper-left quadrant, jf;_ is non-zero in
that cell we reduce its value therepadd the removed mass uniformly over the cell
which is its mirror image in: = 1/2, and altemp_, in the other two quadrants so as
also to maintain mirror symmetry in the = 1/2 axis. If on the other hang_; is
zero in the chosen cell then we perform the reverse move. Wg, $etbe the result of
these operations.



The support opy, is similar to the seE, except that, when proceeding fram to
Ek+1, as far as the first quadrant is concerned, we add a uniorB§ithH}, ., as well
as taking the intersectidf;, N Hy.1. The counting arguments are easily modified to
take account of this, thus showing that the limiting support set is rectangle-free.

Finally we need to show thai.(x, y) converges to a limiting probability density.
For any given pointz, y) the probability ofpy. 1 (z, y) # pr(z,y)is1—p, = 27%. So
by the first Borel-Cantelli lemma the sequerdeg (z,y) : k = 1,2,...} converges for
almost all(z, y). Sincepy, is bounded betweehand2, the limiting probability density
Poo(,y) exists as a consequence of the Lebesgue dominated convergence theorem,
and has the doubly stochastic property. By construction of the support set, it can have
no non-trivial small sets of orddr.

3 Small sets of order2 abound for measurable
transition densities

A careful reading of the methods employed in the proof of the existence of small sets
(seeeg [17, §2.3], [14, §5.2] and also ]8]) reveals that if a Markov chain with count-

ably generated state-spagealgebra has a measurable transition density then it pos-
sesses a small set of orderHere we give a variation on this proof which additionally
shows that such small seatbound in the sense that thestep transition density can be
represented as a sum of non-negative separable terms involving small-set decomposi-
tions.

First note that the question posed (to show such Markov chains have small sets of
order2) is strictly measure-theoretic. Indeed we can suppose the reference probability
measure to be atom-free (for otherwise we can immediately exhibit small sets based
on the atoms). Furthermore we may identify states which are not separateddy the
algebra. Any countable sequence of sets generating the state-space algebra can be used
to map the state-space into the unit inteff@al ] in a standard way, expanding eacke
[0, 1] in a dyadic expansion and mapping each stdtea dyadic expansion determined
by which members of the countable generating sequence containis map fails to
bel : 1 only at a countable number af € [0, 1] where it will be2 : 1: we may
delete the corresponding null-set from the state-space. We have thus reduced the state-
space to the unit intervdd, 1] furnished with a reference probability measure which is
atom-free. Deleting a countable number of further null-sets, we may trangfioim
using the distribution function for the reference probability measure so as to produce a
state-space which 8, 1] furnished with Lebesgue measure.

In the remainder of this section we can therefore, without any loss of generality,
confine our attention to the case of the unit interval furnished with Lebesgue measure
as reference measure.

We begin with a general lemma, which uses Egoroff’'s theorem and the Lebesgue
density theorem to establish ne&t-continuity for functionals derived fromi! func-
tions on the unit square. Introduce the notation

p=(:) = plx,)

and notice that by Fubini’s theorem. may be viewed as a mapping from almost all
x € [0,1] into L1 ([0, 1]).



Lemma 3.1 Letp(x,y) be an integrable function oft, 1]2. Then we can find subsets
A, C [0,1], increasing ag decreases, such that

(a) for any fixedA, the “L!-valued function”p,, is uniformly continuous od. : for
anyn > 0 we can findd > 0 such thafz — 2’| < 6 andz, 2’ € A, implies

/0|pw<z>—pw/<z>|dz < 0

(b) every pointz in A, is of full relative density: as, v — 0 so

length([x — u,x + v] N A¢)
u—+v

Remark 3.21In some sense this result must have been immediately accessible to early
workers in the field: it bears a family resemblance to techniques used by Dodp in [
pages 199-202] for which Doob himself credits the essential idea to DoéhliH§w-

ever we have not been able to find in the literature anything resembling the application,
Corollary3.7.

Proof:

We use a modification of the celebrated consequence of Egoroff’s theatergfL,
Theorem A}, that every measurable function is “nearly” uniformly continuous, in the
sense of being uniformly continuous off sets of arbitrarily small measure. This is usu-
ally stated for real-valued functions, but applies to such functions,.aso long as

we useL!-continuity. For consider: we cah!-approximate the underlying function
p(z,y) by a continuous functiorf; (z, y)

1 1
/O/O|p<:c,y>—f1<x,y>|dmdy < o

for any fixeda € (0, 1). Adding further continuous function (z, y), ..., fu(z,y),
...we can require the approximation to improve geometrically:

/O/O|p<x,y>—<f1<x,y)+...fn<x,y>>|dxdy < o

By Markov’s inequality, if

D, = f: / p(e9) — (f1(2) + .. fula))] Uy > a™/2)

then
length D,) < a"/2.

Thus off the uniorD, UDy. 1 U. . . we can approximate(z, y) uniformly by uniformly
continuous functions. The total area of the union is at még{(1 — «), hence can be
made arbitrarily small by increasirig

Consequently for every € (0, 1) we can find a subset. C [0, 1] of measure at
leastl — ¢ and such that — p, is uniformly L!-continuous om.. Moreover we may
arrange ford. C A., whenevee > ¢'.

Now invoke the Lebesgue density theoreir,[Theorem 8.8]: the subset of points
failing to have full relative density in a measurable subset is always of measure zero.



Since the above construction df actually only uses a countable number of set com-
plements(Dy U Dy41 U ...)", we can simply remove all such points for each of the
countably many complements. The lemma follows. O

We now state and prove the central result of this section, establishing abundance of
small sets in a rather specific fashion. We recall the discussion at the start of this sec-
tion, demonstrating that this result will actually apply for any state-space with count-
ably generatedr-algebra and atom-free reference probability measure: for the sake
of simplicity we state it for the case of state-spé@gl] with Lebesgue measure as
reference measure.

In the following we continue with the notation of Lemrfidl, and note thag, () =
p(-,y) possesses a similar property: leB. : ¢ € (0,1)} denote a corresponding
monotone family of sets for which uniform continuity @f and full relative density
hold.

Theorem 3.3 Letp(z,y), x, y € [0, 1], be a measurable probability transition density
(so folp(x,y) dy = 1 for all ) and letn € (0,1). For almost allz, y € [0, 1] the
two-step transition density

1 1
Py = [ peapend = [ ped
0 0
is subject to lower bounds of the form

PP y) > (1 —n)p@(x,y)

forall 2’ € [x — u,x + u] save for a set of measuée, all y' € [y — u, y + u] save for
a set of measuréu, for all sufficiently small positive (depending om, ¢ in the range

(0,1)).

Remark 3.4 This result differs from the classic small-set existence resglti(7, Thm.
2.1], [14, Thm. 5.2.1]) in showing that small-set minorization conditions for2istep
transition density

PP@y) = (=P (x,y)

can be established to hold for almostally, over a suitable measurable rectangle near

to (x, y) and forn arbitrarily close td). It is for this reason that we require Lemi@a

rather than the more direct methods of the classic result. We need the stronger result in
order to obtain the “abundance” Corollayr.

Remark 3.5The result can be viewed as a Markov chain generalizati@tahhaus’
theorem 2, Theorem 1.1.1], thatx — y : @,y € E} contains an open interval contain-
ing 0 if £ C Ris of positive Lebesgue measure.

Remark 3.6In fact the proof remains valid §?) (z, y) is actually obtained as the con-
volution of two different probability transition densitieéx, y) andq(x, y). Moreover

we use the normalization properfj p(z,y)dy = 1 simply to ensure non-triviality of

p. Of course non-negativity is essential if the notion of small set is to make sense as
stated in Definitior. 1.

Proof:
Considerz € A.,y € B., setp®® = p?(z y), and fixn € (0,1). The result is
immediate forp? = 0. So supposg(? > 0.

10



Neitherp, nor g, need be bounded: however we can apply the monotone conver-
gence theorem to deduce the existenc& afuch that

1
p? > /O(pm(z)/\K)(qy(z)/\K) dz > pPa-9y/2).

Now select, such that
(@) length[z —u, z+u]NA.) > (1—9)u, length[y —u, y +u]NB:) > (1—9))u,

(b) forz’ € [x —u,x +u]NA., ¥ €y —u,y+ u] N B: we have

1 (2) 1 (2)
npe np
[ e —peds < 2 [N —ap e < B

Hence forz’ € [z —u,xz +u] N AL, ¥ € [y — u,y + u] N B: we can deduce

1
POA-n/D) < [ (Gl AK) (0 A K)
0

? ' (2)
< w2, / by = Ty,
0

Thus
P @y) > (=) ™
forall 2’ € [x —u,x +u| N A, v € [y — u,y + u] N B.. This establishes the result
forz € A.,y € B.. But

aredA. x B.) > (1—¢)?

so the result holds for almost al| y by lettinge — 0.

Note that an orde2 small-set minorization follows whenevef? > 0 (this must
hold for more than a null-set gffor eachr if the 2-step transition density is to integrate
tol): if x € A., y € B, then for all sufficiently small: we have

p?(2',y) > positive constant
forall (2',y") € [x — u,z +u] N Ac X [y — u,y + u] N B.. Note that, say,
length([x — u,xz +u] N A.),lengtily —w,y +u]NB:) > u/2 > 0

for small enoughu (apply the Lebesgue density conditi@i) of Lemma3.1), so the
minorization is non-triviall O

The construction has been designed to furnish a rich supply of small sets, and we
can use this to obtain a representatiop@f(z, y) as a sum of non-negative separable
terms involving small-set decompositions. In the informal terminology of Sedtion
small sets of orde2 abound

Corollary 3.7 If p(z,y) is a measurable transition probability density then we can
represent the-step transition probability density as follows:

PP y) = > Bilic)(@)p, () (8)
=0

for positives; and subset§’;, D; C [0, 1], holding for almost alk, y € [0, 1].

11



Remark 3.8 It is of course not possible in general to arrange fordhex D; to be
disjoint, for this would force)® (z, y) to have an essentially countable range.

Remark 3.9 As hinted in the introduction, the impact of a representation such as the
above is clearer if we write it in the equivalent form

p(Q) (amy) = Zﬁ(m,z)r,(y) )
=0

wheref(z, i) is a transition probability density froff, 1] to the set of positive integers
{1,2,...} (so>_, B(z,i) = 1 for all z € [0, 1]) and ther;(y) are probability densities
on [0, 1]. We pursue this further in the concluding section.

Proof:
Let S be a countable sequence of functions enumerating all functions of the form

s(z,y) = essnf {p(2)(u, v) tuelC,ve D} x Iy (2)ipy (y)

whereC' and D are restricted to be of the form of intersections of dyadic rational
intervals withA, p,, By -

C = [r27F,(r+127") N4
D = [s27%, (s+1)27") N By,
for non-negative integers, s, and positive integers, h. Observe that the function

fn(z,y) which is the pointwise maximum of the firgtof the functions in the sequence
S can be re-written in the form

fulzy) = Z Bilic, (2)ip,1(y)
i=0

for afixedsequence of positive constaritsand dyadic rational interval§;, D;. This

is because an addition of a further membeSab the computation of the maximum

can be re-expressed as an addition of the excess in the form of a number of terms of
the formﬁi]l[ci}]l[Di].

Lettingn — oo we obtain
fool®,y) = supfu(z,y) = Z Biljc,) (2)p,) (y) -
" i=0

By construction and using Theored3 we can deduce thgt, (x, y) increases mono-
tonically and converges tp® (z,y) wheneverr € |J.C. andy € |J. D.. Thus
the corollary follows by the Monotone Convergence Theorem. For by The8réin
follows, for each fixed; € (0, 1), for eache > 0, that

pP(u,v) > (1—n)p?(x,y) forallu e C,ve D

whenevelC, D are intersections with ., B, of dyadic rational intervals of sufficiently
small size such thdtr, y) € C' x D. Hence we can find

s = essnf {p(2)(u, v) tuelC,ve D} xligflipy € S
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such thats(z,y) > (1 — 7)p® (x,y), and sof,(z,y) T p@® (x,y) for almost allz,
y € [0,1]. O

Remark 3.101f the reference measure has atoms then these may immediately be con-
verted into small sets and removed from the stefernel, after which the methods

of Corollary 3.7 can be applied to the residual. It follows that thstep transition
probability density representation E§) @pplies whenever the chain has a measurable
transition density and the state-space has countably generatiggbra, regardless of
whether the reference measure has atoms or not.

4 Pseudo-small sets

Roberts and Rosenthal(, 21] introduced the idea of pseudo-small seDefinition
1.10of asmall set is weakened to allow the common component dtihe -) to depend

on pairs of states, «’ being considered.

Definition 4.1 A subset of state-space ipseudo-smalbf ordern if there isa > 0
such that for each pait, y € C' we may find a probability measurg ,, with

K™ (2, ), KM (y,) > ave,().

For C to be a small set we would requirg ,, not to depend om, y.

Pseudo-smallness is well-suited to questions involving coupling, but not for coales-
cence (as would arise in Coupling from The Past algorithms such &s<,inf]), and
not for representations as described in Corolaiabove.

Nevertheless we place on record here that any Markov chain with measurable tran-
sition densityp(z, y) on a state-space with countably generatinglgebra must have
an abundant supply of pseudo-small sets of otder

Just as ir§3 we may reduce to the case of state-sgacé with Lebesgue measure
as reference measure. Now Lemfha shows that for any given > 0 we may find
a subsetd. C [0,1] such that the E*-valued function’p,.(-) = p(z,-) is uniformly
continuous om4.. This means that for anywe can divideA. into a finite collection
of subsetg” (by taking intersections with intervals) such thatjfy € C then

1
/0|pz<z>—py<z>|dz < 5

A direct computation then shows that

1
/ min{p,(z),py(2)}dz > 1-4/2.
0
ConsequentlyC’ may be taken to be pseudo-small of ordewith « = 1 — §/2 and
with v, ,, of density
I .
~ min{p,(2),py(2)} -

By using a countable sequenceAf, we may cover almost all the state-space with
pseudo-small sets of ordémwith « fixed as close ta as desired.
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5 Conclusion and complements

Properly considered, neither the counterexample given in The@rgémor the abun-
dance of orde2 small sets of Theorerd.3 should come as a surprise. Were no coun-
terexample to exist, the theory of Lebesgue-measurable substsl 5fwould take

on an appalling simplicity, since every such set would be expressible as the union of
a null-set and a countable family of measurable rectangles. On the other hand, convo-
lution of densities tends to force positivity: were we to convolve with itself a kernel
densityp(z, y) which was just a constant times the indicator of a Borel subsét of?

then the result would have a zero(at i) only if p(x, 2)p(z, y) vanished for almost all

z € [0, 1], which would clearly be hard to arrange for a substantial portion of the range
of possible(z, y) € [0,1]2. This intuition lies at the heart of all existence proofs for
small sets.

We have mentioned in Sectidy2 that the counterexample is related to issues in
graph theory. The relevant theory is that of the Zarankiewicz probigma[ Turan
problem for bipartite graphs. Given a bipartite graplon » ands vertices, how large
do s, r have to be beforé’ can be guaranteed to contain a specified complete bipartite
graph as subgraph? In our language, a bipartite g€agm 1 andn vertices corre-
sponds to a filled subset of an x n array of cells (cell(z, j) being filled if vertex
7 in the first vertex collection is connected to cglin the second); subgraphs which
are complete bipartite correspond to filled measurable rectangles. Detailed estimates,
running well beyond our simple requirements, are to be found,in(].

A major motivation for this work is the usefulness of ordesmall sets in CFTP
constructions. Of course in specific CFTP problems one constructs such small sets
directly, often aided by continuity of the transition density. However it seems worth
knowing that for rather general Markov chains one can always constructbsteall
sets (thus just one step away from the realm of practical applicati&infling such
small sets is another matter entirely, since their definition involves exactly the kind of
integration which Markov chain Monte Carlo (MCMC), and CFTP in particular, has
been invented to avoid! It would be most interesting if one could devise situations in
which the existence of ord@ small sets could be exploited in CFTP without requir-
ing such explicit integrations. (Notice however that our theorem guarantees that small
sets of orderd abound for Markov chains arising as discrete-time sample®ofin-
uous timeMarkov processes with measurable transition densities on state-spaces with
countably generateg-algebras!)

There are other contexts in which the results of this paper may be of interest. For
example in data-mining, methods afitomatic binningattempt to determine whether
a parameter-space regidf of interest can be expressed As= Uszl Cx, where
eachCy is a product setd, § 5]. Thus in the two-dimensional context one would be
interested in searching for subsetsx B of R. Our example is of course absurdly
pathological for this application, but hints at possible difficulties such a search might
face. It also indicates a useful direction for further research: it would be interesting to
relate theoretical work on automatic binning to the question of finding efficient repre-
sentations of the form Eq3(7).

In the area of statistics known as Graphical Models one views a collection of ran-
dom variables{Y; : i € G} as indexed by vertices of a graphG satisfying the
following property: two subcollection§Y; : i € A}, {Y; : i € B} are conditionally
independent given a third subcollecti¢lr; : i € C} if the vertex selC separatest
from B in the graphG. One can codgY; : i € A}, {Y; : i € B}, {Y; : i € C} as
random variables(;, X», X3. SupposeXi, X,, X3 possess a joint density; the pre-
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diction of X3 given X; withoutknowledge of the intervening’s is given by a kernel
to which the results of Theoref3 (and hence the latent discrete structure of BY). (
apply.

It may be worth being more explicit about the latent discretization represented by
Eqg. 9). What this says is that we may view any Markov ch&in= {X,, X1,...}
with measurable transition density® (, ) on [0, 1] (or of course a state-space with
countable generategtalgebra) as being generated by a latent discrete Markov chain
Y = {Y¥1,Y5,...} running in “odd time”. If

PP (xy) = Y Bi)riy) (10)
=0
asin Eq. 9), thenY is governed by the transition probability matrix

1
Dij = /Ori(z)ﬁ(z,])dz.

Furthermore, giverYs, 11 = iopy1 andYa, 13 = ia,43, the conditional density of
Xona1o is proportional as a function afto

ri2n+1 (Z)/B(Z, i2n+3) )

and does not further depend on other value¥ off in addition we are giverX,,, =

ZTon @aNdXa, 12 = xa,4+2 then we may ask for the conditional densityXf,, , ;. In fact

there is some arbitrary aspect to this, depending on how we choose to couple the latent
Yont1 = iany1 10 Xopny1; however it can be chosen not to depend on anything but
Xon = Zon, Yont1 = font1, aNdXo, 41 = T2p41. GivenXy, =z, Xo,41 = 2/, ON€

must choose a partition of the inter@l 1] into subsets; (x, «’), Es(z,2’), ...such

that

/ pla, wp(w, Yy dw = Bz, i)
E;(z,x’)

That this is achievable follows because
1
[ pewptes)de = pPws) = 3 A in().
0 i

We may use this choice to define the conditional densit¥ 9f,; in a compatible way,
as being proportional as a functionwfto
p(T2n, w)p(w, Tapi2) X H[E%H(:vzm:rzwz)}(w) :

Finally, many Markov chains in practice do not have transition densities, such as for
example those which arise in Metropolis-Hastings MCMC. In the Metropolis-Hastings
case the failure to have a transition density is rather a trivial matter, assuming that one
is working with densities for proposal and acceptance kernels; and if one samples the
chain whenever a proposal is accepted then the resulting sub-sampled chain does have
a transition density, and TheoreBn3 applies. It is pleasant to report that the same
fix works in essentially every case where one might expect small sets to abound: one
simply sub-samples at instances of stopping times such that the resulting chain has a
transition density; we sketch the argument here.
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Recall, as described for example in7], that the Hopf decomposition theorem al-
lows us to divide the study of irreducible Markov chains idtssipativecases (essen-
tially transient) ancconservativecases (essentially unions of recurrent classes). The
dissipative case is hopeless: for example one can construct skew product Markov
chains onR? \ {(0,0)} whose radial part is the exponential of a Gaussian random
walk which drifts off to infinity, and whose angular parts jump so as to be replaced
by uniformly random angles but at a rate depending on the radius and decreasing fast
enough that there is a positive chance that such a jump may never happen. The chain is
irreducible, and yet no matter what stopping tiffienay be chosen the distribution of
X places a positive amount of probability on the ray running f(énd) throughXj.
Suppose on the other hand we consider a conservative chain. General theory (in
fact using the existence of general small sets!) tells us we can find a maximal irre-
ducibility measure) such that the chain idarris-recurrentoff a set/V of ¢-measure
zero: if Xg = = ¢ N and A is a subset of state-space of posititeneasure then
P[X hits A| Xy, = 2] = 1. We suppose) to be diffuse and deletd from the state-
space. Sef, to be the countable union @f-null sets supporting the-singular parts
of the distributions ofX;, X5, ...conditional onX, = z, and definel’, to be the stop-
ping time at whichX first leavesS,. Sincey(S,) = 0, Harris-recurrence shows that
T, must be finite. A calculation shows that the distributionXaf, has zera)-singular
part, so ay-density exists foiX,,. We can even show thdt, is essentially minimal for
this property! By this means we construct a sub-sampled chain which has measurable
1-density, for which the results of TheoredrB3 apply.
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