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Abstract

This note extends the work ¢foss and Tweedie (1998)ho showed
that availability of the classic Coupling from the PaSHTP) algorithm of
Propp and Wilson (19963 essentially equivalent to uniform ergodicity for
a Markov chain (see alsdobert and Robert 2004 In this note we show
that all geometrically ergodic chains possess domin@iedP algorithms
(not necessarily practical!) which are rather closely connected to Foster-
Lyapunov criteria. Hence geometric ergodicity implies domin&edP.

1 Introduction

Throughout this papek will denote an aperiodic Harris-recurrent Markov chain
on a measurable state spatewhich is a Polish space (the Polish condition is
required in order to ensure existence of regular conditional probabilities)r Let
denote the equilibrium probability distribution &f. Recall thatX is said to be
geometrically ergodidf it converges in total variation and at geometric rate to
statistical equilibriumr, with multiplicative constant depending on the starting
point:
distry (£ (X,),m) < V(Xo)" (1)

for some functiorl : X — [1, 00) and some rate € (0, 1). The chainX is said
to beuniformly ergodidf the functionV can be chosen to be constant.
We also recall the notion of a small set:
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Definition 1 A subset” C X is asmall set (of ordek) for the Markov chainX
if there is aminorization conditionfor g € (0, 1), and probability measure,

PXy€eE|Xo=2] > pllzeC]xv(F) forall measurableE C X.
2)

Results are often stated in terms of the more general notigetite setshow-
ever fory-irreducible aperiodic chains the two notions are equivaletdyh and
Tweedie 1993Theorem 5.5.7).

Foss and Tweedie (1998ke small set theory to show that the condition of
uniform ergodicity for suchX is equivalentto the existence of a Coupling from
the Past algorithm (based on) in the sense oPropp and Wilson (1996)This
classic CFTPalgorithm delivers a perfect sample from the equilibrium distribu-
tion of X. The key to thé-oss and Tweediargument is to remark that in case of
uniform ergodicity the entire state space is small. Sub-sampling the praciéss
necessary (to reduce toeder of the small seb 1), one can then devise a classic
CFTPalgorithm which is actually of the form introduced Murdoch and Green
(1998)as themultigamma couplerHobert and Robert (2004evelop the~oss
and Tweedieargument to produce approximations to deal viathin-in (time till
approximate equilibrium) in the geometrically ergodic case.

The Foss and Tweedigesult might be thought to delimit and constrain the
possible range of applicability dFTP. However it is also possible to sample
perfectly from the equilibrium of some strictly geometrically ergodic chains using
a generalization: nameyjominatedCFTP @omCFTR as introduced irKendall
(1998) Kendall and Mgller (200Q)Cai and Kendall (2002)In this note we show
that this is generic: geometric ergodicity implies the existence of a special form
of domCFTPalgorithm adapted to the geometric ergodicity in question. Recent
expositions of quantitative convergence rate estimation depend heavily on small
sets and their relatives (see for examBlesenthal 200  so this piece oCFTP
theory connects to quantitative convergence theory in a rather satisfying way.

To describe this special form dbmCFTR we must first introduce the notion
of a Foster-Lyapunov condition. Geometric ergodicity for &urs equivalent to a
geometric Foster-Lyapunov conditiamvolving recurrence on small sets (this can
be extracted fronMeyn and Tweedie 1993 heorem 16.0.1):

EA(Xn) | X, =2] < al(@)+bI[X, €C], (3)

for somea € (0,1) andb > 0, somesmall setC, and a drift functiomA : X —
[1, 00) which is bounded of'. Note thatw + b > 1 is required, as id|ce > a1,
since we imposé > 1.



Now the momentondition (3)implies that every sub-level sétr € X
A(z) < ¢} is small (as indeed do weaker conditiondeyn and Tweedie 1993
Theorem 14.2.3).

The following material is not present in submitted version: This is a key fact
for our argument so we sketch a coupling proof.
First note that without loss of generality we can employ sub-sampling to en-
sure that the small se&t' in Condition (3)is of order1. Super-martingale ar-
guments show that we can choassuch that? [ X hits C' beforen | X, = x] can
be bounded away from zero uniformly infor A(x) < c. Let the hitting prob:
ability lower bound bey,. We can use th&linorization Condition (2)o realize
X as a split-chain in the sense Mtimmelin (1978) regenerating with probabil-
ity 5 wheneverX € C. Couple chains from different starting points according
to the time whenX first regenerates in’, yielding a family of realizations\*
of the Markov chain, withX§ = x, such that with positive probabilitgp, all
realizations{ X* : A(z) < ¢} coalesce into a set of at mosttrajectories by
time n (divided according to the time of first regeneration). Now apply a renewal-
theoretic argument to the subsequent regenerations of this finite set of trajectories,
which are allowed to evolve independently, except that whenever two trajectories
regenerate at the same time they are forced to coalesce. Straightforward analysis
shows that we can choose such that with positive probability; < (Gp, all tra-
jectories starting fror{z € X : A(z) < ¢} have coalesced to just one trajectpry
by timen + m. Hence{z € X : A(z) < ¢} is a small set of ordet + m, with
minorization probabilityp;.

It Is convenient to isolate the notion ofpgeudo-drift functiorsuch as\ in Equa-
tion (3).

Definition 2 A (Foster-Lyapunov) pseudo-drift functidor a Markov chain state
spaceX is a measurable function

A X —[1,00)
such that sub-level sefs: € X' : A(z) < A} are small for allx > 1.

Thus a pseudo-drift function has the properties of a Foster-Lyapunov drift function
but is not endowed with a specificoment condition

Now we can define the special form @dmCFTPwhich we require, which is
adapted to a specified pseudo-drift function.

Definition 3 Suppose thaf\ is a pseudo-drift function for an Harris-recurrent
Markov chainX. We say the stationary ergodic random proc&sen [1, co) is



a dominating process fak based on the pseudo-drift functidn(with threshold
h and coalescence probability) if it is coupled co-adaptively to realizations of
X*~t (the Markov chainX begun atr at time—t) as follows:

(@) forall z € X, n > 0, and—t < 0, almost surely

AMXEL) <0 Yo = AMXE ) < Yo 4

(b) moreover ify,, < h for some fixedn then the probability ofcoalescence
(conditional on past ot and past potential coalescence events) is at least
e, where coalescence means that the set

{X>71 : suchthat—¢ < mandA(XZ% ") < Y.}

is a singleton set (inequality is used-#t < m rather than equality as this
is a condition on coupling ok®~ for all —t < m);

(c) and finally,P [Y,, < h] must be positive.

Suppose’” is a dominating process fof based on the pseudo-drift function
A. The followingdomCFTPalgorithm then yields a draw from the equilibrium
distribution of X .

Algorithm 4

SimulateY” backwards in equilibrium till the most receft < 0 for which
Yr <h;

while coalescence does not occur at tiffie

extendY” backwards till the most recest < T for whichYy < h;
setT «— S;

simulate the coupled” forwards from timel” + 1, starting with the unique
state produced by the coalescence event at fifigonditioned ort);

return X, as a perfect draw from equilibrium.

This algorithm terminates almost surely as a consequence of the conditions im-
posed inDefinition 3

Practical implementation considerations are: (1) can one draw from the equi-
librium of Y? (2) can one simulat® backwards in equilibrium? (3) can one



couple the dominated target proces&&s ' with Y so as to ensure the possibility
of regeneration? (4) can one determine when this regeneration has occurred? and,
of course, (5) will the algorithm not run too slowly?

The simplest kind of ordinary small-s&FTP, as in Murdoch and Green
(1998) is recovered from this Algorithm by taking = h, and requiring the
whole state-space to be containedin: A(z) < h} and hence small. In actual
constructions, care must be taken to ensurethddminates a coupled collection
of X for which coalescence is possible as specifie@afinition 3(b) (see the
treatment ofCFTPfor Harris chains irCorcoran and Tweedie 20P1

The proof that this algorithm returns a perfect draw from the equilibrium dis-
tribution of X is an easy variation on the usu#mCFTPargument, found at
varying levels of generality itKendall 1998 Kendall and Mgller 2000Cai and
Kendall 2002 The key is to observe thatlgorithm 4 reconstructs a coalesced
trajectory which may be viewed as produced by the Markov chain begun at time
—oo at some specified statesuch that\(z) < h: the proof is then an exercise in
making this heuristic precise.

TheFoss and Tweedie (1998jgument, and the fact that theometric Foster-
Lyapunov condition (3vould certainly produce a dominating process if the ex-
pectation inequality was replaced by a stochastic domination, together suggest our
main result, to be proved iBection 2

Theorem 5 If X is a geometrically ergodic Markov chain, ands a pseudo-drift
function for.X which is derived from some geometric Foster-Lyapunov condition,
then there is an almost surely terminatidgmCFTPalgorithm for X (possibly
subject to sub-sampling) using a dominating process based on the pseudo-drift
functionA, as inAlgorithm 4and Definition 3

As in the case of théoss and Tweedie (19983sult, this algorithm need not
be at all practical!

2 Proof of Theorem 5

We begin with a lemma concerning the effect of sub-sampling orgéuenetric
Foster-Lyapunov condition

Lemma 6 SupposeX satisfies ayjeometric Foster-Lyapunov conditiofor some
a < 1, some pseudo-drift functiah, and small seC = {z € X : A(z) < c}.

EA(Xo) | Xo=12] < al(z)+bI[A(X,) <d. (5)



Under k-sub-sampling we obtain a similar condition but with different constants:
EAXnsr) | Xn=2] < o 'A(x) +VIAX,) <], (6)
and also, ifk > 2,
EA X)) | Xo=2] < alA(z)+0"T[AX,) <. (7)

Moreovert = b/(1 —a), ¢/ = b/(a* (1 — a)?) may be chosen not to depend on
c,andd” =b/(1 - «a),  =b/(a(1 — a)?) may be chosen to depend neithercon
noronk > 2.

We are able to choogg, ¢/, b”, ¢’ not to depend omr because we have allowed
generous sub-samplingd.. k-sub-sampling to changeto o).

Proof: IteratingEquation (5)

k
EAXpii) | Xp=12] < ofAz)+ Zaj_le I[A(Xpinj) < | X, = 2]

< ofA(x) + 1 E -
= o"A(z) — "1 = a)A(x) + | b
-«
k-1 : b
- a" A (x) it AMz) > =y -
- o A(x) +b/(1 — ) otherwise.

Hence we may choodé = b/(1 — a), ¢ = b/(a*1(1 — a)?). Alternatively

EAX,w) | Xo=2] < alA@)—a(l - HA(2) + . E -
al(x) if A(z) > W ,
- alA(z) +b/(1 —a) otherwise.

Hence we may choosé = b/(1 — a), " = b/(a(l — a)?) if k > 2. O

Proof (of Theorem 5):
We first construct the dominating process.

Consider Markov’s inequality applied to tlgometric Foster-Lyapunov in-
equality (3) Any dominating proces® must satisfy thestochastic domination



(4) described inDefinition 3 Consequently, in default of further distributional
information abouf® [A(X,,11)|X,, = =], if Y is to be a dominating process based
on the pseudo-drift function then we need” to be stationary ergodic but also to
satisfy

E[A(Xnt1) | X = 1]

Py >azy | Y, =2 > sup : (8)
z:A(x)<z azy

Now if C' C {z € X : A(x) < ¢} then

E[A(Xpi1) | X, = 7] al(z) + bl [z : A(z) < ]

sup < sup
x:A(z)<z azy z:A(x)<z azy
al(x) 1 b
< sup < - solongas > c+ —.
zA(z)<z ORY ) a

Consequently” is a possible candidate for a dominating process based on the
pseudo-drift function\ if

1)y ifz>c+2,
1 otherwise.

PlYy >azy|Y,=2] = { (9)

If we defineU by Y = (¢4 b/«a) exp(U) (soU is alog-dominating procegshen

U is the system workload of &/M /1 queue, sampled at arrivals, with arrivals
everylog(1/«) units of time, and service times being independent and of unit
Exponential distribution. The procegs is a random walk with reflection (of
Skorokhod type) ab: as its jump distribution is Exponent{a) — log(1/a) we
may deduce it is positive-recurrent if and onlyif< ™.

In casee™! < a < 1, U andY = (c+ b/a)exp(U) fail to be positive-
recurrent. However the same construction will work if we &spiation (6)of
Lemma 6to justify sub-samplingX with a sampling period: large enough to
ensure ageometric Foster-Lyapunov condition (8%ing A as pseudo-drift but
with o replaced byy*~! < ¢!, and amending to v/, c to ¢’ as inlnequality (6)

Thus without loss of generality we may assumes ¢!, and so this” can
be run in statistical equilibrium, and thus qualifies as least partly as a dominating
process for the purposes dheorem 5 In the sequel we assume moreover that
further sub-sampling has been carried out base&aumtion (7) to ensure that
the following small set is of ordelr.

{reXx : Az) <h} for h:max{c—i-g,ﬁ(lJrlia)}.
(10)




Here the levek > ¢+ b/« is fixed so as to ensufe= ¢’ +b" /(1 — «) with b”, ¢”
given as inEquation (7) thush supplies a stable threshold for geometric Foster-
Lyapunov conditions, even allowing for further sub-sampling if required. Note in
particular thatt” = (¢ + b/a) exp(U) is able to sink below:, sinceh > ¢+ b/«
and the system workloald can reach zero.

To fulfil the requirements on a dominating process giveDéfinition 3 we
need to construct a coupling betwekEnand the target process expressed in
terms of a random flow of independent maps. ., : X — X

x,—t o x,—1
X?t+n+1 - F—t+n+1 (X7t+’n>

satisfying the distributional requirement th¥t>—* should evolve as the Markov
chain X, thedomination requirement expressed by the implication &g also
the regeneration requirement that with probab#itye set

{F,(u) : suchthat\(u) < h}

should be a singleton set. The well-known link between stochastic domination
and coupling can be applied together with the arguments precé&djngtion (9)
to show that we can couple the variod$ —* with Y co-adaptively in this man-
ner so that the implication (4) holds: note that here and here alone we use the
Polish space nature of, which allows us to construct the couplings by use of
regular conditional probability distributions for the varioki§ —* conditioned on
the A(X*~"). Thus all that is required is to show that this stochastic domination
coupling can be modified to allow for regeneration.

The small set condition fofz € X : A(x) < h} means there is a probabil-
ity measurer and a scalapp € (0,1) such that for all Borel set® C [1,c0),
whenever\ (z) < h,

PAXn1) €B| X, =2] > puv(B). (11)

Moreover the stochastic domination which has been arranged in the course of
definingy” means that for all real, wheneve\(z) < y,

PAXp) >u | Xpy=2] < PY>ul|Y=y]. (12)

We can couple in order to arrange for regeneration if we can identify a probability
measurer, defined solely in terms of and the dominating jump distribution
P[Y > u | Y = y], such that for all real
PA(Xpi1) > u | X, = 2] — Br((u, 00))
v((u, 00))

BIY > u|Y =y - 59((u,00))

<
< v((u,00))



and moreover
PlY,.1e€B|Y,=y] > pv(B).

For then at each step we may determine whether or not regeneration has occurred
(with probability 5); under regeneration we use stochastic domination to ceuple
to v; otherwise we use stochastic domination to couple the residuals.
Results to this effect may be gleaned frétoberts and Rosenthal (20019r
the sake of explicit exposition we state and prove an interior lemma.

Lemma 7 Supposé/, IV are two random variables defined ¢h co) such that

(a) ThedistributionC (U) is stochastically dominated by the distributi6ri1’):

PlU>u < P[V>uy for all real U ; (13)

(b) U satisfies a minorization condition: for sonsec (0, 1) and probability
measures: B C [1,00),

PlU e B] > pv(B) for all Borel setsB C [1,00). (14)
Then there is a probability measugestochastically dominating and such that
B is minorized byC (V). Moreoveru depends only ogv and £ (V).

Proof (of Lemma7):

Subtract the measure/((u, oo)) from both sides ofnequality (13)representing
the stochastic dominatiofi (U) < £ (V). By theminorization condition (14)he
resulting left-hand-side is nonnegtive. Thus for all real

0 < PU>ul-pr((u,00) < PV >ul—pr((u,o0))

Now L (U) — Bv is a nonnegative measure (because ofi@rization condition
(14)). ConsequentlP [U > u] — Bv((u, 00)) must be non-increasing imand so
we may reduce the right-hand side by minimizing ovex u:

PU > u] — pr((u,o0)) < irif {PV > w] — fr((w, o))}
= PV >u]—pBu((u,0))
wherey is the potentiallysignedmeasure defined by

Bu(ll)) = B[V <ul—sup{P[V < w] - Bu([Lw))} .

w<u



In facty is a probability measure di, co). Bothp({1}) = v({1}) andu([1,0)) =
1 follow from considering: = 1, u — oo. Now we showu is honnegative:

Bu((u,u+u]) —Plu<V <u+u]
= = sup APV <w] = (L w)} +sup{PV < w] = fr ([l w))} .

w<u+u’

If the first supremum were to be attaineduat< « then the two suprema would
cancel. If the first supremum were to be attained’at [u, u + '] then

Bu((u,u+u']) —Plu <V <u+]
= B[V <]+ Br((Lu) + sup (B[V < w] - fr([1w)}
> PV <]+ Au((Lw) + PV < u] - B[, u)
and hence
Bu((u,u+u]) > P <V <u+d]+pr(uw)) > 0.

So we can deducgy is in fact a nonnegative measure.
On the other hand

Bu((u,u+u]) —Plu<V <u+u
= — sup APV <w] = fr((l,w)} +sup{P[V < w] = fr([l,w))} < 0,

w<u+u’

hence
0 < Bu((uu+d]) < Plu<V<u+d], (15)

so S is absolutely continuous with respectdd V') and indeed we can deduce
du(u) = I[PV >-]—pr((-,o0)) hits current minimum at] dP [V < u] .
(16)

The minorization of5u by £ (V') follows from this argument: dependence only
on fv andL (V') from construction; finally, stochastic domination/f from

Gl(w,00)) =PIV >~ inf B[V > ] — ow((w, )}
= sup{fr((w,)) —Plw<V <u]} > p[r((u,0)).

w<u

O



Now useLemma 7to couplel (X1 | X,y = z) t0 £ (Y41 | Vi = y) wWhen-
everA(z) <y in a way which implements stochastic domination and ensures all
the X,,,, regenerate simultaneously wheneVex h. This concludes the proof
of Theorem 5 O

Note that the algorithm requires us to be able to draw from the equilibrium
distribution ofY and to simulate its time-reversed equilibrium dual. Up to an ad-
ditive constantog(Y’) is the workload of & /M /1 queue. This queue is amenable
to exact calculations, so these simulation tasks are easy to implement (specializ-
ing the theory of the&> /M /1 queue as discussed, for exampleGnmmett and
Stirzaker 1992ch. 11). However in general we dmt expect this “universal
dominating process” to lead to practicedmCFTPalgorithms! The difficulty in
application will arise in determining whether or not regeneration has occurred as
in Algorithm 4. This will be difficult especially if sub-sampling has been applied,
since then one will need detailed knowledge of convolutions of the probability
kernel for X (potentially a harder problem than sampling from equilibrium?).

Of course, in practice one uses different dominating processes better adapted
to the problem at hand. For example &fy D/1 queue serves as a good log-
dominating process for perpetuity-type problems and gives very cagidCFTP
algorithms indeed, especially when combined with other perfect simulation ideas
such as multishifCFTP (Wilson 2000, read-onceCFTP (Wilson 20003, or
one-shot couplingKoberts and Rosenthal 2002

Finally note that, in cases whene [e~!, 1) or when the small seftz € X :

A(x) < h} is of order greater thah, we are forced to work with coupling con-
structions that are effectivelyon-co-adaptedthat is, sub-sampling means that
target transitionsX,,,; to X,,,x1 depend on sequenc&S,., Yiki1s -« Yikik)-

The potential improvements gained by working with non-adapted couplings are
already known not only to theory (the non-co-adapted filling couplingSriff

feath 197% Goldstein 1979 and the efficiency considerations Blurdzy and
Kendall 2000 but also to practitionerdHuber 2004 non-Markovian techniques

in CFTP, Hayes and Vigoda 20030on-Markovian conventional MCMC for ran-
dom sampling of colorings).

3 Counter-example

We complete this note by describing a counter-example to show that the use of
sub-sampling in the construction ®heorem 5s essential.



Proposition 8 There is a Markov chaiX satisfying a Foster-Lyapunov condition
with drift function A (and hence itself geometrically ergodic), such that without
use of sub-sampling any dominating proc&ssased om\ will fail to be positive-
recurrent.

Proof: We begin by choosing a sequence of disjoint measurableSsess, . . .,

subsets of1, co) such that each set places positive measure in every non-empty

open set. We assert and prove the possibility of this by using an interior lemma:

Lemma 9 One can construct a measurable partitiSp, Ss, ... of[1, 00),
Sl|_|32|_|33|_|... == [1,00),

with the property LepS; N (u,v)) > 0forall 0 < u <v < oo, alli € {1,2,...}.

Proof (of Lemma 9):

Enumerate the rational numbers|in1) by 0 = Gy, ¢1, G2, - ... Chooser < 1/2,
and define e
Ay = U U (G + Ky G+ k+a27"] .
k=1 n=0

Then for eachk > 1
a < Leb(AN[kk+1) < 2a.

Continue by defining a sequence of nested subsets A, | by

A = U U {qn + kK qn +k - %2‘”] ; a7
k=1n=0
satisfying o ,
Q + (e}
- < < —.
o < Leb (A |3 >> < 3 (18)

Thus the measurable shéll = A, \ A, places mass of at leagf,- in each

interval [£, ££1)

It follows that if S is defined by

S - 147‘9 \ A'rg—i-l

s=1



then LeldS N U) > 0 for every open set/ C [1,00). The desired disjoint se-
guenceSy, Ss, ... is obtained by considering a countably infinite family of disjoint
increasing subsequences of the natural numbers. O

We revert to the proof oProposition 8

The Markov chainX is constructed on state spajdecc), with pseudo-drift
functionA(z) = x. We begin by fixingx € (e7',1), and seC’ = [1,a«~!]. The set
C will be the small set for the Foster-Lyapunov condition. Choose a measurable
partition S; U Sy LI S5 L ... = [1,00) @as inLemma 9 Enumerate the rational
numbers in1, o) by ¢1, o, - - - .

We define the transition kerng{z, -) of X on |1, co) as follows:

Forz € [1,a7 1], set

p(r,dy) = -exp(—(y—1))dy fory>1,

so that if X,, € C'thenX,,; — 1 has a unit rate Exponential distribution.
Then:
C'is asmall set foiX of orderl (in fact it will be a regenerative atom!);
if X,, € CthenE[X, ] =2;
if X has positive chance of visiting stateghen the whole state space
[1, 00) will be maximally Leb-irreducible.

Forz > o~ ! andz € S;, set

plz,dy) = (1 - 9) So(dy) + %%(dy) .

Note that, because we are using the identity pseudo-drift funatioh = x,

if v ¢ CthenE [A(X,11) | Xy, = 2] =E [ X1 | Xy, = 2] = ax;
if v ¢ CthenP [ X, =1]| X, =z] >0.

Thus X satisfies a geometric Foster-Lyapunov condition based on drift function
A and small set’, and so is geometrically ergodic.

SupposeY is a dominating process fak based on the identity function
A(x) = x. This means it must be possible to coupfeand X such that, if



AX,) = X, <Y, thenA(X, 1) = X,,11 < Y,.1. This can be achieved if and
only if

for all z > 1, and Lebesgue-almost all < x. Therefore we require of such
that

Py >axy | Y,=2] > essup{P|[X,. > axy| X, =u|}

u<zx

«
= supessup {— cat<u<x,u €S, qu > om:y}
i

7

« 1
= Ssupy — : ¢ >y = -,
i qi Yy

using Markov’s inequality, then the construction of the kernelXaf then the
measure-density of the.

So such a Markov chaili” must also (at least when above level') domi-
nateexp(Z), whereZ is a random walk with jump distribution Exponentig) +
log(r). Hence it will fail to be positive-recurrent on the small 6etvhena > e™!.

O

There may exist some subtle re-ordering to proddmCFTHFor such a chain
based on a different pseudo-drift function; however the above lemma shows that
domCFTPmust fail for dominating processes fof based on the pseudo-drift
function A.

4 Conclusion

We have shown that geometric ergodicity (more strictly, a geometric Foster--
Lyapunov condition) implies the existence of a special kindloinCFTPalgo-
rithm. The algorithm is not expected to be practical: however it connects per-
fect simulation firmly with more theoretical convergence results in the spirit of
the Foss and Tweedie (199&quivalence between classgFTP and uniform
ergodicity. Note also that the “universal dominating process”, the sub-critical
exp(D/M /1) so derived, is itself geometrically ergodic.

It is natural to ask whether other kinds of ergodicity (for example, polynomial
ergodicity) can also be related to perfect simulation in this way; this is now being
pursued by Stephen Connor as part of his PhD research at Warwick.
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