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Abstract
This note extends the work ofFoss and Tweedie (1998), who showed

that availability of the classic Coupling from the Past (CFTP) algorithm of
Propp and Wilson (1996)is essentially equivalent to uniform ergodicity for
a Markov chain (see alsoHobert and Robert 2004). In this note we show
that all geometrically ergodic chains possess dominatedCFTP algorithms
(not necessarily practical!) which are rather closely connected to Foster-
Lyapunov criteria. Hence geometric ergodicity implies dominatedCFTP.

1 Introduction

Throughout this paperX will denote an aperiodic Harris-recurrent Markov chain
on a measurable state spaceX which is a Polish space (the Polish condition is
required in order to ensure existence of regular conditional probabilities). Letπ
denote the equilibrium probability distribution ofX. Recall thatX is said to be
geometrically ergodicif it converges in total variation and at geometric rate to
statistical equilibriumπ, with multiplicative constant depending on the starting
point:

distTV(L (Xn) , π) ≤ V (X0)γ
n (1)

for some functionV : X → [1,∞) and some rateγ ∈ (0, 1). The chainX is said
to beuniformly ergodicif the functionV can be chosen to be constant.

We also recall the notion of a small set:
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Definition 1 A subsetC ⊆ X is a small set (of orderk) for the Markov chainX
if there is aminorization condition: for β ∈ (0, 1), and probability measureν,

P [Xk ∈ E | X0 = x] ≥ β I [x ∈ C]× ν(E) for all measurableE ⊆ X .
(2)

Results are often stated in terms of the more general notion ofpetite sets; how-
ever forψ-irreducible aperiodic chains the two notions are equivalent (Meyn and
Tweedie 1993, Theorem 5.5.7).

Foss and Tweedie (1998)use small set theory to show that the condition of
uniform ergodicity for suchX is equivalentto the existence of a Coupling from
the Past algorithm (based onX) in the sense ofPropp and Wilson (1996). This
classic CFTPalgorithm delivers a perfect sample from the equilibrium distribu-
tion ofX. The key to theFoss and Tweedieargument is to remark that in case of
uniform ergodicity the entire state space is small. Sub-sampling the processX if
necessary (to reduce theorder of the small setto 1), one can then devise a classic
CFTPalgorithm which is actually of the form introduced byMurdoch and Green
(1998)as themultigamma coupler. Hobert and Robert (2004)develop theFoss
and Tweedieargument to produce approximations to deal withburn-in (time till
approximate equilibrium) in the geometrically ergodic case.

The Foss and Tweedieresult might be thought to delimit and constrain the
possible range of applicability ofCFTP. However it is also possible to sample
perfectly from the equilibrium of some strictly geometrically ergodic chains using
a generalization: namelydominatedCFTP (domCFTP) as introduced inKendall
(1998), Kendall and Møller (2000), Cai and Kendall (2002). In this note we show
that this is generic: geometric ergodicity implies the existence of a special form
of domCFTPalgorithm adapted to the geometric ergodicity in question. Recent
expositions of quantitative convergence rate estimation depend heavily on small
sets and their relatives (see for exampleRosenthal 2002), so this piece ofCFTP
theory connects to quantitative convergence theory in a rather satisfying way.

To describe this special form ofdomCFTP, we must first introduce the notion
of a Foster-Lyapunov condition. Geometric ergodicity for ourX is equivalent to a
geometric Foster-Lyapunov conditioninvolving recurrence on small sets (this can
be extracted fromMeyn and Tweedie 1993, Theorem 16.0.1):

E [Λ(Xn+1) | Xn = x] ≤ αΛ(x) + b I [Xn ∈ C] , (3)

for someα ∈ (0, 1) andb > 0, somesmall setC, and a drift functionΛ : X →
[1,∞) which is bounded onC. Note thatα+ b ≥ 1 is required, as isΛ|Cc ≥ α−1,
since we imposeΛ ≥ 1.



Now the momentcondition (3) implies that every sub-level set{x ∈ X :
Λ(x) ≤ c} is small (as indeed do weaker conditions;Meyn and Tweedie 1993,
Theorem 14.2.3).
The following material is not present in submitted version: This is a key fact
for our argument so we sketch a coupling proof.
First note that without loss of generality we can employ sub-sampling to en-
sure that the small setC in Condition (3) is of order 1. Super-martingale ar-
guments show that we can choosen such thatP [X hitsC beforen | X0 = x] can
be bounded away from zero uniformly inx for Λ(x) ≤ c. Let the hitting prob-
ability lower bound beρ0. We can use theMinorization Condition (2)to realize
X as a split-chain in the sense ofNummelin (1978), regenerating with probabil-
ity β wheneverX ∈ C. Couple chains from different starting points according
to the time whenX first regenerates inC, yielding a family of realizationsXx

of the Markov chain, withXx
0 = x, such that with positive probabilityβρ0 all

realizations{Xx : Λ(x) ≤ c} coalesce into a set of at mostn trajectories by
timen (divided according to the time of first regeneration). Now apply a renewal-
theoretic argument to the subsequent regenerations of this finite set of trajectories,
which are allowed to evolve independently, except that whenever two trajectories
regenerate at the same time they are forced to coalesce. Straightforward analysis
shows that we can choosem such that with positive probabilityρ1 < βρ0 all tra-
jectories starting from{x ∈ X : Λ(x) ≤ c} have coalesced to just one trajectory
by timen + m. Hence{x ∈ X : Λ(x) ≤ c} is a small set of ordern + m, with
minorization probabilityρ1.

It is convenient to isolate the notion of apseudo-drift functionsuch asΛ in Equa-
tion (3).

Definition 2 A (Foster-Lyapunov) pseudo-drift functionfor a Markov chain state
spaceX is a measurable function

Λ : X → [1,∞)

such that sub-level sets{x ∈ X : Λ(x) ≤ λ} are small for allλ ≥ 1.

Thus a pseudo-drift function has the properties of a Foster-Lyapunov drift function
but is not endowed with a specificmoment condition.

Now we can define the special form ofdomCFTPwhich we require, which is
adapted to a specified pseudo-drift function.

Definition 3 Suppose thatΛ is a pseudo-drift function for an Harris-recurrent
Markov chainX. We say the stationary ergodic random processY on [1,∞) is



a dominating process forX based on the pseudo-drift functionΛ (with threshold
h and coalescence probabilityε) if it is coupled co-adaptively to realizations of
Xx,−t (the Markov chainX begun atx at time−t) as follows:

(a) for all x ∈ X , n > 0, and−t ≤ 0, almost surely

Λ(Xx,−t
−t+n) ≤ Y−t+n ⇒ Λ(Xx,−t

−t+n+1) ≤ Y−t+n+1 ; (4)

(b) moreover ifYm ≤ h for some fixedm then the probability ofcoalescence
(conditional on past ofY and past potential coalescence events) is at least
ε, where coalescence means that the set{

Xx,−t
m+1 : such that− t ≤ m andΛ(Xx,−t

m ) ≤ Ym

}
is a singleton set (inequality is used in−t ≤ m rather than equality as this
is a condition on coupling ofXx,−t for all −t ≤ m);

(c) and finally,P [Yn ≤ h] must be positive.

SupposeY is a dominating process forX based on the pseudo-drift function
Λ. The followingdomCFTPalgorithm then yields a draw from the equilibrium
distribution ofX.

Algorithm 4

SimulateY backwards in equilibrium till the most recentT < 0 for which
YT ≤ h;

while coalescence does not occur at timeT :

extendY backwards till the most recentS < T for whichYS ≤ h;

setT ← S;

simulate the coupledX forwards from timeT + 1, starting with the unique
state produced by the coalescence event at timeT (conditioned onY );

returnX0 as a perfect draw from equilibrium.

This algorithm terminates almost surely as a consequence of the conditions im-
posed inDefinition 3.

Practical implementation considerations are: (1) can one draw from the equi-
librium of Y ? (2) can one simulateY backwards in equilibrium? (3) can one



couple the dominated target processesXx,−t with Y so as to ensure the possibility
of regeneration? (4) can one determine when this regeneration has occurred? and,
of course, (5) will the algorithm not run too slowly?

The simplest kind of ordinary small-setCFTP, as in Murdoch and Green
(1998), is recovered from this Algorithm by takingY ≡ h, and requiring the
whole state-space to be contained in{x : Λ(x) ≤ h} and hence small. In actual
constructions, care must be taken to ensure thatY dominates a coupled collection
of X for which coalescence is possible as specified inDefinition 3(b) (see the
treatment ofCFTP for Harris chains inCorcoran and Tweedie 2001).

The proof that this algorithm returns a perfect draw from the equilibrium dis-
tribution of X is an easy variation on the usualdomCFTPargument, found at
varying levels of generality inKendall 1998; Kendall and Møller 2000; Cai and
Kendall 2002. The key is to observe thatAlgorithm 4 reconstructs a coalesced
trajectory which may be viewed as produced by the Markov chain begun at time
−∞ at some specified statex such thatΛ(x) ≤ h: the proof is then an exercise in
making this heuristic precise.

TheFoss and Tweedie (1998)argument, and the fact that thegeometric Foster-
Lyapunov condition (3)would certainly produce a dominating process if the ex-
pectation inequality was replaced by a stochastic domination, together suggest our
main result, to be proved inSection 2:

Theorem 5 If X is a geometrically ergodic Markov chain, andΛ is a pseudo-drift
function forX which is derived from some geometric Foster-Lyapunov condition,
then there is an almost surely terminatingdomCFTPalgorithm forX (possibly
subject to sub-sampling) using a dominating process based on the pseudo-drift
functionΛ, as inAlgorithm 4andDefinition 3.

As in the case of theFoss and Tweedie (1998)result, this algorithm need not
be at all practical!

2 Proof of Theorem 5

We begin with a lemma concerning the effect of sub-sampling on thegeometric
Foster-Lyapunov condition.

Lemma 6 SupposeX satisfies ageometric Foster-Lyapunov condition: for some
α < 1, some pseudo-drift functionΛ, and small setC = {x ∈ X : Λ(x) ≤ c}.

E [Λ(Xn+1) | Xn = x] ≤ αΛ(x) + b I [Λ(Xn) ≤ c] . (5)



Underk-sub-sampling we obtain a similar condition but with different constants:

E [Λ(Xn+k) | Xn = x] ≤ αk−1Λ(x) + b′ I [Λ(Xn) ≤ c′] , (6)

and also, ifk ≥ 2,

E [Λ(Xn+k) | Xn = x] ≤ αΛ(x) + b′′ I [Λ(Xn) ≤ c′′] . (7)

Moreoverb′ = b/(1−α), c′ = b/(αk−1(1−α)2) may be chosen not to depend on
c, andb′′ = b/(1− α), c′′ = b/(α(1− α)2) may be chosen to depend neither onc
nor onk ≥ 2.

We are able to chooseb′, c′, b′′, c′′ not to depend onc because we have allowed
generous sub-sampling (i.e.: k-sub-sampling to changeα to αk−1).

Proof: IteratingEquation (5),

E [Λ(Xn+k) | Xn = x] ≤ αkΛ(x) +
k∑

j=1

αj−1bE [I [Λ(Xn+k−j) ≤ c] | Xn = x]

≤ αkΛ(x) +
b

1− α

= αk−1Λ(x)− αk−1(1− α)Λ(x) +
b

1− α

≤

{
αk−1Λ(x) if Λ(x) > b

αk−1(1−α)2
,

αk−1Λ(x) + b/(1− α) otherwise.

Hence we may chooseb′ = b/(1− α), c′ = b/(αk−1(1− α)2). Alternatively

E [Λ(Xn+k) | Xn = x] ≤ αΛ(x)− α(1− αk−1)Λ(x) +
b

1− α

≤

{
αΛ(x) if Λ(x) > b

α(1−α)(1−αk−1)
,

αΛ(x) + b/(1− α) otherwise.

Hence we may chooseb′′ = b/(1− α), c′′ = b/(α(1− α)2) if k ≥ 2. �

Proof (of Theorem 5):
We first construct the dominating process.

Consider Markov’s inequality applied to thegeometric Foster-Lyapunov in-
equality (3). Any dominating processY must satisfy thestochastic domination



(4) described inDefinition 3. Consequently, in default of further distributional
information aboutP [Λ(Xn+1)|Xn = x], if Y is to be a dominating process based
on the pseudo-drift functionΛ then we needY to be stationary ergodic but also to
satisfy

P [Yn+1 ≥ αzy | Yn = z] ≥ sup
x:Λ(x)≤z

E [Λ(Xn+1) | Xn = x]

αzy
. (8)

Now if C ⊆ {x ∈ X : Λ(x) ≤ c} then

sup
x:Λ(x)≤z

E [Λ(Xn+1) | Xn = x]

αzy
≤ sup

x:Λ(x)≤z

αΛ(x) + b I [x : Λ(x) ≤ c]

αzy

≤ sup
x:Λ(x)≤z

αΛ(x)

αzy
≤ 1

y
so long asz ≥ c+

b

α
.

ConsequentlyY is a possible candidate for a dominating process based on the
pseudo-drift functionΛ if

P [Yn+1 ≥ αzy | Yn = z] =

{
1/y if z ≥ c+ b

α
,

1 otherwise.
(9)

If we defineU by Y = (c+ b/α) exp(U) (soU is a log-dominating process) then
U is the system workload of aD/M/1 queue, sampled at arrivals, with arrivals
every log(1/α) units of time, and service times being independent and of unit
Exponential distribution. The processU is a random walk with reflection (of
Skorokhod type) at0: as its jump distribution is Exponential(1) − log(1/α) we
may deduce it is positive-recurrent if and only ifα < e−1.

In casee−1 < α < 1, U andY = (c + b/α) exp(U) fail to be positive-
recurrent. However the same construction will work if we useEquation (6)of
Lemma 6to justify sub-samplingX with a sampling periodk large enough to
ensure ageometric Foster-Lyapunov condition (3)using Λ as pseudo-drift but
with α replaced byαk−1 < e−1, and amendingb to b′, c to c′ as inInequality (6).

Thus without loss of generality we may assumeα < e−1, and so thisY can
be run in statistical equilibrium, and thus qualifies as least partly as a dominating
process for the purposes ofTheorem 5. In the sequel we assume moreover that
further sub-sampling has been carried out based onEquation (7), to ensure that
the following small set is of order1:

{x ∈ X : Λ(x) ≤ h} for h = max

{
c+

b

α
,

b

α(1− α)

(
1 +

1

1− α

)}
.

(10)



Here the levelh ≥ c+ b/α is fixed so as to ensureh = c′′+ b′′/(1−α) with b′′, c′′

given as inEquation (7); thush supplies a stable threshold for geometric Foster-
Lyapunov conditions, even allowing for further sub-sampling if required. Note in
particular thatY = (c + b/α) exp(U) is able to sink belowh, sinceh ≥ c + b/α
and the system workloadU can reach zero.

To fulfil the requirements on a dominating process given inDefinition 3, we
need to construct a coupling betweenY and the target processX expressed in
terms of a random flow of independent mapsF−t+n+1 : X → X :

Xx,−t
−t+n+1 = F−t+n+1(X

x,−t
−t+n)

satisfying the distributional requirement thatXx,−t should evolve as the Markov
chainX, thedomination requirement expressed by the implication (4), and also
the regeneration requirement that with probabilityε the set

{Fn(u) : such thatΛ(u) ≤ h}

should be a singleton set. The well-known link between stochastic domination
and coupling can be applied together with the arguments precedingEquation (9)
to show that we can couple the variousXx,−t with Y co-adaptively in this man-
ner so that the implication (4) holds: note that here and here alone we use the
Polish space nature ofX , which allows us to construct the couplings by use of
regular conditional probability distributions for the variousXx,−t conditioned on
theΛ(Xx,−t). Thus all that is required is to show that this stochastic domination
coupling can be modified to allow for regeneration.

The small set condition for{x ∈ X : Λ(x) ≤ h} means there is a probabil-
ity measureν and a scalarβ ∈ (0, 1) such that for all Borel setsB ⊆ [1,∞),
wheneverΛ(x) ≤ h,

P [Λ(Xn+1) ∈ B | Xn = x] ≥ βν(B) . (11)

Moreover the stochastic domination which has been arranged in the course of
definingY means that for all realu, wheneverΛ(x) ≤ y,

P [Λ(Xn+1) > u | Xn = x] ≤ P [Y > u | Y = y] . (12)

We can couple in order to arrange for regeneration if we can identify a probability
measurẽν, defined solely in terms ofν and the dominating jump distribution
P [Y ≥ u | Y = y], such that for all realu

P [Λ(Xn+1) > u | Xn = x]− βν((u,∞)) ≤ P [Y > u | Y = y]− βν̃((u,∞))

ν((u,∞)) ≤ ν̃((u,∞))



and moreover
P [Yn+1 ∈ B | Yn = y] ≥ βν̃(B) .

For then at each step we may determine whether or not regeneration has occurred
(with probabilityβ); under regeneration we use stochastic domination to coupleν
to ν̃; otherwise we use stochastic domination to couple the residuals.

Results to this effect may be gleaned fromRoberts and Rosenthal (2001): for
the sake of explicit exposition we state and prove an interior lemma.

Lemma 7 SupposeU , V are two random variables defined on[1,∞) such that

(a) The distributionL (U) is stochastically dominated by the distributionL (V ):

P [U > u] ≤ P [V > u] for all real U ; (13)

(b) U satisfies a minorization condition: for someβ ∈ (0, 1) and probability
measureν: B ⊆ [1,∞),

P [U ∈ B] ≥ βν(B) for all Borel setsB ⊆ [1,∞) . (14)

Then there is a probability measureµ stochastically dominatingν and such that
βµ is minorized byL (V ). Moreoverµ depends only onβν andL (V ).

Proof (of Lemma 7):
Subtract the measureβν((u,∞)) from both sides ofInequality (13)representing
the stochastic dominationL (U) � L (V ). By theminorization condition (14)the
resulting left-hand-side is nonnegtive. Thus for all realu

0 ≤ P [U > u]− βν((u,∞)) ≤ P [V > u]− βν((u,∞))

NowL (U)−βν is a nonnegative measure (because of theminorization condition
(14)). ConsequentlyP [U > u]− βν((u,∞)) must be non-increasing inu and so
we may reduce the right-hand side by minimizing overw ≤ u:

P [U > u]− βν((u,∞)) ≤ inf
w≤u
{P [V > w]− βν((w,∞))}

= P [V > u]− βµ((u,∞))

whereµ is the potentiallysignedmeasure defined by

βµ([1, u]) = P [V ≤ u]− sup
w≤u
{P [V ≤ w]− βν([1, w))} .



In factµ is a probability measure on[1,∞). Bothµ({1}) = ν({1}) andµ([1,∞)) =
1 follow from consideringu = 1, u→∞. Now we showµ is nonnegative:

βµ((u, u+ u′])− P [u < V ≤ u+ u′]

= − sup
w≤u+u′

{P [V ≤ w]− βν([1, w))}+ sup
w≤u
{P [V ≤ w]− βν([1, w))} .

If the first supremum were to be attained atw ≤ u then the two suprema would
cancel. If the first supremum were to be attained atw′ ∈ [u, u+ u′] then

βµ((u, u+ u′])− P [u < V ≤ u+ u′]

= −P [V ≤ w′] + βν([1, w′)) + sup
w≤u
{P [V ≤ w]− βν([1, w))}

≥ −P [V ≤ w′] + βν([1, w′)) + P [V ≤ u]− βν([1, u)

and hence

βµ((u, u+ u′]) ≥ P [w′ < V ≤ u+ u′] + βν([u,w′)) ≥ 0 .

So we can deduceβµ is in fact a nonnegative measure.
On the other hand

βµ((u, u+ u′])− P [u < V ≤ u+ u′]

= − sup
w≤u+u′

{P [V ≤ w]− βν([1, w))}+ sup
w≤u
{P [V ≤ w]− βν([1, w))} ≤ 0 ,

hence
0 ≤ βµ((u, u+ u′]) ≤ P [u < V ≤ u+ u′] , (15)

soβµ is absolutely continuous with respect toL (V ) and indeed we can deduce

β dµ(u) = I [P [V > ·]− βν((·,∞)) hits current minimum atu] dP [V ≤ u] .
(16)

The minorization ofβµ by L (V ) follows from this argument: dependence only
onβν andL (V ) from construction; finally, stochastic domination ofβν from

βµ((u,∞)) = P [V > u]− inf
w≤u
{P [V > w]− βν((w,∞))}

= sup
w≤u
{βν((w,∞))− P [w < V ≤ u]} ≥ βν((u,∞)) .

�



Now useLemma 7to coupleL (Xn+1 | Xn = x) to L (Yn+1 | Yn = y) when-
everΛ(x) ≤ y in a way which implements stochastic domination and ensures all
theXn+1 regenerate simultaneously wheneverY ≤ h. This concludes the proof
of Theorem 5. �

Note that the algorithm requires us to be able to draw from the equilibrium
distribution ofY and to simulate its time-reversed equilibrium dual. Up to an ad-
ditive constantlog(Y ) is the workload of aD/M/1 queue. This queue is amenable
to exact calculations, so these simulation tasks are easy to implement (specializ-
ing the theory of theG/M/1 queue as discussed, for example, inGrimmett and
Stirzaker 1992, ch. 11). However in general we donot expect this “universal
dominating process” to lead to practicaldomCFTPalgorithms! The difficulty in
application will arise in determining whether or not regeneration has occurred as
in Algorithm 4. This will be difficult especially if sub-sampling has been applied,
since then one will need detailed knowledge of convolutions of the probability
kernel forX (potentially a harder problem than sampling from equilibrium!).

Of course, in practice one uses different dominating processes better adapted
to the problem at hand. For example anM/D/1 queue serves as a good log-
dominating process for perpetuity-type problems and gives very rapiddomCFTP
algorithms indeed, especially when combined with other perfect simulation ideas
such as multishiftCFTP (Wilson 2000b), read-onceCFTP (Wilson 2000a), or
one-shot coupling (Roberts and Rosenthal 2002).

Finally note that, in cases whenα ∈ [e−1, 1) or when the small set{x ∈ X :
Λ(x) ≤ h} is of order greater than1, we are forced to work with coupling con-
structions that are effectivelynon-co-adapted(that is, sub-sampling means that
target transitionsXmk to Xmk+1 depend on sequencesYmk, Ymk+1, . . . , Ymk+k).
The potential improvements gained by working with non-adapted couplings are
already known not only to theory (the non-co-adapted filling couplings ofGrif-
feath 1975; Goldstein 1979; and the efficiency considerations ofBurdzy and
Kendall 2000) but also to practitioners (Huber 2004: non-Markovian techniques
in CFTP; Hayes and Vigoda 2003: non-Markovian conventional MCMC for ran-
dom sampling of colorings).

3 Counter-example

We complete this note by describing a counter-example to show that the use of
sub-sampling in the construction ofTheorem 5is essential.



Proposition 8 There is a Markov chainX satisfying a Foster-Lyapunov condition
with drift functionΛ (and hence itself geometrically ergodic), such that without
use of sub-sampling any dominating processY based onΛ will fail to be positive-
recurrent.

Proof: We begin by choosing a sequence of disjoint measurable setsS1, S2, . . . ,
subsets of[1,∞) such that each set places positive measure in every non-empty
open set. We assert and prove the possibility of this by using an interior lemma:

Lemma 9 One can construct a measurable partitionS1, S2, . . . of [1,∞),

S1 t S2 t S3 t . . . = [1,∞) ,

with the property Leb(Si ∩ (u, v)) > 0 for all 0 < u < v <∞, all i ∈ {1, 2, . . .}.

Proof (of Lemma 9):
Enumerate the rational numbers in[0, 1) by 0 = q̃0, q̃1, q̃2, . . . . Chooseα < 1/2,
and define

A0 =
∞⋃

k=1

∞⋃
n=0

[
q̃n + k, q̃n + k + α2−n

]
.

Then for eachk ≥ 1

α ≤ Leb(A0 ∩ [k, k + 1)) ≤ 2α .

Continue by defining a sequence of nested subsetsAr ⊂ Ar−1 by

Ar =
∞⋃

k=1

∞⋃
n=0

[
q̃n + k

2r
,
q̃n + k

2r
+
α

4r
2−n

]
, (17)

satisfying
α

4r
≤ Leb

(
Ar ∩

[ k
2r
,
k + 1

2r

))
≤ 2α

4r
. (18)

Thus the measurable shellBr = Ar \Ar+1 places mass of at leastα
2×4r in each

interval[ k
2r ,

k+1
2r ) .

It follows that if S is defined by

S =
∞⋃

s=1

(Ars \ Ars+1)



then Leb(S ∩ U) > 0 for every open setU ⊂ [1,∞). The desired disjoint se-
quenceS1, S2, . . . is obtained by considering a countably infinite family of disjoint
increasing subsequences of the natural numbers. �

We revert to the proof ofProposition 8.
The Markov chainX is constructed on state space[1,∞), with pseudo-drift

functionΛ(x) ≡ x. We begin by fixingα ∈ (e−1, 1), and setC = [1, α−1]. The set
C will be the small set for the Foster-Lyapunov condition. Choose a measurable
partitionS1 t S2 t S3 t . . . = [1,∞) as inLemma 9. Enumerate the rational
numbers in[1,∞) by q1, q2, . . . .

We define the transition kernelp(x, ·) of X on [1,∞) as follows:

Forx ∈ [1, α−1], set

p(x, dy) = exp(−(y − 1)) dy for y ≥ 1 ,

so that ifXn ∈ C thenXn+1 − 1 has a unit rate Exponential distribution.
Then:

C is a small set forX of order1 (in fact it will be a regenerative atom!);

if Xn ∈ C thenE [Xn+1] = 2;

if X has positive chance of visiting state1 then the whole state space
[1,∞) will be maximally Leb-irreducible.

Forx > α−1 andx ∈ Si, set

p(x, dy) =

(
1− α

qi

)
δ0(dy) +

α

qi
δqix(dy) .

Note that, because we are using the identity pseudo-drift functionΛ(x) ≡ x,

if x 6∈ C thenE [Λ(Xn+1) | Xn = x] = E [Xn+1 | Xn = x] = αx;

if x 6∈ C thenP [Xn+1 = 1 | Xn = x] > 0.

ThusX satisfies a geometric Foster-Lyapunov condition based on drift function
Λ and small setC, and so is geometrically ergodic.

SupposeY is a dominating process forX based on the identity function
Λ(x) ≡ x. This means it must be possible to coupleY andX such that, if



Λ(Xn) = Xn ≤ Yn thenΛ(Xn+1) = Xn+1 ≤ Yn+1. This can be achieved if and
only if

P [Xn+1 ≥ z | Xn = u] ≤ P [Yn+1 ≥ z | Yn = x]

for all z ≥ 1, and Lebesgue-almost allu < x. Therefore we require of suchY
that

P [Yn+1 ≥ αxy | Yn = x] ≥ esssup
u<x
{P [Xn+1 ≥ αxy | Xn = u]}

= sup
i

esssup

{
α

qi
: α−1 < u < x, u ∈ Si, qiu > αxy

}
= sup

i

{
α

qi
: qi > αy

}
=

1

y
,

using Markov’s inequality, then the construction of the kernel ofX, then the
measure-density of theSi.

So such a Markov chainY must also (at least when above levelα−1) domi-
nateexp(Z), whereZ is a random walk with jump distribution Exponential(1) +
log(α). Hence it will fail to be positive-recurrent on the small setC whenα ≥ e−1.

�

There may exist some subtle re-ordering to providedomCFTPfor such a chain
based on a different pseudo-drift function; however the above lemma shows that
domCFTPmust fail for dominating processes forX based on the pseudo-drift
functionΛ.

4 Conclusion

We have shown that geometric ergodicity (more strictly, a geometric Foster--
Lyapunov condition) implies the existence of a special kind ofdomCFTPalgo-
rithm. The algorithm is not expected to be practical: however it connects per-
fect simulation firmly with more theoretical convergence results in the spirit of
the Foss and Tweedie (1998)equivalence between classicCFTP and uniform
ergodicity. Note also that the “universal dominating process”, the sub-critical
exp(D/M/1) so derived, is itself geometrically ergodic.

It is natural to ask whether other kinds of ergodicity (for example, polynomial
ergodicity) can also be related to perfect simulation in this way; this is now being
pursued by Stephen Connor as part of his PhD research at Warwick.



References

Burdzy, K. and W. S. Kendall [2000,
May]. Efficient Markovian cou-
plings: examples and counterexam-
ples.The Annals of Applied Proba-
bility 10(2), 362–409. Also Uni-
versity of Warwick Department of
Statistics Research Report 331.

Cai, Y. and W. S. Kendall [2002,
July]. Perfect simulation for corre-
lated Poisson random variables con-
ditioned to be positive.Statistics and
Computing12, 229–243. . Also:
University of Warwick Department
of Statistics Research Report 349.

Corcoran, J. N. and R. L. Tweedie
[2001]. Perfect sampling of ergodic
Harris chains.The Annals of Applied
Probability11(2), 438–451.

Foss, S. G. and R. L. Tweedie [1998].
Perfect simulation and backward
coupling. Stochastic Models14,
187–203.

Goldstein, S. [1978 / 1979]. Max-
imal coupling. Zeitschrift f̈ur
Wahrscheinlichkeitstheorie und
Verve Gebiete 46(2), 193–204.

Griffeath, D. [1974 / 1975]. A max-
imal coupling for Markov chains.
Zeitschrift f̈ur Wahrscheinlichkeits-
theorie und Verve Gebiete 31, 95–
106.

Grimmett, G. R. and D. R. Stirza-
ker [1992].Probability and random
processes(Second ed.). New York:
The Clarendon Press Oxford Univer-
sity Press.

Hayes, T. and E. Vigoda [2003]. A non-
Markovian coupling for randomly
sampling colorings. Preprint, Uni-
versity of Chicago Department of
Computer Science.,PDF file avail-
able.

Hobert, J. P. and C. P. Robert [2004].
A mixture representation ofπ with
applications in Markov chain Monte
Carlo and perfect sampling.The An-
nals of Applied Probability14(3),
1295–1305.

Huber, M. [2004]. Time dependent up-
date functions for perfect sampling.
Conference presentation at IMS
meeting on Monte Carlo Markov
chain methods in Singapore, Depart-
ment of Mathematics, Duke Univer-
sity. PDF file available.

Kendall, W. S. [1998]. Perfect simu-
lation for the area-interaction point
process. In L. Accardi and C. C.
Heyde (Eds.),Probability Towards
2000, New York, pp. 218–234.
Springer-Verlag. Also: University
of Warwick Department of Statistics
Research Report 292.

This is a rich hypertext bibliography. Journals are linked to their homepages, and stable URL links (as provided for exam-
ple by JSTOR or Project Euclid ) have been added where known. Access to such URLs is not universal: in case
of difficulty you should check whether you are registered (directly or indirectly) with the relevant provider. In the case of
preprints, icons , , , linking to homepage locations are inserted where available: note that these are probably less
stable than journal links!.

17

http://www.maths.lth.se/annappr
http://www.maths.lth.se/annappr
http://projecteuclid.org/getRecord?id=euclid.aoap/1019487348
http://www.warwick.ac.uk/statsdept/staff/WSK/papers/331.ps.gz
http://www.wkap.nl/journalhome.htm/0960-3174
http://www.wkap.nl/journalhome.htm/0960-3174
http://dx.doi.org/10.1023/A:1020798726338
http://www.warwick.ac.uk/statsdept/staff/WSK/papers/349.ps.gz
http://www.maths.lth.se/annappr
http://www.maths.lth.se/annappr
http://dx.doi.org/10.1214/aoap/1015345299
http://www.dekker.com/servlet/product/productid/STM
http://people.cs.uchicago.edu/~vigoda/NonMarkovian.pdf
http://people.cs.uchicago.edu/~vigoda/NonMarkovian.pdf
http://www.maths.lth.se/annappr
http://www.maths.lth.se/annappr
http://www.math.duke.edu/~mhuber/Research/talks/ims_march_11_2004final.pdf
http://www.springer.de/
http://www.warwick.ac.uk/statsdept/staff/WSK/papers/292.ps.gz
http://links.jstor.org
http://projecteuclid.org


Kendall, W. S. and J. Møller [2000,
September]. Perfect simulation us-
ing dominating processes on ordered
state spaces, with application to lo-
cally stable point processes.Ad-
vances in Applied Probability32(3),
844–865. Also University of
Warwick Department of Statistics
Research Report 347.

Meyn, S. P. and R. L. Tweedie [1993].
Markov Chains and Stochastic Sta-
bility. New York: Springer-Verlag.

Murdoch, D. J. and P. J. Green [1998].
Exact sampling from a continuous
state space.Scandinavian Journal
of Statistics Theory and Applica-
tions25, 483–502.

Nummelin, E. [1978]. A splitting tech-
nique for Harris-recurrent chains.
Zeitschrift f̈ur Wahrscheinlichkeits-
theorie und Verve Gebiete 43, 309–
318.

Propp, J. G. and D. B. Wilson [1996].
Exact sampling with coupled
Markov chains and applications
to statistical mechanics.Random
Structures and Algorithms 9,
223–252.

Roberts, G. O. and J. S. Rosenthal
[2001]. Small and pseudo-small sets
for Markov chains.Stochastic Mod-
els 17(2), 121–145.

Roberts, G. O. and J. S. Rosenthal
[2002]. One-shot coupling for cer-
tain stochastic recursive sequences.
Stochastic Processes and Their Ap-
plications99(2), 195–208.

Rosenthal, J. S. [2002]. Quantitative
convergence rates of Markov chains:
A simple account.Electronic Com-
munications in Probability7, no. 13,
123–128 (electronic).

Wilson, D. B. [2000a]. How to cou-
ple from the past using a read-
once source of randomness.Random
Structures and Algorithms16(1),
85–113.

Wilson, D. B. [2000b]. Layered Mul-
tishift Coupling for use in Perfect
Sampling Algorithms (with a primer
on CFTP). In N. Madras (Ed.),
Monte Carlo Methods, Volume 26
of Fields Institute Communications,
pp. 143–179.American Mathemati-
cal Society.

http://www.shef.ac.uk/uni/companies/apt/ap.html
http://www.shef.ac.uk/uni/companies/apt/ap.html
http://projecteuclid.org/getRecord?id=euclid.aap/1013540247
http://www.warwick.ac.uk/statsdept/staff/WSK/papers/347.ps.gz
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-19832-6
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-19832-6
http://www.springer.de/
http://black.csl.uiuc.edu/~meyn/pages/book.html
http://www.blackwellpublishers.co.uk/journals/sjos/
http://www.blackwellpublishers.co.uk/journals/sjos/
http://www.blackwellpublishers.co.uk/journals/sjos/
http://www.interscience.wiley.com/jpages/1042-9832/
http://www.interscience.wiley.com/jpages/1042-9832/
http://dx.doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
http://www.elsevier.com/locate/issn/03044149
http://www.elsevier.com/locate/issn/03044149
http://dx.doi.org/10.1016/S0304-4149(02)00096-0
http://math.washington.edu/~ejpecp/
http://math.washington.edu/~ejpecp/
http://math.washington.edu/~ejpecp/EcpVol7/paper13.abs.html
http://www.interscience.wiley.com/jpages/1042-9832/
http://www.interscience.wiley.com/jpages/1042-9832/
http://dx.doi.org/10.1002/(SICI)1098-2418(200001)16:1<85::AID-RSA6>3.0.CO;2-H
http://www.ams.org/cgi-bin/bookstore/bookpromo/ficseries
http://www.ams.org/
http://www.ams.org/


Other University of Warwick Department of Statistics
Research Reports authored or co–authored by W.S. Kendall.

161: The Euclidean diffusion of shape.
162: Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence.
172: A spatial Markov property for nearest–neighbour Markov point processes.
181: Convexity and the hemisphere.
202: A remark on the proof of It̂o’s formula forC2 functions of continuous semimartingales.
203: Computer algebra and stochastic calculus.
212: Convex geometry and nonconfluentΓ-martingales I: Tightness and strict convexity.

: The Propeller: a counterexample to a conjectured criterion for the existence of certain convex functions.
214: Convex Geometry and nonconfluentΓ-martingales II: Well–posedness andΓ-martingale convergence.
216: (with E. Hsu) Limiting angle of Brownian motion in certain two–dimensional Cartan–Hadamard manifolds.
217: Symbolic It̂o calculus: an introduction.
218: (with H. Huang) Correction note to “Martingales on manifolds and harmonic maps.”
222: (with O.E. Barndorff-Nielsen and P.E. Jupp) Stochastic calculus, statistical asymptotics, Taylor strings and phyla.
223: Symbolic It̂o calculus: an overview.
231: The radial part of aΓ-martingale and a non-implosion theorem.
236: Computer algebra in probability and statistics.
237: Computer algebra and yoke geometry I: When is an expression a tensor?
238: Itovsn3: doing stochastic calculus withMathematica.
239: On the empty cells of Poisson histograms.
244: (with M. Cranston and P. March) The radial part of Brownian motion II: Its life and times on the cut locus.
247: Brownian motion and computer algebra (Text of talk to BAAS Science Festival ’92, Southampton Wednesday 26 August 1992, with screenshots of

illustrative animations).
257: Brownian motion and partial differential equations: from the heat equation to harmonic maps (Special invited lecture,49th session of the ISI, Firenze).
260: Probability, convexity, and harmonic maps II: Smoothness via probabilistic gradient inequalities.
261: (with G. Ben Arous and M. Cranston) Coupling constructions for hypoelliptic diffusions: Two examples.
280: (with M. Cranston and Yu. Kifer) Gromov’s hyperbolicity and Picard’s little theorem for harmonic maps.
292: Perfect Simulation for the Area-Interaction Point Process.
293: (with A.J. Baddeley and M.N.M. van Lieshout) Quermass-interaction processes.
295: On some weighted Boolean models.
296: A diffusion model for Bookstein triangle shape.
301: COMPUTER ALGEBRA: an encyclopaedia article.
308: Perfect Simulation for Spatial Point Processes.
319: Geometry, statistics, and shape.
321: From Stochastic Parallel Transport to Harmonic Maps.
323: (with E. Thönnes) Perfect Simulation in Stochastic Geometry.
325: (with J.M. Corcuera) Riemannian barycentres and geodesic convexity.
327: Symbolic It̂o calculus inAXIOM: an ongoing story.
328: Itovsn3 in AXIOM: modules, algebras and stochastic differentials.
331: (with K. Burdzy) Efficient Markovian couplings: examples and counterexamples.
333: Stochastic calculus inMathematica: software and examples.
341: Stationary countable dense random sets.
347: (with J. Møller) Perfect Metropolis-Hastings simulation of locally stable point processes.
348: (with J. Møller) Perfect implementation of a Metropolis-Hastings simulation of Markov point processes
349: (with Y. Cai) Perfect simulation for correlated Poisson random variables conditioned to be positive.
350: (with Y. Cai) Perfect implementation of simulation for conditioned Boolean Model via correlated Poisson random variables.
353: (with C.J. Price) Zeros of Brownian Polynomials.
371: (with G. Montana) Small sets and Markov transition densities.
382: (with A. Brix) Simulation of cluster point processes without edge effects.
391: (with E. Thönnes, A. Bhalerao, R.G. Wilson) A Bayesian approach to inferring vascular tree structure from 2D imagery.
392: (with A. Bhalerao, E. Thönnes, R.G. Wilson) Inferring vascular tree structure from 2D and 3D imagery.
402: (with R.G. Wilson) Ising models and multiresolution quad-trees.
409: Constructing Markov chains for differentiable curves.
410: Simplification rules for ItoIntegral.
416: (with C.J. Price) Coupling iterated Kolmogorov diffusions.
427: Geometric Ergodicity and Perfect Simulation.
428: Notes on Perfect Simulation.

Also see the following related preprints

317: E. Thönnes: Perfect Simulation of some point processes for the impatient user.
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